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Abstract

Commonsense knowledge can be leveraged
for identifying causal relations in text. In this
work, we convert triples in ATOMIC3), a wide
coverage commonsense reasoning knowledge
graph, to natural language text and continually
pretrain a BERT pretrained language model.
We evaluate the resulting model on answer-
ing commonsense reasoning questions. Our
results show that a continually pretrained lan-
guage model augmented with commonsense
reasoning knowledge outperforms our base-
line on two commonsense causal reasoning
benchmarks, COPA and BCOPA-CE, without
additional improvement on the base model or
using quality-enhanced data for fine-tuning.

1 Introduction

Automatic extraction and classification of causal
relations in text has been an important yet chal-
lenging task in natural language processing and
understanding. Early methods back in the 80s and
90s (Joskowicz et al., 1989; Kaplan and Berry-
Rogghe, 1991; Garcia et al., 1997; Khoo et al.,
1998) mainly relied on defining hand-crafted rules
to find cause-effect relations. Starting 2000, ma-
chine learning tools were utilized in building causal
relation extraction models (Girju, 2003; Chang and
Choi, 2004, 2006; Blanco et al., 2008; Do et al.,
2011; Hashimoto et al., 2012; Hidey and McKeown,
2016). Word-embeddings and pretrained language
models have also been leveraged in training models
for understanding causality in language in recent
years (Dunietz et al., 2018; Pennington et al., 2014;
Dasgupta et al., 2018; Gao et al., 2019).
Investigating the true capability of pretrained lan-
guage models in understanding causality in text is
still an open question. More recently, Knowledge
Graphs (KGs) have been used in combination with
pretrained language models to address common-
sense reasoning. CausalBERT (Li et al., 2020) for
guided generation of Cause and Effect or the model

introduced by Guan et al. (2020) for commonsense
story generation are two examples.

Motivated by the success of Continual pre-
training of already Pre-trained Language Models
(PLMs) for downstream tasks (Gururangan et al.,
2020), we explore the impact of common sense
knowledge injection as a form of continual pre-
training for causal reasoning. We hypothesize
that continual pretraining of LMs using common-
sense knowledge should improve performance on
commonsense reasoning and causality identifica-
tion. Moreover, models with a significantly fewer
number of parameters (BERT) compared to large
PLMs such as DeBERTa (He et al., 2020), Google
T5 (Raffel et al., 2019), or GPT-3 (Brown et al.,
2020) can benefit from such a continual pretraining.
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Figure 1: Overview of our proposed framework to
continually pretrain language models to augment them
with commonsense reasoning knowledge.

2.1 KG-To-Text Conversion

We convert triples in ATOMIC3) (Hwang et al.,
2021) knowledge graph to natural language texts
to use them as input in our continual pretraining.
Samples in ATOMIC%S are stored as triples in form
of (head/subject, relation, tail/target) in three splits
including train, development, and test. We only



use triples from the train split in our pretraining.
ATOMICZ) has 23 relation types that are classi-
fied into three categorical types including com-
monsense relations of social interactions, physical-
entity commonsense relations, and event-centric
commonsense relations. In the rest of the paper, we
refer to these three categories as social, physical,
and event, respectively.

Before converting the triples, we also take some
preprocessing steps to filter out some triples in
ATOMIC3Y that we think may not suit our goal
here. In particular, we remove all duplicates' and
ignore all triples in which the target value is none.
Moreover, we ignore all triples that include a blank.
Since in masked language modeling we need to
know the gold value of masked tokens, a triple
that already has a blank (masked token/word) in it
may not help our pretraining. For instance, in the
triple: [PersonX affords another ___,
xAttr, useful] itis hard to know why or un-
derstand what it means for a person to be useful
without knowing what they afforded. The pre-
processing step resulted in 782,848 triples with
121,681, 177,706, and 483,461 from event, physi-
cal, and social categories, respectively. Distribution
of these relations is shown in Figure 2.
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Figure 2: Number of relation types from ATOMIC3)

used in our pretraining.

Converting Triples: Each relation in ATOMIC3)
is associated with a human-readable template. For
example, xEffect’s and HasPrerequisite’s templates
are as a result, PersonX will and to do this, one
requires, respectively. We use these templates to
convert triples in ATOMICZ) to sentences in nat-
ural language by concatenating the subject, rela-

"There are 68,626, 7,410, and 8,473 duplicate triples in
train, development, and test sets of ATOMIC3), respectively.
These duplicate triples are redundant and indicate multiple
annotators for some head/relation pairs.

tion template, and target. Examples of converting
triples to text are shown in Figure 3.

2.2 Checking Grammar

When we convert triples to natural language text,
ideally we want to have grammatically correct sen-
tences. For example, after concatenating relation
type and target in a tuple of knowledge graph, we
may have a sentence such as: As a result, PersonX
wants leave which is grammatically incorrect since
there is a to missing after wants. To address this
issue, we use an open-source grammar and spell
checker, LanguageTool,? to double-check our con-
verted triples to ensure they do not contain obvious
grammatical mistakes. Similar approaches that in-
clude deterministic grammatical transformations
were also previously used to convert KG triples
to coherent sentences (Davison et al., 2019). It is
worth pointing out that the Data-To-Text generation
(KG verbalization) for itself is a separate task and
there have been efforts to address this task (Agar-
wal et al., 2021). Investigating other Data-To-Text
and grammar checking methods to see whether they
improve the quality of generated text from KG can
be considered as one next step.

The grammar checking process resulted in mod-
ifying total of 151,783 samples (%19 of all sam-
ples).?

2.3 Continual Pretraining

We use Masked Language Modeling (MLM)*
to continually pretrain our PLM, BERT-large-
cased (Devlin et al., 2018). We follow the same
procedure as BERT to create our pretraining sam-
ples (e.g. number of tokens to mask in input ex-
amples). We run the pretraining by default for 15
epochs on a Google Colab TPU v2 with block size
(maximum sequence length) of 32 and batch size of
32 and save the checkpoints at every 5000 steps. To
avoid overfitting, we stop the pretraining when the
pretrained model shows no improvement in terms
of training loss after one epoch.

3 Experiments

In our experiments, we first run a 10-fold cross-
validation on the training set for tuning the hyper-

’https://languagetool.org/

3We make the converted samples and conversion codes
publicly available. We have also flagged all the cor-
rected/modified samples.

*BertForMaskedLM implementation from the Hugging-
face’s transformers. We will share our pretrained models
publicly on Huggingface’s model hub.


https://languagetool.org/
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Figure 3: Examples of converting two triples in ATOMIC3Y in form of (Subject, Relation, Target) to natural
language text using human readable templates. PersonX is replaced by [unusedO] token from BERT’s vocabulary

to avoid an out-of-vocabulary issue.

parameters. Then, using the best hyperparameter
tuning trial, we fine-tune our models with four dif-
ferent random seeds using the entire training set,
evaluate the fine-tuned models on the test set, and
report the average performance.

3.1 Benchmarks

We chose two benchmarks of commonsense causal
questions: 1) the Choice Of Plausible Alternatives
(COPA) (Roemmele et al., 2011) dataset which
is a widely used and notable benchmark (Rogers
et al., 2021) for commonsense causal reasoning.
And, 2) BCOPA-CE (Han and Wang, 2021), a new
benchmark inspired by COPA, that contains un-
biased token distributions which makes it a more
challenging benchmark to distinguish cause and
effect in causal reasoning. Since COPA does not
have a training set, we use COPA’s development set
(COPA-dev) in all experiments for fine-tuning our
models and test the fine-tuned models on COPA’s
test set (COPA-test) and BCOPA-CE.

Baseline: we use the original bert-large-cased pre-
trained model in all experiments as our baseline.
We use the Huggingface’s MultipleChoice head on
top of BERT and convert COPA and BCOPA-CE
samples to a SWAG-formatted data (Zellers et al.,
2018) suitable as input for our task. An example of
converting a sample in COPA is shown in Figure 4
(Example A).

4 Results and Discussion

Results of our experiments on COPA-test are
shown in Table 1. We initially observed that a
continually pretrained model using all three types
of relations has a lower performance than our base-
line. By taking a closer look at each relation type,
we decided to train another model, this time only

using the event relations. The reason is that event
relations in ATOMIC3) specifically contain com-
monsense knowledge about event interaction for
understating likely causal relations between events
in the world (Hwang et al., 2021). In addition,
event relations have a relatively longer context (#
of tokens) than the average of all three relation
types combined which means more context for a
model to learn from. Our new pretrained model
outperformed the baseline by %4.1 which shows
the effect of augmented pretrained language model
with commonsense reasoning knowledge.

Model Acc (%)
PMI (Roemmele et al., 2011) 58.8
b-1-reg (Han and Wang, 2021) 71.1
Google T5-base (Raffel et al., 2019) 71.2
BERT-large (Kavumba et al., 2019) 76.5
CausalBERT (Li et al., 2020) 78.6
BERT-large (baseline) 3¢ 75.1
ATOMIC-BERT-large s, as %%

- Event, Physical, Social 74.3

- Event only 79.2
Google T5-11B (Raffel et al., 2019) 94.8
DeBERTa-1.5B (He et al., 2020) 96.8

Table 1: COPA-test Accuracy results. Our Models are
marked by . *b-I- is a BERT-large model.

We also ran another experiment on the Easy
and Hard question splits in COPA-test separated
by Kavumba et al. (2019) to see how our best model
performs on harder questions in COPA-test that do
not contain superficial cues. Results are shown
in Table 2. As can be seen, our ATOMIC-BERT
model outperforms both the baseline and former
models on Hard and Easy questions.

It is worth mentioning two points here. First,
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P: The computer crashed.
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asks—for="effect"

P I needed to get cash.
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Figure 4: Examples of converting COPA samples to MultipleChoice format with and without adding prompt to the
second sentence. For samples with asks—for="cause", we add It is because as prompt.

COPA -test
Model Easy + Hard 1
(Han and Wang, 2021) - 69.7
(Kavumba et al., 2019) 83.9 71.9
BERT-large (baseline) 3¢ 84.1 69.7
ATOMIC-BERT-large %  88.3 73.5

Table 2: COPA-test Accuracy results on Easy and Hard

KA

question subsets. Models marked by s are our models.

our model, BERT-large, has a significantly lower
number of parameters than state-of-the-art models,
Google T5-11B (~32x) and DeBERTa-1.5B (~4x).
Second, we have not yet applied any model im-
provement methods such as using a margin-based
loss introduced by Li et al. (2019) and used in
CausalBERT (Li et al., 2020), an extra regular-
ization loss proposed by Han and Wang (2021),
or fine-tuning with quality-enhanced training data,
BCOPA, introduced by Kavumba et al. (2019). As
a result, there is still great room to improve current
models that can be a proper next step and follow
up on our work.

Model Acc (%)
b-1-aug (Han and Wang, 2021) 51.1
b-l-reg (Han and Wang, 2021) 64.1
BERT-large (baseline) % 55.8
ATOMIC-BERT-large j ;1 pr 3¢

- Event, Physical, Social 54.1

- Event only 58.1

Table 3: BCOPA-CE Accuracy results. Models marked
by sk are our models. *b-/- is a BERT-large model.

4.1 BCOPA-CE: Prompt vs. No Prompt

Results of experiments on BCOPA-CE are shown
in Table 3. As expected based on the results

also reported by Han and Wang (2021), we ini-
tially observed that our models are performing
nearly as random baseline. Since we do not use
the type of question when we encode input se-
quences, we decided to see whether adding ques-
tion type as prompt shown in Figure 4 (Exam-
ple B) to input sequences will improve the perfor-
mance. We added It is because and As a
result, as prompt for asks—-for="cause"
and asks—for="effect", respectively. Inter-
estingly, results illustrate that our model outper-
forms the baseline and Han and Wang (2021)’s
b-l-aug model that is fine-tuned with the same data
as ours, when question types are added as prompts
to input sequences of correct and incorrect answers
in the test set. We also ran a similar experiment on
COPA-test (Table 4) in which adding prompt did
not help with performance improvement.

COPA-test
Train X Prompt v Prompt
X Prompt 79.2 76.4
v/ Prompt 75.5 779

Table 4: COPA-test Accuracy ablation study results for
prompt vs. no prompt.

5 Conclusion

In this work, we introduced a framework for aug-
menting PLMs with commonsense knowledge.
Our results show that commonsense knowledge-
augmented PLMs outperform the original PLMs
on answering commonsense causal reasoning ques-
tions. As the next step, it would be interesting to see
how the previously proposed model improvement
methods or using unbiased fine-tuning datasets
can potentially enhance the performance of current
knowledge-augmented models.
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