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Abstract

Commonsense knowledge can be leveraged001
for identifying causal relations in text. In this002
work, we convert triples in ATOMIC20

20, a wide003
coverage commonsense reasoning knowledge004
graph, to natural language text and continually005
pretrain a BERT pretrained language model.006
We evaluate the resulting model on answer-007
ing commonsense reasoning questions. Our008
results show that a continually pretrained lan-009
guage model augmented with commonsense010
reasoning knowledge outperforms our base-011
line on two commonsense causal reasoning012
benchmarks, COPA and BCOPA-CE, without013
additional improvement on the base model or014
using quality-enhanced data for fine-tuning.015

1 Introduction016

Automatic extraction and classification of causal017

relations in text has been an important yet chal-018

lenging task in natural language processing and019

understanding. Early methods back in the 80s and020

90s (Joskowicz et al., 1989; Kaplan and Berry-021

Rogghe, 1991; Garcia et al., 1997; Khoo et al.,022

1998) mainly relied on defining hand-crafted rules023

to find cause-effect relations. Starting 2000, ma-024

chine learning tools were utilized in building causal025

relation extraction models (Girju, 2003; Chang and026

Choi, 2004, 2006; Blanco et al., 2008; Do et al.,027

2011; Hashimoto et al., 2012; Hidey and McKeown,028

2016). Word-embeddings and pretrained language029

models have also been leveraged in training models030

for understanding causality in language in recent031

years (Dunietz et al., 2018; Pennington et al., 2014;032

Dasgupta et al., 2018; Gao et al., 2019).033

Investigating the true capability of pretrained lan-034

guage models in understanding causality in text is035

still an open question. More recently, Knowledge036

Graphs (KGs) have been used in combination with037

pretrained language models to address common-038

sense reasoning. CausalBERT (Li et al., 2020) for039

guided generation of Cause and Effect or the model040

introduced by Guan et al. (2020) for commonsense 041

story generation are two examples. 042

Motivated by the success of Continual pre- 043

training of already Pre-trained Language Models 044

(PLMs) for downstream tasks (Gururangan et al., 045

2020), we explore the impact of common sense 046

knowledge injection as a form of continual pre- 047

training for causal reasoning. We hypothesize 048

that continual pretraining of LMs using common- 049

sense knowledge should improve performance on 050

commonsense reasoning and causality identifica- 051

tion. Moreover, models with a significantly fewer 052

number of parameters (BERT) compared to large 053

PLMs such as DeBERTa (He et al., 2020), Google 054

T5 (Raffel et al., 2019), or GPT-3 (Brown et al., 055

2020) can benefit from such a continual pretraining. 056
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Figure 1: Overview of our proposed framework to
continually pretrain language models to augment them
with commonsense reasoning knowledge.

2.1 KG-To-Text Conversion 058

We convert triples in ATOMIC20
20 (Hwang et al., 059

2021) knowledge graph to natural language texts 060

to use them as input in our continual pretraining. 061

Samples in ATOMIC20
20 are stored as triples in form 062

of (head/subject, relation, tail/target) in three splits 063

including train, development, and test. We only 064
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use triples from the train split in our pretraining.065

ATOMIC20
20 has 23 relation types that are classi-066

fied into three categorical types including com-067

monsense relations of social interactions, physical-068

entity commonsense relations, and event-centric069

commonsense relations. In the rest of the paper, we070

refer to these three categories as social, physical,071

and event, respectively.072

Before converting the triples, we also take some073

preprocessing steps to filter out some triples in074

ATOMIC20
20 that we think may not suit our goal075

here. In particular, we remove all duplicates1 and076

ignore all triples in which the target value is none.077

Moreover, we ignore all triples that include a blank.078

Since in masked language modeling we need to079

know the gold value of masked tokens, a triple080

that already has a blank (masked token/word) in it081

may not help our pretraining. For instance, in the082

triple: [PersonX affords another ___,083

xAttr, useful] it is hard to know why or un-084

derstand what it means for a person to be useful085

without knowing what they afforded. The pre-086

processing step resulted in 782,848 triples with087

121,681, 177,706, and 483,461 from event, physi-088

cal, and social categories, respectively. Distribution089

of these relations is shown in Figure 2.090
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Figure 2: Number of relation types from ATOMIC20
20

used in our pretraining.

Converting Triples: Each relation in ATOMIC20
20091

is associated with a human-readable template. For092

example, xEffect’s and HasPrerequisite’s templates093

are as a result, PersonX will and to do this, one094

requires, respectively. We use these templates to095

convert triples in ATOMIC20
20 to sentences in nat-096

ural language by concatenating the subject, rela-097

1There are 68,626, 7,410, and 8,473 duplicate triples in
train, development, and test sets of ATOMIC20

20, respectively.
These duplicate triples are redundant and indicate multiple
annotators for some head/relation pairs.

tion template, and target. Examples of converting 098

triples to text are shown in Figure 3. 099

2.2 Checking Grammar 100

When we convert triples to natural language text, 101

ideally we want to have grammatically correct sen- 102

tences. For example, after concatenating relation 103

type and target in a tuple of knowledge graph, we 104

may have a sentence such as: As a result, PersonX 105

wants leave which is grammatically incorrect since 106

there is a to missing after wants. To address this 107

issue, we use an open-source grammar and spell 108

checker, LanguageTool,2 to double-check our con- 109

verted triples to ensure they do not contain obvious 110

grammatical mistakes. Similar approaches that in- 111

clude deterministic grammatical transformations 112

were also previously used to convert KG triples 113

to coherent sentences (Davison et al., 2019). It is 114

worth pointing out that the Data-To-Text generation 115

(KG verbalization) for itself is a separate task and 116

there have been efforts to address this task (Agar- 117

wal et al., 2021). Investigating other Data-To-Text 118

and grammar checking methods to see whether they 119

improve the quality of generated text from KG can 120

be considered as one next step. 121

The grammar checking process resulted in mod- 122

ifying total of 151,783 samples (%19 of all sam- 123

ples).3 124

2.3 Continual Pretraining 125

We use Masked Language Modeling (MLM)4 126

to continually pretrain our PLM, BERT-large- 127

cased (Devlin et al., 2018). We follow the same 128

procedure as BERT to create our pretraining sam- 129

ples (e.g. number of tokens to mask in input ex- 130

amples). We run the pretraining by default for 15 131

epochs on a Google Colab TPU v2 with block size 132

(maximum sequence length) of 32 and batch size of 133

32 and save the checkpoints at every 5000 steps. To 134

avoid overfitting, we stop the pretraining when the 135

pretrained model shows no improvement in terms 136

of training loss after one epoch. 137

3 Experiments 138

In our experiments, we first run a 10-fold cross- 139

validation on the training set for tuning the hyper- 140

2https://languagetool.org/
3We make the converted samples and conversion codes

publicly available. We have also flagged all the cor-
rected/modified samples.

4BertForMaskedLM implementation from the Hugging-
face’s transformers. We will share our pretrained models
publicly on Huggingface’s model hub.
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PersonX accidentally fell xEffect PersonX breaks an arm
RelationSubject Target

[unused0] accidentally fell. As a result, [unused0]breaks an arm

PersonX buys new shoes xIntent To look nice
RelationSubject Target

[unused0]buys new shoes because[unused0]wanted to look nice

xEffect
xIntent

As a result
Because PersonX wanted

Figure 3: Examples of converting two triples in ATOMIC20
20 in form of (Subject, Relation, Target) to natural

language text using human readable templates. PersonX is replaced by [unused0] token from BERT’s vocabulary
to avoid an out-of-vocabulary issue.

parameters. Then, using the best hyperparameter141

tuning trial, we fine-tune our models with four dif-142

ferent random seeds using the entire training set,143

evaluate the fine-tuned models on the test set, and144

report the average performance.145

3.1 Benchmarks146

We chose two benchmarks of commonsense causal147

questions: 1) the Choice Of Plausible Alternatives148

(COPA) (Roemmele et al., 2011) dataset which149

is a widely used and notable benchmark (Rogers150

et al., 2021) for commonsense causal reasoning.151

And, 2) BCOPA-CE (Han and Wang, 2021), a new152

benchmark inspired by COPA, that contains un-153

biased token distributions which makes it a more154

challenging benchmark to distinguish cause and155

effect in causal reasoning. Since COPA does not156

have a training set, we use COPA’s development set157

(COPA-dev) in all experiments for fine-tuning our158

models and test the fine-tuned models on COPA’s159

test set (COPA-test) and BCOPA-CE.160

Baseline: we use the original bert-large-cased pre-161

trained model in all experiments as our baseline.162

We use the Huggingface’s MultipleChoice head on163

top of BERT and convert COPA and BCOPA-CE164

samples to a SWAG-formatted data (Zellers et al.,165

2018) suitable as input for our task. An example of166

converting a sample in COPA is shown in Figure 4167

(Example A).168

4 Results and Discussion169

Results of our experiments on COPA-test are170

shown in Table 1. We initially observed that a171

continually pretrained model using all three types172

of relations has a lower performance than our base-173

line. By taking a closer look at each relation type,174

we decided to train another model, this time only175

using the event relations. The reason is that event 176

relations in ATOMIC20
20 specifically contain com- 177

monsense knowledge about event interaction for 178

understating likely causal relations between events 179

in the world (Hwang et al., 2021). In addition, 180

event relations have a relatively longer context (# 181

of tokens) than the average of all three relation 182

types combined which means more context for a 183

model to learn from. Our new pretrained model 184

outperformed the baseline by %4.1 which shows 185

the effect of augmented pretrained language model 186

with commonsense reasoning knowledge. 187

Model Acc (%)
PMI (Roemmele et al., 2011) 58.8
b-l-reg (Han and Wang, 2021) 71.1
Google T5-base (Raffel et al., 2019) 71.2
BERT-large (Kavumba et al., 2019) 76.5
CausalBERT (Li et al., 2020) 78.6
BERT-large (baseline) h 75.1
ATOMIC-BERT-largeMLM h

- Event, Physical, Social 74.3
- Event only 79.2

Google T5-11B (Raffel et al., 2019) 94.8
DeBERTa-1.5B (He et al., 2020) 96.8

Table 1: COPA-test Accuracy results. Our Models are
marked by h. ∗b-l- is a BERT-large model.

We also ran another experiment on the Easy 188

and Hard question splits in COPA-test separated 189

by Kavumba et al. (2019) to see how our best model 190

performs on harder questions in COPA-test that do 191

not contain superficial cues. Results are shown 192

in Table 2. As can be seen, our ATOMIC-BERT 193

model outperforms both the baseline and former 194

models on Hard and Easy questions. 195

It is worth mentioning two points here. First, 196
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𝑃: I needed to get cash.
𝐻!: I went to the bank.

[CLS] I needed to get cash. [SEP] As a result, I bought a wallet.[SEP]

asks-for="effect"

𝐻": I bought a wallet.

[CLS] I needed to get cash. [SEP] As a result, I went to the bank.[SEP]
Prompt

[CLS] The computer crashed. [SEP] I downloaded a virus.[SEP]

𝑃: The computer crashed.
𝐻!: I backed up my files.

asks-for=”cause"

𝐻": I downloaded a virus.

[CLS] The computer crashed. [SEP] I backed up my files.[SEP]
A

B

Figure 4: Examples of converting COPA samples to MultipleChoice format with and without adding prompt to the
second sentence. For samples with asks-for=”cause", we add It is because as prompt.

COPA-test

Model Easy ↑ Hard ↑

(Han and Wang, 2021) - 69.7
(Kavumba et al., 2019) 83.9 71.9

BERT-large (baseline) h 84.1 69.7
ATOMIC-BERT-large h 88.3 73.5

Table 2: COPA-test Accuracy results on Easy and Hard
question subsets. Models marked by h are our models.

our model, BERT-large, has a significantly lower197

number of parameters than state-of-the-art models,198

Google T5-11B (∼32x) and DeBERTa-1.5B (∼4x).199

Second, we have not yet applied any model im-200

provement methods such as using a margin-based201

loss introduced by Li et al. (2019) and used in202

CausalBERT (Li et al., 2020), an extra regular-203

ization loss proposed by Han and Wang (2021),204

or fine-tuning with quality-enhanced training data,205

BCOPA, introduced by Kavumba et al. (2019). As206

a result, there is still great room to improve current207

models that can be a proper next step and follow208

up on our work.209

Model Acc (%)
b-l-aug (Han and Wang, 2021) 51.1
b-l-reg (Han and Wang, 2021) 64.1
BERT-large (baseline) h 55.8
ATOMIC-BERT-largeMLM h

- Event, Physical, Social 54.1
- Event only 58.1

Table 3: BCOPA-CE Accuracy results. Models marked
by h are our models. ∗b-l- is a BERT-large model.

4.1 BCOPA-CE: Prompt vs. No Prompt210

Results of experiments on BCOPA-CE are shown211

in Table 3. As expected based on the results212

also reported by Han and Wang (2021), we ini- 213

tially observed that our models are performing 214

nearly as random baseline. Since we do not use 215

the type of question when we encode input se- 216

quences, we decided to see whether adding ques- 217

tion type as prompt shown in Figure 4 (Exam- 218

ple B) to input sequences will improve the perfor- 219

mance. We added It is because and As a 220

result, as prompt for asks-for="cause" 221

and asks-for="effect", respectively. Inter- 222

estingly, results illustrate that our model outper- 223

forms the baseline and Han and Wang (2021)’s 224

b-l-aug model that is fine-tuned with the same data 225

as ours, when question types are added as prompts 226

to input sequences of correct and incorrect answers 227

in the test set. We also ran a similar experiment on 228

COPA-test (Table 4) in which adding prompt did 229

not help with performance improvement. 230

COPA-test

Train 7 Prompt 3 Prompt

7 Prompt 79.2 76.4
3 Prompt 75.5 77.9

Table 4: COPA-test Accuracy ablation study results for
prompt vs. no prompt.

5 Conclusion 231

In this work, we introduced a framework for aug- 232

menting PLMs with commonsense knowledge. 233

Our results show that commonsense knowledge- 234

augmented PLMs outperform the original PLMs 235

on answering commonsense causal reasoning ques- 236

tions. As the next step, it would be interesting to see 237

how the previously proposed model improvement 238

methods or using unbiased fine-tuning datasets 239

can potentially enhance the performance of current 240

knowledge-augmented models. 241
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