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ABSTRACT

In this study we present a novel representation for binary programs, which cap-
tures semantic similarity and structural properties. Our representation is com-
posed in a bottom-up approach and enables new methods of analysis. We show
that we can perform search and retrieval of binary executable programs based on
similarity of behavioral properties, with an adjustable level of feature resolution.
We begin by extracting data dependency graphs (DDG), which are representative
of both program structure and operational semantics. We then encode each pro-
gram as a set of graph hashes representing isomorphic uniqueness, a method we
have labeled DDG Fingerprinting. Next, we use k-Nearest Neighbors to search in
a metric space constructed from examples. This approach allows us to perform
a quantitative analysis of patterns of program operation. By evaluating similarity
of behavior we are able to recognize patterns in novel malware with functional-
ity not previously identified. We present experimental results from search based
on program semantics and structural properties in a dataset of binary executables
with features extracted using our method of representation. We show that the as-
sociated metric space allows an adjustable level of resolution. Resolution of the
features may be decreased for breadth of search and retrieval, or as the search
space is reduced, the resolution may be increased for accuracy and fine-grained
analysis of malware behavior.

1 INTRODUCTION

In this section we briefly review work related to malware analysis and machine learning, and discuss
graph features.

1.1 BACKGROUND AND RELATED WORK

Machine learning techniques have been applied in many contexts to accurately classify benign and
malicious programs based on various features. Various classification methods have been used, such
as deep neural networks and support vector machines. These methods of classification are trained on
labeled datasets. An ongoing goal and difficulty in the application of machine learning to malware
detection has been to accurately represent the semantic properties of programs. There are several
existing approaches to analyze a program based on its behavior, including static and dynamic anal-
ysis, or execution traces. Useful features for classification can be extracted at multiple points in
the architectural hierarchy. Some of these features are assembly instructions; n-gram sequences of
instructions and system calls, and program metadata; patterns of bytecode or hex representations;
as well as graphs, n-grams, and sequences of system API calls. Among the most common repre-
sentations are term frequency (tf-idf) features, and data flow of functions in high level languages.
However, accurate classification of malicious programs based on their behavior and operational se-
mantics presents several obstacles. Classification is highly dependent on features used in training
and increasing resolution beyond class labels poses a challenge. An in depth discussion of feature
resolution increase is presented in the Results section (section 3.2) Souri & Hosseini (2018), Deldar
& Abadi (2023), Zhou et al. (2019), Wang et al. (2020), Park et al. (2012).

Programs of different classes may have highly similar functionality. Since malware attempts to
disguise its operation, behavior may overlap between classes. Obfuscation presents a challenge in
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using behavior to distinguish between classes, and increases in resolution are required to provide
more interpretable results Souri & Hosseini (2018), Rawashdeh et al. (2021), Kebede et al. (2017),
Djaneye-Boundjou et al. (2019), Chandrasekaran et al. (2020).

Several studies have focused on control flow graph datasets and their use in classification. A number
of studies explored the use of static features of file metadata. Decision trees for the classification
of Windows PE files have been effective for classification. Subsequent studies have used ensemble
methods, random forests, and support vector machines, with features extracted from file headers in
Trojan malware. In previous studies we have explored cluster analysis and latent semantic analysis
of malicious binaries using term frequency representations Bruschi et al. (2006), Cesare & Xiang
(2010b), Cesare et al. (2013), Cesare & Xiang (2010a), Shafiq et al. (2009), Siddiqui et al. (2008),
Witten et al. (1999), Musgrave et al. (2020), Musgrave et al. (2022).

Hashing of features has been performed in several studies applying machine learning to malware
analysis. The focus of the hashing is often to capture the semantics of a function in a high level lan-
guage such as C or Java. Jang et al. successfully used a hash function on features of binary n-gram
sequences to represent malicious programs. These were compared for similarity by their Jaccard
index. The focus of their work was an approach from unsupervised learning, and an analysis of
the clusters of the hashes obtained. They used a co-clustering approach to demonstrate feature cor-
relation, and also implemented k-Nearest Neighbors classification, with precision and recall above
90%. Their features focused primarily on binary stings, but can be extended by the development of
a custom hashing function. Liang et al. applied partial order preserving hashing via Gödel hashes to
obtain an increase in algorithm performance on existing benchmarks for program flow analysis Jang
et al. (2011), Liang et al. (2014).

Several studies have focused on function abstraction semantics through decompilation. LeDoux et
al. represented a program as a graph of function abstractions obtained from reverse engineering
and used semantic hashing as a measurement of similarity. However, this study did not take a
bottom up approach, and basic block features were specifically not considered. There may be many
equivalent programs for a given malware binary, and whether semantic function abstractions in a
high level language are correlated to lower level binary representations is an open question. In a
similar manner, Alrabaee et al. have used a tf − idf representation with Hidden Markov Models
and graph kernels to obtain a graph of semantic function abstractions for a program. This was
accomplished by constructing a Bayesian network for each of the features collected LeDoux et al.
(2013), Alrabaee et al. (2018).

More recently Large Language Models have demonstrated a significant step forward in representing
executable programs’ semantics. However, the ability of deep learning models to capture program
semantics is not matched by increased explainability of the obtained models. Our primary focus in
the current work is the problem of gaining greater increases in accuracy and insight into program
semantics Xu et al. (2022).

1.2 MOTIVATION

In an adversarial environment, malicious programs may be encountered which have not been seen
previously and which contain vulnerabilities that are unknown. The problem of classifying oper-
ational semantics of previously unseen malware with unknown vulnerabilities is an active area of
research.

A classifier’s ability to generalize over unseen data is critical for its successful application to novel
malware identification. This requires the ability to generalize to abstractions above syntax, to iden-
tify patterns and their underlying generative processes, but also a fine grained resolution of inter-
pretable features. Features representing operational semantics are a necessary step in the classifica-
tion process of zero-day vulnerabilities.

In this study we intend to show that search and retrieval of programs based on semantics can be suc-
cessfully performed on unseen malware samples without prior training. We demonstrate a method of
representing program operational semantics through the construction of features. By representing a
program via semantic features, classification can be focused on operational semantics with increased
ability to interpret results. By using these features, specific characteristics of patterns are able to be
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identified. Programs are able to be compared in relative terms of their operation, and questions of
functional class overlap between samples are able to be answered.

We intend to demonstrate that graphs of data dependencies between operands are correlated to both
program structure and operational semantics. This representation can be used as a basis for further
classification. We have called this method DDG Fingerprinting. The construction of a metric space
for this representation allows for search and the evaluation of similarity between programs at a
fine grained level. The resolution of the search space is able to be adjusted, and refinement of the
search based on specificity leads to more accurate results. Comparison across platform architectures
is possible to perform with our approach, although it leads to an increase in the search space and
a decrease in resolution. We intend to pursue this in future studies, but include it briefly in this
study as a demonstration of increased robustness of the proposed feature representation. Finally,
the proposed representation produced by means of DDG Fingerprinting is more explainable than
existing approaches and can be easily interpreted by a data analyst.

1.3 OUTLINE

Section 2 is a description of the method of data collection, feature construction, the construction
of the metric space, and search procedure. Section 3 presents the experimental results. Section 4
contains a discussion of results and conclusions. Higher resolution images of the metric space are
presented in the Appendix.

2 METHODOLOGY

The following section is a description of the data collection process and methodology followed for
experiments.

2.1 DATA COLLECTION

We begin by collecting a dataset of benign samples. Each benign sample is deconstructed into its
functional components. From this set of functional components we build a library of examples of op-
erational semantic behavior. Benign program binaries for Windows were taken from the System32
directory. This system directory contains benign programs that perform standard operating system
functions on the Windows platform. For the library of benign functionality we use a set of 500
programs taken from the Windows system directories.

Malicious samples were taken from the public malware repository theZoo for Windows and Linux.
The malicious class exemplars we have chosen are the Win32.APT28.SekoiaRootkit and the
ZeusGameover Feb2014 Trojan malware. We briefly include a cross-platform example for com-
parison of similarity between platforms, and these samples were taken from the /usr/bin directory
on Linux for benign samples ytisf.

We have performed our analysis on artifacts of live malware binaries. We selected specific class
exemplars for malicious programs from domain knowledge, and evaluated these samples in relative
terms to a set of known benign functionality.

While elements in the dataset are labeled as malicious and benign, this class label represents the
binary as a whole, and not specific functionality. Determining which functional components are
present in a given binary is a critical question, as obfuscation of functionality is the primary goal of
a malicious actor.

2.1.1 REVERSE ENGINEERING

Given a binary artifact, we perform reverse engineering on the binary to obtain its x86/64 assem-
bly representation. This was done with the GNU objdump utility. The result of this step is a
single document containing the equivalent assembly representation of the program Intel-Corp, Free-
Software-Foundation.
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mov ecx , rbp − 44
mov eax , ecx
and eax , 400
or eax , 140
or ecx , 1
cmp r i p + 170 , 0
cmovne ecx , eax
mov rbp − 44 , ecx
mov r i p + 180 , 0
jmp 0 x100000000

a1 a2

a3 a4

Addg = {ai | ai ∈ Aoperand}

Figure 1: A single basic block of assembly instructions and a corresponding directed graph rep-
resenting data dependencies. The data dependency graph shown is constructed from dependencies
between data movement instructions. Nodes in the graph represent data operands. An instruction
that moves data between two operands creates a data dependency. We represent this relationship
by adding an edge between two operands. Four data operands are present in the basic block. Two
register direct addresses in ecx and eax, and two register offset addresses in rbp and rip. The ecx
register has the highest number of dependencies as well as the highest degree in the graph, with three
edges from eax, rbp and rip.

2.2 DDG FINGERPRINTING

In this section we present a novel representation for features of malicious programs. This represen-
tation is based on hashes of data dependency graphs, which are directly tied to both the structure
and operational semantics of a program.

2.2.1 SEGMENTATION

We have segmented the program document as a whole into basic block segments. This allows us to
increase the feature resolution to be more fine grained, specifically at the level of basic block reso-
lution rather than the level of the program as a whole. Each segment is a basic block of contiguous
instructions that are separated by a jump instruction (jmp), or other control transition instruction.
We split the document into segments based on these jump instructions Musgrave et al. (2022).

2.2.2 DATA DEPENDENCY GRAPH EXTRACTION

Any operand using the result of a previous instruction creates a data dependency. We represent
these data dependency relationships between the operands within a program segment in the form
of an undirected graph corresponding to the data-dependency graph (DDG). The graph’s nodes are
operands from data movement operations in the segment, and an edge is placed between nodes
representing the two operands in a mov instruction. Figure 1 shows a code block and its dependency
graph.

In comparison to tf−idf representations of programs, where a single term (mov) captures a majority
of variance in the term frequency distribution, we capture additional information for the analysis
of relationships between operands in mov instructions. A more complete representation of the
term distribution can be performed by repeating this process to construct dependency graphs for
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Figure 2: Feature extraction process for DDGFingerprinting. Data dependency graphs represent
patterns of data movement. The Weisfeiler-Lehman graph hashing algorithm is used to compare
graphs for isomorphism, which are collected into a set, one per program.

every term. Further, we have represented dependencies using undirected graphs for simplicity. An
additional resolution increase could be obtained by using directed graphs for each DDG graph.

2.2.3 GRAPH HASHING

Each data dependency graph was subsequently hashed for its isomorphic uniqueness using the
Weisfeiler-Lehman graph hashing algorithm. This method yields a hash value which represents
a single graph, such that two isomorphic graphs will correspond by having the same hash value. We
use the NetworkX library’s implementation of the Weisfeiler-Lehman graph hashing algorithm for
undirected graphs. Each basic block segment has a resulting hash which corresponds to its data
dependency graph. Since we have segmented the program into basic block segments and have ex-
tracted data dependency graphs for each block, we can construct a set of hashes for each program
binary sample Hagberg et al. (2008), Shervashidze et al. (2011).

Each program is then represented as a set of hashes, with each hash representing an isomorphically
unique graph. The graphs are obtained from analysis of data dependency obtained after program
segmentation, as discussed in the previous sections. This set represents a program’s functionality as a
collection of isomorphically unique patterns of data dependency. This representation enables a more
detailed analysis of program features and their relationship to larger classes. We have represented
each set (program) as a one-hot encoded vector. The dimensions of the vector space correspond
to individual unique hashes identified for blocks of the programs in our dataset, and a vector’s
components are 0 or 1 to signify the absence or presence of a block with that hash code in the
corresponding program Brownlee (2017).

Other hashing algorithms may also be considered, such as algorithms that produce semantically
similar hashes. The selection of the hashing algorithm in our work was focused on representing
graph isomorphism. The DDG Fingerprinting process is shown in Figure 2.

2.3 HAMMING SPACE

Next, we construct a metric space for our features based on Hamming Codes. Each vector is a
program’s Hamming Code and the distance metric between vectors is the Hamming Distance. The
Hamming Code for a program is constructed by viewing the isomorphic hashes of the DDG Fin-
gerprint as categorical values. Each isomorphic hash value is assigned one dimension in the vector
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representation. Next, each each vector component is either 0 or 1, to represent the absence or pres-
ence in that program of a block segment with that isomorphic signature.

Formally, let F = h1, h2, ..., hm the set of all hash values of all blocks present in the library of
program artifacts. An arbitrary ordering of elements is assumed during the construction of vectors.
The Hamming Code for a program P is the vector (v1, v2, ..., vm), where vi, i = 1..m is 1 if
the program P contains a block segment with an isomorphic signature hi, and 0 if the isomorphic
signature is not present.

The Hamming Distance is computed by computing the difference between two equal length strings
of the one-hot encoded vectors Brownlee (2017), Hamming (1950), Tan et al. (2016).

As every isomorphic pattern in the library of examples contributes a dimension to the Hamming
Code, the dimensionality of the space is very high. Our collection of examples has over 500 sam-
ples across multiple platform architectures, and the complete space has over 40k unique patterns
of data dependency. Although the dimensionality is initially very large, the feature resolution can
be adjusted once the specific characteristics of the search have been refined, which reduces the di-
mensionality to several hundred dimensions between a set of programs. We also use non-parametric
methods for search, which are not as sensitive to high dimensional data, and are described in the
next sub-section.

2.4 K-NEAREST NEIGHBORS

By creating a library of vectors with their Hamming Distances and composing a metric space, we
can measure the similarity between vectors in terms of the distance metric. Vectors in our Hamming
space with low distance correspond to semantically similar programs, due to: 1. DDG graphs reflect
operationally semantically similar blocks; 2. the graph hashing process identifies and preserves
DDGs similarity through isomorphism.

Therefore, when presented with a new program of an unknown class we extract the program’s DDG
Fingerprint, calculate the Hamming Code vector, and then query the set of examples. This can be
done quickly and accurately by using k-Nearest Neighbors (k-NN). Since the distance metric in
the space is Hamming Distance, we can retrieve the most semantically similar examples from the
library of known programs for a new artifact with an unknown class. We present results for both the
construction of the metric space using the Hamming Distance, and the k-NN search in the metric
space in the following section Cover & Hart (1967), Hart et al. (2000).

3 EXPERIMENTAL RESULTS

3.1 QUANTIFYING OVERLAP OF FUNCTIONALITY

Our model makes it possible to answer a specific question: what is the degree of similarity that an
unseen program has to an existing and previously seen program? Let us consider a malicious sample
from the dataset, one file from the ZeusGameover Feb2014 Trojan malware binary.

To measure programs in terms of dissimilarity, a naive approach would compare across different
operating systems, and so we can compare this malware sample to the GNU/Linux ls program. It
is likely that ls will primarily read information from the filesystem. We expect a comparison of
Trojan malware and the ls program samples to not share many functional elements. We are able
to quantify similarity of the operational semantics and perform further analysis. The total number
of data dependency graphs collected is 234 for ls and 622 for ZeusGameover Feb2014 sample 1.
The set difference between the two sets will give us the degree to which the two programs are unique
and differ from each other. The number of data dependency graphs that are present in ls that are not
present in the ZeusGameover Feb2014 sample is 121. The ZeusGameover Feb2014 sample set
difference ls has 509 unique data dependency graphs.

Another open question is what is the degree of functional overlap. We can measure the common
functional patterns of data dependency between the two programs with the set intersection operation:

A ∩ B

The intersection of ls and ZeusGameover Feb2014 is 113.
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Figure 3: The overlap between malicious and benign samples is given by the Jaccard coefficient.
This means that a median value of 20% of the structure of data movement within a program is shared
between malicious and benign samples. However, in the median example, 80% of the functionality
of malware is not shared with benign samples, and 50% of benign functionality is not shared in the
malicious sample, or described by the set intersection.

Binary Name DDG Count Set Difference Jaccard

1 ZeusGameover Feb2014, sample 1 622 509 .179
2 ls 234 121 .179

Figure 4: Naive approach: a comparison between the Zeus Trojan and the GNU/Linux ls program.

The degree of overlap between two sets can be determined by the Jaccard coefficient, which is the
ratio of cardinalities of the set intersection and union Suppes (1972), Leskovec et al. (2020).

|A ∩ B| / |A ∪ B|

Since the set intersection is 113, we then calculate the union, which is 630. The Jaccard coefficient
is then 113/630, or 0.179 Tan et al. (2016).

The degree of functional overlap is highly dependent on the selection of the samples in the library
used to compose the Hamming space. However, one of the strengths of our program representation
is that it offers the ability to adjust the level of feature resolution. Without increased resolution,
it is difficult to interpret these results. For instance, we can repeat this process for the malicious
Linux binary Linux.Wirenet and benign samples collected from the /usr/bin directory, which
contains Unix system resources. For a comparison, we compare this malicious sample to a random
set of benign Linux programs. These samples share at most a Jaccard coefficient of 0.270 with the
malware. The minimum amount of overlap for these samples is 0.064, with a median of .204 Jaccard
overlap. This means that the malicious binary typically shares 20% of its functionality with benign
programs, and that these programs are also 80% dissimilar from the malware. Without an increase
in feature resolution, it is challenging to know which properties are important to the class, the class
composition, the degree to which the classes overlap, or the patterns that differentiate the class.

If we examine the benign Windows programs present in our dataset, then we can compare the
ZeusGameover Feb2014 sample to the larger class of known functionality in system utilities.
After deconstructing samples in the System32 directory to our benign dataset, we can then ask
the question what is the largest degree of overlap between the benign class examples and a specific
malware sample?

There is one and only one sample in the composed dataset that has a Jaccard coefficient of 1 with
the Trojan malware. Based on the structure of data dependency we can discover that surprisingly
ZeusGameover Feb2014 contains as a proper subset the system program csrss.exe. This utility
is the Client/ServerRuntimeSubsystem for Windows. csrss.exe is also used as an exploitation
mechanism for Trojan malware to corrupt a system. The method of exploitation used by the Trojan
malware is not definitive to differentiate between classes, but the behavior has been discovered
through search. The operational semantics have a degree of correlation identified by the feature
representation. A fine grained analysis of the functionality enables further inferences regarding
the correlation of functionality with a larger class. An unknown binary which includes benign
code with known vulnerabilities as a proper subset is suspicious behavior, and could be used to
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Figure 5: Progressive increases in resolution of the Hamming Space using t-SNE projection. This
figure shows the k neighbors identified in the high dimensional Hamming Space using kNN. Images
of the space are presented in increased resolution in the appendix section. Malicious samples iden-
tified from search are highlighted in red.

disguise its functionality. A legitimate user would likely have privileges to access this specific
system utility based on their level of access. Further exploration of the domain reveals known
software vulnerabilities disclosed by CVE. This relationship between the programs was discovered
from the analysis of the structure of their data dependency graphs, and by collecting hashes for each
graph into sets National-Vulnerability-Database, Kallalike.

3.2 RESULTS OF K-NEAREST NEIGHBORS SEARCH

The examples in Figure 5 show a progressive increase in the resolution as the search is refined.
This figure shows a projection of a high dimensional space using stochastic neighbor embedding
(t− SNE). The search space is reduced as the resolution is increased progressively in each figure.
This allows us to perform a more fine grained comparison of similarity between data points. We are
able to determine boundaries between data points in the metric space based on their similarity. We
are able to quantify the similarity between programs within a given space from the distance metric,
and measure the degree to which programs are similar or different. This is useful in an adversarial
environment when new program binary artifacts are provided without class labels or specifications.
Quantitative analysis of similarity to examples is able to be acted on by an analyst or security policy,
and this allows for classification results to be interpreted to a greater degree Hinton & Roweis (2002).

Search using k-NN returns a result of the k closest data points in the dataset based upon the specified
distance metric. In our metric space this is the set of data points with the lowest Hamming Distance
from an example. A low Hamming distance is a measurement of a higher degree of overlap between
data points and the selected example. Using this method we are able to answer questions related to
the similarity and overlap of functionality between programs. The similarity of functionality was
identified without a formal specification for verification. In an adversarial environment, a binary
not previously seen with high similarity of functionality to a malicious program can be immediately
identified and acted upon. The metric space allows for comparison of similarity based on the distance
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Neighbor Hamming Dist. % Difference Program Name Description

1 91 0.21% subst.exe substitutes a virtual drive for a physical drive
2 91 0.21% dpapimig.exe DPAPI Key Migration Wizard
3 91 0.21% TapiUnattend.exe Telephony Unattend Action
4 91 0.21% wininit.exe Windows Start-Up Application
5 95 0.22% fc.exe DOS file compare utility
6 95 0.22% icsunattend.exe no description available
7 95 0.22% regedt32.exe Registry Editor Utility

Figure 6: k-Nearest Neighbors search results with k=7 for ZeusGameover Feb2014. This table
shows the indices for the 7 closest programs in a library of examples to an unseen malware example,
along with the Hamming Distance from the malware to each neighbor. In order to find more fine-
grained differences the resolution level can be increased based on these results, which are at the
lowest level of resolution.

metric, and this is easily interpreted from the results of k-NN search. Further insights into specific
datasets can be obtained from the measurement of similarity, and these are easily interpreted and
visualized.

For the two malicious examples we have selected, we show the results of the k-NN search in Figures
6 and 7. We show the results for k = 7. The names of programs with the highest degree of similarity
are listed along with the Hamming Distance from the selected malware example. This is useful to
determine what functionality is present in the malicious sample. The functionality of the malicious
sample is defined in terms of the known benign program functionality.

3.3 DISCUSSION

To our knowledge, data flow analysis has not been performed using features constructed in a bottom-
up approach. This allows for an increase in resolution. This process yields very high dimensional
vectors for a large search space, but the high dimensionality can be reduced by adjusting the feature
resolution. A typical weakness of high dimensional spaces is the warping that occurs from the
addition of higher dimensions. However, this is mitigated in the Hamming Space. An advantage to
using k-NN is that an unseen example can be determined to be similar or different to a collection
of existing examples that have been seen by the system. By creating a library of vectors with their
Hamming Distances we can measure the similarity between vectors in terms of similarity via the
distance metric. The similarity being measured is representative of features of data dependency
graph isomorphism, and this is directly tied to both the structure and operational semantics of the
program. We can quickly and accurately query the set of examples for a new example and receive
the k neighbors most associated with the vector based on the Hamming Distance. An advantage is
that a new example can be determined to be similar or different to a collection of existing examples
that have been seen by the system.

A disadvantage of this approach is that the Hamming vectors increase the dimensionality of the
dataset, yielding high dimensional data, and require reduction. A strength of this approach is that it is
computationally feasible, and that the similarity metric is an accurate representation of the program’s
functionality. This allows for an increase in interpretability. One weakness of this approach is that
the Hamming Space must be recomputed based on the new data. When novel malware samples are
encountered with behavior not previously seen, the Hamming Codes must be re-calculated. The cost
of computation is the product of isomorphically unique hashes. But, this can be performed offline
based on a specific period of time. Online learning was not the primary focus, but we intend to
explore increases in efficiency and applications to real-time systems in future work.

A fundamental trade-off exists within our data between the level of resolution and the similarity.
Low resolution is advantageous in quickly searching a large breadth in the search space. Once the
search space has been narrowed at low-resolution and high dimensionality, a more fine-grained ap-
proach can be taken. As examples are analyzed with lower resolution they appear more similar and
the distinguishing features are unclear. When the level of resolution is increased, differences are able
to be discovered. Representing data with an adjustable resolution is advantageous for this reason. At
high resolution levels, individual similarities and differences between samples can be shown clearly.
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Neighbor H-Dist % Difference Program Name Description

1 338 0.78% AtBroker.exe Windows Assistive Technology Manager
2 393 0.91% wksprt.exe RemoteApp and Desktop Connection Runtime
3 393 0.91% wowreg32.exe SetupAPI 32-bit Surrogate
4 397 0.92% dllhost.exe COM DLL library Hosting Surrogate
5 406 0.94% appidcertstorecheck.exe AppID Certificate Store Verification Task
6 406 0.94% MRT-KB890830.exe Malicious Software Removal Tool
7 414 0.96% cleanmgr.exe Disk Space Cleanup Manager for Windows

Figure 7: k-Nearest Neighbors search results with k=7 for Win32.APT28.SekoiaRootkit. This
table shows the indices for the 7 closest programs in a library of examples to an unseen malware
example, with the Hamming Distance from the malware to each neighbor. In order to find more
fine-grained differences the resolution level can be increased based on these results, which are at the
lowest level of resolution. We highlight that the AtBroker executable is commonly used to disguise
the behavior of malware.

Decision boundaries between examples can be determined as the resolution is increased. Quantita-
tively, the difference as measured by the percentage of DDG patterns that differ between samples
increases as the resolution increases and dimensionality decreases. We use Jaccard coefficient to
demonstrate the overlap between specific examples at high resolution levels.

In order to simulate an adversarial use case, a small set of unknown malicious binaries were selected
and compared to a large class of benign examples. We have focused on benign examples of function-
ality for comparison, since obfuscation is a goal of an attacker. Additionally, since no specification
exists for verification prior to execution in an adversarial environment, the binary file is the sole
artifact available for analysis. While malicious programs at the level of binary files may have class
labels, this is the lowest level of resolution, and often not descriptive of fine-grained program oper-
ation. We have shown that identification of malicious behavior and functionality on a fine-grained
level, even when obfuscated, is possible using our representation as discussed in Section 3 and 3.1
of the Experimental Results and Figures 6, 7.

4 CONCLUSIONS

In this study we have proposed a new feature representation for binary programs, that is able to cap-
ture semantic and functional aspects of programs. We have collected a dataset of malicious and be-
nign programs, and by segmenting them we extract graphs of data dependencies. We represented the
isomorphic uniqueness of these graphs by hashing using Weisfeiler-Lehman graph hashing. Next,
we collected data dependency hash values into a set of unique hashes for our artifact collection, and
we constructed a search space using Hamming codes and the the Hamming distance. Using this new
feature representation that we call DDG Fingerprinting, we are able to answer questions of overlap
between specific executable instances and sets of programs to potentially analyze larger classes. We
have performed search in the Hamming space with k-Nearest Neighbors.

This method is successful because data dependency is representative of operational semantics and
structural properties of the program. Additionally, features were constructed in a bottom up ap-
proach, from which we are able to make additional inferences. This increase in accuracy and feature
resolution allows programs to be compared in terms of their functionality, and this can be performed
across platforms. In future studies we intend to explore the implications of increased resolution in
semantic feature representations. Efficient search without prior training or deep learning represents
an increase in accuracy, resolution, and interpretability.

4.1 REPRODUCIBILITY STATEMENT

The method and representation outlined in this study can be followed in future studies. We have
outlined the process of data collection in Section 2.1 of the Methodology. This section describes the
specific malicious examples that were selected, the location of the benign Windows system utilities,
the tools used in the data collection process, and the method of feature extraction. The malware sam-
ples were chosen from a public repository of live malware, theZoo. The decompilation from binary
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was performed using GNU objdump. Segmentation and the process of DDG Fingerprinting was
performed using Python. The NetworkX library was used for processing graphs, and we used this
library for graph hashing. Additionally we used NetworkX and Python to generate adjacency list
representations of the undirected graphs used for data dependency. The results were obtained from
analysis using Matlab and Python on the datasets outlined. Hamming Codes and Hamming Distance
were calculated using the methods outlined in Section 2.3. Figures of the search space in Section
3.2 and the Appendix were generated using Matlab. Access to the dataset and implementation can
be granted to reviewers upon request, and we intend to provide open access to these resources upon
publication.
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Figure 8: Resolution increase 1. t-SNE projection of Hamming Space for features of DDG Finger-
prints for programs. Malicious samples identified from search are highlighted in red.

Figure 9: Resolution increase 2. t-SNE projection of Hamming Space for features of DDG Finger-
prints for programs. Malicious samples identified from search are highlighted in red.
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Figure 10: Resolution increase 3. t-SNE projection of Hamming Space for features of DDG Finger-
prints for programs. Malicious samples identified from search are highlighted in red.

Figure 11: Resolution increase 4. t-SNE projection of Hamming Space for features of DDG Finger-
prints for programs. Malicious samples identified from search are highlighted in red.
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Figure 12: Resolution increase 5. t-SNE projection of Hamming Space for features of DDG Finger-
prints for programs. Malicious samples identified from search are highlighted in red.
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