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Abstract

Large language models (LLMs) have unveiled001
remarkable reasoning capabilities by exploiting002
chain-of-thought (CoT) prompting, which003
generates intermediate reasoning chains to004
serve as the rationale for deriving the answer.005
However, current CoT methods either simply006
employ general prompts such as Let’s think007
step by step, or heavily rely on pre-defined task-008
specific demonstrations to attain preferable per-009
formances, thereby engendering an inescapable010
gap between performance and generalization.011
To bridge this gap, we propose GeM-CoT,012
a Generalizable CoT prompting mechanism013
in Mixed-task scenarios where the type of014
input questions is unknown. GeM-CoT first015
categorizes the question type and subsequently016
samples or constructs demonstrations from017
the corresponding data pool in an automatic018
pattern. With this technical design, GeM-CoT019
simultaneously enjoys superior generalization020
capabilities and remarkable performances on021
10 public reasoning tasks and 23 BBH tasks.022

1 Introduction023

Large language models (LLMs) (Brown et al.,024

2020; Scao et al., 2022; Thoppilan et al., 2022;025

Chowdhery et al., 2022; Touvron et al., 2023;026

OpenAI, 2023) have exhibited commendable027

capabilities on complex reasoning by virtue of028

chain-of-thought (CoT) prompting (Wei et al.,029

2023). CoT prompting entails the generation of030

intermediate reasoning chains that serve as the031

rationale before deriving the answer.032

Current CoT prompting methods predominantly033

fall into two categories, which we dub as034

General Zero-Shot-CoT and Specific Few-Shot-035

CoT, respectively. The former leverages general036

trigger prompts such as Let’s think step by step037

and appends them directly to the input question,038

aiming to summon up the step-by-step reasoning039

potential from LLMs (Kojima et al., 2023; Yang040

General Zero-Shot-CoT

Specific Few-Shot-CoT

GeM-CoT

Single-task Scenarios

Mixed-task Scenarios

Type : Known
Task: Single
Order: Specified

Type : Unknown
Task: Mixed
Order: Arbitrary

Letter

Q: Take the 
last letters of 
each words in 
...

Q: Take the 
last letters...

Q: Dan had 
$3 left after 
he bought a...

Q: Terry eats 
2 yogurts...

SVAMP

Q: After he 
got hired he...

CSQA

Q: What are candles 
     good for eliminating? 
     (A) shelf...
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      of each words in...
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General Zero-Shot-CoT

Specific Few-Shot-CoT
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Figure 1: Comparison of conventional single-task
scenarios and our concerned setting: mixed-task
scenarios. There are three major characteristics of
mixed-task scenarios: (i) the type of any incoming
question is unknown; (ii) the input data comes from
a set of mixed tasks; (iii) the questions come in an
arbitrary order.

et al., 2023). The latter provides task-specific input- 041

output pairs as in-context demonstrations and puts 042

them before the input question, for the purpose of 043

instructing LLMs to carry out multi-step reasoning 044

with elaborately selected demonstrations (Liu et al., 045

2022; Wei et al., 2023; Zhang et al., 2023). 046

Briefly, there are two major limitations in 047

previous studies. On one hand, the General 048

Zero-Shot-CoT pattern is endowed with favorable 049

generalization ability as it does not need any task- 050

related demonstrations, but it often pales in terms 051

of performance when compared with the few-shot 052

pattern. On the other hand, the Specific Few- 053

Shot-CoT pattern heavily leans on task-specific 054

demonstrations to attain superior performances, 055

yet fails to bear on decent generalization ability. 056

Although recent works have made progress by 057

either mitigating manual labor (Zhang et al., 2023) 058

or promoting the quality of demonstrations (Arora 059
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et al., 2023; Diao et al., 2023), all of them rest on060

the task-associated perspective thus far.061

Nevertheless, in practical applications, LLMs062

tend to confront situations of mixed types of063

questions (Figure 1), where each question is not064

clearly pre-identified which task it belongs to.065

Under these circumstances, it is neither reasonable066

to improvise several task-related examples by hand067

nor possible to manually search for which task068

it refers to, not to mention that the question069

encountered in actual cases is not even from a070

pre-defined set of tasks. Besides, naive use of071

general trigger prompts may result in performance072

degradation as the lack of templated rationales073

often leads to spurious reasoning steps (Wan et al.,074

2023). As a result, there exists an inescapable075

gap between performance and generalization in076

our concerned realistic mixed-task scenarios.1077

To alleviate this gap, a potential strategy is to078

explore the trade-off area between generality and079

performance while ensuring certain practicality.080

This work presents GeM-CoT: a Generalizable081

CoT prompting mechanism in Mixed-task scenar-082

ios where the type of input questions is unknown.083

GeM-CoT first routes the input question to084

different paths based on whether it can successfully085

match to a demo pool that is pre-constructed086

and continuously updated. On one hand, for a087

successful match, it fetches demonstrations of the088

matched type from the demo pool and performs a089

final inference to acquire the answer. On the other090

hand, when a match fails, it derives the answer091

through zero-shot reasoning and then stores in092

the data cache. Afterward, it updates the cache093

by conducting density-based clustering on the094

questions within and automatically constructing095

diverse demonstrations for data in a certain cluster096

that meets the requirements. The corresponding097

generated demonstrations are returned to the demo098

pool for subsequent inference.099

We conduct experiments on 10 reasoning100

tasks covering arithmetic reasoning, commonsense101

reasoning, and symbolic reasoning. Besides, we102

further validate the stability and generalization of103

GeM-CoT on 23 BBH datasets. Experimental104

results show that GeM-CoT simultaneously enjoys105

superior generality and remarkable performances.106

Our contributions are summarized as follows:107

(i) To the best of our knowledge, our work108

pioneers a novel setting of mixed-task scenarios,109

1Detailed exploration will be provided in Section 3.2.

which has significant practical application values. 110

(ii) We propose a generalizable CoT prompting 111

mechanism in mixed-task scenarios, which not 112

only bridges the gap between performance 113

and generalization but also unearths their in- 114

between mutual synergy by gaining performance 115

improvements in sync with achieving generality. 116

(iii) Experimental results on a total of 33 117

datasets demonstrate the impressive performance 118

and superior generality of our approach. 119

2 Related Work 120

In this section, we discuss two lines of research 121

which are key to our work: CoT prompting and 122

cross-task generalization. 123

2.1 Chain-of-thought Prompting 124

Recently, CoT prompting methods have pushed 125

the multi-step reasoning abilities of LLMs to a 126

remarkable aptitude by eliciting them to generate 127

intermediate reasoning chains before deriving the 128

final answer (Wei et al., 2023). 129

Currently, there are two flavors of research in 130

CoT prompting: General Zero-Shot-CoT (Kojima 131

et al., 2023) and Specific Few-Shot-CoT (Wei et al., 132

2023). The former merely appends a general 133

prompt to the input question, wheras the latter 134

leverages several task-specific input-output pairs as 135

reasoning demonstrations and inserts them before 136

the test question. 137

General Zero-Shot-CoT. LLMs have proven 138

to be competent zero-shot reasoners by Kojima 139

et al. (2023), which has greatly broadened the 140

generalizability of CoT techniques and liberated 141

the need to prepare task-specific examples in 142

advance. While benefiting from its task-agnostic 143

property, it often fails to excel at performance in 144

comparison with its few-shot rivals (Wei et al., 145

2023; Zhang et al., 2023). In order to further 146

boost the performance, recent works have laid 147

emphasis on the optimization of triggering prompts 148

(Zhou et al., 2022; Yang et al., 2023). In their 149

work, LLMs are employed as optimizers, and new 150

prompts are progressively generated based on the 151

past optimization history. Despite the augmented 152

performance, the optimization process for prompts 153

reverts to a task-specific problem, and for unseen 154

test questions in real-world circumstances, it may 155

not be advisable to optimize prompts on the fly. 156

Specific Few-Shot-CoT. Owing to the well- 157

crafted in-context demonstrations, Few-Shot- 158
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CoT achieves preferable performance, which159

consequently extends to a plethora of studies160

focusing on improvements upon it. According161

to the period of improvement, these studies are162

grouped into three categories: (i) pre-reasoning163

pattern; (ii) peri-reasoning pattern; and (iii) post-164

reasoning pattern.165

For the pre-reasoning pattern, current research166

attends to either alleviating manual labor when167

selecting demonstrations (Zhang et al., 2023;168

Wan et al., 2023), or promoting demonstration169

quality (Creswell et al., 2023; Madaan and170

Yazdanbakhsh, 2022; Arora et al., 2023; Diao171

et al., 2023; Wang et al., 2023b). For the post-172

reasoning pattern, recent studies concentrate on173

fine-grained reasoning processes such as problem174

decomposition (Zhou et al., 2023; Press et al.,175

2022). For the post-reasoning pattern, related176

works principally enhanced the performance by177

verification (Weng et al., 2022; Lyu et al., 2023)178

or ensemble-like methods (Wang et al., 2023a; Li179

et al., 2023; Wang et al., 2022b; Yoran et al., 2023).180

However, when confronted with newly proposed181

challenging mixed-task scenarios, previous studies182

have exhibited subpar performance under zero-shot183

settings without referencing similar demonstrations.184

In contrast, our approach achieves superior185

inference performance by dynamically updating186

and selecting demonstrations.187

2.2 Cross-task Generalization188

Cross-task generalization has been a long-standing189

research goal in natural language processing190

(NLP). The conventional pre-training and fine-191

tuning paradigm gains a foothold by pre-training192

on a large corpus of text to capture general193

knowledge and fine-tuning on specific tasks to194

acquire specific knowledge. Beyond this primitive195

paradigm, post pre-training and multi-task learning196

(Yu et al., 2022; Zhang and Zhao, 2021; Liu197

et al., 2019; Zhang et al., 2022) encourage further198

advancements in this research area. More recent199

works such as ExT5 (Aribandi et al., 2022), T0200

(Sanh et al., 2022), and FLAN (Wei et al., 2022)201

strived to convert a variety of tasks into an identical202

text-to-text format, so that models can be trained on203

those tasks jointly. LoraHub (Huang et al., 2023)204

leveraged the composability of LoRA (Low-Rank205

Adaption of LLMs) modules to promote the task206

generalization ability of LLMs. Our work, however,207

manages to effectuate task generalization through208

timely and user-friendly ICL without any training.209

3 Towards Generalizable CoT in 210

Mixed-task Scenarios 211

In this section, we first define the concept of 212

mixed-task scenarios and then present preliminary 213

experiments to understand the challenge. 214

3.1 Concept of Mixed-task Scenarios 215

Existing studies (Wei et al., 2023) commonly 216

assume that the type of questions fed to the model 217

is known and conduct each set of evaluations on the 218

questions from the same dataset, which is regarded 219

as the single-task scenarios. However, a more 220

realistic setting lies in mixed-task scenarios where 221

the type of input questions is unknown and they 222

come in an arbitrary manner. A comparison with 223

the single-task scenarios is presented in Table 1. 224

Setting Unknown Mixed Arbitrary
Type Source Order

Single-task Scenarios ✗ ✗ ✗
Mixed-task Scenarios ✓ ✓ ✓

Table 1: Concept of mixed-task scenarios, which is
more common in real-world situations.

Mixed-task scenarios have three main charac- 225

teristics: (i) the type of any incoming question is 226

unknown; (ii) the input data comes from a set of 227

mixed tasks; (iii) the questions come in an arbitrary 228

order. Such a setting is of pivotal importance 229

because the specific task source of an incoming 230

question is usually unavailable in many real-world 231

applications. 232

3.2 Challenge of Mixed-task Scenarios 233

In the first place, we set up the mixed-task scenarios 234

by adopting questions from ten reasoning tasks 235

following Kojima et al. (2023) and Zhang et al. 236

(2023). We shuffle all the questions and sample 237

100 examples to mimic their mixed and arbitrary 238

pattern. We initially adopt two vanilla methods: 239

Zero-Shot-CoT and Few-Shot-CoT,2 the latter 240

assuming a known dataset source for the input 241

question, which cannot be applied to the mixed- 242

task scenarios, but only serves a hypothetical upper 243

bound for reference. 244

As seen in Table 2, the few-shot setting with 245

gold demonstrations substantially outperforms the 246

zero-shot setting (78.0% → 66.0%). Therefore, 247

we focus on the few-shot setting and present four 248

2We leverage ICL demonstrations from Wei et al. (2023)
and refer them as gold demos.
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Method Mixed-task AccuracyScenarios

Few-Shot-CoT (w/ gold) ✗ 78.0

zero-shot setting
Zero-Shot-CoT ✓ 66.0 (↓ 12.0)

few-shot setting
w/ varied & single ✓ 26.0 (↓ 52.0)
w/ varied & mixed ✓ 20.0 (↓ 58.0)
w/ fixed & single ✓ 27.0 (↓ 51.0)

open w/ fixed & mixed ✓ 19.0 (↓ 59.0)

Table 2: Results with initial attempts showing the
challenge of mixed-task scenarios.

pilot attempts based on two perspectives: (i) varied249

/ fixed: whether the ICL demonstrations vary for250

each input question; (ii) single / mixed: whether251

the ICL demonstrations originate from a single252

dataset.3 We observe catastrophic performance253

degradation with these naive approaches (e.g.,254

78.0% → 27.0%). Moreover, we find that255

the adoption of demonstrations from a single256

dataset source leads to better performance as257

the methods with mixed demonstrations exhibit258

subpar performances than those with single ones259

(20.0/19.0% → 26.0/27.0%). This investigation260

partially inspires us to design a plug-and-261

play routing module to assign LLMs with262

demonstrations of a shared type rather than mixed263

types for subsequent inference.264

4 GeM-CoT265

Based on the consideration above, we introduce266

GeM-CoT to tackle mixed-task scenarios. Figure 2267

and Figure 3 illustrate its overall architecture and268

flow chart, respectively.269

Concretely, GeM-CoT first routes the input270

question to different paths (Type Matching): (i)271

path matched→: For a successful match, it272

fetches demonstrations from the demo pool (Demo273

Acquisition) and performs a final inference (Answer274

Derivation w/ demos). (ii) path unmatched→:275

For a failed match, it derives the zero-shot answer276

with rationales (Answer Derivation w/o demos)277

and then updates the data cache through density-278

based clustering and automatically constructs279

demonstrations (Data Cache Update). We detail280

these modules as follows.281

3Detailed explanations about initial attemps are shown in
Appendix C.4.

4.1 Type Matching 282

Given a demo pool DP containing n demonstrations 283

[dm1, dm2, . . . , dmn] and an input question qin, 284

the objective of Type Matching is to find the most 285

similar demo question for qin and decide whether 286

this match is successful or not. 287

Similarity Calculation Note that each demon- 288

stration in DP is under the form: dmi = 289(
qid, r

i
d, a

i
d, t

i
d

)
, where rid, aid, tid refer to the 290

rationale, answer and type of qid. For a demo 291

question qid ∈ dmi and the input question qin, 292

we encode them independently using the same 293

model Enc and employ the dot product of their 294

representations as the similarity score: 295

sim(qin, q
i
d) =

〈
Enc(qin), Enc(qid)

〉
, (1) 296

where ⟨, ⟩ denotes the dot product operation. 297

Match Decision After obtaining n scores, 298

we select the demonstration dmsim = 299

(qsim, rsim, asim, tsim) that has the highest 300

similarity score with qin: S = sim(qin, qsim). 301

Then we compare S with a constant threshold 302

Sthres to make a matching decision Dmatch: 303

Dmatch =

{
0, if S ≥ Sthres

1, otherwise
(2) 304

For a successful match (i.e., Dmatch = 0), we 305

follow the path: Demo Acquisition (§ 4.2) → 306

Answer Derivation w/ demos (§ 4.3). For a failed 307

match (i.e., Dmatch = 1), we choose the path: 308

Answer Derivation w/o demos (§ 4.3) → Data 309

Cache Update (§ 4.4). 310

4.2 Demo Acquisition 311

After successfully matching the input question qin 312

with a certain type tsim in § 4.1, we are able to 313

construct type-wise demonstrations for in-context 314

learning: DEMq =
[
dm1

q , dm
2
q , . . . , dm

p
q

]
, where 315

p denotes the number of demonstrations under the 316

type tsim in DP. 317

4.3 Answer Derivation 318

w/ demos Now that we have p demonstrations 319

of the formerly matched type tsim acquired in 320

§ 4.2, we execute a final inference to obtain the 321

answer to qin. Specifically, each demonstration 322

dmi
q ∈ DEMq is formatted as:

[
Q: qi,A: ri, ai

]
323

where qi, ri, and ai are from dmi
q. Then we 324

prepare the templated input prompt for inference 325

by Pinf = [Q: qin,A: ]. After that, the formatted 326
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① Type Matching ② Demo Acquisition
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④ Data Cache Update

Demo Pool Data Cache (Unmatched)
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...
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Q: Take the ...
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A:  [rationale] [answer]
...
Q:  Bobby had 32 pieces... 
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...
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A:  [rationale] [answer]

Q: If John scored...
A: 

Q: If John 
scored 100 
on...
A: Let’s think
step by step.

Inference

John scored 100 on his first 3 tests, 
which totals to 300. And he scored... 
The answer is 95.

Q

{[question] || [rationale] || [answer]}
{[question] || [rationale] || [answer]}

... 
{[question] || [rationale] || [answer]}

{ [q] || [r] || [a] }
{ [q] || [r] || [a] } 

Cached Data

Density-based Clustering

<Type k+2>

...

Demo Selection

Q:
Q: 
Q: 

...

<Type k+3>

...

<Type k+4>

...

<Type k+2> <Type k+3> <Type k+4>
Q:
Q: 
Q: 

Q:
Q: 
Q: 

<Type 2>
Q:
Q: Was Aristotle...
Q:

① ② ③ 
Path matched: 

① ③ 
Path unmatched: 

④ 

Database

Modules

Exchange

Figure 2: Overview of our proposed GeM-CoT mechanism. GeM-CoT first routes the input question to different
paths (Type Matching): i) path matched→: For a successful match, it fetches demonstrations from the demo
pool (Demo Acquisition) and performs a final inference (Answer Derivation). ii) path unmatched→: For a failed
match, it derives the zero-shot answer with rationales (Answer Derivation) and then updates the data cache through
density-based clustering and automatically constructing demonstrations (Data Cache Update).

Start

Type Matching

Successful Match?

Demo Acquisition

Answer Derivation
w/ demos

End

Answer Derivation
w/o demos

Data Cache Update

Yes

No

Figure 3: Flow chart of our GeM-CoT mechanism.

demonstrations are concatenated and inserted327

before the input prompt Pinf , which is eventually328

delivered to LLMs to derive the rationale rin and329

answer ain of input question qin.330

w/o demos In the case of a failed match, we331

directly invoke Zero-Shot-CoT (Kojima et al.,332

2023) to obtain the rationale rin and answer ain333

for the input question qin. Afterward, the data334

(qin, rin, ain) is returned to the data cache DC, 335

which stores the data that undergoes a failed match 336

with the demo pool DP in Type Matching module. 337

4.4 Data Cache Update 338

Given the data cache DC that encompasses m data 339

[cad1, cad2, . . . , cadm], the goal of Data Cache 340

Update is to execute a density-based clustering 341

upon the questions therein and select high-quality 342

demonstrations for each cluster that meet certain 343

requirements. The overall procedure of this module 344

is presented in Algorithm 1. 345

Density-based Clustering Since the types of 346

data in DC are unknown and mixed, we cannot 347

know in advance the number of clusters into which 348

these questions should be classified. To this end, 349

we adopt the density-based clustering algorithm 350

OPTICS (Ankerst et al., 1999).4 Concretely, we 351

first encode all the questions {qic ∈ cadi, i ∈ 352

[1, . . . ,m]} in DC with the model Enc and then 353

4This algorithm is capable of detecting meaningful clusters
in data of varied density, and this feature fits our novel setting
well, where the questions are mixed and unbalanced in type.
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Algorithm 1: Data Cache Update
Input: demo pool DP, data cache DC, cached data

[cad1, cad2, . . . , cadm], threshold numbers
{thca, thcls}, density-based clustering
function OPT ICS, demo selection function
SEL, function that returns cluster size S,

Output: demo pool DP, data cache DC

if n ≥ thca then
[cls1, cls2, . . . , clss]←
OPT ICS([cad1, cad2, . . . , cadm])

for i in 1, ..., s do
num← S(clsi)
if num ≥ thcls then

demos← SEL(clsi)
Add demos to DP
Remove clsi from DC

end
end

end
return DP, DC

perform OPTICS upon them to obtain s clusters:354

Cemb = Enc(
[
q1c , q

2
c , . . . , q

m
c

]
),[

cls1, cls2, . . . , clss
]
= OPTICS(Cemb).

(3)355

Demo Selection After obtaining s clusters, we356

conduct a filtering and focus only on clusters357

whose size is no less than a threshold thcls. For358

each filtered cluster clsi, we leverage the encoder359

model Enc to obtain a vector representation for360

each candidate question in clsi. After that, we361

perform k-means clustering over the acquired362

contextualized representations. We sort the363

questions in ascending order by distance from364

the cluster center. Next, we follow prior works365

(Zhang et al., 2023) to conduct simple operations366

on the question and rationale 5, which help obtain367

more effective demonstrations. Once the question-368

rationale pair is retained under the operation,369

we stop functioning on other questions in clsi.370

As a result, we manage to collect a total of k371

representative and high-quality demonstrations for372

clsi: [
(
q1, r1, a1

)
,
(
q2, r2, a2

)
, . . . ,

(
qk, rk, ak

)
],373

where rj and aj refer to the rationale and answer374

of qj . In the end, we update the demo pool DP with375

the generated diverse demonstrations and remove376

the data of clsi from the data cache DC.377

5 Experiments378

This section will describe our experimental setup379

and present the main results.380

5More details are attached in Appendix C.1

5.1 Setup 381

Datasets. We evaluate our method on 10 382

reasoning datasets and a suite of 23 BIG-Bench 383

Hard (BBH) tasks. The former is the basis of 384

the original demo pool construction, whereas the 385

latter can be regarded as questions of unseen6 types 386

for our mechanism. The 10 reasoning datasets 387

include AQUA-RAT (Ling et al., 2017), MultiArith 388

(Roy and Roth, 2015), AddSub (Hosseini et al., 389

2014), GSM8K (Cobbe et al., 2021), SingleEq 390

(Koncel-Kedziorski et al., 2015), SVAMP (Patel 391

et al., 2021), Last Letter Concatenation (Wei et al., 392

2023), Coin Flip (Wei et al., 2023), StrategyQA 393

(Geva et al., 2021), and CSQA (Talmor et al., 2019). 394

For the BBH (Suzgun et al., 2022) tasks, we shuffle 395

all the data and randomly sample 2000 questions 396

to imitate the realistic mixed-task scenarios.7 397

Implementation. We utilize the popular and 398

publicly available models GPT-3.5-Turbo and GPT- 399

4 (OpenAI, 2023) from Azure OpenAI Service.8 400

The temperature and top_p are both set to 1.0. The 401

original demo pool DP is constructed based on the 402

data from Wei et al. (2023). The threshold numbers 403

Sthres, thca and thcls are set to 0.35, 200 and 50 404

respectively. We employ Sentence-BERT (Reimers 405

and Gurevych, 2019) as the encoder model Enc.9 406

We perform the density-based clustering and k- 407

means clustering through the open-source scikit- 408

learn10 python package. We set the number 409

of demonstrations k to 6 for simplicity when 410

constructing demonstrations for a new type, since 411

this number generally achieves decent performance 412

on reasoning datasets (Wei et al., 2023). 413

Baselines. We compare GeM-CoT with 6 414

baselines, which can be divided into three 415

groups: (i) ICL methods without CoT prompting 416

(Kojima et al., 2023; Brown et al., 2020); (ii) 417

task-specific CoT approaches (Wei et al., 2023; 418

Zhang et al., 2023); (iii) CoT techniques with 419

generalization (Kojima et al., 2023). Specifically, 420

we devise a strong baseline named General-CoT 421

6Here unseen means there are no questions in the original
demo pool that match the BBH tasks. Data details of BBH and
10 reasoning tasks are presented in Appendix E, highlighting
their significant structural and domain differences.

7Details about BBH tasks is presented in Appendix E.2.
8https://learn.microsoft.com/en-us/azure/

ai-services/openai/
9Utilizing Sentence-BERT strikes a favorable balance

between matching accuracy and execution efficiency. Detailed
results are shown in Appendix C.2.

10https://scikit-learn.org/stable/
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Method Mixed-task AQuA MultiArith AddSub GSM8K SingleEq SVAMP Letter Coin Strategy CSQA Avg.Scenarios

*ICL methods without CoT
Zero-Shot ✓ 29.1 67.2 88.9 36.9 86.5 67.9 4.8 44.0 65.3 74.3 56.5
Few-Shot ✗ 33.1 87.5 91.1 48.9 92.7 79.1 7.2 64.4 62.3 81.0 64.7

*Task-specific CoT approaches
Few-Shot-CoT ✗ 54.3 97.3 93.9 76.5 96.7 81.9 73.2 99.0 63.7 78.0 81.4
Auto-CoT ✗ 49.6 99.3 94.2 78.9 96.3 84.6 81.2 100.0 64.6 72.2 82.1

*CoT techniques with generalization
Zero-Shot-CoT ✓ 51.6 94.7 85.5 72.7 93.5 78.4 85.8 99.0 62.6 69.9 79.4
General-CoT ✓ 46.9 98.7 92.4 77.2 97.4 83.8 75.2 100.0 63.4 72.2 80.7
GeM-CoT(Ours) ✓ 51.9 99.0 93.7 77.5 98.4 88.6 77.2 100.0 63.5 72.8 82.3

Table 3: Accuracy (%) on ten reasoning datasets. The backbone model is GPT-3.5-Turbo. Results in bold and
underline are the best and second-best performances, respectively.

Methods AQuA GSM8K SVAMP Avg.

Zero-shot-CoT 70.5 81.3 91.3 81.0
Few-shot-CoT 71.9 92.0 90.5 85.5

GeM-CoT(Ours) 72.8 93.6 93.7 86.6

Table 4: Accuracy (%) on four reasoning datasets. The
backbone model is GPT-4.

for generalization comparison. It randomly collects422

one demonstration from each type of data in the423

demo pool DP and then leverages the gathered424

demonstrations as a generic inference prompt for425

all the input data.11 More baseline details are426

presented in Appendix D.427

5.2 Main Results428

Performance on reasoning datasets. Table 3429

presents the results on ten reasoning tasks. GeM-430

CoT generally towers above the baseline methods431

from different angles. On one hand, compared432

with two typical task-specific CoT approaches,433

GeM-CoT not only averagely surpasses them in434

performance but also enjoys the generalizable435

property, which means that the input question with436

an unknown type can be adapted to our method437

in an automatic and labor-free pattern. On the438

other hand, while the general CoT techniques439

both witness average performance degradation440

(i.e., 82.1%→79.4/80.7%), GeM-CoT stands out441

by continually boosting the performance (i.e.,442

82.1%→82.3%), thus shedding light on the mutual443

synergy between generalization and performance.444

Performance on BBH datasets. As our pro-445

posed GeM-CoT is adept at tackling incoming446

11The generic inference prompt is constructed from the
original demo pool DP without subsequent updates.
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Figure 4: Process of five subsequent streaming batch
data with batch size of 400 on BBH datasets.

questions of unseen types with its continuously 447

updating databases, we set up a more realistic and 448

complex streaming setting (Tang, 2023), where the 449

original test set is not visible and the questions 450

appear in the form of batch data. As illustrated 451

in Figure 4, the superiority of GeM-CoT gets 452

prominent from batch 2, suggesting that as the 453

data amount increases, our approach enjoys broader 454

adaptability and higher generality by learning more 455

representative and fine-grained features. 456

6 Analysis 457

6.1 Methods of Selecting Demonstrations. 458

Since our work is situated in realistic mixed-task 459

scenarios, accessing high-quality demonstrations 460

in a labor-saving pattern is of crucial importance. 461

Accordingly, we select two representative labor- 462

free methods for comparison: (i) Similarity- 463

based, which retrieves the top-k similar questions 464

based on cosine similarity; (ii) Randomness-based, 465

which randomly samples k examples for each 466
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Method AQuA AddSub Strategy Coin

GeM-CoT 51.9 93.7 63.5 100.0
w/ similarity 49.6 90.1 64.1 99.2
w/ randomness 52.0 92.2 61.2 99.0

Table 5: Influence of demonstration selection methods.
GeM-CoT is based on diversity-based selection.

0.0 0.2 0.4 0.6 0.8 1.0
Similarity score

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en

si
ty

correct type
wrong type

Figure 5: Distribution of similarity scores in Type
Matching module. We separately present the distribution
of correctly and incorrectly matched scores.

input question. Results in Table 5 show our467

proposed GeM-CoT (diversity-based) performs468

the best, verifying the importance of diversity in469

demonstrations.470

6.2 Effect of Type Matching Module.471

In order to further explore the effect of Type472

Matching which plays a key role in generalization,473

we discard this module and adopt two alternatives:474

(i) an LLM-based classifier that groups the475

questions based on its category and form using few-476

shot examples in the prompt;12 (ii) an idealized477

strategy in which we assume that the model is478

given the gold type, noting that this case does479

not apply to our proposed mixed-task scenarios,480

and serves only as a reference for comparison.481

Results are presented in Table 6. Compared482

with the LLM-based classifier, GeM-CoT not only483

achieves comparable performance but also relieves484

the need for any API cost. In addition, GeM-CoT485

bears stronger generalization capabilities because486

the matching is based on semantic similarity,487

eliminating the effort of defining and updating the488

question type in the prompt.489

12We construct the few-shot examples from the ten
reasoning datasets following (Wei et al., 2023). More
information about how to define the category and form is
presented in Appendix H.

Method Appli. Cost-free AddSub Strategy

GeM-CoT ✓ ✓ 93.7 63.5
w/ classifier ✓ ✗ 93.4 64.5
w/ correct type ✗ ✓ 90.1 65.0

Table 6: Effect of Type Matching. Appli. denotes the
applicability to our proposed mixed-task scenarios.

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
Matching threshold

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90 F1-value
accuracy

Figure 6: F1 value and accuracy of type matching with
respect to varying matching thresholds.

6.3 Choice of Matching Threshold. 490

We provide further analysis to validate the 491

rationality of the chosen threshold for the Type 492

Matching module. We focus on a total of 1200 493

questions from ten reasoning datasets (Wei et al., 494

2023), from which the original demo pool is 495

constructed so that we can easily determine if the 496

match types are correct or not. Figure 5 presents the 497

distribution of correctly and incorrectly matched 498

scores, which are concentrated in the [0.2, 0.6] 499

range. We select the scores within this range as the 500

threshold and calculate the corresponding F1 value 501

and accuracy. As shown in Figure 6, choosing 0.35 502

yields the best results in general across our tasks. 503

7 Conclusion 504

In this work, we initially put forward a novel 505

setting with significant application values, namely 506

mixed-task scenarios where the questions come in a 507

mixed and arbitrary way with their types unknown. 508

Upon this challenging setting, we propose GeM- 509

CoT, a generalizable CoT prompting mechanism 510

that first performs type matching and then 511

automatically samples or constructs corresponding 512

ICL demonstrations, with continuously updated 513

databases. Evaluation results on a total of 33 514

datasets demonstrate the impressive performance 515

and superior generality of our proposed method. 516

While most existing works focus on either 517

promoting performance or pursuing generality, we 518

open up a pioneering perspective to bridge the two 519

aspects in a simple and practical manner. 520

8



Limitations521

There are three limitations. First, our methodology522

largely depends on cached memory, causing523

increased latency as the system encounters more524

user samples. We have provided relevant analysis525

and preliminary studies in Appendix B. We also put526

forward certain directions for further optimization,527

which is left to be explored in future works. Second,528

our proposed approach focuses on the application529

of CoT methods to a novel and practical scenario530

while ignoring the improvement of the reasoning531

process to a certain extent. As discussed in Related532

Work, existing reasoning improvement approaches533

can be further applied to strengthen GeM-CoT.534

Third, there might be more efficient ways of535

selecting high-quality ICL demonstrations in our536

proposed mixed-task scenarios.537
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A Additional Experiments 845

A.1 More experiments on GPT-4 846

The primary objective of our work is to verify the 847

effectiveness of our proposed framework, GeM- 848

CoT, in addressing the novel and challenging 849

mixed-task scenarios. Experiments on GPT-3.5- 850

Turbo demonstrate our framework’s capability to 851

manage this setting, while experiments on GPT- 852

4 illustrate its versatility. However, to further 853

validate the generality of our approach, we conduct 854

additional experiments on GPT-4 across various 855
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Methods Appli. Letter Strategy CSQA

Zero-shot-CoT ✓ 88.6 72.1 79.4
Few-shot-CoT ✗ 89.8 73.7 82.3
GeM-CoT ✓ 92.3 75.4 86.4

Table 7: Accuracy (%) on three reasoning datasets.
Appli. denotes applicability to mixed-task scenarios.
The backbone model is GPT-4.

Methods Appli. Accuracy

Zero-shot-CoT ✓ 31.5
Few-shot-CoT ✗ 58.2
GeM-CoT ✓ 64.3

Table 8: Results on 500 sampled data in mixed-task
scenarios. Appli. denotes applicability to mixed-task
scenarios. The backbone model is Llama2-7B.

reasoning tasks. Results in Table 7 confirm the856

generality and superior performance of GeM-CoT857

across various categories of reasoning tasks.858

A.2 Results on small open-sourced models859

We conduct additional experiments on LLaMA2-860

7B using a sample of 500 examples from the test861

data. Results in Table 8 further demonstrate the862

effectiveness of our method.863

A.3 Results on MedQA864

To further demonstrate the generality of our865

method, we conduct extensive experiments on866

MedQA(Jin et al., 2021), which serve as entirely867

novel instances compared to those in our previous868

study. An typical example from MedQA is869

shown as follows: A 23-year-old college student870

experiences monthly chest discomfort, shortness of871

breath, shakiness, and excessive sweating, likely872

due to stress. He fears having an episode in public,873

causing him to avoid leaving home. His medical874

history is unclear, and the physical exam is normal.875

Which of the following is the best medication for the876

long-term management of this patient’s condition?877

(A) Citalopram (B) Lithium (C) Lorazepam (D)878

Propranolol (E) Quetiapine. Table 9 shows the879

results on MedQA.880

B Performance Efficiency Analysis881

First, we conduct an additional 100 examples on882

the increased demo set after testing 3200 questions,883

which matches the total test size in our experiments.884

The additional latency introduced by our method885

primarily lies in the Type Matching stage, which886

we calculate as 0.048s / question. This proves to887

Methods Appli. Backbone Accuracy

Zero-shot-CoT ✓ GPT-3.5 44.3
Few-shot-CoT ✗ GPT-3.5 55.3
GeM-CoT ✓ GPT-3.5 58.1

Zero-shot-CoT ✓ GPT-4 61.8
Few-shot-CoT ✗ GPT-4 73.3
GeM-CoT ✓ GPT-4 75.9

Table 9: Results on MedQA. Appli. denotes
applicability to mixed-task scenarios.

Dropout_rate Accuracy

0% 78.6
30% 78.2
70% 77.1

Table 10: Results on a sampled subset of 500 examples
of total test data with different dropout rates.

be lightweight and acceptable. 888

Furthermore, we propose alternatives to opti- 889

mize memory usage: (i) Implement a periodic 890

demo pool filtering procedure to maintain its 891

size within an acceptable range. (ii) During each 892

type matching process, select only a subset for 893

matching. For example, set a dropout_rate to 894

randomly exclude a portion of demos each time. In 895

order to verify the feasibility of our proposal, we 896

conduct experiments on a sampled subset of 500 897

examples of total test data with different dropout 898

rates. Results in Table 10 indicate that the method’s 899

performance is not significantly sensitive to the 900

demo pool size. Models can effectively learn 901

reasoning steps from the in-context demonstrations 902

as long as the demonstrations are somewhat 903

relevant to the domain. Besides, using a dropout 904

strategy can improve efficiency. This validates our 905

proposed memory optimization strategies. 906

C Experimental Details 907

C.1 Filtering operations in Demo Selection. 908

We follow the works from (Wei et al., 2023; Zhang 909

et al., 2023) to filter the question-rationale pair as 910

follows: the question needs to be no more than 911

60 tokens and the rationale should not exceed 5 912

reasoning steps. The objective of this filtering 913

strategy is to seek simple heuristics by sampling 914

simpler questions and rationales. 915

C.2 Choice of sentence encoders. 916

We randomly sample 500 questions from the 10 917

reasoning datasets that constitute the original demo 918

pool. We compare our method with SimCSE(Gao 919
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et al., 2021) and E5(Wang et al., 2022a). We920

test the accuracy and execution time of type921

matching phase, given that the sentence encoder922

is exclusively employed in this phase. The923

results in Table 11 indicate that utilizing Sentence-924

BERT as the sentence encoder strikes a favorable925

balance between matching accuracy and execution926

efficiency.927

Method Accuracy(%) Time(s)

Sentence-BERT 81.4 24.2
SimCSE 80.6 152.5
E5 82.0 151.3

Table 11: Influence of different sentence encoders.

C.3 Constructing original demo pool.928

We initially build the original demo pool from Wei929

et al. (2023), showcasing respectable performance930

across ten reasoning tasks. Additionally, we931

validate the robustness of our method across 23932

BBH tasks. Qualitative examples of the data in the933

original demo pool are shown in Table 12.934

C.4 Methods of initial attempts in Section 3.2.935

We provide detailed explanations about selecting936

demonstrations for the few-shot settings in Section937

3.2. We denote all the original data from 10938

datasets as: Q_all = {Q0, Q1, ..., Q9}.939

• w/ varied&single: For each query q, k940

demonstrations are randomly selected from a single941

dataset (e.g. Q0). This implies that every incoming942

query necessitates a random sampling from Q0.943

• w/ varied&mixed: For each query q, k944

demonstrations are randomly selected from a945

mixture of datasets comprising 10 reasoning tasks.946

This indicates that each incoming query requires a947

random sampling from Qall.948

• w/ fixed&single: We pre-select k949

demonstrations from a single dataset (e.g., Q0)950

randomly beforehand and utilize these fixed951

demonstrations for every incoming query. This952

means that random sampling is conducted only953

once.954

• w/ fixed&mixed: We pre-select k955

demonstrations from a mixture of datasets (Qall)956

randomly beforehand and utilize these fixed957

demonstrations for each incoming query. Again,958

random sampling is conducted only once.959

D Baseline Methods960

We introduce the baseline methods in detail.961

• ICL methods without CoT: Zero-Shot 962

(Kojima et al., 2023) adds the prompt “A: The 963

answer is” to an input question and leverage it as 964

the input delivered to LLMs. Few-Shot (Brown 965

et al., 2020) employs several additional templated 966

demonstrations as: [Q: q,A: The answer is a] 967

before the input question, where q and a are 968

manually crafted questions and answers. 969

• Task-specific CoT approaches.: Few-Shot- 970

CoT (Wei et al., 2023) follows similar patterns as 971

Few-Shot but differs in that rationales are inserted 972

before deriving the answer. Auto-CoT (Zhang et al., 973

2023) divides questions of a given dataset into a few 974

clusters, samples a representative question from 975

each cluster, and constructs its reasoning chain 976

using Zero-Shot-CoT with simple heuristics. 977

• CoT techniques with generalization: Zero- 978

Shot-CoT (Kojima et al., 2023) simply inserts 979

the prompt Let’s think step by step after a 980

question to conduct inference, which rids the 981

necessity of handcrafted task-wise demonstrations. 982

We also compare our method with a strong 983

baseline General-CoT, in which the in-context 984

demonstrations for inference come from distinct 985

question groups. 986

E Dataset Information 987

E.1 Reasoning Datasets 988

Our method is evaluated on 10 reasoning 989

benchmark datasets that cover three categories 990

including arithmetic, commonsense and symbolic 991

tasks and involve three forms encompassing short- 992

answer, multiple-choice, and yes-or-no questions. 993

The corresponding categories and forms of these 994

datasets are shown in Table 13. 995

• Arithmetic Reasoning: we choose the 996

following six datasets: (i) MultiArith (Roy and 997

Roth, 2015), (ii) GSM8K (Cobbe et al., 2021), 998

(iii) AddSub (Hosseini et al., 2014), (iv) AQUA- 999

RAT (Ling et al., 2017), (v) SingleEq (Koncel- 1000

Kedziorski et al., 2015), and (vi) SVAMP (Patel 1001

et al., 2021). MultiArith, AddSub, and SingleEq 1002

come from the Math World Problem Repository 1003

(Koncel-Kedziorski et al., 2016), while the other 1004

three are from more contemporary benchmarks. 1005

Among them, all the arithmetic datasets belong to 1006

short-answer form except for AQUA-RAT which 1007

is in multiple-choice format. 1008

• Commonsense Reasoning: we take the 1009

following two datasets into account: (i) CSQA 1010

(Talmor et al., 2019) and StrategyQA (Geva et al., 1011
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2021). CSQA poses difficult questions with rich1012

semantic relations by making use of ConceptNet1013

(Talmor et al., 2019). StrategyQA requires models1014

to derive answers using implicit reasoning steps1015

(Geva et al., 2021). CSQA is in multiple-choice1016

form whereas StrategyQA belongs to the yes-or-no1017

format.1018

• Symbolic Reasoning: we employ the1019

typical datasets Last Letter Concatenation and Coin1020

Flip from Wei et al. (2023), which are in short-1021

answer and yes-or-no form respectively. Last Letter1022

Concatenation asks the model to concatenate the1023

last letters of each word. Coin Filp requires the1024

model to answer whether a coin heads up after a1025

series of actions of either flipping or not flipping1026

the coin.1027

E.2 BBH Datasets1028

We further evaluate our method on a suite of 231029

BBH tasks, the questions of which can be regarded1030

as unseen types for our proposed mechanism. The1031

detailed information about these BBH datasets are1032

listed in Table 14.1033

F Interpretability: Case Study and Error1034

Analysis1035

F.1 Wrong Type and Correct Answer1036

Figure 7 illustrates two examples from StrategyQA1037

and CSQA, in which the type that GeM-CoT1038

identifies differs from the gold type but the final1039

answer from our proposed method is correct. We1040

observe that the proposed type matching phase1041

manages to capture the type where the unseen1042

input question is applicable in a more accurate1043

and reasonable way. For instance, the question1044

from StrategyQA (left in Figure 7) asks whether1045

the word ’gold’ always starts with the letter g, has1046

the letters o and l in the middle, and ends with1047

the letter d. Although this question belongs to a1048

commonsense question, to answer it would require1049

a process of splitting the word, which has more1050

in common with a symbolic question. Similarly,1051

answering the question from CSQA (right in Figure1052

7) necessitates a calculation process, and thus the1053

identified arithmetic type leads to more specific1054

and targeted arithmetic reasoning.1055

F.2 Wrong Type and Wrong Answer1056

We select two examples from StrategyQA, where1057

GeM-CoT fails but the strategy that provides the1058

model with the gold type succeeds. As is shown1059

in Figure 8, we find that some wrongly identified 1060

types may result in disastrous reasoning. We 1061

analyze that this may be because incorrect ICL 1062

demonstrations will disrupt the direction of model 1063

inference. 1064

G Comparisons of GeM-CoT and existing 1065

CoT methods 1066

Table 15 demonstrate the comparisons of our 1067

proposed GeM-CoT and existing CoT methods in 1068

an intuitive and multi-facet way. 1069

H LLM-based classifier in Type Matching 1070

We detail the implementations and provide 1071

extended analysis on the alternative in Type 1072

Matching module: the LLM-based classifier. The 1073

proposed classifier employs few-shot examples in 1074

the prompt to group the questions based on its 1075

category and form. To implement the LLM-based 1076

classifier, we need to ensure the appropriate way of 1077

defining the type of questions. 1078

H.1 Defining the Type of Questions. 1079

As stated in Section 3.2, we have collected 1080

questions from ten reasoning tasks to set up the 1081

mixed-task scenarios. Those questions cover three 1082

categories including arithmetic, commonsense, and 1083

symbolic reasoning, and three forms encompassing 1084

short-answer, multiple-choice, and yes-or-no 1085

questions. Initially, we make a simple attempt 1086

to test how well LLMs can identify various tasks 1087

(i.e., regarding the question type as task name). 1088

We randomly sample one question from each of 1089

the ten tasks. For each question, we retain the 1090

task name from which it originates so that we 1091

obtain ten question-task pairs, which we employ 1092

as ICL demonstrations for task classification. As 1093

can be seen from Figure 9, the classification 1094

accuracy is only 42%, which indicate that LLMs 1095

are not qualified for distinguishing task names. 1096

Meanwhile, we discover that up to 92% and 64% of 1097

wrong examples belong to the same category and 1098

form as the correct task respectively. We speculate 1099

that the underlying reason can be two-fold: on one 1100

hand, task names themselves are too abstract for 1101

LLMs to well perceive their differences through 1102

in-context learning alone. On the other hand, there 1103

exist potential similarities and correlations among 1104

tasks themselves (Zhang et al., 2022). Based on 1105

this, we try three schemes for defining the type of 1106
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Q: The word 'gold' always starts with the letter g, has the 
letters o and l in the middle, and ends with the letter d?

A: Let’s think step by step. Let's break down the word 'gold' 
step by step: 1. The word 'gold' always starts with the letter 
g. Check. 2. The word 'gold' has the letters o and l in the 
middle. Check. 3. The word 'gold' ends with the letter d. 
Check. So, based on these steps, the statement is true.

GeM-CoT

Type(Coin)

Gold

StrategyQA 

GeM-CoT

yes

Gold

yes  

Q: Earth orbits the Sun once a year. About how many times does the 
moon orbit Earth in a year? Answer Choices: (A) 1 (B) 7 (C) 13 (D) 28

A: Let’s think step by step. The moon orbits Earth approximately once 
every 27.3 days. In a year, there are approximately 365.25 days. 
Therefore, the moon orbits Earth approximately 365.25/27.3 = 13.37 
times in a year. Since we are looking for an approximate answer, the 
closest option is (C) 13.

GeM-CoT

Type (MultiArith) 

Gold

CSQA

GeM-CoT

C

Gold

C

Figure 7: Examples from StrategyQA (left) and CSQA (right), in which the type that GeM-CoT identifies is different
from the gold type but the final answer from GeM-CoT is correct.

Q: If you pass someone who is in second place, you will be in 
second place because there is still someone ahead of you?

A: Let’s think step by step. If you pass someone who is in 
second place, you will be in first place because there is no 
one ahead of you.

GeM-CoT

Type (Coin)

Gold

StrategyQA  

GeM-CoT

no

Gold

yes  

Q: A rectangular shape has four times two number of edges?

A: Let’s think step by step. A rectangular shape has four sides, 
and each side has two edges. So, the total number of edges in a 
rectangular shape is 4 times 2, which equals 8. The answer is 8.

GeM-CoT

Type (AQuA)

Gold

GeM-CoT

8

Gold

no

StrategyQA

Figure 8: Examples from StrategyQA, in which wrongly identified type leads to wrong answer.
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32%
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Figure 9: Ratio of wrong cases in task classification.

Figure 10: Ratio of wrong cases in category
classification, 85% of wrong cases are from symbolic
category.

questions based on: (i) category; (ii) form; (iii) 1107

category and form. 1108

H.2 Determining the Type of Questions. 1109

Since the majority of cases that misidentify 1110

task names fall into the same category or form, 1111

we compare the classification accuracy with the 1112

following three variants of partitioning schemes: 1113

(i) Category-based scheme which separates mixed 1114
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Figure 11: Ratio of wrong cases in form classification,
92% of wrong cases are from SAQ form.

Mixed-task Data
0

20
40
60
80
100

42

80 84
99

A
cc

ur
ac

y
(%

)

Task-based
Category-based
Form-based
<Category, Form>-based

Figure 12: Classification accuracy (%) with different
partitioning schemes.

questions into diverse categories; (ii) Form-based1115

scheme which segments data into different answer1116

forms; (iii ) <Category, Form>-based scheme1117

which concurrently takes the two aspects into1118

account. As is shown in Figure 10 and 11, we1119

particular group tends to dominate the wrong cases.1120

For instance, 85% of wrong cases in category1121

classification belong to the symbolic group. We1122

discover that this is because the sampled symbolic1123

group demonstrations do not cover symbolic yes-or-1124

no question, thus hindering LLMs from accurately1125

identifying this missing type. As such, partitioning1126

mixed questions based on both its category and1127

form is a sensible strategy. The results in Figure 121128

show that this strategy reaches high accuracy.1129

Through further experiments, we conclude that1130

defining the type of questions based on its category1131

and form is a sensible strategy, which adequately1132

considers the two major natures of question data1133

and achieves high classification accuracy as well.1134

H.3 Constructed Demonstrations for the1135

LLM-based classifier1136

Table 16 shows the constructed demonstrations for1137

the LLM-based classifier.1138
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Table 12: Qualitative examples of the data in the original demo pool.

last_letters
• Q: Take the last letters of the words in "Elon Musk" and concatenate them.
• Q: Take the last letters of the words in "Sergey Brin" and concatenate them.
• Q: Take the last letters of the words in "Bill Gates" and concatenate them.
• Q: Take the last letters of the words in "Larry Page" and concatenate them.

strategyqa
• Q: Do hamsters provide food for any animals?
• Q: Could Brooke Shields succeed at University of Pennsylvania?
• Q: Yes or no: Hydrogen’s atomic number squared exceeds number of Spice Girls?
• Q: Yes or no: Is it common to see frost during some college commencements?
• Q: Yes or no: Could a llama birth twice during War in Vietnam (1945-46)?
• Q: Yes or no: Would a pear sink in water?

aqua
• Q: John found that the average of 15 numbers is 40. If 10 is added to each number then the mean of the numbers is?

Answer Choices: (A) 50 (B) 45 (C) 65 (D) 78 (E) 64
• Q: If a / b = 3/4 and 8a + 5b = 22,then find the value of a. Answer Choices: (A) 1/2 (B) 3/2 (C) 5/2 (D) 4/2 (E) 7/2
• Q: A person is traveling at 20 km/hr and reached his destiny in 2.5 hr then find the distance? Answer Choices: (A) 53

km (B) 55 km (C) 52 km (D) 60 km (E) 50 km
• Q: How many keystrokes are needed to type the numbers from 1 to 500? Answer Choices: (A) 1156 (B) 1392 (C) 1480

(D) 1562 (E) 1788

coin_flip
• Q: A coin is heads up. Ka flips the coin. Sherrie flips the coin. Is the coin still heads up?
• Q: A coin is heads up. Jamey flips the coin. Teressa flips the coin. Is the coin still heads up?
• Q: A coin is heads up. Maybelle flips the coin. Shalonda does not flip the coin. Is the coin still heads up?
• Q: A coin is heads up. Millicent does not flip the coin. Conception flips the coin. Is the coin still heads up?
• Q: A coin is heads up. Sal flips the coin. Raymond does not flip the coin. Is the coin still heads up?
• Q: A coin is heads up. Conception flips the coin. Kristian does not flip the coin. Is the coin still heads up?
• Q: A coin is heads up. Inga does not flip the coin. Elanor does not flip the coin. Is the coin still heads up?
• Q: A coin is heads up. Ryan flips the coin. Shaunda flips the coin. Is the coin still heads up?

commonsensqa
• Q: What do people use to absorb extra ink from a fountain pen? Answer Choices: (A) shirt pocket (B) calligrapher’s

hand (C) inkwell (D) desk drawer (E) blotter
• Q: What home entertainment equipment requires cable? Answer Choices: (A) radio shack (B) substation (C) television

(D) cabinet
• Q: The fox walked from the city into the forest, what was it looking for?
• Q: Sammy wanted to go to where the people were. Where might he go? Answer Choices: (A) populated areas (B) race

track (C) desert (D) apartment (E) roadblock
•Q: Where do you put your grapes just before checking out? Answer Choices: (A) mouth (B) grocery cart (C)supermarket

(D) fruit basket (E) fruit market
• Q: Google Maps and other highway and street GPS services have replaced what? Answer Choices: (A) united states

(B) mexico (C) countryside (D) atlas
• Q: Before getting a divorce, what did the wife feel who was doing all the work? Answer Choices: (A) harder (B)

anguish (C) bitterness (D) tears (E) sadness

multiarith
• Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be

21 trees. How many trees did the grove workers plant today?
• Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?
• Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?
• Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason

give to Denny?
• Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?
• Q: There were nine computers in the server room. Five more computers were installed each day, from monday to

thursday. How many computers are now in the server room?
• Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls did

he have at the end of wednesday?
• Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
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Table 13: Information of 10 reasoning datasets (Ari.: arithmetic; Com.: commonsense and Sym.: symbolic; SAQ:
short-answer question; MCQ: multiple-choice question; Y/N: yes-or-no question).

Task MultiArith GSM8K AddSub AQuA SingleEq SVAMP CSQA Strategy Letter Coin

Category Ari. Ari. Ari. Ari. Ari. Ari. Com. Com. Sym. Sym.
Form SAQ SAQ SAQ MCQ SAQ SAQ MCQ Y/N SAQ Y/N
Size 600 1319 395 254 508 1000 1221 2290 500 500

Table 14: Information of 23 BBH datasets. Categories and descriptions about the datasets are from Suzgun et al.
(2022). (Algo.+Ari.: Algorithmic and Multi-Step Arithmetic Reasoning; NLU: Natural Language Understanding;
Knowledge: Use of World Knowledge).

Task Category Description

Boolean Expressions Algo.+ Ari. Evaluate the truth value of a random Boolean expression consisting of Boolean
constants (True, False) and basic Boolean operators (and, or and not).

Causal Judgement Knowledge Given a short story (involving moral, intentional, or counterfactual analysis),
determine how a typical person would answer a causal question about the story.

Date Understanding Knowledge Given a small set of sentences about a particular date, answer the provided
question (e.g., “The concert was scheduled to be on 06/01/1943, but was delayed
by one day to today. What is the date yesterday in MM/DD/YYYY?”).

Disambiguation QA NLU Given a sentence with an “ambigious” pronoun, either determine whether the
sentence is inherently ambiguous (i.e., the thing that the pronoun refers to cannot
be inferred by given information) or, if the pronoun can be implicitly deduced,
state the antecedent of the pronoun (i.e., the noun to which the pronoun refers).

Dyck Languages Algo.+ Ari. Predict the sequence of the closing parentheses of a Dyck-4 word without its
last few closing parentheses.

Formal Fallacies Algo.+ Ari. Given a context involving a set of statements (generated by one of the argument
schemes), determine whether an argument—presented informally—can be
logically deduced from the provided context

Geometric Shapes Algo.+ Ari. Given a full SVG path element containing multiple commands, determine the
geometric shape that would be generated if one were to execute the full path
element.

Hyperbaton NLU Given two English-language sentences, determine the one with the correct
adjective order.

Logical Deduction Algo.+ Ari. Deduce the order of a sequence of objects based on the clues and information
about their spacial relationships and placements.

Movie Recommendation Knowledge Given a list of movies a user might have watched and liked, recommend a new,
relevant movie to the user out of the four potential choices user might have.

Multi-Step Arithmetic Algo.+ Ari. Solve multi-step equations involving basic arithmetic operations (addition,
subtraction, multiplication, and division).

Navigate Algo.+ Ari. Given a series of navigation steps to an agent, determine whether the agent
would end up back at its initial starting point.

Object Counting Algo.+ Ari. Given a collection of possessions that a person has along with their quantities
(e.g., three pianos, two strawberries, one table, and two watermelons), determine
the number of a certain object/item class (e.g., fruits).

Penguins in a Table Knowledge Given a unique table of penguins (and sometimes some new information),
answer a question about the attributes of the penguins.

Reasoning about Colored
Objects

Algo.+ Ari. Given a context, answer a simple question about the color of an object on a
surface.

Ruin Names Knowledge Given an artist, band, or movie name, identify a one-character edit to the name
that changes the meaning of the input and makes it humorous.

Salient Translation Error
Detection

NLU Given a source sentence written in German and its translation in English,
determine the type of translation error that the translated sentence contains.

Snarks NLU Given two nearly-identical sentences, determine which one is sarcastic.
Sports Understanding Knowledge Determine whether a factitious sentence related to sports is plausible.
Temporal Sequences Algo.+ Ari. Given a series of events and activities a person has completed in the course of a

day, determine what time, during the day, they might have been free to perform
another activity.

Tracking Shuffled Ob-
jects

Algo.+ Ari. Given the initial positions of a set of objects and a series of transformations
(namely, pairwise swaps) applied to them, determine the final positions of the
objects.

Web of Lies Algo.+ Ari. Evaluate the truth value of a random Boolean function expressed as a natural-
language word problem.

Word Sorting Algo.+ Ari. Given a list of words, sort them lexicographically.
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Table 15: Typical CoT techniques (ICL: in-context learning; FT: fine-tuning; KD: knowledge distillation). Segment
1: fine-tuning techniques; Segment 2: in-context learning techniques. To the best of our knowledge, our work
is the first to apply CoT prompting to mixed-task scenarios with enjoyable generality and superior performance
without additional manual labor. In our work, we focus on in-context learning techniques, eliminating the burden of
fine-tuning LLMs.

Model Training Mixed-task w/o Manual w/ Input-related
Scenarios Labor Info.

Fine-tune-CoT (Ho et al., 2022) KD ✗ ✓ ✗
LoRAHub (Huang et al., 2023) FT ✓ ✓ ✗

Zero-Shot-CoT (Kojima et al., 2023) ICL ✓ ✓ ✗
Few-Shot-CoT (Wei et al., 2023) ICL ✗ ✗ ✓
Self-Consistency-CoT (Wang et al., 2023a) ICL ✗ ✗ ✓
Least-to-Most Prompting (Zhou et al., 2023) ICL ✗ ✗ ✓
Auto-CoT (Zhang et al., 2023) ICL ✗ ✓ ✓
Active Prompt (Diao et al., 2023) ICL ✗ ✗ ✓
OPRO (Yang et al., 2023) ICL ✗ ✓ ✗
GeM-CoT (our work) ICL ✓ ✓ ✓

Table 16: Constructed demonstrations for type classification.

Q: Bobby had 32 pieces of candy. He ate some pieces of candy. If he has 20 pieces of candy left How
many pieces of candy did Bobby eat?

Type: <arithmetic, short-answer>

Q: The man took paperwork to other people to consult over it, where was he heading? Answer
Choices: (A) desk (B) meeting (C) office (D) table (E) work

Type: <commonsense, multiple-choice>

Q: A coin is heads up. Kristie does not flip the coin. Johnnie flips the coin. Marisa flips the coin.
Derick does not flip the coin. Is the coin still heads up? Note that "flip" here means "reverse".

Type: <symbolic, yes-no>

Q: Take the last letters of each words in "Cruz Wilber Marilu Malik" and concatenate them.

Type: <symbolic, short-answer>

Q: A company produces 420 units of a particular computer component every month, at a production
cost to the company of $110 per component, and sells all of the components by the end of each month.
What is the minimum selling price per component that will guarantee that the yearly profit (revenue
from sales minus production costs) will be at least $626,400 ? Answer Choices: (A) 226 (B) 230 (C)
240 (D) 260 (E) 280

Type: <arithmetic, multiple-choice>

Q: Was Aristotle a member of the House of Lords?

Type: <commonsense, yes-no>
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