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Abstract
Diffusion models excel in high-fidelity image gen-
eration but face scalability limits due to transform-
ers’ quadratic attention complexity. Plug-and-
play token reduction methods like ToMeSD and
ToFu reduce FLOPs by merging redundant tokens
in generated images but rely on GPU-inefficient
operations (e.g., sorting, scattered writes),
introducing overheads that negate theoretical
speedups when paired with optimized attention
implementations (e.g., FlashAttention). To bridge
this gap, we propose Token Merge with Attention
(ToMA), an off-the-shelf method that redesigns
token reduction for GPU-aligned efficiency, with
three key contributions: 1) a reformulation of to-
ken merge as a submodular optimization problem
to select diverse tokens; 2) merge/unmerge as
an attention-like linear transformation via GPU-
friendly matrix operations; and 3) exploiting
latent locality and sequential redundancy (pattern
reuse) to minimize overhead. ToMA reduces
SDXL/Flux generation latency by 24%/23% (with
DINO ∆ < 0.07), outperforming prior methods.
This work bridges the gap between theoretical and
practical efficiency for transformers in diffusion.

1. Introduction
Diffusion models (Ho et al., 2020; Song et al., 2021; Dhari-
wal & Nichol, 2021) have revolutionized high-fidelity im-
age generation. Yet, their reliance on transformer architec-
tures—notably in U-ViT (Bao et al., 2023) and DiT (Pee-
bles & Xie, 2023)—introduces a bottleneck: the quadratic
complexity of self-attention scales prohibitively with token
counts, exacerbating latency across denoising steps.

Efforts to accelerate transformers broadly fall into two cate-
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gories: attention optimization (e.g., Flash Attention (Dao,
2023), xformers (Lefaudeux et al., 2022)) and token reduc-
tion. While there is extensive research on token reduction
for discriminative tasks, including Token Merge (Bolya
et al., 2023), AdaViT (Yin et al., 2022b), and later improve-
ments like Diffrate (Chen et al., 2023), these approaches
often employ irreversible token pruning or merging, which
is unsuitable for generative tasks.

Generative architectures like diffusion models impose
stricter constraints: token counts must be restored after
merging (i.e., “unmerging”) to preserve spatial consis-
tency for iterative refinement. Earlier attempts, including
ToMeSD (Bolya & Hoffman, 2023), Token Pruning (Kim
et al., 2022), and ToFu (Kim et al., 2023) adapt token
reduction to this setting but suffer from a critical flaw:
their merge/prune (and unmerge/fill) operations rely on
GPU-inefficient primitives (e.g., sorting, scattered mem-
ory writes). This problem intensifies when paired with
highly optimized attention implementations like those in the
diffusers framework (von Platen et al., 2022).

In such scenarios, the attention mechanism, once the pri-
mary bottleneck, is streamlined to approach hardware effi-
ciency limits, leaving only marginal time reductions attain-
able. Consequently, these potential gains are dwarfed by
the computation costs of unoptimized merging logic, which
now dominates the computation time. In other words, the
overhead introduced by previous token merging methods
becomes negligible only when applied with fast implemen-
tations of attention, thereby preventing practical speed-ups.

In this paper, we propose Token Merge with Attention
(ToMA), a training-free framework that bridges this gap
by rethinking token merge for GPU-aligned operation. To
achieve practical speed-up without image degradation, we
reformulate token merge as a submodular optimization prob-
lem, leveraging its theoretical guarantees and algorithmic
toolkit. Specifically, ToMA uses our GPU-optimized facility
location algorithm to select a diverse and representative set
of “destination” tokens. Merge is then formulated as an
attention-like linear transformation for efficient aggregation
of non-destination tokens, with unmerge implemented via its
inverse transformation, making full use of hardware-friendly
matrix multiplications. This approach down-projects the la-
tent space while preserving critical information, accelerating
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Figure 1. Comparison on SDXL-base with four configurations (left to right): Original, +FA2, +ToMeSD, +ToMA (on top of FA2,
ratio=0.5). While ToMeSD fails to speed up due to overhead, ToMA achieves significant acceleration with negligible loss in image quality.

transformers with negligible overhead or quality loss. To
further minimize computational overhead, we exploit two
intrinsic properties of diffusion models:

• Latent Space Locality: Tokens exhibit spatial co-
herence, allowing parallel merging within non-
overlapping local windows (e.g., 8×8 patches).

• Sequential Redundancy: Merge patterns persist across
1) adjacent denoising timesteps; and 2) consecutive
transformer layers. We amortize the overhead by
reusing merge patterns over multiple steps and layers.

Theoretical guarantees from submodular optimization
ensure that ToMA’s token selection approximates optimal
coverage. At the same time, its co-design with GPU
execution paradigms (e.g., batched matrix operations)
eliminates costly operations inherent in prior methods.
This synergy translates to real-world speedup, rather than
theoretical FLOP reductions only. For example, ToMA
reduces the total generation time for SDXL-base by 24%
and Flux.1-dev by 23% with negligible degradation of
image quality (change in DINO score < 0.07), outperform-
ing previous work like ToMeSD and ToFu, which either
fails to accelerate modern attention implementations or
introduce artifacts at comparable compression rates. Our
contributions are summarized:

• Algorithmic Innovation: A submodular optimization
framework for token merging, ensuring provably rep-
resentative token selection to enhance quality.

• System Co-Design: GPU-aligned implementation
strategies leveraging invertible, attention-like opera-
tions to exploit latent space locality and temporal re-
dundancy, minimizing computational overhead.

• Empirical Validation: ToMA achieves at least 1.24×
practical speedup when paired with FlashAttention2,
State-of-the-art results across different diffusion mod-
els (e.g., SDXL-base, Flux.1-dev) and GPU ar-
chitectures (NVIDIA RTX6000, V100, RTX8000).

2. Related Work
Efficient Vision Transformer Vision Transform-
ers (Dosovitskiy et al., 2021) face computational challenges
due to quadratic attention complexity. Recent efforts to
mitigate this fall into four categories: compact architectures
(e.g., Swin Transformer (Liu et al., 2021a), PVT (Wang
et al., 2021)), pruning strategies like X-Pruner (Yu & Xiang,
2023), knowledge distillation such as DeiT (Touvron et al.,
2021), and post-training quantization (Liu et al., 2021b).
Complementary efforts also explore combined techniques
(Papa et al., 2024) to unify these paradigms. While effective,
most solutions require retraining and remain inherently
token-centric. In contrast, ToMA introduces training-free
token merging, operating orthogonally, thus enabling
seamless integration without conflict.

Learned Token Reduction Most learned token reduc-
tion involves training auxiliary models to assess the im-
portance of tokens in the input data. DynamicViT (Rao
et al., 2021) employs a lightweight MLP to generate prun-
ing masks based on input token features. A-ViT (Yin et al.,
2022a) computes halting probabilities using specific chan-
nels of token features to determine the necessity of further
processing. Whereas these methods often require additional
training for the auxiliary modules, our approach is directly
applicable, offering a more generalizable solution.

Heuristic Token Reduction Heuristic token reduction
strategies can be applied to ViTs without additional train-
ing. Our method also falls into this category, making the
approaches below natural baselines for comparison. Adap-
tive Token Sampling (ATS) (Fayyaz et al., 2022) keeps
tokens most similar to the class token, which limits its use
in pixel-level generation tasks where a class token is absent.
Token Downsampling (ToDo) (Smith et al., 2024) down-
samples only the key–value in attention, skipping queries,
which limits acceleration and causes fine-grained detail loss
due to uniform spatial pooling. Token Merging for Sta-
ble Diffusion (ToMeSD) (Bolya & Hoffman, 2023) forms
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Figure 2. Architectural overview of ToMA. The framework consists of three key stages: (1) Facility Location Algorithm identifies the
best representative token set D ⊂ N through submodular optimization to maximize representational diversity; (2) Attention (Merge)
constructs an efficient low-rank attention matrix that maps N → D via a linear transformation for transformer computation (SelfAttn,
CrossAttn, MLP) in the reduced space; (3) Inverse (Unmerge) applies the pseudo-inverse to recover full-resolution features D → N .
The pipeline operates through localized processing of latent space regions with parallel batch optimization for efficiency.

source–destination pairs within fixed or randomly tiled re-
gions and greedily matches them based on similarity, per-
forming unweighted merging followed by a simple unmerge
that copies the destination embedding back to each source
position. ToFu (Kim et al., 2023) builds on ToMeSD by
dynamically deciding, for each layer, whether to merge or
prune tokens according to a linearity test, thereby combining
the benefits of both operations.

Prior token-reduction methods share two flaws: GPU-
inefficient matching/merging operations and heuristic de-
signs lacking theoretical guarantees of information preserva-
tion. By contrast, ToMA employs a GPU-friendly attention-
like linear projection whose destinations are chosen via a
submodular objective, providing both hardware efficiency
and a principled foundation. Moreover, ToMA remains
compatible with orthogonal blended schemes (alternating
between pruning and merging) such as ToFu, allowing addi-
tional speed–quality trade-offs when combined.

3. Preliminaries
3.1. Attention Notation

The standard Scaled Dot-Product Attention (SDPA)
mechanism is widely adopted in mainstream diffusion
models. For clarity, we define the following notations:
B for batch size, N for sequence length, d for feature
dimension, D for the number of all destination tokens,
X ∈ RB×N×d for the attention input latent tensor, and
Q,K,V ∈ RB×N×d for query, key, and value tensors,
respectively, projected from X.

The SDPA operation is defined as

SDPA(Q,K,V, τ) = softmax

(
QKT

τ
√
d

)
V. (1)

3.2. Submodularity

A submodular function (Fujishige, 2005) is a set function
f : 2V → R defined over subsets of the ground set V. It
satisfies the diminishing returns property, which states that
the marginal gain of adding a new element v to the set
decreases as the context set grows. Mathematically:

For any subsets A ⊆ B ⊆ V and element v ∈ V \ B:

f(v|A) ≥ f(v|B),

where the marginal gain f(·|·) is defined as:

f(v|A) ≡ f(A ∪ {v})− f(A).

Algorithm 1: Greedy Algorithm
Input: Ground set V, submodular function

f : 2V → R, and budget k
Output: Selected subset A of size at most k
Initialize A← ∅;
for i = 1 to k do

Select v∗ = argmaxv′∈V\A f(v′|A);
Update A← A ∪ {v∗};

return A;
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This property makes submodular functions well-suited for
modeling diversity and coverage in subset selection prob-
lems. Naturally, this leads to the canonical problem of
submodular maximization under a cardinality constraint:

max
A⊆V

f(A) s.t. |A| ≤ k.

An intuitive approach is the greedy algorithm (Alg. 1),
which guarantees a (1 − 1/e)-approximation of the opti-
mal solution (Nemhauser et al., 1978). Starting with A = ∅,
the algorithm iteratively selects the element with the highest
marginal gain until the constraint |A| = k is reached.

4. Method
Standard token merging reduces the number of tokens pro-
cessed in Transformer blocks by identifying and aggregating
similar tokens, thereby enabling theoretical speedups pro-
portional to the merge ratio and the model’s computational
complexity (see Appendix for analysis). It works by select-
ing destination tokens from the full token set and merging
nearby tokens into them based on similarity scores. Dur-
ing the unmerge step, the values of the merged tokens are
redistributed to their original positions, preserving fidelity.

Our lightweight and efficient framework, ToMA, improves
upon standard token merge at three key stages: 1) Desti-
nation Token Selection – efficiently identifying the most
representative tokens to serve as merge targets; 2) Token
Merge – performing merge operations as a linear transfor-
mation, guided by similarity scores computed via attention;
3) Token Unmerge – restoring merged tokens after passing
through core computational modules (e.g., Attention, MLP)
to original positions through reversed linear transformation.

To achieve further speedups, ToMA a) exploits the spatial
locality of the latent space to parallelize operations within
local regions and, b) shares merge-related computations
across layers and iterations to reduce runtime overhead.

4.1. Submodular-Based Destination Selection

Let S be the cosine similarity matrix between all hid-
den states X , where the Sij entry represents the simi-
larity between the i th token and the j th token, namely
Sij ≡ cos(Xi,Xj). We denote the set of all tokens as
V (ground set in submodular optimization) and the set of
chosen destination tokens as D.

fFL(D) =
∑
vi∈V

max
vj∈D

Sij (2)

The submodular function used for destination token
selection is the Facility Location function (FL), as shown in
Eq. 2. fFL(·) quantifies how well a subset D of destination

tokens represents the full token set V by summing, for
each token vi ∈ V, the maximum similarity Sij to any
destination token vj ∈ D. Intuitively, this corresponds
to asking: for each token in the ground set, how well
does the selected subset represent it? A higher value of
fFL(D) implies that every token in V is closely matched
by a representative in D, making D a compact and diverse
summary of the input. This naturally aligns with the
objective of token merging, where we aim to preserve global
semantic structure using a reduced set of tokens. Notably,
our framework is modular—other submodular functions can
be substituted for fFL to customize the selection behavior.

The submodular nature of fFL provides a theoretical guaran-
tee: greedy maximization yields a near-optimal subset with
provably minimal information loss, as discussed in Sec. 3.2.
When optimizing the destination set D using the greedy
algorithm (Alg. 1), we iteratively select the token that pro-
vides the largest marginal gain fFL(v|D′) with respect to
the current set D′. This marginal gain can be efficiently
computed (see Appendix A.1 for derivation) as:

argmax
vi /∈D′

N∑
j=1

max
(
0,Sij −mj(D′)

)
,

where mj(D′) = maxvk∈D′ Sj,k is a cached vector that
stores, for each token vj ∈ V, the maximum similarity to
any token currently in D′. This caching enables efficient
updates: after adding a new token to D′, m can be incre-
mentally updated in constant time per token. Importantly,
all these operations—computing similarities, caching, and
evaluating marginal gains—can be expressed in matrix
form, supported by our derivation in Appendix A.1, making
them highly suitable for parallel execution on GPUs.
We include our efficient GPU implementation for the
greedy algorithm in Appendix A.2. Also, though the
iterative nature of submodular optimization is inherently
unavoidable, we manage to parallelize this process by
breaking it into smaller ground sets in Sec. 4.3.

While there exist more advanced submodular maximiza-
tion methods such as the Lazier-than-Lazy Greedy algo-
rithm (Mirzasoleiman et al., 2015), their reliance on opera-
tions like random subset sampling introduces irregular mem-
ory access patterns that are inefficient on GPUs. Therefore,
the standard greedy approach strikes a practical balance
between solution quality and hardware efficiency.

4.2. (Un)merge with Attention

We begin by formulating token merge in its exact form and
then show how it naturally generalizes to a linear projection
over the input token space, paving the way for our proposed
attention-like merging.

Let X ∈ RN×d denote the input matrix of N token em-
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beddings, each of dimension d. Suppose we select a set
of D destination tokens with indices D = {j1, . . . , jD} ⊆
{1, . . . , N}, and partition the input tokens into D disjoint
groups:

G1,G2, . . . ,GD,

s.t.
D⋃

k=1

Gk = {1, . . . , N}, Gk ∩ Gl = ∅ for k ̸= l.

Each merged token xmerged
k ∈ Rd is computed by aggregat-

ing the tokens assigned to group Gk. In the simplest case,
this is done via uniform averaging:

xmerged
k =

∑
i∈Gk

1

|Gk|
xi,

or more generally, we allow token-specific weights αk,i

with normalization:

xmerged
k =

∑
i∈Gk

αk,i

Zk
xi, where Zk =

∑
i∈Gk

αk,i.

This formulation can be unified by expressing the merged
tokens as a linear projection over the input matrix:

Xmerged = WX ∈ RD×d,

where W ∈ RD×N is a non-negative weight matrix with
Wik indicating the contribution of token k to destination i.
This subsumes both hard merging schemes (e.g., ToMeSD,
where each row of W is one-hot) and soft merging (ToMA,
where W contains normalized attention scores).

This linear formulation not only provides a principled inter-
pretation of token merging but also enables efficient imple-
mentation and reuse of merge/unmerge operations (namely
the weight matrix X across steps and layers.

4.2.1. MERGE

Given the formulation above, naturally, one may think of
constructing the merge weight matrix W via attention.
Specifically, we treat the destination tokens as queries and
all input tokens as keys and values, using Scaled Dot-
Product Attention (SDPA) to produce similarity scores.
These attention scores serve as soft merge assignments.

Let X ∈ RN×d denote the input token matrix, and let D ∈
RD×d be the destination token matrix, formed by selecting
a subset of D token embeddings from X . We compute
an attention matrix A ∈ RD×N between destinations (as
queries) and all input tokens (as keys) using SDPA with a
temperature parameter τ :

A = softmax
(
DX⊤

τ

)
.

It is important to note that softmax is applied column-wise
rather than row-wise, as a token should not be decomposed
into components whose aggregate exceeds 100%. By in-
cluding an extra identity matrix I , we obtain an exact form
of SDPA (Eq. 1). Note that the included I is functionally
redundant and can be omitted in implementation:

A = SDPA (X,D, I, τ) .

To form a proper merge weight matrix, we normalize the
attention matrix row-wise:

Ãij =
Aji∑
k Ajk

,

and finally, the merged token representation can be obtained
via matrix multiplication:

Xmerged = ÃX ∈ RD×d.

Intuitively, this operation softly assigns each token to a set of
destination tokens based on similarity. Highly similar source
tokens contribute more to the destination representations,
while dissimilar ones contribute less.

By reducing merge to matrix multiplications and the SDPA
kernel, ToMA scales up with token count easily and effec-
tively receives a free ride from ongoing GPU architecture
and ML system improvements for attention, which are in-
creasingly efficient in both computation and memory usage.

4.2.2. UNMERGE

Feeding merged tokens into core computation modules,

X ′ = ATTENTION/MLP(X) ∈ RD×d,

the output we get is still D, and we restore the original token
resolution by applying an approximate inverse of the merge
projection. Let X ′ denote the output of core computational
modules, with merged tokens as input. The goal is to recon-
struct the full-resolution token matrix X ′

unmerged ∈ RN×d.

A principled approach is to apply the Moore–Penrose
pseudo-inverse:

X ′
unmerged = Ã+X ′ = Ã⊤(ÃÃ⊤)−1X ′.

This provides a least-squares reconstruction that minimizes
the error between the original and reconstructed tokens, as-
suming the merge–transform–unmerge process remains ap-
proximately linear. However, computing the pseudo-inverse
is computationally expensive, requiring matrix decomposi-
tions such as SVD or QR.

Fortunately, under certain conditions, a much simpler and
more efficient alternative is available:

X ′
unmerged = Ã⊤X ′,
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which happens whenever ÃÃ⊤ = ID, making the pseudo-
inverse Ã+ = Ã⊤(ÃÃ⊤)−1 collapse to the simple trans-
pose Ã⊤. This is equivalent to saying that the rows of Ã
are orthonormal. In ToMA, this condition is approached
in practice. The facility-location selection promotes des-
tination tokens that cover largely disjoint subsets of the
source tokens, making rows of Ã distinct. Moreover, the
low attention temperature τ adopted sharpens the softmax
distribution, concentrating each row’s mass on a few source
tokens and bringing its ℓ2-norm close to one.

Together, these properties imply:

ÃÃ⊤ = ID + ε, ∥ε∥ ≪ 1,

so that

(ÃÃ⊤)−1 ≈ ID − ε, and thus Ã+ ≈ Ã⊤.

Empirically, Ã⊤ remains competitive against the exact
pseudo-inverse. Given this high fidelity and the substan-
tial computational and memory savings, ToMA adopts the
transpose-based unmerge Ã⊤X ′ as the default method.

4.3. Further Speedups

The overhead of ToMA arises from three main sources:
1) selecting destination tokens D through submodular
optimization; 2) computing the attention-based (un)merge
weight matrices Ã and Ã+; and 3) applying the merge
ÃX before, and unmerge Ã+X ′ after each module inside
the transformer blocks. To further reduce these overheads,
we exploit the locality of the feature space, enabling these
computations to be performed within localized regions.
Additionally, we reduce the frequency of steps 1) and 2)
by reusing destination selections and (un)merge matrices
across multiple iterations and transformer layers.

4.3.1. LOCALITY-AWARE TOKEN MERGING

A key oversight in prior work is the locality structure of
the latent space. As shown in Fig. 3, where we visualize k-
means clusters of U-ViT hidden states during the generation
of a “tomato”, the recolored tokens form a rough preview
of the generated image. For example, in the early denoising
steps, the clusters appear as coarse, blocky color regions
that gradually refine into a recognizable tomato.

Because natural images exhibit strong local coherence–each
pixel tends to resemble its immediate neighbors–their latents
inherit this property. As a result, merging within a small
spatial window aggregates highly similar information, pre-
serving global structure while discarding redundancy only,
and is therefore as effective as global merging. In terms of
selecting destination tokens, restricting the facility location
search to local regions ensures diversity within each tile and
avoids competition across tiles for the same destination.

Denoising Timestep
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rm

er
 B

lo
ck

s

Figure 3. Re-colored k-means clusters of U-ViT hidden states
across transformer blocks and denoising timesteps. A similar
visualization on DiT is provided in the Appendix E.1.

The primary benefit of this locality constraint is computa-
tional. Splitting the sequence into k equal-sized tiles yields a
dominant 1/k speed-up for destination selection and an even
greater 1/k2 reduction in computing the attention weight
matrices as well as applying (un)merge. Detailed complex-
ity analysis is provided in Appendix C.

To leverage these benefits, ToMA limits destination selec-
tion and (un)merge operations to within localized regions
using the two partitioning strategies below.

Tile-shaped Regions Tokens are divided into 2-D tiles,
preserving both horizontal and vertical proximity. This
layout aligns closely with image geometry and gives the
best quality, albeit at a reshuffling cost on GPUs.

Stripe-shaped Regions Tokens are grouped by rows di-
rectly, maintaining memory contiguity and enabling fast
reshaping. Although this ignores vertical proximity, it pro-
vides the highest speedup.

Both variants substantially reduce computation by operating
on smaller subsets in parallel. Tile-shaped regions offer
higher fidelity, while stripe-shaped regions run much faster.
Despite substantial acceleration, further acceleration is
possible by implementing custom tiled/stripe attention
kernels, in which memory copying overhead incurred in
either reshape or read as strided no longer exists. However,
as the post-literature doesn’t include such a low-level
implementation, we decide to leave it as future work for
the fairness of comparison. The full locality-aware ToMA
algorithm is given in Appendix Alg. 3 in detail.
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Figure 4. Average percentage of shared destination tokens at each
denoising timestep relative to the first step of its 10-step interval.
Each curve represents a different layer in SDXL-base U-ViT
model, showing high overlap and gradual divergence over time.

4.3.2. REUSING DESTINATIONS AND MERGE WEIGHTS

Hidden states in diffusion models change gradually, so the
destination tokens chosen at one step are often similar to
those chosen nearby in time. Fig. 4 quantifies this effect:
across a 10-step window, more than half of the destinations
are reused. Exploiting this redundancy, ToMA reuses the
same destination set for several consecutive steps and,
because merge and unmerge are linear, also reuses the
associated weight matrices across layers. Sharing both the
destination selection and the (un)merge matrices sharply
reduces the frequency of introducing expensive similarity
computation overhead while preserving image quality.

5. Experiments
5.1. Descriptions

Setup We evaluate ToMA on two of the most widely used
diffusion models: the UNet-based SDXL-base and the
DiT-based Flux.1-dev, to generate 1024×1024 images,
using the Diffusers framework. Importantly, ToMA is
architecture-agnostic and can be readily extended to other
diffusion models (e.g., SD2, SD3.5). Prompts are drawn
from the GEMRec dataset (Guo et al., 2024) and ImageNet–
1K names of the classes (Deng et al., 2009).

Metrics To assess image quality, we use CLIP-T, DINO,
and FID (Radford et al., 2021; Caron et al., 2021; Heusel
et al., 2017). CLIP-T measures semantic alignment
between images and prompts via cosine similarity between
image-text embeddings. DINO measures perceptual
consistency by comparing visual features between the
original generated image and its counterpart produced with
the merge method applied. FID (Fréchet Inception Distance)
quantifies distributional similarity to real images based on

Inception-V3 feature statistics. For FID CLIP-T and DINO
in the main experiments shown in this section, we generate
3,000 images and compute scores against ground-truths
from ImageNet–1K. For the ablation experiments listed in
Appendix F, we generate images from 50 prompts with three
random seeds each and report the average. FID is omitted on
GEMRec due to the lack of paired images. Inference latency
is reported as the median wall-clock time over 100 runs.

Baselines We compare ToMA with three heuristic
token-reduction baselines: Token Merging for Stable
Diffusion (ToMe), Token Downsampling (ToDo), and
Token-Fusion (ToFu). These approaches were originally
developed for UNet-based architectures and perform
well in that setting. As a result, they are not compatible
with DiT models, since they lack mechanisms to handle
positional embeddings in DiTs. Due to this limitation, we
evaluate all three baselines only on SDXL-base, leaving
Flux.1-dev benchmarked solely with ToMA. In terms
of implementation, we utilize the official codebases for
ToDo and ToMe, and reimplement ToFu based on its paper,
as the public code is not available. In our experiment, ToDo
uses a fixed merge ratio of 75%, corresponding to a 4-to-1
token downsampling scheme, which represents the lowest
merge ratio supported by its implementation.

We additionally report TLB (Theoretical Lower Bound),
which approximates the maximum attainable speedup by
reducing the number of tokens without incurring extra run-
time overhead (e.g., gather tokens). To simulate this bound,
we do a dummy merge–directly drop tokens and proceed
with the next module by duplicating retained token features
to preserve input shape, thereby isolating the theoretical ben-
efits of token reduction while minimizing implementation-
specific costs. Quality metrics are omitted for TLB, as
cloned tokens do not yield valid outputs for evaluation.

ToMA Variants To analyze the impact of locality on desti-
nation selection and (un)merge operations, we evaluate four
configurations: 1) ToMA, our default setting, which uses
tile-based destination selection and global attention-based
merge; 2) ToMAstripe, which restricts both destination and
merge operations to within stripe regions; 3) ToMAtile,
which uses tile regions for both destination and merge;
and 4) ToMAonce, which improves efficiency by performing
(un)merge operations only once per Transformer block—at
the beginning and end—rather than around each core com-
putation module. As for the hyperparameter, stripe- and
tile-based configurations use 64 stripes or tiles, respectively.
We reuse the destination for 10 denoising steps and reuse
merge weights for 5 steps, with each block of a given type
sharing one set. No reuse across denoising timesteps in
Flux.1-dev but within blocks of the same kind.
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5.2. Results

Ratio Method Metrics Sec/img ↓
FID↓ CLIP-T↑ DINO↓ RTX6000 V100 RTX8000

Baseline SDXL-base 25.27 29.89 0 6.1 14.5 16.1

0.25

ToMA 25.72 29.86 0.048 6.0 14.3 15.9
ToMAstripe 25.17 29.90 0.054 5.6 12.6 14.5
ToMAtile 25.43 29.86 0.045 6.2 13.6 15.7
ToMAonce 26.31 29.70 0.052 5.5 12.3 13.5

TLB – – – – – 5.2 12.1 9.2

0.50

ToMA 28.88 29.64 0.068 5.0 11.0 12.8
ToMAstripe 29.11 29.52 0.074 4.6 10.1 12.0
ToMAtile 29.19 29.63 0.063 6.3 11.1 13.2
ToMAonce 38.14 29.06 0.080 4.9 9.7 11.5

TLB – – – – – 4.0 9.9 7.8

0.75

ToMA 58.59 27.96 0.098 4.3 8.5 9.8
ToMAstripe 89.93 26.97 0.110 4.5 8.0 9.5
ToMAtile 58.90 28.17 0.091 6.2 9.1 10.7
ToMAonce 123.37 24.96 0.106 4.9 7.6 8.9

TLB – – – – – 3.1 7.8 6.5

Table 1. Performance comparison between ToMA variants and
SDXL-base (Baseline) for generating 1024×1024 images over
50 sampling steps. Best values are highlighted, except for TLB.
(↑: higher better, ↓: lower better).

UNet Results Table 1 shows that ToMAtile consistently
performs the best on DINO score, indicating strong per-
ceptual alignment, but is slowed down by low-level mem-
ory copying overhead during token tiling. Our manual in-
spection of generated images also confirms that tile-based
merging yields the highest visual quality. In contrast,
ToMAstripe benefits from faster runtimes due to its sequen-
tial memory access pattern, which enables direct reshaping
without copying; however, the absence of a strong locality
leads to slightly degraded image quality. ToMA finds a favor-
able trade-off, achieving up to 24% speedup and consistent
performance across different GPU architectures. Based on
this balance between efficiency and quality, we adopt it
as our default method. Finally, the experimental variant
ToMAonce offers the highest acceleration by treating the en-
tire Transformer block as a single merge unit, significantly
reducing overhead. However, it produces the worst qual-
ity due to insufficient spatial-context mixing across layers.
Interestingly, in some scenarios, its runtime is even lower
than that of the TLB, likely due to less frequent memory
copying compared to our dummy merge implementation.

DiT Results For the Flux model, we include only ToMA
and ToMAtile, as stripe-based merging is incompatible with
the rotary positional embedding (RoPE) used in Flux. We
also exclude results on the V100 GPU due to out-of-memory
(OOM) failures. As shown in Tab. 2, both ToMA variants
consistently accelerate generation across GPUs, with ToMA
achieving up to a 23.4% speedup without compromising im-
age quality when merging down to 50% of tokens. Although
ToMAtile is marginally slower due to memory overhead,
it consistently offers better fidelity, evidenced by stronger

Ratio Method Metrics RTX8000 RTX6000

FID↓ CLIP-T↑ DINO↓ Sec/img ↓∆ Sec/img ↓∆

Baseline Flux.1-dev 31.56 29.03 0 59.20 0% 21.03 0%

0.25
ToMA 30.80 29.07 0.043 56.70 –4.2% 20.14 –4.2%
ToMAtile 31.49 29.05 0.021 57.47 –2.9% 20.78 –1.2%

0.50
ToMA 31.70 29.09 0.051 51.44 –13.1% 18.58 –11.6%
ToMAtile 32.95 29.19 0.032 53.61 –9.4% 19.61 –6.8%

0.75
ToMA 33.39 28.98 0.064 49.83 –15.9% 16.12 –23.4%
ToMAtile 33.88 29.34 0.045 49.86 –15.8% 18.30 –12.9%

Table 2. Performance comparison of ToMA variants and
Flux.1-dev (Baseline) for 1024×1024 image generation (35
sampling steps). Best values are highlighted, and relative speed
improvements (∆) are shown as %. Negative ∆ values indicate
faster inference compared to the baseline (lower is better).

CLIP-T and DINO scores. This efficiency–quality tradeoff
supports our choice of ToMA as the default, while also high-
lighting the need for optimized low–level implementations
to fully realize the benefits of locality-aware merging.

Benchmark Table 3 presents a comparative evaluation of
ToMA (our default method), alongside other token reduction
strategies on the SDXL model. Among all methods, ToMA
achieves the fastest generation time—up to 28.5% improve-
ment—while maintaining competitive perceptual quality,
making it the most balanced choice. Although ToMe (Token
Merge) delivers slightly better image quality, as reflected
in CLIP-T and DINO scores, it suffers from severe latency
due to its complex token selection mechanism, which relies
on GPU-inefficient operations (e.g., sort). ToFu (Token Fu-
sion), while faster than ToMe with lower overhead thanks to
its blended strategy that incorporates token pruning, exhibits
unstable visual quality—some generations appear accept-
able, but others are heavily degraded, especially at higher
reduction ratios. The high FID values confirm this observa-
tion. Lastly, ToDo (Token Downsampling) offers moderate
gains in both speed and fidelity but demonstrates notice-
able distributional shifts, as indicated by its elevated FID

Ratio Method FID↓ CLIP-T↑ DINO↓ Sec/img↓ ↓∆
Baseline SDXL 25.3 29.89 0 6.07 0%

0.25
ToMA 25.7 29.86 0.048 6.03 –0.7%
ToMe 25.6 29.86 0.054 8.66 +42.7%
ToFu 35.2 29.34 0.072 6.92 +14.0%

0.50
ToMA 28.9 29.64 0.068 5.04 –17.0%
ToMe 26.7 29.71 0.071 8.73 +43.8%
ToFu 142.1 25.04 0.134 6.83 +12.5%

0.75

ToMA 58.6 27.96 0.098 4.34 –28.5%
ToMe 41.2 29.09 0.084 8.16 +34.4%
ToFu 161.5 24.13 0.148 6.76 +11.4%
ToDo 68.6 27.60 0.093 5.67 –6.6%

Table 3. Performance comparison of ToMA, SDXL-base (Base-
line), and other token reduction methods for generating
1024×1024 images (50 sampling steps). Best values are high-
lighted, and relative speed improvements (∆) are shown as %.
(−∆ faster, +∆ slower; ↑: higher better, ↓: lower better).
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SDXL-base vs. ToMA
Flux.1-dev vs. ToMA

Figure 5. Visual comparison of baselines (SDXL & Flux) versus (ToMA) under different higher token-merge ratios. Despite merging up
to 50% of tokens, ToMA preserves sharp details and overall scene coherence. Additional qualitative examples are provided in Appendix D.

score. Hwang et al. discuss the possible cause that the noise
reduction due to downsampling creates a difference in the
signal-to-noise ratio that leads to suboptimal performance
if applied directly (2024). Overall, these results highlight
ToMA as the most robust and well-rounded token merging
strategy for efficient high-resolution image generation.

Qualitative Result Figure 5 provides a side-by-side visual
comparison of images generated by the original models ver-
sus our ToMA-accelerated variants at several token-merge
ratios. On the left, six different prompts are shown for
SDXL and ToMA at 10% – 50% token reduction. Even as
the merge ratio increases, ToMA’s outputs (second through
sixth columns) remain nearly indistinguishable from the
originals. Similarly, on the right, we present six different
prompts for Flux vs. ToMA at 25%, 50%, and 75% token
reduction. Even at 75% merging, ToMA’s results (fourth
column) faithfully reproduce key details.

Ablation & Otheres. ToMA’s robustness is further vali-
dated by comprehensive ablations (Appendix F), which in-
vestigate the impact of merge frequency, tile/stripe granular-
ity, unmerge strategies (e.g., transpose vs. pseudo-inverse),
and sharing schedules. These studies confirm our design

choices, such as selecting tile-based merge with 256 tiles
and transpose-based unmerge for optimal speed–quality bal-
ance. Appendix G provides memory profiling across multi-
ple models and sparsity levels, showing that ToMA variants
incur negligible memory overhead compared to dense base-
lines. Appendix H complements this by providing a detailed
FLOP analysis, saving computations up to 3.4×.

6. Conclusions
In this work, we introduce Token Merge with Attention for
Diffusion Models (ToMA), a co-designed merging frame-
work that advances prior methods in three key aspects: 1)
more representative token selection via submodular opti-
mization with theoretical guarantee; 2) a flexible and ef-
ficient merge–unmerge mechanism implemented through
attention-based operations; and 3) the incorporation of
locality-aware and shared merging strategies to maximize
runtime gains. Together, these improvements yield sub-
stantial speedups in practice while preserving high image
fidelity across different GPU and model architectures (U-
ViT & DiT), establishing ToMA as a robust and deployable
solution for efficient high-resolution generation.
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A. Facility Location for Selecting Destination Tokens
A.1. Mathematical Foundations for Efficient Greedy Maximization

We begin by defining the notations used in the greedy selection procedure. Let V denote the full set of tokens, and let A ⊆ V
be the current set of selected representative tokens. At each step, the greedy algorithm selects the next token v∗ ∈ V \ A
that maximizes the marginal gain:

v∗ = argmax
v∈(V\A)

f(v|A),

where the gain function f(v|A) is defined as the increase in a coverage objective when v is added to A. Formally,

f(v|A) = f(A′)− f(A)

=
∑
u∈V

max
ua∈A′

sim(u,ua)−
∑
u∈V

max
ub∈A

sim(u,ub), where A′ = {v} ∪ A.

Here, sim(·, ·) denotes the similarity between two tokens (we use cosine similarity in practice for computational efficiency).
The first term in the equation measures for each token v ∈ V, how well it is represented in the updated set A′ = {v} ∪ A.
The second term asks the same question but with the current set A. Their difference quantifies the marginal gain of including
v in the representative set.

We can simplify the first term in the gain function by observing that:∑
u∈V

max
ua∈A′

sim(u,ua) =
∑
u∈V

max

{
max
ua∈A

sim(u,ua), sim(u,v)

}
,

in which the identity holds because for each u ∈ V, the maximum similarity with the updated set A′ is either its similarity
with v, or its previous maximum over A. So, we take the maximum of the two.

Substituting this into the definition of f(v|A), we obtain:

f(v|A) =
∑
u∈V

(
max

{
max
ua∈A

sim(u,ua), sim(u,v)

}
− max

ub∈A
sim(u,ub)

)
=
∑
u∈V

max

{
0, sim(u,v)− max

ub∈A
sim(u,ub)

}
.

This simplification shows that the marginal gain of adding v depends only on the tokens u ∈ V for which v provides a new
maximum similarity beyond what is already achieved by the current set A.

As a result, the greedy selection objective becomes:

v∗ = argmax
v∈(V\A)

∑
u∈V

max

{
0, sim(u,v)− max

ub∈A
sim(u,ub)

}
.

This formulation enables efficient computation of the marginal gain for each candidate token and facilitates the selection of
the token that most improves the representational coverage of the current set.
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A.2. Facility Location Algorithm

This algorithm implements a greedy approach to select D tokens based on the Facility Location objective. It begins by
computing the sum of similarities for each token. The first token chosen is the one with the highest sum of similarities.
Then, it iteratively selects the remaining D − 1 tokens.

In each iteration, the algorithm computes its gain for every unselected token, representing the overall similarity improvement.
The token with the highest gain is chosen and added to the selection. After each selection, the algorithm updates the
maximum similarities achieved so far. This process continues until D tokens are selected.

By selecting tokens that maximize the marginal gain in similarity at each step, this approach effectively covers the input
space while avoiding redundancy, ensuring a diverse and representative set of tokens.

Algorithm 2: Greedy Algorithm for Token Selection

Input: Similarity matrix S ∈ RN×N , number of tokens to select D
Output: Selected destination token indices d
Initialize: d← {};
Sum over each row: s =

∑N
j=1 Sij ;

Select the first token index: t1 ← argmaxi si;
Add the greedy choice to destination tokens: d← d ∪ {t1};
Create the cache vector mj(D′)

)
from the corresponding row in the S: mj(D′)

)
← St1 ;

Set to zero to avoid re-selection: St1 ← 0;
for k = 2 to D do

for each token index i not in d do
Compute the marginal gain efficiently with cache: g =

∑N
j=1 max {0,Sij −mj(D′)};

end
Select the next token greedily: tk ← argmaxi/∈d gi;
Add the newly selected token index: d← d ∪ {tk};
Update largest row: mj(D′)← max{mj(D′),Stk};
Set to zero to avoid re-selectoin: Stk ← 0;

end
return d
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B. Overall Detailed Algorithm of ToMA

Algorithm 3: ToMA with Local Regions

Input: Tensor X ∈ RB×N×d (input sequence), D (number of destination tokens), τ (attention temperature), F (·) (core
computational module (e.g., MLP, Attention)

Split into local regions
Partition the sequence dimension into P blocks, X← (X1, . . . ,XP ) with Xp ∈ RB×Nloc×d and NlocP = N ;
Dloc ← D/P ;
X← X.reshape(B ·P, Nloc, d);

Step 1: Facility–location token selection
(T1, . . . , TB·P )← Greedy(fFL, Dloc, X);
XT ← (X1,T1 , . . . ,XB·P,TB·P ) ∈ RB·P×Dloc×d;

Step 2: Merge
A← SDPA(XT , X, I, τ) ∈ RB·P×Dloc×Nloc ;
Ã← A /A

∑
−1;

Xmerged ← Ã X ∈ RB·P×Dloc×d;
Computational layer

X′ ← F
(
Xmerged.reshape(B, D, d)

)
;

Step 3: Unmerge
X′

unmerged ← Ã
⊤
X′;

Reassemble X′
unmerged to reverse the local-region split;

return X′
unmerged

Description. Algorithm 3 details a single ToMA layer equipped with local-region processing. Given an input tensor
X∈RB×N×d, we first shard the sequence into P equally sized local regions of length Nloc (lines 1–3), then assign a budget
of Dloc destination tokens to each region (line 2).

In Step 1 we invoke a GPU-friendly greedy facility–location algorithm to pick, for every mini-batch × region pair, the set of
tokens whose neighbourhoods best cover the local region (lines 5–6). These destinations are gathered into XT .

Step 2 forms a scaled-dot-product attention map A from each destination to all tokens in its region, row-normalises it to Ã,
and left-multiplies X to obtain the merged representation Xmerged whose sequence length is reduced from N to D (lines
8–10). Any computational block F (·)—e.g., a transformer layer or UNet block—can now process the shorter sequence
(line 12), yielding a computed reduction factor of N/D without altering the block’s internal parameters.

Now, in Step 3, we distribute the updated destination embeddings back to their original token positions via Ã
⊤

and undoes
the initial region partitioning (lines 14–15), so that the next layer receives a full-resolution tensor. Because the (un)merge
operations are purely linear and share weights across the batch, their overhead is negligible, and they can be fused with
existing attention kernels. Repeating this procedure layer-by-layer yields significant wall-clock speed-ups while exhibiting
scarcely any perceptible degradation in image quality.

14



Token Merge with Attention for Diffusion Models

C. Computational–complexity analysis
We retain explicit constant factors in the flop count because they translate directly to empirical speedups on modern GPUs.
Throughout, N is the original sequence length, D the length after token merging, d the embedding dimension, and

r =
D

N
(merge ratio, i.e. the fraction of tokens kept).

Baseline self–attention block. Treating each matrix multiplication as a collection of dot products, the total number of
scalar multiplications for a standard self–attention block is

Cbase = 4 d2N + 2 dN2.

The first term (Q,K, V projections and the output projection) scales linearly in N ; the second term (QK⊤ and attention-value
product) scales quadratically.

Token–merged self–attention. After reducing the token count from N to D=rN , the attention cost becomes

Cattn(D) = 4 d2D + 2 dD2 = 4 d2rN + 2 d r2N2.

Hence the ideal speedup (ignoring merge overhead) is

Speedupideal =
Cbase

Cattn(D)
=

4d+ 2N

4d r + 2N r2
.

Overheads introduced by ToMA. Token merging incurs several additional costs:

• Submodular–selection overhead (computing marginal gains for all pairs): Csub = N2d.

• Merge–attention projection (computing pairwise weights): Cproj = NDd.

• Merge operation (applying the computed weights to produce merged tokens): Cmerge = NDd.

• Unmerge operation with a transpose-style redistribution: Cunmerge = NDd.

Summing the three linear–in-D overhead terms yields Clin = 3NDd = 3rN2d.

Total cost with ToMA. The overall computational cost after merging is therefore

Ctotal(r) = 4 d2rN + 2 d r2N2︸ ︷︷ ︸
attention block

+ N2d︸︷︷︸
submodular

+ 3rN2d︸ ︷︷ ︸
merge / unmerge

.

Realistic speedup. The practical speedup of ToMA relative to the baseline is

Speeduppractical =
Cbase

Ctotal(r)
=

4dN + 2N2

4drN +N2
(
1 + 3r + 2r2

) .
Discussion. For practical transformer settings we have N ≫ d, so the quadratic terms 2d r2N2 (remaining attention
cost) and N2d (one–shot sub-modular selection) dominate. Consequently, the empirical speedup is well approximated by
Speedup ≈

(
2 + 4d/N

)
/
(
2r2 + 1+ 3r

)
, which approaches the analytic bound 2

2r2+1 whenever r ≲ 0.5 and d/N is small.
At moderate merge ratios (r∈ [0.25, 0.5]) this yields the 24−28% latency drop we observe on SDXL/Flux. If we push r
below ∼ 0.1, the linear–in–r merge overhead 3rN2d and the fixed N2d selection cost start to dominate, so further merging
brings diminishing returns—underscoring why our locality-aware pattern reuse amortises these costs across multiple layers.
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D. More Qualitative Results
D.1. Images Generated with SDXL

We present additional visual comparisons between SDXL, ToMeSD, and ToMA below in Fig 6. The prompts are sampled
from the GemRec and ImageNet-1K datasets. As the visuals reveal, ToMA maintains image quality more faithfully compared
to other methods, especially in preserving fine-grained details and spatial coherence. This is evident in both synthetic scenes
(e.g., fantasy landscapes, bowls of fire) and natural subjects (e.g., animals, boats, and portraits). ToMA Additional images
generated with ToMA on SDXL are provided on the next page in Fig. 7.

Figure 6. Qualitative comparison between Baseline SDXL-base, ToMeSD, and ToMA.
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Figure 7. Visual examples of ToMA. Even with half of the tokens merged, ToMA consistently preserves image quality and often
demonstrates greater robustness compared to other methods (ToDo, ToFu, and ToMeSD).
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D.2. Images Generated with Flux

Please refer to Fig. 8 below for more images generated with ToMA on Flux1.0-dev.

Figure 8. Qualitative comparison between Baseline Flux.1-dev and ToMA.
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E. Diffusion Transformers (DiT)
E.1. Locality in DiT

We inspected the hidden states of Flux. Using simple visualizations (K-means coloring) at the start of each block and across
denoising timesteps, we observed that—even without convolutions—the hidden states already resemble the target image
(Fig. 9). This locality is introduced mainly by the rotary embeddings in Flux. Empirically, when we apply submodular
token selection within local windows, the model still produces high-quality images.
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Figure 9. Re-colored K-means clusters of hidden states in Flux.1-dev across blocks and denoising steps.

E.2. Transformers and Positional Embeddings in DiT

DiT blocks differ from the usual “self-attention → cross-attention → MLP” pattern, so off-the-shelf merging methods such
as ToMeSD, ToFu, or ToDo break the model (all-black / noisy and nonsense outputs). Two issues arise:

1. The DiT block order (attention+MLP fusion) is not aligned with the assumptions in those methods.

2. Positional embeddings (e.g. RoPE) are mixed with both image and text tokens; careless merging discards useful tokens.

We therefore add two simple rules:

• Skip the first 10 blocks. Early blocks fuse text and image features; skipping them avoids over-merging.

• Handle the two DiT block types separately.

JointTransformer. Text and image tokens are projected separately, then concatenated before RoPE. We merge text
and image tokens independently, then concatenate; RoPE indices are gathered accordingly.

SingleTransformer. Tokens are already concatenated. We first split the hidden state back into text and image parts,
merge each part, then re-concatenate; RoPE is gathered in the same way.

These lightweight changes respect both modality boundaries and positional embeddings, allowing our token-merging variant
to run on Flux with no perceptible loss in image quality while still delivering the intended speedup.
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F. Ablation Study
All the ablations reported in this appendix are conducted on SDXL with a default merge ratio of r = 0.5 unless otherwise
noted. Each experiment isolates one design choice so that its direct impact on quality—measured by CLIP, DINO, and pixel
MSE, and on runtime—measured in seconds per generated image, all can be clearly assessed.

F.1. Destination–selection strategy

The first experiment evaluates four types of selection windows for choosing destination tokens: a global window that
considers every pair of tokens, a local tile facility that performs the same selection inside non-overlapping windows, a
horizontal stripe window, and a random baseline on the full window. Tab. 4 shows a clear pattern. Restricting the search to
tiles yields the best CLIP and DINO scores and the lowest MSE, while running more than six times faster than the exhaustive
global search. The result confirms our locality hypothesis from Fig. 9: most informative tokens lie close to one another, so a
global scan is unnecessary and wasteful.

Type CLIP ↑ DINO ↓ MSE ↓ Sec/img ↓
Global 30.949 0.069 1,637 33.2

Tile 31.019 0.055 1,274 5.1
Stripe 30.986 0.074 1,730 5.2

Random 30.553 0.090 2,029 4.5

Table 4. Comparison of destination–selection rules. Tile-based selection delivers the best quality and the lowest latency. Values are
averaged over the SDXL validation prompt set; CLIP/DINO rounded to three decimals, MSE to the nearest integer.

F.2. Tile granularity

Once the tile–based facility was chosen, we next varied the number of tiles in order to control the spatial extent of each
selection window. Intuitively, fewer tiles correspond to larger windows and therefore allow tokens to compete across a wider
context, whereas many small tiles enforce highly local competition. Tab. 5 shows four granularities ranging from 4 large
tiles to 256 small tiles. Moving from 4 to 16 tiles yields a large quality jump: DINO improves by 17% and MSE by 14%
while latency is cut almost in half. The improvement continues when the window count rises to 64, which records the best
DINO and MSE and also the lowest runtime. At 256 tiles, DINO and MSE drift upward again, indicating that extremely
small windows over-constrain the matching pool; nevertheless, CLIP remains tied with the best value, and the latency does
not increase further because the GPU remains compute–bound.

Because the numerical differences between 64 and 256 tiles are modest, 64 tiles strike a cleaner balance: it delivers the
strongest quality metrics while preserving the same throughput and avoiding the bookkeeping overhead that arises when
thousands of tiny windows must be indexed. For these reasons, we adopt 64 tiles as the default granularity in the main paper.

# Tiles CLIP ↑ DINO ↓ MSE ↓ Sec/img ↓
4 30.775 0.069 1,564 11.4

16 30.991 0.057 1,345 6.4
64 31.019 0.055 1,274 5.0

256 31.027 0.057 1,296 5.0

Table 5. Influence of tile granularity at a 50% merge ratio. Using 64 tiles achieves the best DINO and MSE while matching the runtime of
256 tiles.

F.3. Merge and unmerge latency

The third experiment benchmarks the merge and unmerge kernels at a fixed sequence length of N = 1024 tokens. We
compare the dense linear formulation used in ToMA with the index–scatter implementation in ToMeSD. In ToMeSD the
algorithm first builds a destination-index array, then gathers features with torch.index select and finally scatters
them back with index add . Because both gather and scatter operate on the full index list, their cost grows linearly with
the merge ratio r. Moreover, the discontinuous memory accesses inherent in these calls leave many GPU warps idle.
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ToMA eliminates the two passes by replacing them with a single dense matrix multiplication ÃX , where Ã ∈ RD×N and
D = (1− r)N . The operation therefore depends only on the output length D; its cost is constant with respect to the number
of removed tokens and maps efficiently to a single GEMM that fully utilizes GPU compute units. As reported in Table 6,
ToMA is consistently four to five times faster than ToMeSD for both merge and unmerge across all tested values of r.

Operation Method Time (µs)↓ Speedup↑
25% 50% 75% 25% 50% 75%

Merge ToMe 202.2 202.1 193.2 – – –
ToMA 39.0 38.8 38.8 5.2× 5.2× 5.0×

Unmerge ToMe 160.5 160.1 144.0 – – –
ToMA 40.2 40.5 39.6 4.0× 3.9× 3.6×

Table 6. Micro-benchmarks at sequence length 1024 (median over 1,000 runs on an NVIDIA RTX6000) across different merge ratios.
Shaded cells indicate the best result per column. ToMA is roughly four to five times faster than ToMeSD over all merge ratios r.

F.4. Transpose versus pseudo–inverse for unmerge

We experiment whether a mathematically exact unmerge, obtained via the Moore–Penrose pseudo–inverse of the merge
matrix, offers any quality advantage over the much cheaper transpose. In theory, the pseudo–inverse should restore the
pre–merge feature space more faithfully, because it inverts the least–squares projection implicit in the merge. In practice,
the merge matrix used by ToMA is highly sparse and close to orthogonal, so the transpose already provides an excellent
approximation. Computing the pseudo–inverse requires a QR or SVD decomposition of the D ×N merge matrix, followed
by two matrix multiplications to apply the result. These decompositions are memory–bandwidth bound and cannot be fused
with the surrounding transformer layers, so the cost is paid in every unmerge step.

Table 7 confirms that the extra work is wasted. Across 300 generated images, the pseudo–inverse gains no measurable
improvement: CLIP, DINO, and MSE differ by less than 1%. Meanwhile, latency more than doubles because the
decomposition incurs additional global synchronizations on the GPU. Given the negligible benefit and the clear timing
penalty, we adopt the simple transpose as the default unmerge method.

Unmerge Method CLIP ↑ DINO ↓ MSE ↓ Sec/img ↓
Transpose 31.027 0.057 1,296 4.8
Pseudo–inverse 30.997 0.057 1,288 10.1

Table 7. Transpose versus pseudo–inverse unmerge at 50% merge. Quality metrics are identical, but transpose is more than twice as fast.

F.5. Recompute schedule

The final ablation varies how often destination indices and attention weights are recomputed during denoising. Tab. 8
indicates that refreshing attention every step gives the best overall accuracy, whereas destination indices can be updated ten
times less frequently with minimal loss. A schedule of “destination every 10 steps, attention every 5 steps” preserves 99%
of the peak quality while roughly halving recompute FLOPs, and is therefore adopted in the main experiments.

Recompute D Recompute Ã CLIP ↑ DINO ↓ MSE ↓ Sec/img ↓
Every 50 steps Every 50 steps 30.043 0.077 2,489 4.84
Every 10 steps Every 10 steps 30.817 0.073 1,735 4.97
Every 10 steps Every 5 steps 30.865 0.070 1,632 5.00
Every 10 steps Every 1 step 30.997 0.067 1,525 5.06
Every 5 steps Every 5 steps 30.892 0.069 1,609 4.92
Every 1 step Every 1 step 30.920 0.067 1,552 5.05

Table 8. Effect of recomputation frequency at 50% merge. The shaded cells denote the best metric in each column.
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G. Memory analysis
Table 9 provides a peak–memory audit on our methods. For each model, we record both the maximum allocated memory,
which reflects the live tensor footprint, and the maximum reserved memory, which includes CUDA’s internal caching.
Across all three merge ratios the numbers remain tightly clustered: on Flux, the largest deviation from the dense baseline is
a 0.3% increase in allocated memory for plain ToMA at 25% merging; on SDXL-base, the worst case is a 1.9% rise in
reserved memory, again for plain ToMA at 25%. The tile variant is even closer and occasionally dips below the baseline
because smaller activation tensors leave more room for the allocator to reuse blocks.

Model Metric Method Max Memory (MB)↓
25% 50% 75%

Flux.1-dev

Alloc.
Baseline 34,640 34,640 34,640
ToMA 34,744 34,710 34,675
ToMAtile 34,647 34,647 34,642

Resv.
Baseline 37,002 37,002 37,002
ToMA 37,050 36,976 36,954
ToMAtile 37,054 37,006 36,950

SDXL-base

Alloc.

Baseline 10,721 10,721 10,721
ToMA 10,931 10,857 10,797
ToMAstripe 10,722 10,719 10,718
ToMAtile 10,725 10,720 10,719

Resv.

Baseline 14,150 14,150 14,150
ToMA 14,460 14,260 14,130
ToMAstripe 14,114 14,188 14,222
ToMAtile 14,158 14,158 14,182

Table 9. Peak GPU memory (MB) for different ToMA variants on Flux.1-dev and SDXL-base across three merge ratios. We report
both maximum allocated and reserved memory. (↓: lower is better.)

H. FLOP Analysis
Table 10 reports a layer-wise floating-point-operation (FLOP) breakdown, restricted to the dominant computational modules
inside each transformer block: the QKV / output projections and the attention matrix products. Results are shown for the
largest block in Flux and for the two block types that occur in SDXL. Applying ToMA with a 50% merge ratio yields
a 2.3× reduction on Flux and up to a 3.4× reduction on SDXL. The additional FLOPs introduced by ToMA—namely
submodular token selection, the merge weight computation, and the linear (un)merge kernels—amount to less than 1 % of
the new total and are therefore negligible at the scale of the overall savings.

Model Layer Size FLOPs (G) ↓ Reduction
(Seq×Dim) Original ToMA (50%) Overhead

Flux 4608× 3072 520 225 1.01 ∼2.3×
SDXL 4096× 640 106 32 0.42 ∼3.4×
SDXL 1024× 1280 30 13 0.06 ∼2.4×

Table 10. Layer-level FLOP counts before and after applying ToMA at a 50% merge ratio. The “Overhead” column includes sub-modular
selection, merge weight computation, and the linear (un)merge operations.
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