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Abstract

Large Language Models (LLMs) and code agents are rapidly evolving from generat-
ing isolated snippets to building full-fledged applications with graphical interfaces,
interactive logic, and dynamic behaviors. However, current benchmarks fall short
as they often rely on static checks or binary pass/fail scripts, failing to capture the
interactive behaviors and runtime dynamics that define real-world usability — in
other words, you don’t know if an app works until you click through it, interact with
it, and observe how it responds. To bridge this gap, we introduce RealDevWorld,
a novel framework for automated end-to-end evaluation of production-ready repos-
itories from scratch. It features two components: (1) RealDevBench, a diverse
set of 194 open-ended software engineering tasks across different domains and
modalities; and (2) AppEvalPilot, an agent-as-a-judge system that simulates re-
alistic GUI-based interactions to automatically and holistically assess functional
correctness, visual fidelity, and runtime behavior. RealDevWorld delivers fine-
grained, task-specific diagnostics beyond binary judgments and aligns strongly with
human assessments (accuracy 0.92, correlation 0.85), while substantially reducing
manual review. This enables scalable, human-aligned evaluation of LLMs’ ability
to generate production-level software.

1 Introduction
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Figure 1: Software Engineering Evaluation: From
Automated to Autonomous Evaluation

Remarkable advancements in LLMs for code
and autonomous coding agents are driving
a paradigm shift in software development.
Their generative capabilities are evolving from
function-level code snippets, to crafting self-
contained demos, and now towards the creation
of sophisticated, production-ready repositories
featuring intuitive user interfaces, modular archi-
tectures, and robust runtime integration. How-
ever, this evolution poses significant challenges
for evaluation. Current repository-level code
generation tasks lack rigorous assessments of
functional completeness, especially with respect
to dynamic and interactive user-centric behav-
iors. For example, consider a game application
generated by such a system. Its correctness and
quality cannot be reliably determined by code
inspection or static analysis alone. Instead, it re-
quires user-centric validation: clicking through
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Benchmark Lang. Level Tasks Eval Method Agent Judge Input Data Interactive
BigCodeBench [1] PY Func. Comp. Unit test ✗ Text, Code ✗

LiveCodeBench [2] PY Func. Gen. Unit test ✗ Text, Code ✗

RepoBench [6] PY, Java Repo. Ret. Similarity ✗ Text, Code ✗

SWE-Bench [9] PY Repo. Maint. Unit test ✗ Multi-modal ✗

EvoCodeBench [5] PY Repo. Ret. Pass@k ✗ Text, Code ✗

SWE-Lancer [10] JS, TS Repo. Dev. Unit test ✗ Multi-modal ✗

FrontendBench [11] JS Repo. Gen. Unit test ✗ Text ✓

COMMIT0 [12] PY Repo. Dev. Unit test ✗ Multi-modal ✗

Web-Bench [13] JS, TS Repo. Dev. Unit test ✗ Text ✗

RealDevWorld PY, JS, TS Repo. Dev. Unit test ✓ Multi-modal ✓

Table 1: Comparison of RealDevWorld with existing benchmarks. It leverages AppEvalPilot for
scalable, multi-modal, and interactive software evaluation. Note: TS = TypeScript; JS = JavaScript;
Func. = Function level; Repo. = Repository level; Comp. = Completion; Gen. = Generation; Ret. =
Retrieval; Maint. = Maintenance; Dev. = Development.

the interface, interacting with game elements, observing state transitions, and receiving feedback in
real time—actions that reflect how an actual user would engage with the system. These user-centric
and runtime-dependent behaviors are difficult to capture through conventional metrics and often
demand the execution of complex end-to-end (E2E) test cases on the generated front-end to assess
correctness, interaction quality, and behavioral robustness. However, automating such evaluations
remains challenging: generated repositories frequently vary in visual layout, interaction flow, and
execution paths, making static or script-based evaluations brittle and often infeasible.

Current benchmarks fall short in automatically assessing the functional completeness and real-world
applicability of production-ready repositories, as illustrated in Figure 1. Function-level benchmarks [1–
3] primarily focus on isolated generation tasks, such as function or class implementation, which
fail to capture the complexity and dynamic interactions of real-world repository-level applications.
Repository-level benchmarks [4–10] attempt to assess entire codebases, yet commonly rely on static
or predefined evaluation methods, such as code similarity metrics, unit tests, or scripted integration
tests, that are inherently brittle and limited. These methods struggle to reflect real-time interactions,
user-driven workflows, runtime errors, or the diverse visual and structural variability of generated
outputs. Real-world applications, especially those involving user interfaces, documentation, and
multimodal content, exhibit dynamic, unpredictable behaviors. Evaluating them accurately demands
intelligent, adaptive methods capable of systematically capturing runtime interaction fidelity and
user-centric correctness, highlighting the urgent need for more comprehensive evaluation frameworks.

Recent advances in interactive agent technology offer promising directions toward this goal. Emerging
paradigms, such as Agent-as-a-Judge [14], employ autonomous agents that execute end-to-end
tests by emulating human behaviors, monitoring runtime states, and capturing detailed execution
traces. Such agents transcend traditional static metrics, treating evaluated applications not merely
as passive test subjects, but as dynamic, interactive environments that inform agent reasoning
and decision-making. Building upon this paradigm, we present ReaDevWorld, a comprehensive
evaluation framework explicitly designed to assess AI-generated, production-ready codebases through
dynamic interaction and open-ended testing scenarios. As part of this framework, we introduce
RealDevBench, a benchmark of 194 carefully curated open-ended software engineering tasks across
display, analysis, data, and game domains. These tasks are sampled from the real-world programming
community requirements and systematically expanded at the function level using LLMs, with a subset
incorporating multimodal complexity (structured data, images, audio) to reflect real-world challenges.
Table 1 highlights how RealDevBench differs from existing evaluation datasets. To operationalize
this benchmark, we develop AppEvalPilot, a novel agent-based evaluation framework that emulates
human interactive software engineering practices. Given a task description and generated code,
AppEvalPilot integrates web and OS-level operations to simulate testing workflows, conducting both
functional and boundary evaluations for comprehensive software development verification. This
agent serves as an automated and effective testbed for production-ready software engineering. Our
main contributions are:

A GUI-Interactive Agent-as-a-Judge Paradigm for Automated Evaluation. We present AppE-
valPilot, a novel agent-as-a-judge evaluation paradigm for production-ready code generation in
complex, dynamic interaction scenarios. By simulating realistic user behavior and performing
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runtime GUI interactions, AppEvalPilot enables fine-grained diagnostics comparable to white-box
testing in traditional software engineering.

An Open-ended and Scalable Benchmark Suite. RealDevBench features a diverse set of tasks
derived from real-world programming needs, spanning domains like display, analysis, data, and
gaming. It benchmarks the ability of code intelligence models to build repository-level software from
scratch, with tasks incorporating multimodal inputs—such as images, audio, text, and structured
data—to increase reasoning difficulty and scenario realism.

Human Alignment and Cost-Effective Validation. Our framework achieves strong alignment with
expert human assessments, reaching an accuracy of 0.92 and a correlation of 0.85, substantially
outperforming existing automated evaluators. By narrowing the gap between model-based and human
evaluation, it enables more reliable and cost-effective validation of generated code.

2 Related Work

2.1 Benchmarks for Software Engineering

Evaluating repository-level code generation in LLM-based agents remains challenging due to the com-
plexity of end-to-end software development, including system integration, dependency management,
and dynamic interactions [14]. Existing benchmarks such as BigCodeBench [1], LiveCodeBench [2],
and NaturalCodeBench [3] focus on function- or class-level code completion and rely primarily on
static test cases, failing to capture dynamic behaviors like web interfaces or gameplay [15, 16]. As a
result, they fall short in assessing real-world development challenges such as integration, ambiguous
specifications, and evolving requirements. Repository-level benchmarks [4–10] tackle broader soft-
ware tasks with interdependent components, but mainly use static metrics like similarity scores or unit
tests [17, 18], which may not fully reflect functional correctness. Advanced benchmarks like rSDE-
Bench [8], SWE-Bench [9], and SWE-Lancer [10] depend on pre-defined test cases, limiting their
ability to evaluate adaptability to requirement changes or the creation of new modules. DEVAI [14]
and MLE-Bench [19] introduce automated development tasks for agent evaluation but rely on public
datasets, which may be seen during model training. In contrast, our proposed benchmark supports
adaptive module development and dynamic interaction testing, simulating human-like evaluation
processes to more comprehensively assess software development capabilities.

2.2 Advanced Judgement Approaches

Recent evaluation techniques have established new paradigms, starting with LLM-as-a-Judge [20],
which employs language models to evaluate text-based tasks instead of traditional metrics. While
effective for textual outputs, this approach is limited to assessing static final result rather than
development processes or intermediate outputs. Agent-as-a-Judge [14] builds on this by introduc-
ing a dynamic agent-based approach, leveraging multi-dimensional scoring and iterative feedback
loops [21]. However, it remains insufficient for evaluating software with complex interactive com-
ponents, particularly those with GUIs. These require evaluating both interaction flows and the
functionality of UI elements, which are more dynamic and nuanced. To address these challenges, we
propose an innovative approach that integrates GUI agent capabilities for interactive testing, inspired
by recent advances in GUI agents [22, 23], to mirror human testing processes for a more dynamic
and comprehensive evaluation. We summarized the comparisons in Table 1.

3 Preliminary

This section formalizes the task of end-to-end software evaluation and analyzes three mainstream
evaluation paradigms—human evaluation, LLM-as-a-Judge [24], and Agent-as-a-Judge [14]-in
terms of their coverage across software quality dimensions, laying the foundation for subsequent
experiments and theoretical analysis.

3.1 End-to-End Software Evaluation

As previously discussed in the introduction, end-to-end testing is essential for assessing production-
ready software development. Formally, a generator A (e.g., a human developer or an AI system)
receives a requirement instance Q = (D,F,M), where D is the requirement description, F is the list
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of desired features, and M represents any supplementary materials. Given this input, the generator
is expected to produce a complete software repository R. The goal of end-to-end evaluation is to
design an effective method to measure the quality of R. Unlike unit testing that focuses on individual
components, end-to-end evaluation validates user workflows across all system layers, ensuring the
entire software system functions correctly in realistic usage scenarios. This challenge is particularly
significant for complex software in real-world, open scenarios, where code structure and interaction
are often unpredictable.

3.2 Formalization and Evolution of Evaluation Workflows

According to software engineering standards and validation research (ISO/IEC/IEEE 29119 [25],
SV-COMP [26]), production-grade software must undergo comprehensive validation at three levels:
unit level (individual code components), system level (architecture and integration), and acceptance
level (user interactions and dynamic behaviors). Only by satisfactorily meeting all three levels can
software be deemed production-ready. We model the end-to-end evaluation process as a unified
pipeline that transforms the general evaluation workflow into concrete implementations:

(Q,R)
Identify−−−−→ C

Execute−−−−→ T
Judge−−−→ S (1)

where from task description Q and repository R, test cases C are identified. These test cases are
executed to collect execution traces T, and Judge analyzes these traces to produce the final software
quality score S. The key differences between evaluation paradigms lie in how test cases C are
identified given Q and R, how these C are executed to collect traces T, and how Judge analyzes these
traces to produce S. The three mainstream evaluation paradigms are as follows.

Human evaluation workflow: Human experts participate in the entire process, covering unit, system,
and acceptance levels. In this paradigm, experts manually analyze requirement Q and repository
R, design test cases C based on features F . The test cases are executed manually to generate
comprehensive Tmanual that covers all validation levels such as unit testing, system testing, and
acceptance testing. Subsequently, Judgehuman analyzes the manual traces to produce quality score
Smanual, e.g. test coverage and pass rates. The advantage is comprehensiveness, but the disadvantage
is high cost and low efficiency due to the manual nature of the entire process.

LLM-as-a-Judge workflow: A typical implementation is automatic scoring based on static code
analysis (e.g., ArtifactsBench). In this approach, Executestatic extracts code fragments via fixed scripts
or paths, generating limited test cases C only from static code inspection rather than from the original
feature list F . This produces Tracestatic consisting of static text representations, which JudgeLLM
analyzes through text-based reasoning to generate Sstatic. This method only covers the unit and part
of the system level, cannot detect runtime or interaction issues, and has limited reliability due to the
static nature of both Executestatic and Tracestatic.

Interactive agent-as-a-judge workflow: The agent can automatically understand requirements and
decompose features from F to generate comprehensive test cases C. During evaluation, Executeagent
executes these C through GUI interactions with R, dynamically collecting execution results to form
Traceagent that captures real-time behaviors and user interactions. Judgeagent then analyzes these
dynamic traces to produce Sagent. This method can automatically cover all three dimensions—unit,
system, and acceptance levels—combining depth and scalability, making it ideal for production-grade
evaluation. This framework provides the theoretical foundation for our RealDevBench benchmark
and AppEvalPilot evaluation system, which we detail in the following sections.

4 RealDevBench: Open-Ended SE Benchmark

4.1 Dataset Overview

To comprehensively evaluate AI systems across these dimensions, we introduce RealDevBench,
a benchmark specifically designed to assess end-to-end software engineering capabilities in a re-
alistic and practical context. RealDevBench comprises 194 requirements spanning four practical
domains—Analysis, Display, Data, and Game, that reflect core engineering needs. The distribution
of tasks is as follows: Display (50.0%), Data (14.4%), Analysis (18.6%), and Game (17.0%), as
illustrated in Figure 5. This allocation mirrors the prevalence of web-centric and data-intensive
applications in real-world software development. The dataset is defined by three key attributes: (1)
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Figure 2: Overall design of AppEvalPilot showing the automated testing workflow: test case gen-
eration from user requirements, multimodal test execution through interface interaction (scrolling,
typing, clicking), and binary evaluation of outcomes for objective software assessment.

Open-ended repository construction, where systems must build software from scratch rather than fill
in predefined templates; (2) Multimodal complexity, incorporating diverse inputs such as text, images,
audio, and tabular data to test integrative and cross-modal capabilities; (3) Functional diversity,
encompassing a wide spectrum of software functionalities across varying levels of complexity.

4.2 Dataset Construction

Domain and Requirement. We examined WebDev Arena [27] to establish 4 domain categories:
Display, Analysis Data, and Game. We sampled requirements from SRDD [28] and expanded
through web crawling freelancer platforms (Upwork2 and Freelancer3) to capture real client demands.

Feature Construction. To construct detailed feature lists that extend requirements from development
and functional perspectives, we learned from open-source projects and performed systematic feature
extraction. We crawled GitHub projects meeting strict selection criteria: comprehensive documenta-
tion (README, API docs), production-ready quality (1000+ stars, active development), and clear
feature specifications. We employed Claude-3.5-Sonnet [29] to extract functional requirements from
repository documentation and expand requirements into structured feature specifications, ensuring
consistent translation of requirements into actionable features with clear evaluation criteria.

Task Structure and Formulation. As shown in Figure 5, each task in RealDevBench is structured as
a triplet to simulate realistic software development scenarios: (1) Requirements Description: A textual
summary outlining the project’s purpose and setting; (2) Feature List: A detailed and structured list of
functional goals that define the success criteria; (3) Supplementary Materials: Task-specific resources
such as images, audio, or datasets that introduce real-world complexity. To further enhance the
realism of each task, we incorporated carefully curated materials from multiple sources: (1) Images:
Sourced from Unsplash 4 for thematic relevance and professional quality; (2) Datasets: Selected from
Kaggle 5 based on topic relevance and appropriate complexity; (3) Documents: Manually created
documents (resumes, business proposals, catalogs) that mirror real-world scenarios.

5 AppEvalPilot: Autonomous Evaluation

As discussed previously, the rise of AI-driven software development demands scalable, automated,
and adaptive evaluation methods. To achieve this, we introduce AppEvalPilot, an Agent-as-a-Judge
evaluation paradigm designed for automated end-to-end interaction-based software project testing.
Unlike static analysis or rigid test suites, AppEvalPilot actively engages with software interfaces,
executing real-time user interactions to assess functional correctness and adaptability. As illustrated
in Figure 2, the evaluation framework follows a three-stage pipeline: (1) generate test cases based
on requirements and domain knowledge; (2) simulate real-world user interactions via textual and
visual inputs; (3) assess correctness and completeness by comparing actual outcomes with expected

2https://www.upwork.com
3https://www.freelancer.com
4https://unsplash.com/
5https://www.kaggle.com/
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Figure 3: Evaluation pipeline of AppEvalPilot. The agent performs test sequences on two different
web implementations, systematically assesses functionality through direct interaction, documents
observable differences in form behavior, and generates quantitative scores based on test cases.

behaviors. This dynamic and automated approach aligns with RealDevBench’s focus on practical
software evaluation, enabling scalable and rigorous assessment of AI-generated systems.

Test Case Generation. AppEvalPilot starts by automating the creation of high-quality, contextually
relevant test cases that align with RealDevBench ’s open-ended and multimodal requirements.
To achieve this, it leverages few-shot learning [30] to infer requirement-to-test mappings from a
small set of manually curated examples, allowing it to generalize efficiently across diverse software
requirements. Additionally, it integrates domain-specific knowledge, such as game mechanics for
Game tasks, and security protocols for Data tasks, to ensure test cases accurately reflect real-world
scenarios and practical constraints. To standardize generation, the agent uses a structured prompt that
simulates the behavior of a professional test engineer. The number of cases is capped (e.g., 15–20) to
ensure evaluation tractability.

Test Case Execution. AppEvalPilot next autonomously executes the generated test cases by di-
rectly interacting with software applications through their GUIs, effectively simulating genuine user
interactions. As shown in Figure 2, the execution agent handles multiple input types from active
software, including textual data (XML) from accessibility trees (a11ytree) and visual data like icons
and screenshots, to accurately interpret the interface. This facilitates a thorough understanding of the
software’s UI for precise interaction. Specifically, the agent operates within a structured action space
consisting of four core commands, serving as the foundational components for complex interactions
(see Appendix B.1. These atomic actions, as shown in Figure 2, allow AppEvalPilot to execute
complex tasks such as form filling, web navigation, and validation checks. During the execution
of each test case, AppEvalPilot systematically transforms it into a structured, multi-step execution
workflow, wherein each step may encompass multiple actions amalgamated to facilitate higher-level
operations. To ensure efficiency and flexibility, AppEvalPilot employs adaptive decision-making
through historical reasoning and model-based planning, following the Plan-Act framework [31] to
continuously improve execution processes. This method allows AppEvalPilot to enhance execution
by refining subtasks, minimizing redundant actions, and adapting strategies in response to unexpected
UI conditions or errors, especially important for lengthy software testing tasks.

Test Result Evaluation. The Test Result Evaluation module compares actual interaction outcomes
against the expected success criteria defined in RealDevBench. The agent autonomously executes
interaction workflows across different application implementations, adapting its actions based on
each interface while maintaining consistent testing objectives. Specifically, after each test execution,
AppEvalPilot generates a structured report that documents both the performed actions (e.g., entering
user information, submitting a form) and the resulting behaviors (e.g., form submission success,
data persistence). Based on observed outcomes, AppEvalPilot classifies each test case into one of
three categories: Pass (expected behavior is met), Fail (expected behavior is violated), or Uncertain
(outcome is inconclusive or partially observed). These classifications feed into an aggregated score
on test case or feature levels, offering a quantitative assessment of the software quality.

As illustrated in Figure 3, the agent runs similar interaction sequences across different implementations
and determines test case satisfaction by comparing observed execution results against specified
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requirements. This autonomous execution approach enables the agent to make informed judgments
about requirement satisfaction by directly observing how different implementations respond to similar
user interactions. This process not only surfaces hidden behavioral issues but also ensures that the
evaluation remains scalable, interpretable, and grounded in observable user-level feedback.

6 Experiments

We conduct comprehensive experiments to validate AppEvalPilot’s evaluation capabilities and its
effectiveness in benchmarking software development systems. Our experimental design addresses
two critical research questions: (1) How effectively does AppEvalPilot evaluate software quality
compared to existing evaluation approaches? and (2) Can AppEvalPilot serve as a reliable automated
judge for benchmarking LLM-based software engineering?

6.1 AppEvalPilot Capability Validation

Dataset. We construct our evaluation dataset by selecting 49 tasks (25%) from RealDevBench,
ensuring coverage across all domains. We first fix the generated software projects using Lovable [32]
and establish reliable human ground truth labels through a rigorous two-level evaluation process:
(1) Test case-level: For test cases ci generated by AppEvalPilot, we invite 3 QA specialists (1-
3 years experience) to execute each test case and evaluate Pass/Failed/Uncertain outcomes; (2)
Feature-level: Each project also receives independent scoring from 3 QA specialists who manually
test generated software projects against feature lists, providing granular scores for each feature
fi ∈ {0, 1} (Failed/Pass), with final validation by a senior expert. Therefore, each project quality is
recorded as human_quality = 1

n

∑n
i=1 fi where n represents the total number of features.

Baselines. We compare against state-of-the-art GUI systems: Claude-3.5-Sonnet-v2 [29], UI-
Tars [33], WebVoyager-Agent [34] with qwen2.5-vl-32B [35] and claude-3.5-sonnet-v2 backbones,
and Browser-Use with claude-3.7-sonnet-v2 [36]. Framework protocols provide high-level require-
ments for autonomous test strategy decomposition, while model protocols provide pre-generated test
cases aligned with their input paradigms.

Metrics. Given test case set C = {c1, c2, ..., cN} or feature list F = {f1, f2, ..., fM}, each item is
classified as true, false, or uncertain by human evaluators or agents. We define binary scores as:

scorei =
{
1 if classi = true
0 if classi ∈ {false, uncertain}

We use accuracy to measure judgement correctness and quality alignment using Pearson correlation
at test case-level and feature-level, where test case-level represents averaged performance across all
test cases in each project, and feature-level measures correlation between agent and human feature
scores across all software projects.

Results & Analysis. AppEvalPilot demonstrates superior performance across all evaluation metrics.
Our framework achieves an accuracy of 0.92 in test case classification and a quality alignment
correlation of 0.81 with human evaluators, representing a 47% improvement over WebVoyager
(Claude-3.5-Sonnet) which achieved 0.55 accuracy alignment. Compared to baseline GUI testing
approaches like Browser-Use [37], AppEvalPilot reduces evaluation time by 33% (from 13.50 to 9.00
minutes per app) while achieving 77% cost reduction through its interactive-driven paradigm. At the
feature level, AppEvalPilot maintains the highest alignment with human assessments, achieving 0.85
correlation across diverse application domains compared to Browser-Use’s 0.58, representing a 47%
improvement and validating its effectiveness in end-to-end automated evaluation. End-to-end auto-
mated software testing presents significant challenges for existing GUI models and agents, requiring
sophisticated planning capabilities and execution accuracy, where traditional GUI tasks primarily
focus on fine-grained operational requirements similar to individual test case granularity. When
utilizing test cases provided by AppEvalPilot, all baseline models showed an average improvement
of 0.17, demonstrating the value of our test case generation approach. Our observations reveal
that detailed test cases not only improve GUI agent testing success rates but also enhance testing
robustness, since each feature is decomposed into multiple supporting test cases where incorrect
judgment on one test case does not affect the results of other test cases, thereby improving the
robustness and reliability of the overall testing process.
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Method Feature-level Test Case-level Efficiency

Quality Align. Quality Align. Acc. Time Cost

Human 0.74 – 0.65 – – – –

GUI Model

Claude-3.5-Sonnet 0.27 0.23 0.46 0.49 0.68 9.20 1.01
UI-Tars 0.49 0.29 0.63 0.59 0.75 8.65 0.17

GUI Agent Framework

WebVoyager (Qwen2.5) 0.29 0.25 0.35 0.44 0.6 2.16 0.04
WebVoyager (Claude) 0.64 0.43 0.6 0.55 0.74 1.60 0.10
Browser-Use (Claude) 0.67 0.58 0.63 0.61 0.76 13.50 1.13
AppEvalPilot(Claude) 0.73 0.85 0.74 0.81 0.92 9.0 0.26

Table 2: Performance comparison on RealDevBench benchmark. Human Quality (GT) represents
ground truth project quality scores from human evaluation. Quality Alignment measures correlation
with human assessments.
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Human Quality vs Agent/Code/Visual Quality Comparison
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Figure 4: Comparative analysis of evaluation methods versus human quality. (Left) AppEvalPilot’s
autonomous evaluation, (Middle) Static LLM code scoring, (Right) Visual aesthetic scoring. Each
point represents one project, with radial distance indicating quality scores (0-1 scale).

Comparative Evaluation Analysis. To comprehensively validate AppEvalPilot’s evaluation effec-
tiveness, we conduct systematic comparative analysis across multiple evaluation methodologies using
the same 49 Lovable-generated projects. Our comparison encompasses static evaluation methods as
illustrated in Figure 4: (1) Code Quality assessment [24] employing integrated Claude-3.5-Sonnet
scoring of source files, and (2) Visual Quality evaluation utilizing Claude-3.5-Sonnet aesthetic scoring
with WebGen-Bench prompts [38]. As demonstrated in Figure 4, both Code Quality and Visual
Quality fail to effectively capture the nuances of software quality, in contrast to Agent Quality, which
shows a strong alignment with human assessments. Our analysis reveals critical shortcomings in
existing LLM-as-a-judge and MLLM-as-a-judge approaches. First, static evaluation cannot capture
dynamic interaction issues that define software quality—the deviation means for Code Quality and
Visual Quality are 2.79× and 3.34× higher than AppEvalPilot’s Agent Quality, respectively, demon-
strating substantial gaps between static assessment and actual user experience. Second, evaluation
distributions exhibit pronounced misalignment with human judgment: AppEvalPilot achieves a
distribution overlap rate of 0.96 with human scores, while Code Quality and Visual Quality achieve
mere 0.75 and 0.55 overlap rates, indicating fundamental divergence from natural evaluation patterns.
These findings underscore the superiority of our agent-based evaluation framework in capturing
multifaceted software quality aspects that traditional static methods systematically overlook. AppE-
valPilot’s dynamic interaction capabilities enable accurate quality assessment that closely mirrors
human evaluation standards while providing actionable feedback for developers, demonstrating clear
advantages over existing static evaluation paradigms.
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System Agent Quality Code Quality Visual Quality

Large Language Models

Claude-3.7-Sonnet 0.31 0.41 0.18
Gemini-2.5-Pro 0.29 0.45 0.26
Kimi-K2 0.39 0.41 0.29
DeepSeek-V3 0.29 0.18 0.21
Qwen3-Coder-480B 0.53 0.41 0.32
Qwen3-235B-Instruct 0.33 0.42 0.20

Agent Systems

OpenHands 0.50 0.38 0.33
Lovable 0.74 0.58 0.47
Bolt 0.54 0.69 0.50
MGX 0.60 0.68 0.41
MGX (BoN-3) 0.78 0.72 0.41

Table 3: Comparative results across different code generation systems and evaluation methods.

6.2 Performance of LLMs on RealDevBench

Experimental Setting. Considering validation costs, we conduct experiments on 54 tasks from
RealDevBench-test. The evaluated generation frameworks include MGX [39], MGX (BoN-3),
Bolt [40], Lovable, OpenHands [41], Claude-3.5-Sonnet, Gemini-2.5-Pro [42], Kimi-K2 [43],
DeepSeek-V3 [44], Qwen3-Coder-480B [45], and Qwen3-235B-Instruct. After code generation,
we execute deployment through automated scripts and LLM-generated deployment commands. For
MGX, Bolt, and Lovable, we directly utilize their pre-deployed project URLs for testing. We employ
three evaluation approaches: AppEvalPilot’s interactive assessment, static code quality evaluation,
and visual aesthetic scoring through screenshot analysis.

Performance Analysis. RealDevBench presents significant challenges for LLMs, with even state-of-
the-art models like Kimi-K2 achieving only 0.39 in software quality for generated projects. Current
LLM performance on RealDevBench is substantially lower than their performance on traditional
coding benchmarks, revealing significant defects and bugs in complete interactive functionality
development and validation. Visual and static code assessment alone cannot adequately quantify these
limitations and shortcomings. For agent frameworks, generation quality shows significantly higher
average scores in Agent Quality, with an improvement of approximately 0.27 compared to direct LLM
generation. This improvement stems from two key factors: First, these frameworks adopt standard
software engineering development processes through design, development, and basic deployment
verification, significantly enhancing code usability. Second, for complex interactive functionality
design, agent-generated projects contain multiple files and components, providing more complete
functional implementation compared to single-script solutions produced by LLMs. As shown in
Table 3, static assessment methods fail to capture runtime behaviors, user interaction flows, and
integration issues that are critical for real-world software functionality. This validates AppEvalPilot’s
interactive evaluation paradigm as essential for comprehensive software quality assessment.

7 Conclusion

In this paper, we introduce RealDevWorld, a novel framework for evaluating AI systems that
generate code repositories from scratch. It comprises RealDevBench, an open-ended and scalable
dataset of 194 diverse tasks with multimodal elements, and AppEvalPilot, a GUI-based Agent-as-a-
Judge evaluation paradigm. AppEvalPilot performs automated, end-to-end validation of software
functionality, including dynamic behaviors and interaction logic, while providing fine-grained, task-
specific diagnostic feedback.

Extensive experiments show that our framework closely aligns with expert human judgments while
significantly reducing evaluation time and cost. On the RealDevBench benchmark, AppEvalPilot
substantially outperforms existing GUI frameworks, achieving an accuracy of up to 87%. Overall,
RealDevWorld offers a scalable and automated solution for reliable software evaluation, paving the
way for future advancements in production-ready code generation.
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Appendix A Benchmark Samples Analysis
RealDevBench comprises 194 requirements spanning four practical domains: Analysis, Display,
Data, and Game, that reflect core engineering needs. The distribution of tasks is as follows: Display
(50.0%), Data (14.4%), Analysis (18.6%), and Game (17.0%), as illustrated in Figure 5. This
allocation mirrors the prevalence of web-centric and data-intensive applications in real-world software
development.

Data

Finance Tracker

Create financial dashboard from CSV data to 
track income/expense trends and budget.

Feature List

Requirements

1. Income/expense trend
2. Expense category chart
3. Budget progress bar

Materials

Income & Expenses

Photography Portfolio

Photography Information Stories

1. Raw format support
2. Photo grid layout
3. Photo zoom preview


Market Analysis

1. Market size trend
2. Price distribution
3. User rating analysis

Theme Game Mod

1. Character replacement
2. Item replacement
3. Background replacement

Build photography portfolio with themed 
categorization and shooting details.

Feature List

Requirements

Materials

Analyze market CSV data to assess status, find 
opportunities and entry points.

Feature List

Requirements

Materials

Market research data

Develop game modifications using photography 
assets and creative elements.

Feature List

Requirements Description

 Materials

 Game source code 

+3 more features

+3 more features +3 more features

+4 more features
GameAnalysis

Display

Figure 5: Representative cases from RealDevBench across four domains with consistent triplet
structure (requirements, features, materials).

A.1 Display Domain Examples
The Display domain focuses primarily on web development and content presentation applications
requiring front-end development expertise, involving interactive display functionalities such as
personal blogs, portfolios, corporate websites, e-commerce storefronts, documentation sites, and
multimedia galleries.

Display Task 1: Professional Portfolio Website

Requirement Description:
Create a professional personal portfolio website that showcases expertise and project experience. The
system will process provided materials to generate a comprehensive, responsive web presence with privacy-
conscious content filtering.

Feature List:
1. Navigation System: Fixed header with smooth scrolling navigation links

2. Hero Section: Professional profile photograph integration with dynamic introduction

3. Project Showcase: Interactive card-based layout with hover effects

4. Skills Visualization: Dynamic skill tag cloud with proficiency indicators

5. Social Integration: Elegant social media link collection with animations

6. Resume Access: Secure PDF download with privacy filtering

7. Responsive Design: Adaptive layout for all device types

Supplementary Materials: Resume document (PDF format), Professional profile photograph (JPG)
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Display Task 2: Social Link Tree

Requirement Description: I have a set of social media links and creative platform homepage
links. These materials need to be used to create a link navigation page that conveniently displays all my
links on a single page.
Please design and implement a social link navigation page based on the following requirements

Feature List:
1. Display a personal avatar and profile text.

2. Display all links as a list of buttons.

3. Links can be filtered by category tags.

4. Add a theme toggle button to support both light and dark modes.

5. Generate a QR code for the page to make it easy for others to scan and access.

Supplementary Materials: Link.md containing social media platform URLs

A.2 Analysis Domain Examples
The Analysis domain challenges involve transforming raw data into actionable insights:

Analysis Task 1: Blog Traffic Analysis

Requirement Description: Please design and implement the data analysis based on the following
requirements: I have a blog visit data CSV with PV, UV, visit duration, source page, etc. and want to
analyze the visit pattern and give optimization suggestions.

Feature List:
1. Draw a daily access trend graph to show the trend of blog access.

2. Provide a ranking of popular articles to show the most visited articles.

3. Plot the average dwell time graph to analyze how long readers stay on the page.

4. Provide visit source percentage to help me understand the source channels of visitors.

5. Provide page bounce rate table to analyze which pages have higher bounce rate.

6. Provide popular search terms cloud to show the keywords searched by users.

Supplementary Materials: Blog visit data.csv
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Analysis Task 2: Product Review Analysis

Requirement Description: Please design and implement the data analysis based on the following
requirements. I have a CSV of user review data for a product on an e-commerce platform containing ratings,
review text, date of purchase, etc., and would like to analyze these reviews and summarize the product
benefits and issues.

Feature List:
1. Draw a rating distribution chart to show the distribution of ratings for the product.

2. Provide a keyword extraction table to analyze the keywords appearing in user reviews.

3. Plot monthly rating trends and analyze changes in ratings over time.

4. Provide advantages and problems classification, summarize the advantages and disadvantages of the
product.

5. Provide the rate of favorable and unfavorable charts, showing the proportion of favorable and unfavor-
able reviews.

6. Provide an excerpt of popular reviews, showing what users are saying in key reviews.

Supplementary Materials: User comment data.csv
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A.3 Data Domain Examples
The Data domain focuses on information processing and visualization systems:

Data Task 1: Finance Tracker

Requirement Description: Please design and implement the dashboard based on the following
requirements: I have a CSV of a year’s worth of personal income and expense details, including dates,
categories, amounts, notes, and other information. Based on this data, create a personal finance analytics
Kanban board that can show income and expenditure trends and track budget execution.

Feature List:
1. Display a monthly income and expenditure trend chart.

2. Provide a pie chart of expenditure categories.

3. Display a budget execution progress bar.

4. Provide an income and expenditure breakdown grid.

5. Show a curve of balance changes.

6. Provides a monthly report out function.

Supplementary Materials: Personal income and expenditure details.csv

Data Task 2: Stock Data View

Requirement Description: Please design and implement the dashboard based on the following
requirements: I have a CSV file with historical stock data, including date, opening price, closing price,
trading volume, and related news headlines. Based on this data, I would like to create a dashboard to
display the market trends of the stock and help me analyze its movement.

Feature List:
1. Candlestick Chart (K-Line Chart): Display a candlestick chart to visualize the stock’s opening, closing,

high, and low prices over time.

2. Trading Volume Bar Chart: Show a bar chart that represents the trading volume on different days.

3. Technical Indicators Chart: Provide a chart with technical indicators like Moving Averages (MA),
Relative Strength Index (RSI), or Bollinger Bands.

4. News Sentiment Analysis Chart: Display a sentiment analysis chart showing the positive, negative, and
neutral sentiment of the related news headlines.

5. Correlation Heatmap: Provide a heatmap that shows the correlation between the stock price and other
related data (such as volume, technical indicators, etc.).

6. Data Export Feature: Provide a function that allows users to export the analyzed data in a format such
as CSV or Excel.

Supplementary Materials: Stock historical data.csv

A.4 Game Domain Examples
The Game domain challenges test interactive entertainment application development:
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Game Task 1: Mini Card Game

Requirement Description: Please develop a card battle game based on the following requirements,
where players can play turn-based battles against the computer.

Feature List:
1. Create a card display interface.

2. Implement a basic matchmaking system.

3. Add a simple AI opponent.

4. Implement a turn counter.

5. Judge the winners and losers and display the results.

6. Add a replay button.

Supplementary Materials: None

Game Task 2: TurboRally Game

Requirement Description: Turbo Rally is a racing game software that combines off-road driving
with intense rally racing. Players can choose from a variety of rugged vehicles and compete in thrilling rally
races on challenging off-road tracks. The objective is to navigate through rough terrain,dodge obstacles,and
reach the finish line in the shortest time possible. The game features realistic physics,dynamic weather
conditions,and stunning graphics to provide an immersive rally racing experience. Please design and
implement it based on the following requirements:

Feature List:
1. Implement a vehicle selection interface displaying a minimum of 5 different off-road vehicles with

distinct specifications (speed, handling, acceleration) and visual previews

2. Create a physics engine that simulates realistic vehicle behavior including suspension, terrain interac-
tion, and collision detection with obstacles

3. Develop a dynamic weather system that affects vehicle handling and track conditions (rain reduces
traction, mud affects speed, etc.)

4. Design a race tracking system that records lap times, checkpoint times, and maintains a leaderboard for
each track

5. Create at least 3 distinct off-road tracks with varying terrain types (mud, gravel, sand) and obstacles
(rocks, logs, water crossings)

6. Implement a real-time performance dashboard showing current speed, lap time, position, and track
progress during races

Supplementary Materials: None
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Appendix B AppEvalPilot Details

B.1 Hierarchical Action Space
The action space A of AppEvalPilot strikes a balance between expressiveness and operational
efficiency, comprising four core actions that enable comprehensive automated testing capabilities, as
shown in Table 4.

Specifically, the agent operates within a structured action space consisting of four core commands,
serving as the foundational components for complex interactions. The action space includes:

• Open (app): Launches the target application via shortcut keys to enable quick context
switching.

• Run (code): Uses PyAutoGUI to simulate mouse and keyboard input for complex interaction
sequences.

• Tell (answer): Outputs test results to support validation and downstream metrics like
AgentScore.

• Stop: Ends the current test episode, managing execution boundaries.

Action Implementation Purpose
Open (app) Using shortcut keys to quickly launch the

application (e.g., Win + [Search] + Enter)
Facilitates rapid context
switching

Run (code) Executes Python scripts via PyAutoGUI for
mouse and keyboard emulation

Enables complex interaction
sequences

Tell (answer) Outputs test results Provides reporting and valida-
tion

Stop Terminates the test episode Controls episode termination
Table 4: Action Space of AppEvalPilot. OpenApp is designed to facilitate the rapid initialization
of the testing environment for AppEvalPilot. The Run action constitutes the primary operational
module of AppEvalPilot, enabling flexible execution of testing procedures via Python code blocks.
The Tell action allows AppEvalPilot to output evaluation results. The Stop action terminates the
testing process.

B.2 Agent Execution Case Study
This section presents case studies designed to demonstrate the agent’s ability to evaluate applications
across a range of scenarios. Each case study includes the original software design requirements,
the corresponding automated test cases, and the agent’s evaluation results. For enhanced clarity,
screenshots of the agent’s operations and historical data are provided at our case study website6.
Analysis of these cases will illustrate AppEvalPilot’s dynamic testing capabilities.

B.3 Prompt for Test Case Generation

6https://appevalpilot.realdev.world
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Test Case Examples

1. Navigation Verification: Persistent top navigation bar positioning during scrolling

2. Link Validation: Intra-page navigation link accuracy ("Home", "Projects", etc.)

3. Image Quality: Avatar image rendering quality and aspect ratio preservation

4. Content Integrity: Biographical text completeness and typographic consistency

5. Layout Testing: Project card list formatting and content integrity

6. Privacy Compliance: Verify absence of compensation data in project disclosures

7. Responsive Design: Skill tag cloud layout responsiveness across devices

8. Interactive Elements: Test hover effects on skill tags and buttons

9. External Links: Social media link destination accuracy verification

10. Download Function: PDF resume download functionality testing

11. File Integrity: Validate PDF file integrity and readability

Case Generation Prompt

You are a professional test engineer. Please generate a series of specific test cases based on the following
user requirements for the webpage.
Requirements:

1. Test cases must be generated entirely around user requirements, absolutely not missing any user
requirements

2. Please return all test cases in Python list format

3. When generating test cases, consider both whether the corresponding module is displayed on the
webpage and whether the corresponding function is working properly. You need to generate methods
to verify webpage functionality based on your knowledge.

4. Please do not implement test cases that require other device assistance for verification.

5. Please control the number of test cases to 15 20, focusing only on the main functionalities mentioned in
the user requirements. Do not generate test cases that are not directly related to the user requirements.

6. When generating test cases, focus on functional testing, not UI testing.

[Test Case Examples]

User Requirements: [demand]
Please return the test case list in List(str) format, without any additional characters, as the result will be
converted using the eval function.

B.4 Prompt for Test Result Judgment

Test Judgement Prompt

The model results are labeled as ground truth. Please judge whether the described test case has been
successfully implemented based on the facts. If there is evidence that it has been implemented, just output
"Yes", otherwise output "No". If the model results indicate that the outcome cannot be determined, output
"Uncertain":

Test Case Description: [task_desc]

Model Result: [model_output]

Only answer with "Yes", "No", or "Uncertain"

B.5 Prompt for Test Execution
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Test Execution Prompt
You are a professional and responsible web testing engineer (with real operation capabilities). I
will provide you with a test task list, and you need to provide test results for all test tasks. If you
fail to complete the test tasks, it may cause significant losses to the client. Please maintain the
test tasks and their results in a task list. For test cases of a project, you must conduct thorough
testing with at least five steps or more - the more tests, the more reliable the results.
[IMPORTANT]: You must test ALL test cases before providing your final report! Do not skip
any test cases or fabricate results without actual testing! Failing to complete the entire task list
will result in invalid test results and significant client losses.
Task Tips:
Standard Operating Procedure (SOP):

1. Determine test plan based on tasks and screenshots

2. Execute test plan for each test case systematically - verify each case in the task list one by
one

3. After completing each test case, you can use Tell action to report that individual test case
result

4. After completing ALL test case evaluations, use Tell action to report the COMPLETE
results in the specified format

Reporting Language: Answer in natural English using structured format (like dictionaries). Tell
me your judgment basis and results. You need to report the completion status of each condition
in the task and your basis for determining whether it’s complete.
Note that you’re seeing only part of the app(or webpage) on screen. If you can’t find modules
mentioned in the task (especially when the right scroll bar shows you’re at the top), try using
pagedown to view the complete app(or webpage).
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Test Execution Report Prompt
Inspection Standards:

1. Test cases are considered Pass if implemented on any page (not necessarily homepage).
Please patiently review all pages (including scrolling down, clicking buttons to explore)
before ending testing. You must understand relationships between pages - the first page
you see is the target app’s homepage.

2. If images in tested app(or webpage) modules aren’t displaying correctly, that test case fails.

3. You may switch to other pages on the app(or webpage) during testing. On these pages, just
confirm the test case result - don’t mark other pages-passed cases as Fail if subpages lack
features. Return to homepage after judging each case.

4. Trust your operations completely. If expected results don’t appear after an operation, that
function isn’t implemented - report judgment as False.

5. If target module isn’t found after complete app(or webpage) browsing, test case result is
negative, citing "target module not found on any page" as basis.

6. Don’t judge functionality solely by element attributes (clickable etc.) or text ("Filter by
category" etc.). You must perform corresponding tests before outputting case results.

7. When tasks require operations for judgment, you must execute those operations. Final
results can’t have cases with unknown results due to lack of operations (clicks, inputs etc.).

8. For similar test cases (e.g., checking different social media links), if you verify one link
works, you can assume others work normally.

For each individual test case completion, you can use Tell action to report just that result:

Tell ({"case_number": {"result": "Pass/Fail/Uncertain", "evidence": "Your evidence here
"}})

Even in these failure cases, you must perform sufficient testing steps to prove your judgment
before using the Tell action to report all results.

[VERIFICATION REQUIRED]: Before submitting your final report, verify that:
1. You have tested EVERY test case in the task list

2. Each test case has an explicit result (Pass/Fail/Uncertain)

3. Each result has supporting evidence based on your actual testing

Final Result Format (must include ALL test cases):
{

"0": {"result": "Pass", "evidence": "The thumbnail click functionality is working
correctly. When clicking on ’Digital Artwork 1’ thumbnail, it successfully
redirects to a properly formatted detail page containing the artwork’s title,
image, description, creation process, sharing options, and comments section."},

"1": {"result": "Uncertain", "evidence": "Cannot verify price calculation accuracy as
no pricing information is displayed"},

"2": {"result": "Fail", "evidence": "After fully browsing and exploring the web page,
I did not find the message board appearing on the homepage or any subpage."}

}

**Return only the result string. Do not include any additional text, markdown formatting, or
code blocks.**

B.6 Qualitative Analysis of Failure Modes
To provide a deeper understanding of our agent’s behavior, we conducted a qualitative analysis of
identified failure cases. This analysis reveals the characteristic limitations of our current approach
and provides a roadmap for future improvements in agentic testing. Below, we present a table
summarizing common failure modes with specific examples.
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Project Test Case Failure Rea-
son Analysis Screenshot

Language
Spelling Bee

Verify that au-
dio playback
or definition
display for
quiz words
functions
correctly.

Missing
Necessary
Information

1.Lack of audio informa-
tion makes the evidence
insufficient.
2. The agent halluci-
nates a conclusion de-
spite the insufficient evi-
dence.

MoodMaker

Test if the
generated
playlist con-
tains between
10-15 songs.

Model Hallu-
cination

The LLM hallucinates.
It correctly identifies that
there are 3 songs but
fails to recognize that 3
is not within the 10-15
range.

Research Pa-
per Gallery

Click on a
paper title to
check if it
navigates to
the paper’s
details page.

Low-quality
Test Cases

The generated test case
was not aligned with
the actual implementa-
tion. The "details page"
was accessible by click-
ing "read more," not the
title, but the test case
was marked as failed
for not adhering to the
overly specific instruc-
tion.

Memory
Match

Flip all paired
cards to ver-
ify if the game
correctly iden-
tifies the com-
pleted state.

Need for
Advanced
Reasoning
Ability

The task requires the
agent to possess strong
logical thinking and
memory skills to track
and match pairs.

Space Shooter

Press the
spacebar or
the designated
shoot key to
check if the
spaceship fires
a projectile.

Need for Real-
time Feedback

A significant time lag ex-
ists between the agent’s
observation and its ac-
tion. By the time the
agent decides to act, the
environment has already
changed.
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Table 5 – continued from previous page

Project Test Case Failure Rea-
son Analysis Screenshot

Travel Blog

Check if the
webpage dis-
plays a map
module.

Differences in
Test Standards
Understand-
ing

The agent interpreted the
test case literally, pass-
ing it as long as a
map module was visible.
However, the actual re-
quirement implied that
the map module must
also be fully functional.

Table 6: Examples of Common Failure Modes in Agentic Testing.
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Appendix C Evaluation of Software Quality
C.1 Manual Evaluation Process
In our evaluation process, we invited a total of 12 individuals, comprising 9 QA specialists (1-3 years
experience) and 3 senior testing experts (5+ years experience), all of whom are professionals in the
field of computer science and experienced software testing engineers. For each project evaluation,
we assign 3 QA specialists to conduct independent assessments, with 1 senior expert overseeing the
quality assurance process. This team conducted comprehensive assessments of each collected task
and the generated software projects.

We first fix the generated software projects using Lovable [32] and establish reliable human ground
truth labels through a rigorous two-level evaluation process: (1) Test case-level: For test cases ci
generated by AppEvalPilot, we invite 3 QA specialists (1-3 years experience) to execute each test
case and evaluate Pass/Failed/Uncertain outcomes; (2) Feature-level: Each project also receives
independent scoring from 3 QA specialists who manually test generated software projects against
feature lists, providing granular scores for each feature fi ∈ {0, 1} (Failed/Pass), with final validation
by a senior expert. Therefore, each project quality is recorded as human_quality = 1

n

∑n
i=1 fi where

n represents the total number of features.

Feature-level Human Annotation Process. In the feature-level annotation phase, human annotators
are required to independently design verification procedures and test cases based on the provided
feature list and the implemented application. For each feature fi, annotators create approximately
3-5 test case groups that comprehensively cover different aspects and edge cases of the feature
implementation. These test cases are designed to systematically validate whether each feature meets
the specified requirements through practical execution scenarios. Based on the execution results of
these custom-designed test cases, annotators provide feature implementation labels with three possible
outcomes: true (feature correctly implemented), false (feature failed or incorrectly implemented),
and uncertain (ambiguous or partially implemented feature requiring further evaluation).

Test Case Annotation Process. In the test case annotation phase, human annotators are tasked
with executing the test cases generated by AppEvalPilot on the implemented applications. For each
test case ci, annotators manually perform the specified actions step-by-step on the live application
interface. This includes clicking buttons, filling forms, navigating between pages, and triggering
interactive elements as described in the test case instructions. During execution, annotators carefully
document the complete execution trajectory, recording each action performed, the system’s response,
and any intermediate states encountered. For each test case, annotators provide comprehensive
assessment results including: (1) the complete execution trace documenting each step performed and
the corresponding system responses, (2) screenshots or screen recordings of key execution moments,
(3) detailed descriptions of any deviations from expected behavior, and (4) a final evaluation label
categorized as true (test case passed - application behavior matches expectations), false (test case
failed with clear deviation from expected outcomes), or uncertain (ambiguous results requiring expert
review, partial functionality or unclear expectations).

Quality Assurance and Validation. Throughout both annotation phases, all human annotators work
independently to ensure unbiased evaluation results. To maintain annotation quality and consistency,
the assigned senior expert performs comprehensive secondary review of all annotation results for
their designated project. This validation process involves identifying cases or features with significant
assessment discrepancies across the three independent evaluations, conducting trajectory review and
re-execution verification for disputed results, and ensuring the reliability and trustworthiness of the
final ground truth labels.

C.2 Code Quality

We adopt the Code Quality assessment methodology from [24], employing integrated Claude-3.5-
Sonnet for automated scoring of source files. For supported file extensions including .py, .html,
.css, .js, .ts, .tsx, and .jsx, we scan the corresponding code files and concatenate their
content, then utilize the LLM to evaluate and score the overall code quality. The core prompt is
shown as follows.
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The evaluation process generates individual scores for each feature in the feature list. We apply
a threshold of 75: features scoring above 75 are marked as passed (1), while those scoring 75 or
below are marked as failed (0). The final LLM score represents the pass rate across all features:
LLM_score = number of passed features

total number of features .

Code Quality Prompt

To perform a comprehensive evaluation of the provided code, focus on a meticulous and
step-by-step assessment using the established Software Evaluation Framework, aiming
to yield minimal assessment scores based on rigorous real-world high standards.

# Software Evaluation Framework
## Evaluation Criteria
1. Implementation

- Modularity: Code should be organized into logical, reusable components
- Architecture: Clear separation of concerns and appropriate design patterns
- Reusability: Components should be designed for potential reuse

2. Functionality
- Core Features: All specified features must be fully implemented
- Interactivity: Dynamic user interactions vs static implementations
- User Experience: Intuitive and responsive interface
- Error Handling: Comprehensive error management
- State Management: Proper handling of application state

3. Logical Flow
- Control Flow: Clear and efficient program execution paths
- Data Flow: Proper data transformation and management
- Event Handling: Appropriate response to system and user events
- Asynchronous Operations: Proper handling of async processes
- State Transitions: Clear and predictable state changes

4. Edge Cases
- Input Validation: Handling of invalid or unexpected inputs
- Boundary Conditions: Managing edge values and limits
- Resource Management: Handling resource exhaustion scenarios

5. Requirement Dependencies
- Feature Dependencies: Proper implementation of dependent features
- External Services: Correct integration with external services
- Database Schema: Proper database relationships and constraints

## Quality Metrics and Weightings
### Core Quality Dimensions (Total: 100 points)

1. Functional Correctness (25 points)
2. User Experience (25 points)
3. Maintainability (20 points)
4. Reliability \& Stability (20 points)
5. Security \& Data Protection (10 points)

# Query
{query}

# Requirements
{features}

# Code
{codes}

# Output Format
Output the evaluation results as a list of Boolean values and corresponding scores in

JSON format.
‘‘‘
[

{{
"requirement_id": "Task Id",
"satisfied": boolean, true or false, satisfies the requirement or not.
"score": int, 0 ~ 100, the minimal evaluation score based on the high standards.
"reason": "string, the detailed explanation of the evaluation in 3~5 sentences."

}},
]
‘‘‘
## Examples
{example}

# Output
"""
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