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Abstract

In zero-shot generalization (ZSG) in Reinforcement Learning (RL) agents must
adapt to entirely novel environments without additional training. Understanding
and utilizing contextual cues, such as the gravity level of the environment, is
critical for robust generalization. We propose to integrate the learning of context
representations directly with policy learning. Our algorithm demonstrates improved
generalization on various simulated domains, outperforming prior context-learning
techniques in zero-shot settings. By jointly learning policy and context, our method
develops behavior-specific context representations, enabling adaptation to unseen
environments. This approach marks significant progress toward reinforcement
learning systems that can generalize across diverse real-world tasks.

1 Introduction

Reinforcement learning [RL; Sutton and Barto, 2018] is a key area in creating intelligent systems
that can learn and adapt to various tasks. A significant challenge in RL is crafting algorithms that
perform well not only in known environments but also in new, unseen ones. This highlights the need
for generalizable RL agents. Generalization in RL includes a range of definitions and strategies, each
suited to the specific requirements of different applications. The concept of generalization in RL
covers everything from basic domain adjustments to advanced multitask learning settings [Kirk et al.,
2023].

In this context, zero-shot generalization (ZSG) is a notable aspect of generalization. ZSG is unique
because it requires that the learned policies are able to be applied to new environments without
additional modifications during testing [Kirk et al., 2023, Benjamins et al., 2023]. This is especially
important for applications where it is not possible to fine-tune the model in the target environment.
ZSG is attractive because it suggests that RL models can effectively handle the diversity and unpre-
dictability of real-world tasks. However, RL algorithms often struggle with even minor changes in
their environment, which can result in behaviors that do not transfer well [Henderson et al., 2018,
Andrychowicz et al., 2021]. We attribute this issue primarily to the complexity of the RL training
process, which typically does not focus on generalization [Parker-Holder et al., 2022].

The path to achieving reliable ZSG for RL presents many challenges. In particular, how can zero-shot
generalization be achieved if we do not have access to privileged information, i.e. a context [Hallak
et al., 2015, Modi et al., 2018], that can help us identify the underlying transition dynamics. For
example, an RL agent assigned to control a robot may adjust its control behavior based on the weight
of the load the robot needs to carry. If the robot is equipped with sensors that detect this weight,
the RL policy could immediately use the information to adapt the control accordingly. However, if
this information is not easily accessible, learning a policy that can adapt to such changes becomes
even more difficult. For this reason, recent works have proposed inferring a context from previous
observations [see, e.g., Zhou et al., 2019, Evans et al., 2022]. Although these works have shown great
promise for zero-shot generalization, they often fall short of realizing their full potential. We argue
that this is largely due to the decoupling of learning the context from learning the policy. Instead,
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here, we propose learning behavior-specific context to aid policy learning by jointly learning context
representations and well-performing policies.

In summary, this paper delves into the intricate domain of generalization in model-free RL, with a
focus on zero-shot generalization from an inferred context. Specifically, the contributions of our work
are as follows:

• We propose a novel RL algorithm, capable of zero-shot generalization by learning to
recognize the environment dynamics while jointly learning desirable behaviors within the
environment.

• Our empirical evaluation of the proposed algorithm contrasts the learning behavior of RL
agents when providing explicit access to a ground truth context versus an inferred context.

• We provide insights into the learned context embedding and show that they recover the
relationship between transition dynamics.

2 Related Work

Various approaches have been proposed to learn generalizable RL agents. In this line of research,
two particular areas have gained more momentum with a focus on either few-shot or zero-shot
generalization abilities.

Meta-RL Meta-reinforcement learning [Meta-RL; Beck et al., 2023] involves the process of
learning how to learn in reinforcement learning. Thus, the goal is to learn RL pipelines that can learn
efficiently, so that they can be easily transferred to new settings and learn to solve a new task with
few interactions. For example, Duan et al. [2016] proposed to encode the learning dynamics of a
proximal policy optimization [PPO; Schulman et al., 2017] in a recurrent neural network (RNN).
Thus, by giving examples of how the PPO agent adapts its behavior over time during training, the
RNN can learn how to adapt a policy, without needing to perform gradient updates at test time. In an
ideal scenario, such a learned RL agent only needs a few exploration episodes to find the optimal
behavior, i.e., few-shot adaptation. To identify environment dynamics, most of such model free
meta-RL agents [see, e.g., Finn et al., 2017, Wang et al., 2017, Rakelly et al., 2019, Nagabandi
et al., 2019, Melo, 2022] and model-based ones [see, e.g., Lee et al., 2020, Guo et al., 2022, Sodhani
et al., 2022, Wen et al., 2023] keep a short history of transitions to estimate environment transition
dynamics. Although much progress has been reported in meta-RL, at test time, many thousands of
environment interactions are required for the learned RL agents to solve the test tasks reliably.

Contextual RL In contextual RL (cRL), it is assumed that the underlying transition dynamics can
be characterized by a context [Hallak et al., 2015, Modi et al., 2018]. This could, for example, be a
physical property such as wind [Koppejan and Whiteson, 2009], the length of the pole that needs
to be balanced [Seo et al., 2020, Kaddour et al., 2020, Benjamins et al., 2023], the characteristic
of the terrain [Escontrela et al., 2020], or more abstract concepts that characterize the dynamics of
the underlying environment [Biedenkapp et al., 2020, Adriaensen et al., 2022]. Kirk et al. [2023]
identify the cRL setting as particularly relevant for the study of zero-shot generalization capabilities
of RL agents, as the cRL framework allows us to define the ranges of inter- and extrapolation
distributions and enable a systematic and principled study of how RL agents can adapt to changes in
their environments. Using the evaluation protocol proposed by Kirk et al. [2023], Benjamins et al.
[2023] studied the generalizability of multiple model-free RL agents on a benchmark that uses various
physical properties as context information. Their study assumed a naive use of context information
by concatenating it directly with the observation. Instead, Beukman et al. [2023] proposed to use a
hypernetwork to learn adaptable RL agents. However, their approach requires that agents can directly
observe the context. In contrast, our work studies the effectiveness of inferring context, as is usually
done in meta-RL, for zero-shot generalization without assuming access to the context.

3 Background - Contextual Markov Decision Processes

We build on the framework of contextual Markov decision processes [cMDPs; Hallak et al., 2015,
Modi et al., 2018], which was proposed as an ideal abstraction for the study of zero-shot generalization
in RL [Kirk et al., 2023]. In an MDP M = (S,A, T ,R, ρ), the characteristics of the environment are
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represented by the state space S , the action space A, the transition dynamics T , the reward function
R, and the initial state distribution ρ.

cMDPs introduce context to parameterize an environment’s behavioral rules, allowing for variations
in task instances. In a cMDPMcMDP, the action space A and the state space S remain untouched,
while the transition dynamics Tc, the reward Rc and the initial state distribution ρc are context
dependent and vary with context c ∈ C. The context-aware initial state distribution ρc and dynamic
changes expose the agent to different parts of the state space across contexts. Therefore, a cMDP
McMDP encompasses a set of MDPs that vary by context, denoted as {Mc}c∈C , which provides a
framework for studying generalization in RL in diverse environments.

In the context of zero-shot problems, we can then utilize cMDPs to study generalization by defining
two sets of context sets Ctrain and Ceval, for training and evaluation, respectively [Kirk et al., 2023].
During training, the context values are sampled from Ctrain. Benjamins et al. [2023] followed this
protocol to study the generalizability of various model-free agents. In particular, they contrasted
providing direct access to the context (as part of the observation of the agent) with simply learning
on a distribution (similar to domain randomization [Tobin et al., 2017, Peng et al., 2018]) without
having direct access to the context. Their findings showed that direct access to context is not always
beneficial and how best to incorporate contextual information into an agent remains an open question.
However, in particular, Benjamins et al. [2023] did not contrast this with agents that learn to infer
context. In contrast, here, we study ZSG for agents that first need to infer their environment context
and contrast this with both agents that have no access to the context and those that can directly
observe it.

4 Method

We begin this section by discussing how past experiences can be used to infer the context of the
environment. Further, we discuss the advantages and disadvantages of this style of inferring context
in the few-shot and zero-shot settings, respectively, before using these insights to derive methodology
that is particularly suited to the zero-shot setting. Finally, we outline the proposed learning algorithm
that follows this methodology.

4.1 Inferring Context From Past Experiences

(a) Training of the context encoder ψ (b) Training of the policy networks πθ , Qϕ.

Figure 1: Two-phase training of predictive context encoding methods. Typically, no gradient updates
go through the frozen context encoder while learning the policy as depicted in (b).

The task of learning to infer the dynamics of the environment is generally done by looking at
past experience. This typically involves training a context encoder ψ against an auxiliary training
objective [see, e.g., Zhou et al., 2019, Evans et al., 2022]. Given a list L of transitions collected
in an environment, the context encoder ψ aims to generate a latent representation l that captures
relevant contextual information. Predominantly, training of ψ involves learning to predict the one-step
dynamics of the environment from past trajectories based on the encoding learned in ψ. The goal of
this style of learning context embedding is to directly capture how the environment evolves with each
action taken.

3



Concretely, consider a list of observed transitions Lc = [(sj , aj , s
′
j) | j ∈ [0, h− 1]] collected within

a specific instance of the environment given context c, where sj represents the state, aj denotes the
action and s′j the subsequent state in transition j. The encoder ψ uses these transitions to learn a
lower-dimensional representation lc. The latent representation is then used by the dynamics predictor
D together with the current state-action pair (s, a) and tasked with predicting the next state s′. The
prediction error of D is then propagated back through ψ to ensure that ψ captures the information
relevant to predict the one-step dynamics. Schematically, this can be seen in Figure 1a. Once the
context encoder ψ is fully trained, the learned embedding is fixed and used to produce contextual
information during subsequent training of the policy, see Figure 1b.

Inferring dynamics from previous observations has been shown to be particularly useful for few-shot
adaptation in meta-RL [see, e.g., Rakelly et al., 2019, Nagabandi et al., 2019, Melo, 2022]1. In this
setting, the (learned) RL agent is allowed to update its own policy based on new observations (i.e.,
few shots) in the new environment. Thus, a context that aims to capture the entire transition dynamics
will be helpful in exploring novel behaviors that might traverse drastically different parts of the state
space. However, we argue that inferring context for zero-shot adaptation of model-free agents should
not consider a learned context based on the full transition dynamics, but rather one that only captures
that information, which is particularly relevant to the learned policy, which will remain unchanged at
test time.

4.2 The Case for Behavior-Specific Context for Zero-Shot Generalization

Consider the example of a policy that needs to control a 4-legged robot to navigate through different
worlds with varying properties, such as friction levels or gravity. At test time, in the few-shot setting,
the robot might explore the landscape of the current world. Any observations made during these initial
steps can be used to refine its behavior policy (e.g., change the gait to better suit the environment), and
the task can be repeated as often as the particular few-shot setting allows. However, in the zero-shot
setting, at test time, there is only one chance to get it right. The policy needs to be spot on from the
get-go, as there is no further fine-tuning or other refinement of the policy. Thus, the context serves
very different purposes in both scenarios.

The question now arises: How can we get a context that is maximally helpful to the policy at
hand? Ideally, such a context should capture all the intricacies that the policy might encounter
when interacting with the environment. Essentially, we want a context that is conditioned on the
policy at hand. At first glance, this leads to a chicken-and-egg problem in which we need to learn a
policy-conditioned context so that we can learn a context-conditioned policy or vice versa. Instead, to
avoid this issue, we can use the general learning dynamics in RL that typically follows the principle
of generalized policy iteration [GPI; Sutton and Barto, 2018].

Figure 2: Joint training of the context encoder ψ
and policy/value networks πθ/Qϕ

In GPI we iterates between two stages (I) pol-
icy evaluation and (II) policy iteration. Starting
from a random policy, we evaluate its perfor-
mance. Using the evaluation data, we then im-
prove our policy, etc. Thus, as we traverse the
policy space, we get many samples of different
behavior policies. These samples can be used
directly to learn the latent context representation
from observed past experiences in a style similar
to that described in Section 4.1. To condition the
context encoder on the policy behavior, we back-
propagate losses of the policy objective through
the context encoder. Thus, at test time, our con-
text will capture all the information that is relevant to the current behavior of the policy. Figure 2
outlines our proposed joint context and behavior learning scheme.

4.3 Joint Context and Policy Learning

We present our proposed learning approach Algorithm 1. The pseudocode is written from the
perspective of actor-critic style learning, such as the soft actor critic algorithm [SAC; Haarnoja et al.,

1For a recent survey on meta-RL, we refer to [Beukman et al., 2023]
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2018], an off-policy deep reinforcement learning algorithm that simultaneously learns a stochastic
policy πθ and a state-action-value function Qϕ. However, it is important to note that our method is
adaptable and can be integrated with any off-policy algorithm.

Lines 4 to 13 detail how an agent can infer its context and act with respect to it. We first sample a list
of h past transitions to predict the latent context lc = ψ(Lc). We then append this learned context to
the current state observation st, allowing us to condition the policy on both state and context. When
training the policy (lines 16 to 22), we first infer the context from past transitions in a similar way.
When updating the context encoder ψ, we propagate the error through the actor to condition the
context on the policy.

During training, transitions are uniformly sampled from the entire replay buffer to ensure diverse
experiences for the context encoder. However, at inference time, we assume the agent only has access
to the transitions from the current episode (see Algorithm 2).

5 Experiments

5.1 Environments

We evaluate our context encoding method across multiple environments as described below, using the
CARL library [Benjamins et al., 2023], which allows adjustments to the dynamics parameters during
and between episodes. Here, we provide a brief description of the environments and contexts. For the
exact training and evaluation context sets, see Table 6 in the Appendix.

• Cartpole: An agent needs to learn to balance a pole vertically on a moving cart which it
controls. The observation space is a 4-dimensional vector (position, velocity of the cart,
angle, angular velocity of the pole). We evaluate generalizability to changes in time elapsed
between states.

• Pendulum: An agent has to learn to swing up an inverted pendulum and stabilize it at the
top from a random initial position. The action space controls force direction and magnitude.
We assess robustness to changes in the pendulum’s length.

• MountainCar: The agent has to learn to drive a car up a steep slope, potentially needing to
gain momentum using the opposite slope. We test adaptability to changes in power, both
positive and negative values are tested. In our setting, the car is given various levels of
power, allowing much faster goal reaches, potentially allowing for positive rewards.

• Ant: The agent has to learn to control a four-legged robot to facilitate walking. The observa-
tion space includes joint angles, velocities, contact forces, and torques (27 dimensions). We
evaluate against changes in the robots’ torso mass.

5.2 Baseline methods

To assess the generalization ability of our method, we compare it against the following baselines:

• Hidden context: No context is explicitly provided to the agent, but it is still trained across
all contexts in the training set. This can be seen as similar to domain randomization [Tobin
et al., 2017]. This baseline evaluates whether context-aware approaches could use context
effectively when learning general policies.

• Explicit identification: The explicit context value c is concatenated to the observed state at
each time step, at training and evaluation time. In the contextual RL setting, this is the most
widely used way of learning with access to context information [Benjamins et al., 2023].
As the policy has access to complete information about the environment dynamics, i.e., the
ground truth context, this baseline evaluates weather learned contexts provide benefit to the
learning agents.

• Predictive identification: In this method, a context encoder is trained on the transition
dynamics prediction task described in Section 4.2, following the training pipeline from
Evans et al. [2022]. This baseline allows us to evaluate the effectiveness of jointly learning
context and policy compared to learning them separately.

All baseline learning methods and our proposed method for learning with and from context are evalu-
ated with a soft actor-critic [SAC; Haarnoja et al., 2018] agent. We keep the SAC hyperparameters
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Table 1: Learning progression across training environments expressed as the area under the reward
curve. Our method consistently achieves high AUC for all environments.

Environment

Episodic return - area under the curve (average over 10 seeds)

Hidden context Explicit context
Predictive Joint context &

identification policy learning

Cartpole 287170 283 847 285 018 285 528
Pendulum −115 649 −80 745 −108 771 −78892
MountainCar 1 722 1104599 103 512 510 677
Ant 57 552 −20 673 53 651 62282

fixed for all methods (see Table 4 in the Appendix). We report the hyperparameters relevant for
learning to infer contexts in Table 5 in the Appendix.

5.3 Measures of generalization

For each environment and method, we perform 10 independent training runs (using different random
seeds) and then evaluate the trained agent for 20 episodes, resulting in a total number of N = 200
evaluations for each value of Ceval. This produces a score matrix (sci,n), with ci ∈ Ceval and
n ∈ [1, N ], per environment and per method. To compare the scores between different context values,
we follow the methodology described by Agarwal et al. [2021] and normalize the scores by linearly
rescaling them based on two reference points. We note the score of a random agent as srandomci and
the score of an agent trained only on the default value of the context as sdefaultci , and calculate the
normalized scores s̄ci,n as:

s̄ci,n =
sci,n − srandomci

sdefaultci − srandomci

We compute the interquartile mean (IQM) of the agent’s performance on both the interpolation and
extrapolation subsets of Ceval, together with their respective stratified bootstrap confidence intervals,
as outlined by Colas et al. [2019].

5.4 Research questions

Research Question 1: Are behavior-specific context embeddings beneficial for zero-shot out-of-
distribution generalization?

We evaluated the trained agents on the Ceval sets, and provide the IQMs of each method in Table 2.
For an idea of the distribution of the scores, we also show the confidence intervals of the IQMs in
Figure 3. In Cartpole and Pendulum environments, our joint context and policy learning (jcpl) method
achieves higher IQM values compared to the predictive identification baseline across all settings,
including interpolation, extrapolation and considering all context values.

In particular, for the Ant environment, which is relatively more complex, the results strongly favor
our jcpl method, with significantly higher IQM values compared to the predictive identification
baseline. Interestingly, in this environment, the explicit context baseline, which directly provides the
context value as input, leads to substantially worse performance than both the jcpl and the predictive
identification method, indicating that using the observed mass value directly is not beneficial to the
SAC agent. This corroborates the findings of Benjamins et al. [2023]: direct access to context is not
always beneficial, and how best to incorporate contextual information into an agent remains an open
question. Our approach of jointly learning behavior-specific context embeddings directly addresses
this open question and demonstrates improved generalization performance, especially in the complex
Ant environment.

To provide further clarity for the reader, we depict the full empirical distribution of the score of each
method in the Appendix (Figures 7 and 8), in the form of performance profiles.

Research Question 2: Do the learned embeddings capture the underlying ground truth change in
the transition dynamics?
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(a) Cartpole - interpolation (b) Cartpole - extrapolation

(c) Pendulum - interpolation (d) Pendulum - extrapolation

(e) MountainCar - interpolation (f) MountainCar - extrapolation

(g) Ant - interpolation (h) Ant - extrapolation

Figure 3: Interquartile Mean (IQM) of the aggregated normalized scores, along with their respective
stratified bootstrap confidence intervals, in the interpolation and extrapolation settings

Table 2: Generalization metrics for the normalized scores of the jcpl and predictive identification
methods. In every environmnent except MountainCar, our method scores a higher IQM, both in the
Interpolation and extrapolation settings.

Environment Metric Interpolation Extrapolation All values

Cartpole IQM jcpl 1.052939 1.085407 1.029779
IQM predictive id 1.036612 1.005375 1.017251

Pendulum IQM jcpl 1.012740 -0.034381 0.384468
IQM predictive id 0.467899 -0.478549 -0.104004

MountainCar IQM jcpl 0.320692 -0.123045 0.091731

IQM predictive id 0.578874 0.553004 0.588501

Ant IQM jcpl 1.038206 1.063549 1.051768
IQM predictive id 0.934375 0.946111 0.940794

To evaluate whether the learned context embeddings effectively capture the true underlying changes
in the dynamics of the environment, we examine the 2D latent representations visualized in Figure 4.
In Ant and MountainCar environments, the latent embeddings learned by our jcpl method exhibit
better separation between different context values compared to the predictive identification baseline.
This separation suggests that the jcpl embeddings encode information about the varying transition
dynamics more distinctively. Further visualizations in the Appendix, across multiple environments
and training seeds, reinforce this observation.

Quantitatively, we measure the mean squared error (MSE) of a random forest model when predicting
the context value from the learned latent embeddings, using 5-fold cross-validation averaged over 10
training seeds (Table 3). In the Cartpole, MountainCar, and Ant environments, jcpl achieves a lower
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(a) Ant
predictive identification

(b) Ant
jcpl

(c) MountainCar
predictive identification

(d) MountainCar
jcpl

Figure 4: Learned embeddings of both context encoding methods.

MSE compared to the predictive identification method, indicating that the learned embeddings better
represent the ground-truth context information. Specifically, jcpl reduces MSE from 24.89 to 15.86
in MountainCar and from 1221.84 to 1107.84 in the complex Ant environment.

However, in the Pendulum environment, the predictive identification method achieves a slightly lower
MSE of 0.0006 compared to jcpl’s MSE of 0.0008. This suggests that learning the context separately
may be more effective in certain environments for capturing the transition dynamics.

Overall, the qualitative and quantitative analysis demonstrate that our joint context and policy
learning approach generally leads to learned embeddings that better capture the underlying ground-
truth changes in the environment dynamics, particularly in more complex environments like Ant
and MountainCar. By jointly optimizing context and policy representations, jcpl can discover latent
embeddings that encode relevant information about the varying transition dynamics, facilitating
improved generalization.

6 Conclusion

In this paper, we introduce a novel approach that seamlessly integrates the learning of context-aware
policies with the ability to infer contextual embeddings, addressing the critical challenge of zero-shot
generalization in reinforcement learning. By enabling the joint optimization of policy and context
representations, our algorithm acquires behavior-specific embeddings that significantly enhance the
adaptability of RL systems to diverse environments, eliminating the need for retraining. This unified
framework represents a substantial step towards creating more autonomous and versatile RL agents.

It should be noted that the experiments primarily focused on generalization across varying context
values, without explicitly considering other factors such as task variations or changes in the reward
structure. Consequently, the generalization capabilities of the method in scenarios involving such
variations remain an open question that warrants further investigation. Future research should focus
on improving the proposed method’s generalization to varied tasks by incorporating reward signals
into context modeling. This can be achieved by capturing task-specific information within the learned
embeddings, enabling adaptation across diverse tasks. Observing reward signals during evaluation
can further enhance context identification and generalization performance, expanding the method’s
applicability to a wider range of tasks with variations.

Table 3: Mean square error of random forest prediction of c from lc (5-fold cross validation, mean
value across 10 training seeds)

Environment

Mean square error

Predictive identifi-
cation

Joint context &
policy learning

Cartpole 0.0013 0.0003
Pendulum 0.0006 0.0008
MountainCar 24.89 15.86
Ant 1221.84 1107.84
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The current context encoder architecture averages latent context across transitions to produce a single
embedding. However, exploring more advanced architectures that capture the evolution of transitions
over time could yield richer and more informative context representations. By assessing the agent’s
uncertainty about its environment, these architectures could enhance adaptability and performance
across diverse environments. This advancement in context-aware reinforcement learning could lead to
more robust and versatile autonomous agents capable of operating effectively in dynamic, real-world
scenarios.
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Appendix

Hyperparameter Value

Total number of training steps Ttrain 3× 104

Replay Buffer Size 106

Discount Factor γ 0.99
Polyak Averaging Factor τ 0.005
Batch Size b 256
Time steps before training starts 5× 103

Learning Rate (Actor) 3× 10−4

Learning Rate (Critic) 10−3

Optimizer (Actor, Critic) Adam
Policy training interval 2
Target Update Interval 1
Target Entropy αtarget -1

Table 4: Hyperparameters relative to the task policy algorithm (Soft Actor-Critic)

Hyperparameter Value
Size h of transitions list L 20
Dimension of latent context lc 2
Hidden dimensions (Encoder ψ, Predictor D) [8,4]
Learning rate (Encoder ψ, Predictor D) 10−3

Optimizer (Encoder ψ, Predictor D) Adam
Table 5: Hyperparameters relative to the encoding of the context
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(a) Cartpole

(b) Pendulum

Figure 5: Violin plots of the (non-normalized) scores for every value of Ceval, in the Cartpole and
Pendulum environments. Our joint learning method (jcpl) is capable of zero-shot generalization to
out-of-distribution environment dynamics.

(a) MountainCar

(b) Ant

Figure 6: Violin plots of the (non-normalized) scores for every value of Ceval, in the MountainCar
and Ant environments.
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(a) Cartpole - interpolation (b) Cartpole - extrapolation

(c) Pendulum - interpolation (d) Pendulum - extrapolation

(e) MountainCar - interpolation (f) MountainCar - extrapolation

(g) Ant - interpolation (h) Ant - extrapolation

Figure 7: Performance profiles of aggregated normalized scores, in the interpolation and extrapolation
settings
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(a) Cartpole - IQM of aggregated normalized
scores

(b) Pendulum - IQM of aggregated normal-
ized scores

(c) MountainCar - IQM of aggregated nor-
malized scores

(d) Ant - IQM of aggregated normalized
scores

(e) Cartpole - performance profiles of aggre-
gated normalized scores

performance

(f) Pendulum - performance profiles of aggre-
gated normalized scores

(g) MountainCar - performance profiles of
aggregated normalized scores

(h) Ant - performance profiles of aggregated
normalized scores

Figure 8: Interquartile Mean (IQM) and performance profiles of aggregated normalized scores, on
the entire Ceval set
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(a) Ant - predictive identi-
fication (b) Ant - jcpl

(c) MountainCar - predic-
tive identification (d) MountainCar - jcpl

(e) Ant - predictive identi-
fication (f) Ant - jcpl

(g) MountainCar - predic-
tive identification (h) MountainCar - jcpl

(i) Pendulum - predictive
identification (j) Pendulum - jcpl

(k) Cartpole - predictive
identification (l) Cartpole - jcpl

(m) Pendulum - predictive
identification (n) Pendulum - jcpl

(o) Cartpole - predictive
identification (p) Cartpole - jcpl

(q) Pendulum - predictive
identification (r) Pendulum - jcpl

(s) Cartpole - predictive
identification (t) Cartpole - jcpl

Figure 9: Learned embeddings of both context encoding methods, across multiple seeds
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Environment (Tepisode) Context Ctrain Ceval

Cartpole (200) tau

[0.007, 0.012, [0.002, 0.003,
0.021, 0.034, 0.006, 0.009,

0.057] 0.015, 0.026,
0.043, 0.072,
0.120, 0.200]

Pendulum (200) length

[0.07, 0.16, [0.01, 0.02,
0.34, 0.73, 0.05, 0.1,

1.58] 0.22, 0.46,
1.0, 2.15,
4.64, 10.00]

MountainCar (999) power

[-5, -3, -1, [-10, -8, -6,
1, 3, 5] -4, -2, 0,

2, 4, 6,
8, 10]

Ant (1000) mass_torso

[25, 35, 45, [1, 10, 20,
55, 65, 75] 30, 40, 50,

60, 70, 80,
90, 100]

Table 6: Environment settings

Algorithm 1 Training loop

1: Initial state s0, context value c, context encoder ψ, actor and critic networks πθ, Qϕ, number of
training steps Ttrain, transition list size h, batch size b, replay buffer R = ∅

2: for t ∈ [0, Ttrain − 1] do:
3:
4: Action Sampling
5: Lc ← Sample({(sj , aj , s′j) | (sj , aj , rj , s′j , cj) ∈ R, cj = c}, size = h) ▷ Sample a list
Lc of transitions from context c

6: if Lc ̸= ∅ then
7: lc ← ψ(Lc) ▷ Infer the context latent lc
8: else
9: lc ← 0

10: end if
11: at ∼ πθ(·|(st, lc)) ▷ Sample action at from policy πθ based on the augmented state (st, lc)
12: s′t ∼ Tc(·|(st, at)), rt ∼ Rc(·|(st, at)) ▷ Execute action at and observe next state s′t, reward

rt
13: R← R ∪ (st, at, rt, s

′
t, c) ▷ Store transition in replay buffer

14:
15: Policy update
16: B ← Sample(R, size = b) ▷ Sample a mini-batch of transitions from the replay buffer
17: for (si, ai, ri, s

′
i, ci) ∈ B do:

18: Lci ← Sample({(sj , aj , s′j) | (sj , aj , rj , s′j , cj) ∈ R, cj = ci}) ▷ Sample a list Lci of
transitions from context ci

19: lci ← ψ(Lci) ▷ Infer the context latent lci
20: end for
21: Compute the loss of the actor and critic networks using the mini-batch of augmented transi-

tions {((si, lci), ai, ri, (s′i, lci)) | (si, ai, ri, s′i, ci) ∈ B}
22: Update the context encoder ψ, actor πθ and critic Qϕ networks
23: end for
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Algorithm 2 Evaluation loop

1: Initial state s0, context encoder ψ, actor and critic networks πθ, Qϕ, number of episode steps
Tepisode, transition list L = ∅, latent context l = 0

2: for t ∈ [0, Tepisode − 1] do:
3: if L ̸= ∅ then
4: l← ψ(L) ▷ Infer the context latent l
5: end if
6: at ∼ πθ(·|(st, l)) ▷ Sample action at from policy πθ based on the augmented state (st, l)
7: st+1 ∼ Tc(·|(st, at)) ▷ Execute action at and observe next state s′t
8: L← L ∪ (st, at, s

′
t) ▷ Store transition (st, at, s

′
t) in L

9: end for

17


	Introduction
	Related Work
	Background - Contextual Markov Decision Processes
	Method
	Inferring Context From Past Experiences
	The Case for Behavior-Specific Context for Zero-Shot Generalization
	Joint Context and Policy Learning

	Experiments
	Environments
	Baseline methods
	Measures of generalization
	Research questions

	Conclusion

