
CoCo: Learning Strategies for Online Mixed-Integer
Control

Abhishek Cauligi1, Preston Culbertson1, Mac Schwager1, Bartolomeo Stellato2, Marco Pavone1
1Stanford University, 2Princeton University

{ acauligi, pculbertson, schwager, pavone}@stanford.edu, bstellato@princeton.edu

1 Introduction

Discrete and combinatorial optimization problems arise in a wide variety of applications and are
used as a tool to formulate and solve challenging problems in robotics [4, 8], autonomous mobility-
on-demand [15], and power network design [9, 14], among others. One approach to solving such
problems is to model them through the lens of mixed integer convex programming (MICP), which
are optimization problems with convex objective functions and constraints, but which are made
non-convex through the inclusion of discrete decision variables. While MICPs have emerged as a
popular tool for solving a variety of problems, the integrality constraints make them NP-complete
and often exceptionally difficult to solve in the worst case [7].

Despite great strides made in the past few decades to improve solution times by several orders of
magnitude through algorithmic and hardware improvements, MICPs are rarely deployed in real-world
robotics and control applications that require finding solutions in real time (i.e., 10-100Hz). Further,
state-of-the-art commercial solvers such as Gurobi [6] and Mosek [11] are not suitable for use on
embedded robotic systems as they rely on complex multithreaded implementations. Thus, the ability
to solve MICPs in real-time on limited computational resources available on robotics remains an
open and pressing challenge.

In this work, we build on results from [3], which presented the Combinatorial Offline, Convex Online
(CoCo) algorithm. CoCo is a two-stage, data-driven algoithm that seeks to leverage tools from
parametric convex optimization and supervised machine learning to quickly find feasible solutions
for MICPs. Using the idea of task-specific strategy decompositions, we present new results on
how CoCo can be extended to yield improved (1) generalizability and (2) scalability. We use a
novel convolutional neural network architecture to allow CoCo to generalize to solve problems
online with a different number of discrete decision variables than what it was trained for offline. We
demonstrate how this architecture can scale to problems with different horizons and discrete variables
through numerical experiments on a spacecraft motion planning problem. Finally, we propose future
directions of research to allow for online adaptation of CoCo for improved performance.

2 Approach

We consider parametrized mixed-integer convex programs with general form,

minimize f0(x, δ; θ)
subject to fi(x, δ; θ) ≤ 0, i = 1, . . . ,mf

δ ∈ {0, 1}nδ ,
(1)

where x ∈ Rnx are continuous decision variables, δ ∈ {0, 1}nδ are binary decision variables, and
θ ∈ Rnp are the problem parameters. The objective function f0 and inequality constraints fi are
convex. A popular use for MICPs is to model logical constraints in systems using what is known
as big-M constraints [1]. In the big-M formulation, binary variables δ capture high-level discrete
or logical behavior of the system and enforce the resulting high-level behavior on the continuous
variables x. An example of such a use case is, given a binary variable δi, the imposition of the logical
constraint:

[δi = 1] =⇒ [gi(x; θ) ≤ 0] .

1st Workshop on Learning Meets Combinatorial Algorithms @ NeurIPS 2020, Vancouver, Canada.

In big-M formulation, such a logical constraint can be enforced through the constraint:

gi(x; θ) ≤Mi(θ)(1− δi), (2)

where Mi(θ) = supx gi(x; θ). Note that the desired logical behavior is achieved through (2): the
constraint is active when δi = 1 and, when δi = 0, we have the trivial constraint gi(x; θ) ≤Mi(θ).

The linear structure of the constraint in (2) allows us to define the notion of a logical strategy. Given
parameters θ ∈ Rnp , a logical strategy S(θ) consists of a tuple (δ∗(θ), TM (θ)), where δ∗(θ) is a
particular integer solution, and TM (θ) is the set of tight big-M constraints,

TM (θ) = {i | gi(x∗; θ) ≤ ai(θ)δi ⇐⇒ δi = δ∗i }. (3)

Unlike the integer strategy definition presented in [2], logical strategies account for the existence of
multiple integer solutions satisfying some logical proposition. As shown in the results in [3], logical
strategies allow for the supervised learning problem used for CoCo to be well-posed, prune redundant
integer strategies, and allow for classifier performance.

The utility of defining a logical strategy S(θ) can then be made apparent by using δ∗(θ) and TM (θ)
to solve the MICP as a convex optimization problem. Specifically, given an optimal strategy S(θ),
the optimal solution for (1) can be found by solving,

minimize f0(x, δ
∗; θ)

subject to fi(x, δ
∗; θ) ≤ 0, i ∈ T (θ),

which is a convex optimization problem that be solved efficiently. The CoCo algorithm leverages
this insight to learn a mapping from problem parameters θ to a corresponding logical strategy S(θ).
Specifically, CoCo trains a neural network classifier hφ offline over a dataset D = {(θi,Si)}Ni=1
consisting of problem parameters θi and the corresponding optimal strategies Si. Online, presented a
new problem parameter θ, a single forward pass of the network ranks candidate logical strategies
and a finite number of user-specified convex optimization problems are solved until either a feasible
solution is found or the algorithm terminates with failure.

2.1 Task-Specific Strategy Decomposition

In our work, we leverage the notion of task-specific strategies introduced in [3]. Task-specific
strategies exploit the underlying structure and separability that commonly arise in many robotics
problems such as piecewise-affine dynamics and multi-surface contact planning. For example, for the
motion planning problem in [13], the logical constraints that enforce collision avoidance between the
robot and an obstacle m can be individually treated by only regarding the subset of binary variables
used in those constraints. This separability leads to a decoupling between the logical variables in the
problem, as they do not appear together in common constraints.

Our key insight is that logical constraints under the CoCo framework can be decoupled by training the
strategy predictor to predict the logical strategy for each constraint separately. Further, by separating
the prediction of each constraint, we can compose strategies to solve control problems with different
numbers of binary variables. Indeed, this ability to solve multiple tasks with a varying number of
discrete decision variables is a distinguishing feature of our work as compared to [2, 3, 10, 16].

3 Experimental Results

3.1 Free-Flying Space Robots

We focus our attention on a fundamental problem in robotics: motion planning in the presence of
obstacles. In this scenario, we consider a free-flying space robot in the plane that must navigate
through a workspace with multiple obstacles. The optimal control problem for this system entails
planning a collision free trajectory in free space Xsafe towards a goal state xg:

minimize ‖xN − xg‖2 +
N−1∑
τ=0

‖xτ − xg‖2 + ‖uτ‖2

subject to xt+1 = Axt +But, t = 0, ..., N − 1
||ut||2 ≤ umax, t = 0, ..., N − 1
xmin ≤ xt ≤ xmax, t = 0, ..., N
x0 = xinit
xt ∈ Xsafe, t = 0, ..., N,

(4)

2

Figure 1: The neural network architecture for the proposed CoCo extension consists of concatenating
the output of a convolutional pass of a synthetic image of the scene (in blue) with the remaining
problem parameters (in red). The network then scores the candidate logical strategies stored from
offline training.

where pt ∈ R2 and vt ∈ R2 are the position and velocity, respectively, in the 2-dimensional plane.
The state is therefore xt = (pt, vt). The input ut ∈ R2 consists of the forces produced by the thruster.

The constraint in (4) that makes it highly non-convex and necessitates the inclusion of binary decision
variables is the safety constraint xt ∈ Xsafe. Indeed, the global combinatorial search required to solve
this problem is an extensive area of study and one class of methods used to solve (4) entails posing it
as an MICP [13]. The procedure consists of decomposing the workspace into keep-in and keep-out
polytope regions given a set of Nobs obstacles. For simplicity, we consider axis-aligned rectangular
obstacles. For an obstacle m, we denote the coordinates of the lower-left hand corner (xmmin, y

m
min)

and upper right-hand corner (xmmax, y
m
max). The collision avoidance constraint between state xt and

obstacle m can then be written as:

xmmax +Mδm,1t ≤ x1t ≤ xmmin +Mδm,2t (5)

ymmax +Mδm,3t ≤ x2t ≤ ymmin +Mδm,4t (6)

where each obstacle requires four integer variables δm,it at each time step. An additional constraint
is introduced to enforce that the the robot lies on at least one side of the obstacle without being in
collision:

4∑
i=1

δm,it ≤ 3, m = 1, ..., Nobs, t = 1, ..., N. (7)

Due to the `2-norm constraints imposed on the thruster forces, this problem is an MIQCQP with
4NobsN variables.

3.2 Architecture

Here, we show how the notion of task-specific strategies can be leveraged to (1) more effectively
training the strategy classifier hφ and (2) allow for the trained network to generalize to problems with
a different number of integer strategies. In [3], this was accomplished by training a single classifier
with parameters θ and a one-hot vector encoding as the input. Thus, the network was fixed to a
particular number of obstacles m, with the one-hot vector encoding which obstacle strategy is being
queried. However, this network architecture limits the use of CoCo to a fixed number of obstacles.
For example, if a robot traverses to a new environment with a different number of obstacles, then the
trained classifier hφ is no longer useful for online control.

Instead, we propose using the convolutional neural network architecture (CNN) shown in Figure 1 for
accomplishing this task. A CNN architecture confers several advantages. First, it allows for querying
strategies for an arbitrary number of obstacles, thereby allowing it to be used for problems with
different number of binary variables. Second, it allows for solving problems with various obstacle
geometries depicted in the scene, as the strategy classifier is not fixed to a particular geometry
parameterization. Finally, the ability to solve problems with a different number of binary variables
also paves the way for online adaptation approaches, wherein the network parameters are tuned online
for improved performance in new environments.

3.3 Results

The machine learning models were implemented in PyTorch [12] and the convex optimization
problems solved using Mosek [11]. The network architecture used for the free-flyer motion planning

3

Mosek CoCo Regressor KNN
0

20

40

60

80

Pe
rc

en
t S

uc
ce

ss

(a) Success percentage

Mosek CoCo Regressor KNN

2.6

2.4

2.2

2.0

lo
g(

Ti
m

e)
 [s

]

(b) Solution times

Mosek CoCo Regressor KNN
100

150

200

250

300

350

400

R
el

at
iv

e
C

os
t [

%
]

(c) Normalized cost [%]

Figure 2: Simulation results for the free-flyer show how task-specific strategies are critical for
enabling the use of CoCo for this system.

problem is depicted in Figure 1 and consists of three convolutional layers on a synthetic image
of the obstacle. The output of this convolutional block is then concatenated with the remaining
problem parameters and input to a standard ReLU feedforward network with three layers and 128
neurons per layer. We further benchmark our proposed architecture against Mosek [11], the regression
framework from [10], and the k-nearest neighbor (KNN) approach from [16]. The CoCo, regressor,
and KNN methods are trained using ninety thousand MICPs, with parameters θ drawn from a random
distribution of initial conditions x0 and obstacle coordinates, and evaluated on a test set of ten
thousand feasible problems. The MICP used N = 5 and Nobs = 8, leading to a total of 160 binary
variables. The code will be made publicly available.

6 7 8 9 10 11 12
Num. Obstacles

40

50

60

70

80

90

100
Pe

rc
en

t S
uc

ce
ss

 [%
]

N=5
N=7
N=9
N=11

Figure 3: Generalization results for a CoCo strat-
egy classifier network trained on environment with
Nobs = 8 for various horizons N .

Figure 2 shows the results of our numerical sim-
ulations for Mosek and each data-driven frame-
work. For all methods, we cap the solver at
10ms (i.e., 100Hz) and compare the number of
feasible solutions found, solution time, and the
quality of these feasible solutions compared to
the globally optimal solution. We see that task-
specific CoCo finds feasible solutions for 87%
of the test set, compared to 58%, 49%, and 29%
for Mosek, the regressor, and the KNN, respec-
tively. Figure 2c depicts the relative cost of
first feasible solution found by Mosek and the
three data-driven frameworks compared to the
globally optimal solution for the problem. Cru-
cially, we see that 80% of the feasible solutions
solved by CoCo are indeed the globally opti-
mal solution, compared to only 69%, 57%, and
53% for Mosek, regression, and KNN, respec-
tively. Thus, we see that CoCo outperforms the
commerical solver and the benchmarks from [10, 16] for this problem.

Figure 3 demonstrates the ability of CoCo to generalize to a distribution of problems with a varying
of number binary variables. We trained multiple strategy classifiers corresponding to horizons of
N = {5, 7, 9, 11} with environments of eight obstacles. We evaluated the ability of these networks
to environments with an increasing number of obstacles Nobs = {6, . . . , 12}. As shown, we see
that the efficacy of the strategy classifier diminishes with an increasing horizon length N due to
a corresponding increase in the number of strategies. Intuitively, we also see that performance
decreases with an increase obstacles simply due to the increased difficulty of the planning problem.
However, we note that the dropoff in performance remains roughly linear rather than an exponential
decrease of performance stemming from including additional binary variables. Indeed, we believe that
these results motivate improving the performance of the classifier for environments with a different
number of obstacles as a future area of research. For example, one future avenue could be to explore
meta-learning inspired approaches such as MAML [5] to allow CoCo to adapt network parameters
online for improved performance using information gained from solving problems online.

4

References
[1] A. Bemporad and M. Morari. Control of systems integrating logic, dynamics, and constraints. Automatica,

1999.
[2] D. Bertsimas and B. Stellato. Online mixed-integer optimization in milliseconds, 2019. Available at

https://arxiv.org/abs/1907.02206.
[3] A. Cauligi, P. Culbertson, B. Stellato, D. Bertsimas, M. Schwager, and M. Pavone. Learning mixed-integer

convex optimization strategies for robot planning and control. In Proc. IEEE Conf. on Decision and
Control, 2020. In Press.

[4] R. Deits, T. Koolen, and R. Tedrake. LVIS: Learning from value function intervals for contact-aware robot
controllers. In Proc. IEEE Conf. on Robotics and Automation, 2019.

[5] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In
Int. Conf. on Machine Learning, 2017.

[6] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2020. Available at http://www.
gurobi.com.

[7] R. M. Karp. On the computational complexity of combinatorial problems. Networks, 5(1):45–68, 1975.
[8] B. Landry, R. Deits, P. R. Florence, and R. Tedrake. Aggressive quadrotor flight through cluttered

environments using mixed integer programming. In Proc. IEEE Conf. on Robotics and Automation, 2016.
[9] S. Mashayekh, M. Stadler, G. Cardoso, and M. Heleno. A mixed integer linear programming approach for

optimal DER portfolio, sizing, and placement in multi-energy microgrids. Applied Energies, 2017.
[10] D. Masti and A. Bemporad. Learning binary warm starts for multiparametric mixed-integer quadratic

programming. In European Control Conference, 2019.
[11] Mosek APS. The MOSEK optimization software. Available at http://www.mosek.com.
[12] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and

A. Lerer. Automatic differentiation in PyTorch. In Conf. on Neural Information Processing Systems -
Autodiff Workshop, 2017.

[13] T. Schouwenaars, B. De Moor, E. Feron, and J. How. Mixed integer programming for multi-vehicle path
planning. In European Control Conference, 2001.

[14] D. Tenfen and E. C. Finardi. A mixed integer linear programming model for the energy management
problem of microgrids. Electric Power Systems Research, 2015.

[15] R. Zhang, F. Rossi, and M. Pavone. Model predictive control of Autonomous Mobility-on-Demand systems.
In Proc. IEEE Conf. on Robotics and Automation, 2016.

[16] J.-J. Zhu and G. Martius. Fast non-parameteric learning to accelerate mixed-integer programming for
online hybrid model predictive control, 2019. Available at https://arxiv.org/pdf/1911.09214.pdf.

5

https://arxiv.org/abs/1907.02206
http://www.gurobi.com
http://www.gurobi.com
http://www.mosek.com
https://arxiv.org/pdf/1911.09214.pdf

	Introduction
	Approach
	Task-Specific Strategy Decomposition

	Experimental Results
	Free-Flying Space Robots
	Architecture
	Results

