
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BANEL: EXPLORATION POSTERIORS FOR GENERATIVE
MODELING USING ONLY NEGATIVE REWARDS

Anonymous authors
Paper under double-blind review

ABSTRACT

Today’s generative models thrive with large amounts of supervised data and infor-
mative reward functions characterizing the quality of the generation. They work
under the assumptions that the supervised data provides knowledge to pre-train the
model, and the reward function provides dense information about how to further
improve the generation quality and correctness. However, in the hardest instances
of important problems, two problems arise: (1) the base generative model attains a
near-zero reward signal, and (2) calls to the reward oracle are expensive. This set-
ting poses a fundamentally different learning challenge than standard reward-based
post-training. To address this, we propose BaNEL (Bayesian Negative Evidence
Learning), an algorithm that post-trains the model using failed attempts only, while
minimizing the number of reward evaluations (NREs). Our method is based on
the idea that the problem of learning regularities underlying failures can be cast
as another, in-loop generative modeling problem. We then leverage this model to
assess whether new data resembles previously seen failures and steer the generation
away from them. We show that BaNEL can improve model performance without
observing a single successful sample on several sparse-reward tasks, outperform-
ing existing novelty-bonus approaches in success rate, while using fewer reward
evaluations.

1 INTRODUCTION

Today’s generative models thrive with large amounts of supervised data and informative reward
functions characterizing the quality of the generation, especially for generating language, image,
video, and audio. This pipeline works well under the assumptions that 1) the supervised data provides
broad enough coverage of the generation space, and 2) the reward function provides information
about how to improve or focus the generation quality and correctness. Language modeling with
verifiable rewards (Guo et al., 2025) works well because the base models often start with at least
some positive reward signal on the task.

Challenge: Tasks with near-zero reward and expensive reward oracles. In many unsolved critical
applications—including the next generation of theorem proving, algorithmic problem solving, and
drug discovery, to name a few—this standard pipeline encounters two core challenges. (1) Sparsity:
Oftentimes, the base generative model attains a near-zero reward signal. The probability of producing
a positive-reward sample can be so low that the model may go through most of training without ever
encountering one. (2) High-cost reward evaluation: Calls to the reward oracle can be expensive or
risky, requiring costly simulations, computations, or even physical experiments (Korshunova et al.,
2022). Hence, there is a need for learning algorithms that can learn from exclusively negative-
reward samples, while minimizing number of reward evaluations (NREs). This setting poses a
fundamentally different learning challenge than standard reward-based post-training. Learning in
such harsh conditions is crucial: failure to tackle this challenge would mean that post-training is
merely limited to distribution sharpening rather than unlocking genuinely new capabilities.

The performance of such learning algorithms largely depends on their ability to recognize and
generalize from a small number of failures; ideally, this ability should scale with compute. In deep
RL, reward sparsity is often addressed by introducing novelty bonuses to encourage exploration. Two
of the most popular techniques for doing so include count-based methods (Bellemare et al., 2016;
Ostrovski et al., 2017) and random network distillation (Burda et al., 2019). These methods have

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

proven effective in sparse-reward Atari environments such as Montezuma’s Revenge (Ostrovski et al.,
2017; Burda et al., 2019; Badia et al., 2020b;a). However, quality of the intrinsic signal does not
scale with compute, and as such they must query the reward oracle frequently. On the other hand,
prediction-error approaches (Schmidhuber, 2010; Pathak et al., 2017; Stadie et al., 2015) learn the
dynamics of the environment; these methods can be scalable but they are inapplicable for training
generative models, where the transition dynamics are known and deterministic. Recent reward-based
sampling methods like GFlowNets (Bengio et al., 2021) allow for multiple parameter updates per
reward evaluation, but they are unable to learn in extremely sparse environments.

Our approach: Train a generative model on failures and update the policy distribution away
from the negative samples. The zero-reward problem can be solved in many ways, such as using
positive transfer from other tasks or domains, hand-designing curricula, and/or engineering more
informative and dense reward functions. We argue there will always fundamentally be tasks and
settings where the base model attains an extremely sparse reward, and that even these negative
samples provide useful information to learn and explore from. Motivated by other sparse reward
reinforcement learning methods, we propose to use the negative samples and reweight the base
distribution away from them. Specifically, we train a generative model on negative samples for
multiple epochs, and use it to assess whether data is similar to previously seen failures. If a sample is
similar to other zero-reward data, the algorithm rejects it before querying the expensive reward oracle.
This mirrors human scientists who, based on their failures, know what is unlikely to work and thus
what to try next.

In summary, we make the following contributions:

1. Conceptual: We show in Section 3 why existing leading techniques for post-training generative
models and learning under sparse rewards do not apply to our extremely sparse, black-box setting,
where calls to the reward oracle are costly.

2. Algorithmic: We present BaNEL (Bayesian Negative Evidence Learning), which offers three
fundamental advantages for learning in extreme sparsity while minimizing calls to the reward
oracle (Section 4). First, unlike other sparse-RL methods, it allows multiple parameter updates
per each collected experience, allowing the model to learn efficiently from a handful of failures.
Second, it provides a sequential exploration framework that systematically narrows the search
space until finding initial successes. Third, unlike many sparse RL methods, BaNEL is based
on Bayesian updates which modify the prior multiplicatively and never explicitly decrease the
model’s likelihood for failed attempts, better preserving the model’s pre-trained knowledge.

3. Evaluation: We propose new experimental settings that enable controlled testing of exploration
strategies for post-training generative models under sparse-reward conditions. We evaluate BaNEL
in these sparse environments and tasks in Section 5. Our experiments suggest that BaNEL achieves
a success rate on challenging problems higher than existing baselines for the same NRE budget;
moreover, it enables trading off computation for success rate, in a new form of compute scaling.

2 PROBLEM FORMULATION: EFFICIENT LEARNING FROM SPARSE REWARDS

Let V be the discrete token set and V∗ be the set of all finite strings over V . Define the probability
distribution of our pre-trained generative model as pθ : V∗ → [0, 1] satisfying

∑
x∈V ∗

pθ(x) = 1

with parameter θ. We further assume a given, binary reward function r : V∗ → {0, 1}, where
1 and 0 mean success and failure, respectively. The success rate of the model ρ(pθ) is defined as
ρ(pθ) :=

∑
x
pθ(x)r(x).

The goal of reward-based training is to further improve ρ(pθ) without any additional supervised
data. In particular, we assume that evaluating r is costly or risky—for instance, this can occur when
running clinical trials in drug development, performing large-scale simulations (Korshunova et al.,
2022), or other cases involving direct interaction with the real world.

Problem Statement. Consider a pre-trained pθ with a success rate ρ(pθ) that is so low that the
model does not encounter positive examples during training with high probability. Our goal is to find

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Method Functionality Low NREs

Policy Gradient Classic # #
Negative RL # #

Intrinsic Rewards RND G# #
Count-based methods G# #

GFlowNets #
BaNEL (Ours)

Table 1: Comparison of desired properties from Section 3—functionality and low number of reward
evaluations (NREs)—for key categories of learning methods. An empty circle # means the property
is not satisfied, a filled circle means satisfied, and a half-filled circle G# means partially satisfied
(e.g., a method is functional, but success rate does not increase much).

a new model pη parameterized by η such that success rate ρ(pη) ≫ ρ(pθ), while minimizing the
number of calls to the reward oracle r, which we denote number of reward evaluations (NREs).

Note that we are not necessarily trying to minimize overall computation—we want to minimize
NREs, but we are willing to scale (increase) compute to make better use of reward-labeled samples.

3 EXISTING METHODS FAIL TO ADDRESS EXTREME REWARD SPARSITY

Our problem formulation requires algorithms to satisfy two properties:

1. Functionality: Does the algorithm improve upon the prior success rate in the extremely sparse
setting, i.e., does the algorithm result in ρ(pη)≫ ρ(pθ), given enough calls to the reward oracle?

2. Low number of reward evaluations (NRE): Does the algorithm make efficient use of the reward
oracle r, e.g., by conducting multiple iterations of learning per reward evaluation?

We consider several categories of algorithms with respect to our problem requirements. Our high-
level assessment of these methods is included in Table 1, with a more in-depth explanation below.
Additional related work can be found in Appendix A.

3.1 WARM-UP EXAMPLE: POLICY GRADIENT

We start with the well-known policy gradient (Williams, 1992), the most common approach for
post-training generative models from reward functions. It has achieved great success in challenging
real-world tasks, including code synthesis and math problem solving (Guo et al., 2025).

Classic policy gradient: zero rewards produce zero gradient Under classic policy gradient,
we draw m samples (x1, . . . ,xm), where xi ∼ pθ. If all of these samples receive zero reward,
the standard REINFORCE policy gradient is zero: 1

m

∑m
i=1 r(xi)∇θ log pθ(x) = 0. In this setting,

policy gradient becomes brute-force random sampling until discovering the first rare success. By
definition, this cannot improve success rate over ρ(pθ). Moreover, we cannot update our model more
than once per reward evaluation without resorting to other off-policy learning techniques.

Negative RL A straightforward way to enable learning is to subtract a constant baseline of 1:

m∑
i=1

(r(xi)− 1)∇θ log pθ(xi) = −
m∑
i=1

∇θ log pθ(xi), (1)

thereby suppressing model likelihood on poor samples. Although the expected gradient remains zero,
due to the finiteness of m, this now produces nonzero empirical gradients that we can now use for
training. (Zhu et al., 2025) shows that incorporating negative RL along with positive examples can
be beneficial in LLM training. However, training exclusively on negative examples for an extended
period breaks the model’s pre-trained knowledge, leading to catastrophic collapse and rendering the
model unusable for most tasks. See Fig. 11a in appendix.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 SPARSE RL TECHNIQUES: INTRINSIC REWARDS

In response to these well-known challenges, there is a vast literature on RL under sparse rewards. For
our purposes, two relevant categories of algorithms can handle all-negative-reward samples in the
context of post-training a generative model.

Count-based methods Count based methods introduce an exploration bonus based on state visitia-
tion counts to reward novelty (Bellemare et al., 2016; Ostrovski et al., 2017). Modern pseudo-count
approaches (Ostrovski et al., 2017) employ a neural density model ρ to approximate state visitation.
Given an observation x, the density model is updated once to yield a new model ρ′, and the intrinsic
reward is defined as some increasing function of log ρ′(x)− log ρ(x). Count-based methods do not
naturally support conducting multiple updates per reward evaluation; the density model is updated
only once (Bellemare et al., 2016; Ostrovski et al., 2017). Applying multiple updates would artificially
inflate log ρ′(x)− log ρ(x), producing large bonuses even for non-novel states.

Random Network Distillation (RND) RND instead encourages exploration by training two
separate networks sharing the same architecture—a target network, which is randomly initialized
to produce an embedding of an input sample, and a predictor network, which is trained to reduce
MSE with the predictor network (Burda et al., 2019). The MSE between the target and the predictor
is used as a curiosity bonus; when the predictor does not match the target network, it suggests an
unfamiliar state, leading to a higher MSE (and exploration bonus). RND can also be used to post-train
LLMs (Gao et al., 2025). This method is particularly good for exploring sparse-reward regimes, but
like count-based methods, it does not inherently allow for multiple updates per reward evaluation;
doing so will decrease the MSE regardless of whether x is novel or not. This can increase its NREs
(Section 5).

3.3 REWARD-BASED SAMPLING: GFLOWNET

GFlowNet (Bengio et al., 2021) is designed to sample from a given reward function. Unlike policy
gradient and most intrinsic motivation methods, it naturally supports multiple parameter updates per
reward evaluation. The most common training objective for GFlowNet is the Trajectory Balance loss
LTB due to Malkin et al. (2022):

LTB(θ, Ẑ) :=
1

m

m∑
i=1

(
log pθ(xi)− log

r(xi) + ϵ

Ẑ

)2

=
1

m

m∑
i=1

(
log pθ(xi)− log

ϵ

Ẑ

)2

(2)

where Ẑ is a free learnable parameter jointly optimized along with θ, and ϵ is a small constant to make
sure the loss is defined even when r(xi) = 0. One can fix θ and solve for Ẑ to get the batch-optimal
Ẑ in a closed form, resulting in the VarGrad-fashion loss function (Richter et al., 2020):

LTBV argrad
(θ) :=

1

m

m∑
i=1

(
log pθ(xi)−

1

m

m∑
i=1

log pθ(xi)

)2

. (3)

As shown above, the trajectory balance loss becomes the empirical variance of log pθ(x) over
m samples, so the optimal pθ assigns an arbitrary constant mass over m samples; the remaining
probability mass is distributed uncontrollably. Hence, in the extremely sparse setting, GFlowNet
fundamentally cannot learn; the resulting detachment is shown empirically in Figure 11.

4 AVOIDING FAILURES WITH BAYESIAN NEGATIVE EVIDENCE LEARNING

We now present BaNEL (Bayesian Negative Evidence Learning). Our aim is to improve the policy’s
success rate using only reward zero experiences, without any problem-specific surrogate objectives.

Naive idea. If our budget for evaluating r were unlimited, we could trivially achieve a perfect success
rate by collecting every possible mistake R := {x ∈ V∗ | r(x) = 0} and avoiding all elements of R:

pθ|RC (x) ∝ pθ(x)1[x /∈ R]. (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Here, 1[·] denotes the indicator function, and we define pθ|S(x) :=
pθ(x)1[x∈S]∑
x pθ(x)1[x∈S] given a set S. We

use SC to denote the complement in V∗ of a set S. This approach is infeasible because the space of
failures is combinatorial and we want to minimize NREs. Fortunately, in most tasks, failures exhibit
underlying regularities. In such cases, a neural network can learn to recognize and generalize from
these patterns, removing the need to encounter every instance. Thus, the key factor determining
performance is the model’s ability to infer the failure set R from only a limited number of examples.
Ideally, we want this ability to scale with compute.

4.1 LEARNING A GENERATIVE MODEL FOR FAILED (ZERO-REWARD) ATTEMPTS

We cast the problem of learning regularities in failures as another, in-loop generative modeling
problem. Specifically, we train a separate likelihood-based generative model pϕ (parameterized by
ϕ) on m negative examples with the standard maximum likelihood objective:

max
ϕ

1

m

m∑
i=1

log pϕ(xi).

Once well-trained, pϕ(x) can be used to assess whether a given input resembles previously observed
failures; specifically, we use pϕ to define a rejection region R̃ approximating R.

For that, the rejection region R̃ should contain samples that are likely for pϕ(x) so the model can
avoid making similar mistakes to previously-made ones. To this end, we define R̃ as follows:

R̃ :=

{
x :

pθ(x)

pϕ(x)
< τ

}
(5)

where τ is a (potentially data-dependent) threshold value. Note that this requires pθ and pϕ to be
likelihood-based generative models under which we can compute the likelihood. Using the rejection
region R̃, we form a Bayesian posterior p̃θ to approximate pθ|RC :

pθ|R̃C (x) ∝ pθ(x)1[x /∈ R̃] , (6)

This policy filters out data points that are similar to prior failures according to R̃; equivalently, we
direct the model to sample only from R̃C .

Success rate analysis. Recall that success rate is defined as ρ(p) :=
∑
x
p(x)r(x). The success rate

of the posterior can be written as follows:

ρ(pθ|R̃C) =
∑

x∈R̃C

pθ|R̃C (x)r(x) =
∑

x∈R̃C

pθ(x ∈ R̃C |x)pθ(x)
pθ(R̃C)

r(x)

=
1

pθ(R̃C)

∑
x∈R̃C

pθ(x)r(x)

=
1

1− pθ(R̃)

ρ(pθ)−
∑
x∈R̃

pθ(x)r(x)


=

ρ(pθ)

1− pθ(R̃)
− pθ(R̃)

1− pθ(R̃)
ρ(pθ|R̃),

where we abuse notation to denote pθ(S) =
∑

s∈S pθ(s) for some set S. The above decomposition
gives qualitative insights about the desired properties of R̃:

• Misclassification rate of R̃. The posterior success rate decreases when ρ(pθ|R̃) increases, so we
need to train pϕ well and define R̃ properly so that R̃ does not misclassify r = 1 samples and
mistakenly reject them.

• Make R̃ as large as possible. If we can drive ρ(pθ|R̃) close to zero, the posterior success rate is
roughly 1

1−pθ(R̃)
times greater than the prior and approaches 1 as R̃ grows.

Nevertheless, R̃ does not need to be perfect, as ρ(pθ|R̃) ≤ ρ(pθ) =⇒ ρ(pθ|R̃C) ≥ ρ(pθ).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Sequential Filtering (No Distillation)
1: Initialize iterations n.
2: Sample {xj}mj=1 ∼ pθ .
3: Fit failure model pϕ0(x) by maximizing 1

m

∑m
j=1 log pϕ0(xj).

4: for i = 1 to n− 1 do

5: Sample {xj}mj=1 from pθ(x)
∏i−1

k=0 1

[
pθ(x)
p
ϕk (x)

≥ τ

]
6: Evaluate {r(xj)}mj=1. Terminate if r(xj) = 1 for any j.
7: Fit failure model pϕi(x) by maximizing 1

m

∑m
j=1 log pϕi(xj).

8: end for
9: return pθ(x)

∏n−1
k=0 1

[
pθ(x)
p
ϕk (x)

≥ τ

]
.

Adaptive selection of rejection region R̃ As the rejection threshold τ increases, so does pθ(R),
and hence R̃ rejects samples more aggressively. However, the same threshold τ could result in
drastically different rejection regions R̃ for different negative-sample models pϕ. To simplify design,
we adaptively choose τ so that we accept a fixed number of m samples in each batch. To generate
m samples, we first draw mf samples from the prior, for some filtering factor f > 1. We then sort
the mf samples in descending order of likelihood ratio pθ(x)

pϕ(x) , and only accept the first m samples.

f = 1 means R̃ is empty, whereas a larger f indicates that only samples that are much more likely in
our prior pθ than in our negative model pϕ are accepted.

Relationship with Cross Entropy Method (CEM). When τ is chosen adaptively so that exactly
m of the mf candidates are accepted, the procedure coincides with the elite-selection step of the
cross-entropy method (CEM) (De Boer et al., 2005). The key difference is that CEM ranks candidates
by reward, whereas in our setting reward is always zero, so we instead use the likelihood ratio
pθ(x)
pϕ(x) as a surrogate ranker. As a soft alternative, we also tried importance resampling with weights
proportional to this likelihood ratio (analogous to replacing CEM’s hard cut with weights), but it did
not yield consistent improvements. For simplicity, we therefore adopt the CEM-style hard cut.

4.2 COMBINING MULTIPLE FILTERS EFFICIENTLY VIA DISTILLATION

The proposal distribution can be refined online by repeating Bayesian updates as new samples arrive.
In this sequential approach, rejection regions from earlier rounds can be accumulated by taking their
union (i.e., R̃← R̃ ∪ R̃new where Rnew is the new rejection region). This yields Algorithm 1.1

However, this algorithm is not practical because of two reasons: (1) it requires maintaining multiple
negative models for filtering, and (2) since the prior rarely generates samples outside all the rejection
regions, rejection sampling can become very inefficient. We handle this issue by distilling the filtered
distribution into the model at each stage, leading to Algorithm 2 (main difference highlighted in blue).
Algorithm 2 is theoretically equivalent to Algorithm 1, while being significantly more efficient in
practice. In practice, we implement the distillation step via maximum likelihood training, reusing
the same m samples to train the failure model for efficiency. This is the approach adopted in our
experiments. See Fig. 1 for a visual illustration of the algorithm.

5 EXPERIMENTS

We evaluate BaNEL by constructing new sequential generation tasks with extremely sparse rewards.
In Sec. 5.1, we evaluate on MNIST (LeCun et al., 1998), where we can visualize exploration. In
Sec. 5.3, we test on a challenging subset of GSM8K (Cobbe et al., 2021) reasoning tasks where
pretrained models fail. In these experiments, we deliberately filter out reward one samples to test
an algorithm’s ability to learn from zero-reward observations only. We compare BaNEL (ours) to the
random network distillation (Burda et al., 2019) and pseudo-count based methods (Ostrovski et al.,
2017) baselines. In Appendix 5.2 we provide extra results where the attacker generates digit-addition

1We omit the partition function of the unnormalized distributions to simplify notation from now on.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 2 Sequential Filtering with Distillation

1: Initialize pθ0(x)← pθ; iterations n
2: Sample {xj}mj=1 ∼ pθ0 .
3: Fit failure model pϕ0(x) by maximizing 1

m

∑m
j=1 log pϕ0(xj).

4: for i = 1 to n− 1 do

5: Sample {xj}mj=1 ∼ pθi−1(x)1

[
pθ(x)

p
ϕi−1 (x)

≥ τ

]
.

6: Evaluate {r(xj)}mj=1. Terminate if r(xj) = 1 for any j.
7: Fit failure model pϕi(x) by maximizing 1

m

∑m
j=1 log pϕi(xj).

8: Distill the filter into the model: pθi(x)← pθi−1(x)1

[
pθ(x)

p
ϕi−1 (x)

≥ τ

]
.

9: end for
10: η ← θn

11: return pη .

Prior distribution Converged

…

Step 0 Step 1 Step 5

Figure 1: Illustration of BaNEL on a 1D toy example with negative-reward samples only. The
procedure begins with a pre-trained proposal distribution (leftmost). Two reward-one samples (red
bars) are located at -2 and 2. At each iteration, the proposal distribution generates samples, which
are very likely to be 0-reward. These are used to train a negative model (red dashed curves). The
proposal and negative models are combined to form the Bayesian posterior (black curves), following
Eq. (6). As iterations progress, the posterior increasingly concentrates on the reward-one regions,
until convergence (rightmost).

problems that the target model misanswers. Appendix. B.4 includes ablations that show the effect of
various hyperparameters and other design choices regarding the distillation step in Algorithm 2.

5.1 MNIST 0→ 6

In this task, we pre-train autoregressive generative models on the 0-digit subset of the MNIST training
set, and the task is to discover 6’s. Since a 0 is visually close to a 6 digit, pre-training increases
the success rate significantly. At the same time, a 6 can only be discovered by doing a significant
exploration from 0, testing the algorithm’s ability to generate new knowledge.

To summarize our setting: Our pre-trained model pθ is an autoregressive transformer trained on 0
digits. Our reward r(x) = 1 if the model generates data exactly matching any element of the target
set, a set of 50,000 6-digits generated by applying random affine transformations to the MNIST
6-digits in the test set. This experimental setting has extreme reward sparsity. The base model’s
success rate is 8e-26 (as pθ is an autoregressive model, we can evaluate the exact success rate by, e.g.,
using torch.logsumexp()). We set the total NRE budget to 7500 for all methods.

BaNEL’s success rate scales with compute Unlike prior sparse RL techniques, BaNEL can utilize
additional compute to improve its success rate, even for a fixed number of NREs. Fig. 3 shows
that the performance of BaNEL tends to increase as the number of epochs used to train pϕ at each
stage increases unlike other two methods. This indicates that while the benefit of BaNEL becomes
effective when additional computation is available to extract richer knowledge from failures (unlike
our baselines, which cannot exploit additional computation).

Fig. 2 shows that, in the posterior samples, digits shaped like a ’0’ with the right side removed–thereby
resembling a ’6’–occur more frequently than in the prior.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Prior Posterior

Figure 2: Prior samples (left, success
rate: 8e-26) and the best posterior sam-
ples from our method (right, success rate:
5e-21).

1 5 10 20 40 50 80100 150200
Epoch

102

Im
pr

ov
em

en
t f

ac
to

r (
iq

m
)

BaNEL
Count-based
RND

Figure 3: Compute scaling: Interquartile mean
(IQM; mean of the middle 50%) improvement fac-
tor in success rate over the base model for BaNEL,
count-based, and RND as a function of the number
of training epochs. For BaNEL, the x-axis is the
number of epochs used to train pϕ at each stage; for
RND and count-based methods, it is the number of
epochs used to train the random network and den-
sity model per rollout. IQM values are computed
over 100 random seeds. Shaded regions indicate
95% bootstrap confidence intervals.

TargetAttacker

10+23=

9+1766=

33 O

4633 X

Reward 0

Reward 1

(a)

Leading zeros
000840040+6336084=
04967+660843=
006509+602096=

Carry-chain stressors
4057539400+6460920=
5108069997+50003=
99999999+9=

(b)

Pattern Rate (%)

Pre-trained 0.04
Carry chain 99.02
Leading zeros 99.96

(c)

Figure 4: (a) Adversarial attack setup for Sec. 5.2; (b) examples of successful attacks found by
BaNEL; (c) rule-based attack results using patterns in (b).

5.2 ADVERSARIAL ATTACK ON TOY LANGUAGE MODEL

In this task, the goal is to attack the target model, an autoregressive transformer trained to answer digit-
addition queries (e.g., it receives 10+23= and must generate 33). The goal of the attacker model,
also an autoregressive transformer trained to generate questions such as 10+23=, is to propose
syntactically valid addition queries on which the target model produces an incorrect sum. Both
models use the GPT-2 architecture (we use nanoGPT) with a character-level tokenizer; the vocabulary
comprises the ten digits {0, . . . , 9}, arithmetic symbols (e.g., +, =), and alphabetic characters. The
maximum length of each operand is set to 10. We define the reward as follows:

Table 2: Best interquartile mean (IQM; mean of the middle 50%) improvement factor in success
rate over the base model for BaNEL, count-based, and RND. The upper and lower values of 95%
bootstrap confidence intervals are also reported. Pre-trained model’s success rate is roughly 0.0004.
IQM values are computed over 100 random seeds.

Method IQM CI lower CI upper

Ours 48.51× 34.74× 66.93×
Count-based 1.62× 1.56× 1.67×
RND 1.45× 1.43× 1.47×

8

https://github.com/karpathy/nanoGPT

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

r(x) =

{
1, if x is a syntactically valid arithmetic expression and the target’s output is incorrect,
0, otherwise,

and the target is evaluated using greedy decoding. Because grammatically invalid sequences receive
zero reward by construction, pre-training the attacker on the same distribution of digit-addition prob-
lems is necessary so that it reliably proposes syntactically valid expressions that the target can parse
and attempt to answer. See Fig. 4(a) for visual explanation. Since the target is trained well, the pre-
trained attacker’s empirical success rate is roughly 0.0004 (Clopper-Pearson CI: [0.00032, 0.00047];
num_samples= 300,000, α = 0.05).

Table 2 shows that BaNEL outperforms other methods by a large margin. In addition to increasing the
raw success rate, this experiment surfaced several qualitative patterns. Fig. 4 (b) shows two examples
of successful attacks. BaNEL identifies two failure modes of the target: (1) Leading zeros: when at
least one of the input digits start with at least one zero, the output result tends to be incorrect. Note
that the attacker model had never seen leading zeros during pre-training. (2) Carry-chain stressors
refer to examples that need to carry a digit during summation. Together, these two failure classes
explain a large fraction of successful attacks found by BaNEL.

Based on the insights discovered by BaNEL, we write a script to generate questions following these
two patterns to attack the target model. Specifically, we generate 512 samples from each pattern, and
compute the resulting success rate. Fig. 4(c) shows that the final success rate is near 1. This suggests
that BaNEL can be used both to increase a numeric success rate, but it can also be useful to guide
human intuition on hard problems to extract qualitative insights. See Appendix B.1 for more details
on how the rule-based attacks are generated. For completeness, we provide additional results where
we do not allow for leading zero attacks (Appendix B.2).

5.3 GSM8K-HARD

Next, we compare BaNEL with RND (following the implementation of Gao et al. (2025)), the
strongest baseline on MNIST setting, on a challenging subset of GSM8K dataset (Cobbe et al., 2021).
We select 6 questions from the GSM8K test split on which the Qwen 2.5 0.5B Instruct model (Team
et al., 2025), RL fine-tuned with PPO on the same dataset (achieving 0.53 mean@5—average per-
problem fraction correct over five attempts—on the test set), attains a success rate between 1× 10−4

and 3× 10−3. This range is small enough to reflect the challenge of sparsity, yet not so small that
empirical estimation of success rates becomes impractical. Specifically, we choose the following
question IDs: 143, 1248, 1012, 510, 942, and 205. We then further train separate runs, one per
selected question. We set the NRE budget to 7680.

As shown in Fig. 5, BaNEL strictly outperforms RND on 4 problems (143, 205, 1012, and 942),
achieving higher success rates with significantly fewer NRE. On one problem (1248), BaNEL achieves
a comparable success rate while requiring roughly 6× fewer NREs, and on the remaining problem
(510), RND outperforms BaNEL. These results demonstrate that BaNEL learns and generalizes more
effectively than RND from failure-only feedback. Note that Fig. 5 shows the historical maximum
success rate of each baseline. This is an appropriate visualization because the NREs are only an upper
bound; in practice, one can always use fewer. The raw values are plotted in Fig. 9.

6 DISCUSSION, LIMITATIONS, AND FUTURE WORK

Limitations We observe that the success rate of our method does not increase monotonically with
training. See Fig. 9 in appendix. Instead, like the RND and count-based method baselines, it peaks
at an intermediate stage before declining. We attribute this behavior to two main factors. First,
as the generative model shifts toward regions of higher reward, it increasingly produces samples
close to high-reward examples, which leads to R̃ containing a greater proportion of incorrect (i.e.,
reward = 1) samples. Second, errors introduced during the distillation step of the algorithm can
accumulate over time. This limitation is not unique to our approach but is shared by all methods that
rely on sparse rewards: the success rate cannot be reliably estimated until we discover high-reward
samples, making it difficult to determine when training should be stopped. One potential remedy is
to design a mechanism that gradually slows the posterior update according to a decaying schedule.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0 1250 2500 3750 5000 6250 7500
Reward Function Eval.

0.00

0.01

Su
cc

es
s R

at
e

q143

RND
 BaNEL (ours)

0 1250 2500 3750 5000 6250 7500
Reward Function Eval.

0.000

0.005

Su
cc

es
s R

at
e

q205

0 1250 2500 3750 5000 6250 7500
Reward Function Eval.

0.0000

0.0025

0.0050

Su
cc

es
s R

at
e

q1012

0 1250 2500 3750 5000 6250 7500
Reward Function Eval.

0.001

0.002

Su
cc

es
s R

at
e

q942

0 1250 2500 3750 5000 6250 7500
Reward Function Eval.

0.0025

0.0050

0.0075

Su
cc

es
s R

at
e

q1248

0 1250 2500 3750 5000 6250 7500
Reward Function Eval.

0.000

0.001

0.002

Su
cc

es
s R

at
e

q510

Figure 5: Cumulative best success rate of BaNEL and RND on GSM8K-Hard questions. Shaded area
represents confidence intervals (Clopper-Pearson, α = 0.05, sample_size=10000).

Such a schedule could be designed using minimal knowledge of a problem such as expected difficulty
level.

Parameterizing pϕ Maintaining a separate model pϕ can be expensive for large models. As
an alternative, we explored modeling the negative distribution by conditioning the policy on a
negative prompt (e.g., "generate an incorrect answer"). However, we found that training such prompt-
conditioned models inadvertently alters the behavior of the original policy, introducing unwanted
confounding variables. As such, we avoid sharing the parameter between two models to isolate the
effect of applying BaNEL’s Bayesian updates. One could leverage low-rank adaptation (LoRA) (Hu
et al., 2022) to mitigate this coupling between two models, which we leave to future work.

Learning fast and slow One promising way to tackle the reward sparsity is to execute a learned
learning algorithm that adapts from failures and refines its next actions. This can be more flexible
and powerful than executing any hand-designed algorithms, including ours. Sequence models such as
recurrent neural networks or transformers can serve as fast learners (Duan et al., 2016), executing
learning algorithms during inference. For instance, transformers can be trained in multi-turn settings,
after which they can carry out sophisticated adaptive behavior in context. However, fast learners
require a slow learning algorithm to train them. In practice, this means that methods like ours can play
a crucial role in providing the outer-loop optimization signal. For instance, applying our algorithm on
the level of meta-trajectories to train the parameters of a fast learner is an interesting direction.

7 CONCLUSION

We present BaNEL, a method for post-training generative models in extremely sparse reward settings,
where models may never encounter positive examples during training. Unlike existing exploration
methods such as count-based bonus methods and random network distillation, BaNEL’s ability to
recognize and generalize from failures scale with compute. Empirical results demonstrate that BaNEL
achieves success rates on challenging tasks higher than competitive baselines under the same reward
evaluation budget.

REPRODUCIBILITY STATEMENT

We provide detailed information to facilitate reproducibility of our results, including pseudo-code in
Algorithm 2, experiment settings in Sec. 5, and additional implementation details in Appendix B.1.
We plan to release our code publicly to further support reproducibility.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This paper raises ethical concerns similar to other papers on deep generative models. Generative
models can produce harmful contents, such as disinformation and violent text. Our experiment on
adversarial attacks against a language model (Appendix 5.2) illustrates a potential misuse scenario.
However, it is conducted in a controlled, toy setting that does not pose direct risk of harm.

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In
Advances in Neural Information Processing Systems, volume 30, 2017. 14

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark.
In International conference on machine learning, pp. 507–517. PMLR, 2020a. 2

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martín Arjovsky, Alexander Pritzel, Andew Bolt, et al. Never give
up: Learning directed exploration strategies. arXiv preprint arXiv:2002.06038, 2020b. 2

Marc G Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in Neural Information
Processing Systems, volume 29, 2016. 1, 4

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mohit Sharma Tiwari, and et al. Gflownet:
Generative flow networks. arXiv preprint arXiv:2106.04399, 2021. 2, 4

Yuri Burda, Harrison Edwards, Deepak Pathak, Bradly C Stadie, Singh Amarjyoti, Michael U
Gutmann, Marcin Andrychowicz, and Pieter Abbeel. Exploration by random network distillation.
arXiv preprint arXiv:1810.12894, 2019. 1, 2, 4, 6, 17

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Shailesh Kumar, Pieter Abbeel,
Igor Mordatch, and Sergey Levine. Decision transformer: Reinforcement learning via sequence
modeling. In Advances in Neural Information Processing Systems, volume 34, pp. 15084–15097,
2021. 14

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Łukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and
John Schulman. GSM8K: A dataset of grade school math word problems. arXiv preprint
arXiv:2110.14168, 2021. 6, 9

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial on the
cross-entropy method. Annals of operations research, 134(1):19–67, 2005. 6

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.
10

Jingtong Gao, Ling Pan, Yejing Wang, Rui Zhong, Chi Lu, Qingpeng Cai, Peng Jiang, and Xiangyu
Zhao. Navigate the unknown: Enhancing llm reasoning with intrinsic motivation guided exploration.
arXiv preprint arXiv:2505.17621, 2025. 4, 9, 14, 17

Roman Garnett. Bayesian optimization. Cambridge University Press, 2023. 14

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025. 1, 3

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022. 10

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Carl Hvarfner, Danny Stoll, Artur Souza, Marius Lindauer, Frank Hutter, and Luigi Nardi. Aug-
menting acquisition functions with user beliefs for bayesian optimization. arXiv preprint
arXiv:2204.11051, 2022. 14

Maria Korshunova, Niles Huang, Stephen Capuzzi, Dmytro S Radchenko, Olena Savych, Yuriy S
Moroz, Carrow I Wells, Timothy M Willson, Alexander Tropsha, and Olexandr Isayev. Generative
and reinforcement learning approaches for the automated de novo design of bioactive compounds.
Communications Chemistry, 5(1):129, 2022. 1, 2

Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover. Diffusion models for black-
box optimization. In International Conference on Machine Learning, pp. 17842–17857. PMLR,
2023. 14

Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. The mnist database of handwritten digits.
http://yann.lecun.com/exdb/mnist/, 1998. 6

Zihao Li, Hui Yuan, Kaixuan Huang, Chengzhuo Ni, Yinyu Ye, Minshuo Chen, and Mengdi Wang.
Diffusion model for data-driven black-box optimization. arXiv preprint arXiv:2403.13219, 2024.
14

Zinan Lin, Hao Liang, Giulia Fanti, and Vyas Sekar. Raregan: Generating samples for rare classes.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 7506–7515, 2022.
14

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Jonathan Chang, Cem Anil, and Yoshua Bengio.
Trajectory balance: Improved credit assignment in GFlowNets. In Advances in Neural Information
Processing Systems, 2022. 4

Georg Ostrovski, Marc G Bellemare, Aaron van den Oord, and Remi Munos. Count-based exploration
with neural density models. In Proceedings of the 34th International Conference on Machine
Learning, pp. 2721–2730. PMLR, 2017. 1, 2, 4, 6, 17

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pp. 16–17, 2017. 2

Paulo Rauber, Fabio Pardo, and Jens Kober. Hindsight policy gradients. arXiv preprint
arXiv:1711.06006, 2017. 14

Laura Richter, Jasmijn Bastings, Ivan Titov, Wilker Aziz, and Anders Søgaard. Vargrad: A low-
variance gradient estimator for variational inference. Transactions of the Association for Computa-
tional Linguistics, 8:511–527, 2020. 4

Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE
transactions on autonomous mental development, 2(3):230–247, 2010. 2

Jürgen Schmidhuber. Reinforcement learning upside down: Don’t predict rewards—just map them to
actions. arXiv preprint arXiv:1912.02875, 2019. 14

Han Shen. On entropy control in llm-rl algorithms. arXiv preprint arXiv:2509.03493, 2025. 14

Artur Souza, Luigi Nardi, Leonardo B Oliveira, Kunle Olukotun, Marius Lindauer, and Frank
Hutter. Bayesian optimization with a prior for the optimum. In Machine Learning and Knowledge
Discovery in Databases. Research Track: European Conference, ECML PKDD 2021, Bilbao,
Spain, September 13–17, 2021, Proceedings, Part III 21, pp. 265–296. Springer, 2021. 14

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015. 2

Qwen Team, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei
Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao,
Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL
urlhttps://arxiv.org/abs/2412.15115. 9

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3-4):229–256, 1992. 3

Kongcheng Zhang, Qi Yao, Shunyu Liu, Yingjie Wang, Baisheng Lai, Jieping Ye, Mingli Song,
and Dacheng Tao. Consistent paths lead to truth: Self-rewarding reinforcement learning for llm
reasoning. arXiv preprint arXiv:2506.08745, 2025. 14

Xinyu Zhu, Mengzhou Xia, Zhepei Wei, Wei-Lin Chen, Danqi Chen, and Yu Meng. The surprising
effectiveness of negative reinforcement in llm reasoning. arXiv preprint arXiv:2506.01347, 2025.
3

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ADDITIONAL RELATED WORK

A.1 HINDSIGHT RELABELING IN RL

One key component of our method is a generative model maximizing the likelihood of failed attempts.
Goal-conditioned RL methods such as Andrychowicz et al. (2017); Rauber et al. (2017) use a
conceptually similar idea where they train a model conditioned on the suboptimal goal states achieved
by the model. Decision Transformer (Chen et al., 2021) and RL upside down (Schmidhuber, 2019)
condition the model on scalar reward signals. However, a crucial difference is that we do not merely
train a model on failed attempts but use it as a likelihood function to obtain the Bayesian posterior.

A.2 INTRINSIC REWARDS FOR LANGUAGE MODELS

Beyond the earlier literature focusing mainly on randomly initialized policies, recent works have
applied intrinsic rewards such as RND (Gao et al., 2025), entropy bonus (Shen, 2025), or self-
consistency (Zhang et al., 2025) to pre-trained LLMs. However, they did not consider extremely
sparse settings.

A.3 BAYESIAN OPTIMIZATION WITH DATA PRIOR

Bayesian Optimization (BO) (Garnett, 2023) shares the goal of maximizing some utility function
defined with respect to the reward function while minimizing the number of function evaluations.
Although the standard BO formulation does not incorporate the generative prior pθ(x) (which is
different from the function prior used in standard BO) as ours, a few recent works (Hvarfner et al.,
2022; Souza et al., 2021) suggest incorporating the data prior into BO.

The belief update in BO relies on discriminative models Pr(r | x) given observations so far, which
is typically modeled as Gaussian Processes or Bayesian Neural Networks (Garnett, 2023). In
contrast, our method uses generative models as the likelihood function, so we can use autoregressive
transformers, which have been shown to scale extremely well.

A.4 DATA-DRIVEN BLACK-BOX OPTIMIZATION

Recent works on data-driven black-box optimization (Krishnamoorthy et al., 2023; Li et al., 2024)
assume access to a large corpus of unlabeled data together with a small set of reward-labeled samples.
The typical goal is to optimize a black-box objective by leveraging these offline datasets. A common
approach is to train a reward-conditional generative model and then synthesize high-reward candidates
by conditioning on desired reward levels. In contrast, we study the online setting, where the model
must interleave acquiring new data and updating itself. Moreover, we focus on an extreme regime of
sparsity, where the data contain no positive-reward examples, so a reward-conditioned model cannot
be meaningfully conditioned on unseen positive reward values. Lin et al. (2022) trains conditional
GANs in an online setting, where a classifier is trained on labeled data and its confidence scores are
used to guide exploration. However, in the regime where all observed rewards are zero, the classifier
cannot be trained meaningfully, and thus its confidence scores provide no useful guidance.

B ADDITIONAL EXPERIMENTS

B.1 IMPLEMENTATION DETAILS

In this section, we provide the detailed settings used in Sec. 5. The distillation step of Algorithm 2
is carried out using maximum likelihood estimation over m samples, with m is 250 for MNIST,
adversarial attack experiments, and 256 for GSM8K. We set NRE budget to 30 rounds of exploration,
which is equivalent to 7500 and 7680 for MNIST and GSM8K, respectively. Since the sample size
is typically insufficient to fully capture the support of the target distribution, the learned model can
collapse to a limited subset of modes. To mitigate this issue, at the beginning of each round of
BaNEL, we reset the generator’s parameters to those of the base model before conducting distillation
step, thereby preserving mode coverage.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0 1250 2500 3750 5000 6250 7500
Reward Function Eval.

0.00

0.01
Su

cc
es

s R
at

e

q143

f16
f8
f2

0 1250 2500 3750 5000 6250 7500
Reward Function Eval.

0.001

0.002

Su
cc

es
s R

at
e

q942

0 1250 2500 3750 5000 6250 7500
Reward Function Eval.

0.0025

0.0050

0.0075

Su
cc

es
s R

at
e

q1248

0 1250 2500 3750 5000 6250 7500
Reward Function Eval.

0.000

0.005

Su
cc

es
s R

at
e

q205

0 1250 2500 3750 5000 6250 7500
Reward Function Eval.

0.0000

0.0025

0.0050

Su
cc

es
s R

at
e

q1012

0 1250 2500 3750 5000 6250 7500
Reward Function Eval.

0.0000

0.0005

0.0010

Su
cc

es
s R

at
e

q510

Figure 6: Cumulative best success rate across different filter factors f .

0 1280 2560 3840 5120 6400 7680
Reward Function Eval.

0.00

0.01

Su
cc

es
s R

at
e

q143
10
5
1

0 1280 2560 3840 5120 6400 7680
Reward Function Eval.

0.001

0.002

0.003

Su
cc

es
s R

at
e

q942

0 1280 2560 3840 5120 6400 7680
Reward Function Eval.

0.0025

0.0050

0.0075

Su
cc

es
s R

at
e

q1248

0 1280 2560 3840 5120 6400 7680
Reward Function Eval.

0.000

0.005

Su
cc

es
s R

at
e

q205

0 1280 2560 3840 5120 6400 7680
Reward Function Eval.

0.0000

0.0025

0.0050

Su
cc

es
s R

at
e

q1012

0 1280 2560 3840 5120 6400 7680
Reward Function Eval.

0.000

0.001

0.002

Su
cc

es
s R

at
e

q510

Figure 7: Cumulative best success rate for different numbers of training epochs for pθ.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0 1280 2560 3840 5120 6400 7680
Reward Function Eval.

0.00

0.05

Su
cc

es
s R

at
e

q143

use_base_for_ratio
use_cur_for_ratio

0 1280 2560 3840 5120 6400 7680
Reward Function Eval.

0.0000

0.0025

0.0050

Su
cc

es
s R

at
e

q942

0 1280 2560 3840 5120 6400 7680
Reward Function Eval.

0.0025

0.0050

0.0075

Su
cc

es
s R

at
e

q1248

0 1280 2560 3840 5120 6400 7680
Reward Function Eval.

0.000

0.005

Su
cc

es
s R

at
e

q205

0 1280 2560 3840 5120 6400 7680
Reward Function Eval.

0.000

0.005

0.010

Su
cc

es
s R

at
e

q1012

0 1280 2560 3840 5120 6400 7680
Reward Function Eval.

0.000

0.001

Su
cc

es
s R

at
e

q510

Figure 8: Cumulative best success rate when using the base model pθ versus the updated model
p
(i=1)
θ for the likelihood ratio.

0 1250 2500 3750 5000 6250 7500
Reward Function Eval.

0.00

0.01

Su
cc

es
s R

at
e

q143
RND
 BaNEL (ours)

0 1250 2500 3750 5000 6250 7500
Reward Function Eval.

0.000

0.005

Su
cc

es
s R

at
e

q205

0 1250 2500 3750 5000 6250 7500
Reward Function Eval.

0.0000

0.0025

0.0050

Su
cc

es
s R

at
e

q1012

0 1250 2500 3750 5000 6250 7500
Reward Function Eval.

0.000

0.001

0.002

Su
cc

es
s R

at
e

q942

0 1250 2500 3750 5000 6250 7500
Reward Function Eval.

0.000

0.005

Su
cc

es
s R

at
e

q1248

0 1250 2500 3750 5000 6250 7500
Reward Function Eval.

0.000

0.001

0.002

Su
cc

es
s R

at
e

q510

Figure 9: Success rate of BaNEL and RND on GSM8K-Hard questions. Results correspond to Fig. 5.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

1 5 10 20 40 50 80100
Epoch

2 × 100

3 × 100

4 × 100

Im
pr

ov
em

en
t f

ac
to

r (
iq

m
)

BaNEL
Count-based
RND

Figure 10: Results on the adversarial attack scenario: IQM improvement factor in success rate over
the base model of BaNEL as a function of the number of epochs to train pϕ. Results of Count-based
and RND are provided in horizontal lines. IQM values are computed over 100 random seeds. Shaded
regions indicate 95% bootstrap confidence intervals. Leading zeros are not allowed (Sec. B.2).

On MNIST, to obtain our best result, pθ and pϕ are trained for 15 and 150 epochs per round,
respectively. For adversarial attack experiments, pθ and pϕ are trained for 10 and 100 epochs per
round, respectively. On GSM8K, pθ and pϕ are trained for 10 and 5 epochs per round, respectively.
The filter factor f is set to f = 2 for MNIST, f = 1.032 for adversarial attack, and f = 16 for
GSM8K-hard.

When data have variable lengths, computing pθ(x)
p
ϕk (x)

and ranking samples within a batch can introduce
length bias. To mitigate this, in practice we normalize log-likelihoods by length and compute
pθ(x)

1/l(x)

p
ϕk (x)1/l(x) , where l(x) is the length of x. For Qwen 0.5B model, we use the maximum response

length of 512.

Baselines. For the count-based baseline, we use the same architecture for pθ and the density
model ρ, both initialized with the same pre-trained weights. We adopt the same decay schedule and
exploration bonus as in Ostrovski et al. (2017). To improve performance, we additionally apply KL
regularization between the current and initial policy. We find that a coefficient of 0.05 works the best
for both MNIST and adversarial attack experiments. For the RND baseline on MNIST, we follow
the setup of Burda et al. (2019), with the modification that larger models for both the predictor and
target yield better performance. Specifically, we use a 4-layer fully connected network with hidden
dimension 1024. We regularize with a KL penalty of strength 0.01. For the adversarial attack and
GSM8K, we adopt the implementation of Gao et al. (2025). We find that training does not improve
success rates without KL regularization. For the adversarial attack experiment, we find that a penalty
coefficient of 0.5 works the best for the experiments in Sec. 5.2. For Sec. B.2, 0.01 works the best.
For GSM8K, we find that a penalty coefficient of 0.05 works well.

Rule-based attack for Sec. 5.2. For carry chain attack, we generate 10-digit addition problems
by first sampling the least significant digit pair whose sum is at least 10 to initiate a carry. The
remaining digit pairs are sampled to sum exactly to 9 (except for the most significant digit), which
propagates the carry when combined with the incoming carry-in of 1. For leading zero attack, we
prepend leading zeros with random length to one or both operands of randomly generated addition
problems while respecting the 10-digit length constraint.

B.2 ADDITIONAL RESULTS FOR ADVERSARIAL ATTACK EXPERIMENT

Leading zeros are one of two failure modes of the target model discovered by BaNEL in Sec. 5.2. To
ensure that BaNEL’s performance gain is not simply due to its ability to discover leading zeros, here
we modify the definition of r such that it gives 0 for strings with leading zeros (i.e., leading zeros are
now syntactically invalid). Fig. 10 shows the compute scaling result for this setup. Similarly to Fig. 3,
BaNEL consistently outperforms other two baselines regardless of the number of epochs used.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 3: Wall-clock runtime (in seconds) for BaNEL, pseudo-count, and RND in the MNIST
experiment.

Ours Count-based RND

952 395 393

B.3 RUNTIME COMPARISON ON MNIST

In Table 3, we compare the runtime of RND, count-based, and BaNEL with a single NVIDIA H100
GPU. BaNEL uses 150 epochs for pϕ, which incurs additional cost.

B.4 ABLATION STUDIES FOR GSM8K-HARD

This section presents experiments for some important design choices of BaNEL.

Filter factor f Fig. 6 shows the effect of the filter factor f . We find that f = 16 performs best on
this dataset, although all values improve the success rate over the base model for most questions.

Number of epochs In Fig. 7, we sweep over values 1, 5, 10 for the number of epochs when training
pθ at each round, and observe that 10 yields the strongest results.

Computing likelihood ratio with the current proposal Algorithm. 2 requires maintaining three
models: the current generator pθi−1 , the negative model pϕi−1 , and the base model pθ, which can
be computationally costly. However, notice that pθi−1(x) ∝ pθ(x) for x ∈ supp(pθi−1) if the
distillation is performed optimally. Hence, we can use pθi−1 (x)

pϕi−1 (x)
instead of pθ(x)

pϕi−1 (x)
to rank samples,

as this does not change the relative ordering. Doing so eliminates the need to store the base model,
reducing space complexity. As shown in Figure 8, the results are mixed. We use the base model for
the likelihood ratio in Sec. 5.

High-temperature sampling A straightforward way to encourage exploration is to increase the
sampling temperature. We tested this by applying temperatures of 1.1 and 1.2 to the base model on
question 942. While this substantially increased the joint entropy, the resulting success rates were
only 0.0005 and 0.0006, respectively, based on 10,000 samples. For comparison, the base model’s
success rate confidence interval (Clopper–Pearson, α = 0.05, n = 10,000) is [0.00016, 0.0011].
Thus, higher temperatures did not yield a statistically significant improvement. This suggests that
reward sparsity cannot be overcome simply by injecting randomness through higher temperature;
instead, systematic elimination of failed attempts is required.

Success rate trends Fig. 9 shows that the success rates of BaNEL often peak and then decline.
RND exhibits similar behavior for problems 143, 1012, and 510. For the remaining problems, RND
either fails to improve the success rate at all or exhausts the NRE budget before reaching its peak.

B.5 COMPARISON OF NEGATIVE-RL, GFLOWNET, AND BANEL

Figure 11 presents the training dynamics of Negative-RL, GFlowNet, and BaNEL. Starting from
a prior model pretrained on MNIST 0-digits, we observe that training of both Negative-RL and
GFlowNet collapses, indicating that these methods are not suitable in our extremely sparse reward
setting.

C THE USE OF LARGE LANGUAGE MODELS

LLMs were employed to improve the clarity of several sentences.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Training progress

(a)

Training progress

(b)

Training progress

(c)

Figure 11: Results of post-training an autoregressive transformer trained on MNIST 0-digits: (a)
Negative RL (Eq. (1)); (b) GFlowNets (Eq. (3)); (c) BaNEL (Ours). Both negative RL and GFlowNets
result in severe detachment from pθ, rendering the model unusable for most tasks.

19

	1 Introduction
	2 Problem Formulation: Efficient Learning from Sparse Rewards
	3 Existing Methods Fail to Address Extreme Reward Sparsity
	3.1 Warm-Up Example: Policy Gradient
	3.2 Sparse RL Techniques: Intrinsic Rewards
	3.3 Reward-Based Sampling: GFlowNet

	4 Avoiding Failures with Bayesian Negative Evidence Learning
	4.1 Learning a Generative Model for Failed (Zero-Reward) Attempts
	4.2 Combining Multiple Filters Efficiently via Distillation

	5 Experiments
	5.1 MNIST 0 6
	5.2 Adversarial Attack on Toy Language Model
	5.3 GSM8K-Hard

	6 Discussion, Limitations, and Future Work
	7 Conclusion
	A Additional Related Work
	A.1 Hindsight Relabeling in RL
	A.2 Intrinsic rewards for language models
	A.3 Bayesian Optimization with Data Prior
	A.4 Data-driven black-box optimization

	B Additional experiments
	B.1 Implementation details
	B.2 Additional Results for Adversarial Attack Experiment
	B.3 Runtime Comparison on MNIST
	B.4 Ablation studies for GSM8K-Hard
	B.5 Comparison of Negative-RL, GFlowNet, and BaNEL

	C The Use of Large Language Models

