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Abstract

Large Language Models (LLMs) and code agents are rapidly evolving from generat-1

ing isolated snippets to building full-fledged applications with graphical interfaces,2

interactive logic, and dynamic behaviors. However, current benchmarks fall short3

as they often rely on static checks or binary pass/fail scripts, failing to capture the4

interactive behaviors and runtime dynamics that define real-world usability — in5

other words, you don’t know if an app works until you click through it, interact with6

it, and observe how it responds. To bridge this gap, we introduce RealDevWorld,7

a novel framework for automated end-to-end evaluation of production-ready repos-8

itories from scratch. It features two components: (1) RealDevBench, a diverse9

set of 194 open-ended software engineering tasks across different domains and10

modalities; and (2) AppEvalPilot, an agent-as-a-judge system that simulates re-11

alistic GUI-based interactions to automatically and holistically assess functional12

correctness, visual fidelity, and runtime behavior. RealDevWorld delivers fine-13

grained, task-specific diagnostics beyond binary judgments and aligns strongly with14

human assessments (accuracy 0.92, correlation 0.85), while substantially reducing15

manual review. This enables scalable, human-aligned evaluation of LLMs’ ability16

to generate production-level software.17

1 Introduction18

HumanEval

2021
MBPP

2021

WebArena

2023

SWE-Bench

2024

ArtifactsBench

2025

COMMIT0

2025

Web2Code

2024

2025

Autonomy Level of Evaluation Process

E
va

lu
at

io
n

 C
o

m
p

le
xi

ty

✓ Autonomous

✓ Interactive GUI Testing

AppEvalPilot
Ours

Fu
n

ct
io

n
R

ep
o

si
to

ry
In

te
ra

ct
iv

e
B

as
ic

 F
u

n
ct

io
n

S
ys

te
m

 In
te

g
ra

ti
o

n
P

ro
d

u
ct

io
n

-R
ea

d
y

Fixed Metric Semi-Automated Autonomous
Direct Metric Agent-based  EvaluationFixed-Process Output

WebBench

2025

WebGen-Bench

2025

Figure 1: Software Engineering Evaluation: From
Automated to Autonomous Evaluation

Remarkable advancements in LLMs for code19

and autonomous coding agents are driving20

a paradigm shift in software development.21

Their generative capabilities are evolving from22

function-level code snippets, to crafting self-23

contained demos, and now towards the creation24

of sophisticated, production-ready repositories25

featuring intuitive user interfaces, modular archi-26

tectures, and robust runtime integration. How-27

ever, this evolution poses significant challenges28

for evaluation. Current repository-level code29

generation tasks lack rigorous assessments of30

functional completeness, especially with respect31

to dynamic and interactive user-centric behav-32

iors. For example, consider a game application33

generated by such a system. Its correctness and34

quality cannot be reliably determined by code35

inspection or static analysis alone. Instead, it re-36

quires user-centric validation: clicking through37
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Benchmark Lang. Level Tasks Eval Method Agent Judge Input Data Interactive
BigCodeBench [1] PY Func. Comp. Unit test ✗ Text, Code ✗

LiveCodeBench [2] PY Func. Gen. Unit test ✗ Text, Code ✗

RepoBench [6] PY, Java Repo. Ret. Similarity ✗ Text, Code ✗

SWE-Bench [9] PY Repo. Maint. Unit test ✗ Multi-modal ✗

EvoCodeBench [5] PY Repo. Ret. Pass@k ✗ Text, Code ✗

SWE-Lancer [10] JS, TS Repo. Dev. Unit test ✗ Multi-modal ✗

FrontendBench [11] JS Repo. Gen. Unit test ✗ Text ✓

COMMIT0 [12] PY Repo. Dev. Unit test ✗ Multi-modal ✗

Web-Bench [13] JS, TS Repo. Dev. Unit test ✗ Text ✗

RealDevWorld PY, JS, TS Repo. Dev. Unit test ✓ Multi-modal ✓

Table 1: Comparison of RealDevWorld with existing benchmarks. It leverages AppEvalPilot for
scalable, multi-modal, and interactive software evaluation. Note: TS = TypeScript; JS = JavaScript;
Func. = Function level; Repo. = Repository level; Comp. = Completion; Gen. = Generation; Ret. =
Retrieval; Maint. = Maintenance; Dev. = Development.

the interface, interacting with game elements, observing state transitions, and receiving feedback in38

real time—actions that reflect how an actual user would engage with the system. These user-centric39

and runtime-dependent behaviors are difficult to capture through conventional metrics and often40

demand the execution of complex end-to-end (E2E) test cases on the generated front-end to assess41

correctness, interaction quality, and behavioral robustness. However, automating such evaluations42

remains challenging: generated repositories frequently vary in visual layout, interaction flow, and43

execution paths, making static or script-based evaluations brittle and often infeasible.44

Current benchmarks fall short in automatically assessing the functional completeness and real-world45

applicability of production-ready repositories, as illustrated in Figure 1. Function-level benchmarks [1–46

3] primarily focus on isolated generation tasks, such as function or class implementation, which47

fail to capture the complexity and dynamic interactions of real-world repository-level applications.48

Repository-level benchmarks [4–10] attempt to assess entire codebases, yet commonly rely on static49

or predefined evaluation methods, such as code similarity metrics, unit tests, or scripted integration50

tests, that are inherently brittle and limited. These methods struggle to reflect real-time interactions,51

user-driven workflows, runtime errors, or the diverse visual and structural variability of generated52

outputs. Real-world applications, especially those involving user interfaces, documentation, and53

multimodal content, exhibit dynamic, unpredictable behaviors. Evaluating them accurately demands54

intelligent, adaptive methods capable of systematically capturing runtime interaction fidelity and55

user-centric correctness, highlighting the urgent need for more comprehensive evaluation frameworks.56

Recent advances in interactive agent technology offer promising directions toward this goal. Emerging57

paradigms, such as Agent-as-a-Judge [14], employ autonomous agents that execute end-to-end58

tests by emulating human behaviors, monitoring runtime states, and capturing detailed execution59

traces. Such agents transcend traditional static metrics, treating evaluated applications not merely60

as passive test subjects, but as dynamic, interactive environments that inform agent reasoning61

and decision-making. Building upon this paradigm, we present ReaDevWorld, a comprehensive62

evaluation framework explicitly designed to assess AI-generated, production-ready codebases through63

dynamic interaction and open-ended testing scenarios. As part of this framework, we introduce64

RealDevBench, a benchmark of 194 carefully curated open-ended software engineering tasks across65

display, analysis, data, and game domains. These tasks are sampled from the real-world programming66

community requirements and systematically expanded at the function level using LLMs, with a subset67

incorporating multimodal complexity (structured data, images, audio) to reflect real-world challenges.68

Table 1 highlights how RealDevBench differs from existing evaluation datasets. To operationalize69

this benchmark, we develop AppEvalPilot, a novel agent-based evaluation framework that emulates70

human interactive software engineering practices. Given a task description and generated code,71

AppEvalPilot integrates web and OS-level operations to simulate testing workflows, conducting both72

functional and boundary evaluations for comprehensive software development verification. This73

agent serves as an automated and effective testbed for production-ready software engineering. Our74

main contributions are:75

A GUI-Interactive Agent-as-a-Judge Paradigm for Automated Evaluation. We present AppE-76

valPilot, a novel agent-as-a-judge evaluation paradigm for production-ready code generation in77

complex, dynamic interaction scenarios. By simulating realistic user behavior and performing78
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runtime GUI interactions, AppEvalPilot enables fine-grained diagnostics comparable to white-box79

testing in traditional software engineering.80

An Open-ended and Scalable Benchmark Suite. RealDevBench features a diverse set of tasks81

derived from real-world programming needs, spanning domains like display, analysis, data, and82

gaming. It benchmarks the ability of code intelligence models to build repository-level software from83

scratch, with tasks incorporating multimodal inputs—such as images, audio, text, and structured84

data—to increase reasoning difficulty and scenario realism.85

Human Alignment and Cost-Effective Validation. Our framework achieves strong alignment with86

expert human assessments, reaching an accuracy of 0.92 and a correlation of 0.85, substantially87

outperforming existing automated evaluators. By narrowing the gap between model-based and human88

evaluation, it enables more reliable and cost-effective validation of generated code.89

2 Related Work90

2.1 Benchmarks for Software Engineering91

Evaluating repository-level code generation in LLM-based agents remains challenging due to the com-92

plexity of end-to-end software development, including system integration, dependency management,93

and dynamic interactions [14]. Existing benchmarks such as BigCodeBench [1], LiveCodeBench [2],94

and NaturalCodeBench [3] focus on function- or class-level code completion and rely primarily on95

static test cases, failing to capture dynamic behaviors like web interfaces or gameplay [15, 16]. As a96

result, they fall short in assessing real-world development challenges such as integration, ambiguous97

specifications, and evolving requirements. Repository-level benchmarks [4–10] tackle broader soft-98

ware tasks with interdependent components, but mainly use static metrics like similarity scores or unit99

tests [17, 18], which may not fully reflect functional correctness. Advanced benchmarks like rSDE-100

Bench [8], SWE-Bench [9], and SWE-Lancer [10] depend on pre-defined test cases, limiting their101

ability to evaluate adaptability to requirement changes or the creation of new modules. DEVAI [14]102

and MLE-Bench [19] introduce automated development tasks for agent evaluation but rely on public103

datasets, which may be seen during model training. In contrast, our proposed benchmark supports104

adaptive module development and dynamic interaction testing, simulating human-like evaluation105

processes to more comprehensively assess software development capabilities.106

2.2 Advanced Judgement Approaches107

Recent evaluation techniques have established new paradigms, starting with LLM-as-a-Judge [20],108

which employs language models to evaluate text-based tasks instead of traditional metrics. While109

effective for textual outputs, this approach is limited to assessing static final result rather than110

development processes or intermediate outputs. Agent-as-a-Judge [14] builds on this by introducing111

a dynamic agent-based approach, leveraging multi-dimensional scoring and iterative feedback loops.112

However, it remains insufficient for evaluating software with complex interactive components,113

particularly those with GUIs. These require evaluating both interaction flows and the functionality114

of UI elements, which are more dynamic and nuanced. To address these challenges, we propose115

an innovative approach that integrates GUI agent capabilities for interactive testing, inspired by116

recent advances in GUI agents [21, 22], to mirror human testing processes for a more dynamic and117

comprehensive evaluation. We summarized the comparisons in Table 1.118

3 Preliminary119

This section formalizes the task of end-to-end software evaluation and analyzes three mainstream120

evaluation paradigms—human evaluation, LLM-as-a-Judge [23], and Agent-as-a-Judge [14]-in121

terms of their coverage across software quality dimensions, laying the foundation for subsequent122

experiments and theoretical analysis.123

3.1 End-to-End Software Evaluation124

As previously discussed in the introduction, end-to-end testing is essential for assessing production-125

ready software development. Formally, a generator A (e.g., a human developer or an AI system)126

receives a requirement instance Q = (D,F,M), where D is the requirement description, F is the list127
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of desired features, and M represents any supplementary materials. Given this input, the generator128

is expected to produce a complete software repository R. The goal of end-to-end evaluation is to129

design an effective method to measure the quality of R. Unlike unit testing that focuses on individual130

components, end-to-end evaluation validates user workflows across all system layers, ensuring the131

entire software system functions correctly in realistic usage scenarios. This challenge is particularly132

significant for complex software in real-world, open scenarios, where code structure and interaction133

are often unpredictable.134

3.2 Formalization and Evolution of Evaluation Workflows135

According to software engineering standards and validation research (ISO/IEC/IEEE 29119 [24],136

SV-COMP [25]), production-grade software must undergo comprehensive validation at three levels:137

unit level (individual code components), system level (architecture and integration), and acceptance138

level (user interactions and dynamic behaviors). Only by satisfactorily meeting all three levels can139

software be deemed production-ready. We model the end-to-end evaluation process as a unified140

pipeline that transforms the general evaluation workflow into concrete implementations:141

(Q,R)
Identify−−−−→ C

Execute−−−−→ T
Judge−−−→ S (1)

where from task description Q and repository R, test cases C are identified, These test cases are142

executed to collect execution traces T, and Judge analyzes these traces to produce the final software143

quality score S. The key differences between evaluation paradigms lie in how test cases C are144

identified given Q and R, how these C are executed to collect traces T, and how Judge analyzes these145

traces to produce S. The three mainstream evaluation paradigms are as follows.146

Human evaluation workflow: Human experts participate in the entire process, covering unit, system,147

and acceptance levels. In this paradigm, experts manually analyze requirement Q and repository148

R, design test cases C based on features F . The test cases are executed manually to generate149

comprehensive Tmanual that covers all validation levels such as unit testing, system testing, and150

acceptance testing. Subsequently, Judgehuman analyzes the manual traces to produce quality score151

Smanual, e.g. test coverage and pass rates. The advantage is comprehensiveness, but the disadvantage152

is high cost and low efficiency due to the manual nature of the entire process.153

LLM-as-a-Judge workflow: A typical implementation is automatic scoring based on static code154

analysis (e.g., ArtifactsBench). In this approach, Executestatic extracts code fragments via fixed scripts155

or paths, generating limited test cases C only from static code inspection rather than from the original156

feature list F . This produces Tracestatic consisting of static text representations, which JudgeLLM157

analyzes through text-based reasoning to generate Qstatic. This method only covers the unit and part158

of the system level, cannot detect runtime or interaction issues, and has limited reliability due to the159

static nature of both Executestatic and Tracestatic.160

Interactive agent-as-a-judge workflow: The agent can automatically understand requirements and161

decompose features from F to generate comprehensive test cases C. During evaluation, Executeagent162

executes these C through GUI interactions with R, dynamically collecting execution results to form163

Traceagent that captures real-time behaviors and user interactions. Judgeagent then analyzes these164

dynamic traces to produce Sagent. This method can automatically cover all three dimensions—unit,165

system, and acceptance levels—combining depth and scalability, making it ideal for production-grade166

evaluation. This framework provides the theoretical foundation for our RealDevBench benchmark167

and AppEvalPilot evaluation system, which we detail in the following sections.168

4 RealDevBench: Open-Ended SE Benchmark169

4.1 Dataset Overview170

To comprehensively evaluate AI systems across these dimensions, we introduce RealDevBench,171

a benchmark specifically designed to assess end-to-end software engineering capabilities in a re-172

alistic and practical context. RealDevBench comprises 194 requirements spanning four practical173

domains—Analysis, Display, Data, and Game, that reflect core engineering needs. The distribution174

of tasks is as follows: Display (50.0%), Data (14.4%), Analysis (18.6%), and Game (17.0%), as175

illustrated in Figure 5. This allocation mirrors the prevalence of web-centric and data-intensive176

applications in real-world software development. The dataset is defined by three key attributes: (1)177
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(iii) Test Case  Evaluation
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Figure 2: Overall design of AppEvalPilot showing the automated testing workflow: test case gen-
eration from user requirements, multimodal test execution through interface interaction (scrolling,
typing, clicking), and binary evaluation of outcomes for objective software assessment.

Open-ended repository construction, where systems must build software from scratch rather than178

fill in predefined templates; (2) Multimodal complexity, incorporating diverse inputs such as text,179

images, audio, and tabular data to test integrative and cross-modal capabilities;(3) Functional diversity,180

encompassing a wide spectrum of software functionalities across varying levels of complexity.181

4.2 Dataset Construction182

Domain and Requirement. We examined WebDev Arena [26] to establish 4 domain categories:183

Display, Analysis Data, and Game. We sampled requirements from SRDD [27] and expanded184

through web crawling freelancer platforms (Upwork1 and Freelancer2) to capture real client demands.185

Feature Construction. To construct detailed feature lists that extend requirements from development186

and functional perspectives, we learned from open-source projects and performed systematic feature187

extraction. We crawled GitHub projects meeting strict selection criteria: comprehensive documenta-188

tion (README, API docs), production-ready quality (1000+ stars, active development), and clear189

feature specifications. We employed Claude-3.5-Sonnet [28] to extract functional requirements from190

repository documentation and expand requirements into structured feature specifications, ensuring191

consistent translation of requirements into actionable features with clear evaluation criteria.192

Task Structure and Formulation. As shown in Figure 5, each task in RealDevBench is structured as193

a triplet to simulate realistic software development scenarios: (1) Requirements Description: A textual194

summary outlining the project’s purpose and setting; (2) Feature List: A detailed and structured list of195

functional goals that define the success criteria; (3) Supplementary Materials: Task-specific resources196

such as images, audio, or datasets that introduce real-world complexity. To further enhance the197

realism of each task, we incorporated carefully curated materials from multiple sources: (1) Images:198

Sourced from Unsplash 3 for thematic relevance and professional quality; (2) Datasets: Selected from199

Kaggle 4 based on topic relevance and appropriate complexity; (3) Documents: Manually created200

documents (resumes, business proposals, catalogs) that mirror real-world scenarios.201

5 AppEvalPilot: Autonomous Evaluation202

As discussed previously, the rise of AI-driven software development demands scalable, automated,203

and adaptive evaluation methods. To achieve this, we introduce AppEvalPilot, an Agent-as-a-Judge204

evaluation paradigm designed for automated end-to-end interaction-based software project testing.205

Unlike static analysis or rigid test suites, AppEvalPilot actively engages with software interfaces,206

executing real-time user interactions to assess functional correctness and adaptability. As illustrated207

in Figure 2, the evaluation framework follows a three-stage pipeline: (1) generate test cases based208

on requirements and domain knowledge; (2) simulate real-world user interactions via textual and209

visual inputs; (3) assess correctness and completeness by comparing actual outcomes with expected210

1https://www.upwork.com
2https://www.freelancer.com
3https://unsplash.com/
4https://www.kaggle.com/
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WWW.

Version1

press("pagedown") click(1268, 1480)typewrite("John Doe")

WWW.

Version2

press("pagedown") click(1268, 1480)typewrite("John Doe")

AppEvalPilot Test whether the online registration form can be filled out and submitted

Based on thorough testing of the 
online registration form, I can 
confirm that all required fields can be 
correctly filled in. All fields properly 
retain the entered data and appear to 
be functioning as expected.

After testing the form, submission 
doesn't work. After entering special 
requirements, the entered 
information is not displayed. A 
normally functioning form should 
show the entered information.

AgentScore

Figure 3: Evaluation pipeline of AppEvalPilot. The agent performs test sequences on two different
web implementations, systematically assesses functionality through direct interaction, documents
observable differences in form behavior, and generates quantitative scores based on test cases.

behaviors. This dynamic and automated approach aligns with RealDevBench’s focus on practical211

software evaluation, enabling scalable and rigorous assessment of AI-generated systems.212

Test Case Generation. AppEvalPilot starts by automating the creation of high-quality, contextually213

relevant test cases that align with RealDevBench ’s open-ended and multimodal requirements.214

To achieve this, it leverages few-shot learning [29] to infer requirement-to-test mappings from a215

small set of manually curated examples, allowing it to generalize efficiently across diverse software216

requirements. Additionally, it integrates domain-specific knowledge, such as game mechanics for217

Game tasks, and security protocols for Data tasks, to ensure test cases accurately reflect real-world218

scenarios and practical constraints. To standardize generation, the agent uses a structured prompt that219

simulates the behavior of a professional test engineer. The number of cases is capped (e.g., 15–20) to220

ensure evaluation tractability.221

Test Case Execution. AppEvalPilot next autonomously executes the generated test cases by di-222

rectly interacting with software applications through their GUIs, effectively simulating genuine user223

interactions. As shown in Figure 2, the execution agent handles multiple input types from active224

software, including textual data (XML) from accessibility trees (a11ytree) and visual data like icons225

and screenshots, to accurately interpret the interface. This facilitates a thorough understanding of the226

software’s UI for precise interaction. Specifically, the agent operates within a structured action space227

consisting of four core commands, serving as the foundational components for complex interactions228

(see Appendix B.1. These atomic actions, as shown in Figure 2, allow AppEvalPilot to execute229

complex tasks such as form filling, web navigation, and validation checks. During the execution230

of each test case, AppEvalPilot systematically transforms it into a structured, multi-step execution231

workflow, wherein each step may encompass multiple actions amalgamated to facilitate higher-level232

operations. To ensure efficiency and flexibility, AppEvalPilot employs adaptive decision-making233

through historical reasoning and model-based planning, following the Plan-Act framework [30] to234

continuously improve execution processes. This method allows AppEvalPilot to enhance execution235

by refining subtasks, minimizing redundant actions, and adapting strategies in response to unexpected236

UI conditions or errors, especially important for lengthy software testing tasks.237

Test Result Evaluation. The Test Result Evaluation module compares actual interaction outcomes238

against the expected success criteria defined in RealDevBench. The agent autonomously executes239

interaction workflows across different application implementations, adapting its actions based on240

each interface while maintaining consistent testing objectives. Specifically, after each test execution,241

AppEvalPilot generates a structured report that documents both the performed actions (e.g., entering242

user information, submitting a form) and the resulting behaviors (e.g., form submission success,243

data persistence). Based on observed outcomes, AppEvalPilot classifies each test case into one of244

three categories: Pass (expected behavior is met), Fail (expected behavior is violated), or Uncertain245

(outcome is inconclusive or partially observed). These classifications feed into an aggregated score246

on test case or feature levels, offering a quantitative assessment of the software quality.247

As illustrated in Figure 3, the agent runs similar interaction sequences across different implementations248

and determines test case satisfaction by comparing observed execution results against specified249

6



requirements. This autonomous execution approach enables the agent to make informed judgments250

about requirement satisfaction by directly observing how different implementations respond to similar251

user interactions. This process not only surfaces hidden behavioral issues but also ensures that the252

evaluation remains scalable, interpretable, and grounded in observable user-level feedback.253

6 Experiments254

We conduct comprehensive experiments to validate AppEvalPilot’s evaluation capabilities and its255

effectiveness in benchmarking software development systems. Our experimental design addresses256

two critical research questions: (1) How effectively does AppEvalPilot evaluate software quality257

compared to existing evaluation approaches? and (2) Can AppEvalPilot serve as a reliable automated258

judge for benchmarking LLM-based software engineerinhg?259

6.1 AppEvalPilot Capability Validation260

Dataset. We construct our evaluation dataset by selecting 49 tasks (25%) from RealDevBench,261

ensuring coverage across all domains. We first fix the generated software projects using Lovable [31]262

and establish reliable human ground truth labels through a rigorous two-level evaluation process:263

(1) Test case-level: For test cases ci generated by AppEvalPilot, we invite 3 QA specialists (1-264

3 years experience) to execute each test case and evaluate Pass/Failed/Uncertain outcomes; (2)265

Feature-level: Each project also receives independent scoring from 3 QA specialists who manually266

test generated software projects against feature lists, providing granular scores for each feature267

fi ∈ {0, 1} (Failed/Pass), with final validation by a senior expert. Therefore, each project quality is268

recorded as human_quality = 1
n

∑n
i=1 fi where n represents the total number of features.269

Baselines. We compare against state-of-the-art GUI systems: Claude-3.5-Sonnet-v2 [28], UI-270

Tars [32], WebVoyager-Agent [33] with qwen2.5-vl-32B [34] and claude-3.5-sonnet-v2 backbones,271

and Browser-Use with claude-3.7-sonnet-v2 [35]. Framework protocols provide high-level require-272

ments for autonomous test strategy decomposition, while model protocols provide pre-generated test273

cases aligned with their input paradigms.274

Metrics. Given test case set C = {c1, c2, ..., cN} or feature list F = {f1, f2, ..., fM}, each item is
classified as true, false, or uncertain by human evaluators or agents. We define binary scores as:

scorei =
{
1 if classi = true
0 if classi ∈ {false, uncertain}

We use accuracy to measure judgement correctness and quality alignment using Pearson correlation275

at test case-level and feature-level, where test case-level represents averaged performance across all276

test cases in each project, and feature-level measures correlation between agent and human feature277

scores across all software projects.278

Results & Analysis. AppEvalPilot demonstrates superior performance across all evaluation metrics.279

Our framework achieves an accuracy of 0.92 in test case classification and a quality alignment280

correlation of 0.81 with human evaluators, representing a 47% improvement over WebVoyager281

(Claude-3.5-Sonnet) which achieved 0.55 accuracy alignment. Compared to baseline GUI testing282

approaches like Browser-Use [36], AppEvalPilot reduces evaluation time by 33% (from 13.50 to 9.00283

minutes per app) while achieving 77% cost reduction through its interactive-driven paradigm. At the284

feature level, AppEvalPilot maintains the highest alignment with human assessments, achieving 0.85285

correlation across diverse application domains compared to Browser-Use’s 0.58, representing a 47%286

improvement and validating its effectiveness in end-to-end automated evaluation. End-to-end auto-287

mated software testing presents significant challenges for existing GUI models and agents, requiring288

sophisticated planning capabilities and execution accuracy, where traditional GUI tasks primarily289

focus on fine-grained operational requirements similar to individual test case granularity. When290

utilizing test cases provided by AppEvalPilot, all baseline models showed an average improvement291

of 0.17, demonstrating the value of our test case generation approach. Our observations reveal292

that detailed test cases not only improve GUI agent testing success rates but also enhance testing293

robustness, since each feature is decomposed into multiple supporting test cases where incorrect294

judgment on one test case does not affect the results of other test cases, thereby improving the295

robustness and reliability of the overall testing process.296
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Method Feature-level Test Case-level Efficiency

Quality Align. Quality Align. Acc. Time Cost

Human 0.74 – 0.65 – – – –

GUI Model

Claude-3.5-Sonnet 0.27 0.23 0.46 0.49 0.68 9.20 1.01
UI-Tars 0.49 0.29 0.63 0.59 0.75 8.65 0.17

GUI Agent Framework

WebVoyager (Qwen2.5) 0.29 0.25 0.35 0.44 0.6 2.16 0.04
WebVoyager (Claude) 0.64 0.43 0.6 0.55 0.74 1.60 0.10
Browser-Use (Claude) 0.67 0.58 0.63 0.61 0.76 13.50 1.13
AppEvalPilot(Claude) 0.73 0.85 0.74 0.81 0.92 9.0 0.26

Table 2: Performance comparison on RealDevBench benchmark. Human Quality (GT) represents
ground truth project quality scores from human evaluation. Quality Alignment measures correlation
with human assessments.
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Human Quality vs Agent/Code/Visual Quality Comparison

Human Quality Agent Quality Code Quality Visual Quality

Figure 4: Comparative analysis of evaluation methods versus human quality. (Left) AppEvalPilot’s
autonomous evaluation, (Middle) Static LLM code scoring, (Right) Visual aesthetic scoring. Each
point represents one project, with radial distance indicating quality scores (0-1 scale).

Comparative Evaluation Analysis. To comprehensively validate AppEvalPilot’s evaluation effec-297

tiveness, we conduct systematic comparative analysis across multiple evaluation methodologies using298

the same 49 Lovable-generated projects. Our comparison encompasses static evaluation methods as299

illustrated in Figure 4: (1) Code Quality assessment [23] employing integrated Claude-3.5-Sonnet300

scoring of source files, and (2) Visual Quality evaluation utilizing Claude-3.5-Sonnet aesthetic scoring301

with WebGen-Bench prompts [37]. As demonstrated in Figure 4, both Code Quality and Visual302

Quality fail to effectively capture the nuances of software quality, in contrast to Agent Quality, which303

shows a strong alignment with human assessments. Our analysis reveals critical shortcomings in304

existing LLM-as-a-judge and MLLM-as-a-judge approaches. First, static evaluation cannot capture305

dynamic interaction issues that define software quality—the deviation means for Code Quality and306

Visual Quality are 2.79× and 3.34× higher than AppEvalPilot’s Agent Quality, respectively, demon-307

strating substantial gaps between static assessment and actual user experience. Second, evaluation308

distributions exhibit pronounced misalignment with human judgment: AppEvalPilot achieves a309

distribution overlap rate of 0.96 with human scores, while Code Quality and Visual Quality achieve310

mere 0.75 and 0.55 overlap rates, indicating fundamental divergence from natural evaluation patterns.311

These findings underscore the superiority of our agent-based evaluation framework in capturing312

multifaceted software quality aspects that traditional static methods systematically overlook. AppE-313

valPilot’s dynamic interaction capabilities enable accurate quality assessment that closely mirrors314

human evaluation standards while providing actionable feedback for developers, demonstrating clear315

advantages over existing static evaluation paradigms.316
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System Agent Quality Code Quality Visual Quality

Large Language Models

Claude-3.7-Sonnet 0.31 0.41 0.18
Gemini-2.5-Pro 0.29 0.45 0.26
Kimi-K2 0.39 0.41 0.29
DeepSeek-V3 0.29 0.18 0.21
Qwen3-Coder-480B 0.53 0.41 0.32
Qwen3-235B-Instruct 0.33 0.42 0.20

Agent Systems

OpenHands 0.50 0.38 0.33
Lovable 0.74 0.58 0.47
Bolt 0.54 0.69 0.50
MGX 0.60 0.68 0.41
MGX (BoN-3) 0.78 0.72 0.41

Table 3: Comparative results across different code generation systems and evaluation methods.

6.2 Performance of LLMs on RealDevBench317

Experimental Setting. Considering validation costs, we conduct experiments on 54 tasks from318

RealDevBench-test. The evaluated generation frameworks include MGX [38], MGX (BoN-3),319

Bolt [39], Lovable, OpenHands [40], Claude-3.5-Sonnet, Gemini-2.5-Pro [41], Kimi-K2 [42],320

DeepSeek-V3 [43], Qwen3-Coder-480B [44], and Qwen3-235B-Instruct. After code generation,321

we execute deployment through automated scripts and LLM-generated deployment commands. For322

MGX, Bolt, and Lovable, we directly utilize their pre-deployed project URLs for testing. We employ323

three evaluation approaches: AppEvalPilot’s interactive assessment, static code quality evaluation,324

and visual aesthetic scoring through screenshot analysis.325

Performance Analysis. RealDevBench presents significant challenges for LLMs, with even state-of-326

the-art models like Kimi-K2 achieving only 0.39 in software quality for generated projects. Current327

LLM performance on RealDevBench is substantially lower than their performance on traditional328

coding benchmarks, revealing significant defects and bugs in complete interactive functionality329

development and validation. Visual and static code assessment alone cannot adequately quantify these330

limitations and shortcomings. For agent frameworks, generation quality shows significantly higher331

average scores in Agent Quality, with an improvement of approximately 0.27 compared to direct LLM332

generation. This improvement stems from two key factors: First, these frameworks adopt standard333

software engineering development processes through design, development, and basic deployment334

verification, significantly enhancing code usability. Second, for complex interactive functionality335

design, agent-generated projects contain multiple files and components, providing more complete336

functional implementation compared to single-script solutions produced by LLMs. As shown in337

Table 3, static assessment methods fail to capture runtime behaviors, user interaction flows, and338

integration issues that are critical for real-world software functionality. This validates AppEvalPilot’s339

interactive evaluation paradigm as essential for comprehensive software quality assessment.340

7 Conclusion341

In this paper, we introduce RealDevWorld, a novel framework for evaluating AI systems that342

generate code repositories from scratch. It comprises RealDevBench, an open-ended and scalable343

dataset of 194 diverse tasks with multimodal elements, and AppEvalPilot, a GUI-based Agent-as-a-344

Judge evaluation paradigm. AppEvalPilot performs automated, end-to-end validation of software345

functionality, including dynamic behaviors and interaction logic, while providing fine-grained, task-346

specific diagnostic feedback.347

Extensive experiments show that our framework closely aligns with expert human judgments while348

significantly reducing evaluation time and cost. On the RealDevBench benchmark, AppEvalPilot349

substantially outperforms existing GUI frameworks, achieving an accuracy of up to 87%. Overall,350

RealDevWorld offers a scalable and automated solution for reliable software evaluation, paving the351

way for future advancements in production-ready code generation.352

9



References353

[1] Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,354

Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-355

marking code generation with diverse function calls and complex instructions. arXiv preprint356

arXiv:2406.15877, 2024.357

[2] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-358

mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination359

free evaluation of large language models for code. In The Thirteenth International Conference360

on Learning Representations, 2025. URL https://openreview.net/forum?id=chfJJYC3iL.361

[3] Shudan Zhang, Hanlin Zhao, Xiao Liu, Qinkai Zheng, Zehan Qi, Xiaotao Gu, Yuxiao Dong,362

and Jie Tang. Naturalcodebench: Examining coding performance mismatch on humaneval and363

natural user queries. In Findings of the Association for Computational Linguistics ACL 2024,364

pages 7907–7928, 2024.365

[4] Yangruibo Ding, Zijian Wang, Wasi Ahmad, Hantian Ding, Ming Tan, Nihal Jain, Murali Kr-366

ishna Ramanathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth, et al. Crosscodeeval:367

A diverse and multilingual benchmark for cross-file code completion. Advances in Neural368

Information Processing Systems, 36:46701–46723, 2023.369

[5] Jia Li, Ge Li, Xuanming Zhang, Yunfei Zhao, Yihong Dong, Zhi Jin, Binhua Li, Fei Huang,370

and Yongbin Li. Evocodebench: An evolving code generation benchmark with domain-specific371

evaluations. Advances in Neural Information Processing Systems, 37:57619–57641, 2025.372

[6] Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-373

level code auto-completion systems. In The Twelfth International Conference on Learning374

Representations, 2024. URL https://openreview.net/forum?id=pPjZIOuQuF.375

[7] Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-376

Guang Lou, and Weizhu Chen. Repocoder: Repository-level code completion through iterative377

retrieval and generation. In Proceedings of the 2023 Conference on Empirical Methods in378

Natural Language Processing, pages 2471–2484, 2023.379

[8] Yue Hu, Yuzhu Cai, Yaxin Du, Xinyu Zhu, Xiangrui Liu, Zijie Yu, Yuchen Hou, Shuo Tang, and380

Siheng Chen. Self-evolving multi-agent networks for software development. In The Thirteenth381

International Conference on Learning Representations, 2025. URL https://openreview.net/382

forum?id=4R71pdPBZp.383

[9] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and384

Karthik R Narasimhan. SWE-bench: Can language models resolve real-world github issues?385

In The Twelfth International Conference on Learning Representations, 2024. URL https:386

//openreview.net/forum?id=VTF8yNQM66.387

[10] Samuel Miserendino, Michele Wang, Tejal Patwardhan, and Johannes Heidecke. Swe-lancer:388

Can frontier llms earn $1 million from real-world freelance software engineering? arXiv389

preprint arXiv:2502.12115, 2025.390

[11] Hongda Zhu, Yiwen Zhang, Bing Zhao, Jingzhe Ding, Siyao Liu, Tong Liu, Dandan Wang,391

Yanan Liu, and Zhaojian Li. Frontendbench: A benchmark for evaluating llms on front-end392

development via automatic evaluation. arXiv preprint arXiv:2506.13832, 2025.393

[12] Wenting Zhao, Nan Jiang, Celine Lee, Justin T Chiu, Claire Cardie, Matthias Gallé, and Alexan-394

der M Rush. Commit0: Library generation from scratch. arXiv preprint arXiv:2412.01769,395

2024.396

[13] Kai Xu, YiWei Mao, XinYi Guan, and ZiLong Feng. Web-bench: A llm code benchmark based397

on web standards and frameworks. arXiv preprint arXiv:2505.07473, 2025.398

[14] Mingchen Zhuge, Changsheng Zhao, Dylan Ashley, Wenyi Wang, Dmitrii Khizbullin, Yunyang399

Xiong, Zechun Liu, Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, et al. Agent-400

as-a-judge: Evaluate agents with agents. arXiv preprint arXiv:2410.10934, 2024.401

10

https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=pPjZIOuQuF
https://openreview.net/forum?id=4R71pdPBZp
https://openreview.net/forum?id=4R71pdPBZp
https://openreview.net/forum?id=4R71pdPBZp
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66


[15] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo,402

John Grundy, and Haoyu Wang. Large language models for software engineering: A systematic403

literature review. ACM Transactions on Software Engineering and Methodology, 33(8):1–79,404

2024.405

[16] Haolin Jin, Linghan Huang, Haipeng Cai, Jun Yan, Bo Li, and Huaming Chen. From llms to406

llm-based agents for software engineering: A survey of current, challenges and future. arXiv407

preprint arXiv:2408.02479, 2024.408

[17] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta, Shin Yoo,409

and Jie M Zhang. Large language models for software engineering: Survey and open problems.410

In 2023 IEEE/ACM International Conference on Software Engineering: Future of Software411

Engineering (ICSE-FoSE), pages 31–53. IEEE, 2023.412

[18] Md Tahmid Rahman Laskar, Sawsan Alqahtani, M Saiful Bari, Mizanur Rahman, Mohammad413

Abdullah Matin Khan, Haidar Khan, Israt Jahan, Amran Bhuiyan, Chee Wei Tan, Md Rizwan414

Parvez, et al. A systematic survey and critical review on evaluating large language models:415

Challenges, limitations, and recommendations. In Proceedings of the 2024 Conference on416

Empirical Methods in Natural Language Processing, pages 13785–13816, 2024.417

[19] Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio418

Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine419

learning agents on machine learning engineering. arXiv preprint arXiv:2410.07095, 2024.420

[20] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,421

Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and422

chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.423

[21] Jiaming Xu, Kaibin Guo, Wuxuan Gong, and Runyu Shi. Osagent: Copiloting operating system424

with llm-based agent. In 2024 International Joint Conference on Neural Networks (IJCNN),425

pages 1–9. IEEE, 2024.426

[22] Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong427

Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. arXiv preprint428

arXiv:2401.10935, 2024.429

[23] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yong-430

hao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E Gon-431

zalez, and Ion Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena. In432

A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Ad-433

vances in Neural Information Processing Systems, volume 36, pages 46595–46623. Cur-434

ran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/435

91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf.436

[24] Software and systems engineering — software testing — part 1: General concepts, 2022. URL437

https://www.iso.org/standard/81291.html.438

[25] Dirk Beyer. State of the art in software verification and witness validation: Sv-comp 2024. In439

International Conference on Tools and Algorithms for the Construction and Analysis of Systems,440

Lecture Notes in Computer Science. Springer, 2024. URL https://link.springer.com/chapter/10.441

1007/978-3-031-57256-2_15.442

[26] Aryan Vichare, Anastasios N. Angelopoulos, Wei-Lin Chiang, Kelly Tang, and Luca Manolache.443

Webdev arena: A live llm leaderboard for web app development, 2025.444

[27] OpenBMB. Srdd. https://github.com/OpenBMB/ChatDev/tree/main/SRDD, 2024. Accessed:445

2025-03-29.446

[28] Anthropic. Claude 3.5 sonnet. https://www.anthropic.com/news/claude-3-5-sonnet, 2024.447

Accessed on March 28, 2025.448

[29] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni. Generalizing from a few examples: A survey on449

few-shot learning. ACM Computing Surveys, 53(3):1–34, 2020.450

11

https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://www.iso.org/standard/81291.html
https://link.springer.com/chapter/10.1007/978-3-031-57256-2_15
https://link.springer.com/chapter/10.1007/978-3-031-57256-2_15
https://link.springer.com/chapter/10.1007/978-3-031-57256-2_15
https://github.com/OpenBMB/ChatDev/tree/main/SRDD
https://www.anthropic.com/news/claude-3-5-sonnet


[30] Lei Wang et al. Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by451

large language models. arXiv preprint arXiv:2305.04091, 2023.452

[31] Lovable Team. Lovable: Ai development solution. https://lovable.dev, 2024.453

[32] Y. Qin, Y. Ye, J. Fang, et al. Ui-tars: Pioneering automated gui interaction with native agents.454

arXiv preprint arXiv:2501.12326, 2025.455

[33] Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong456

Lan, and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal457

models. arXiv preprint arXiv:2401.13919, 2024.458

[34] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,459

Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,460

2025.461

[35] Anthropic. Claude 3.7 Sonnet. https://www.anthropic.com/claude/sonnet, 2025.462
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Appendix A Benchmark Samples Analysis507

RealDevBench comprises 194 requirements spanning four practical domains: Analysis, Display,508

Data, and Game, that reflect core engineering needs. The distribution of tasks is as follows: Display509

(50.0%), Data (14.4%), Analysis (18.6%), and Game (17.0%), as illustrated in Figure 5. This510

allocation mirrors the prevalence of web-centric and data-intensive applications in real-world software511

development.512

Data

Finance Tracker

Create financial dashboard from CSV data to 
track income/expense trends and budget.

Feature List

Requirements

1. Income/expense trend
2. Expense category chart
3. Budget progress bar

Materials

Income & Expenses

Photography Portfolio

Photography Information Stories

1. Raw format support
2. Photo grid layout
3. Photo zoom preview


Market Analysis

1. Market size trend
2. Price distribution
3. User rating analysis

Theme Game Mod

1. Character replacement
2. Item replacement
3. Background replacement

Build photography portfolio with themed 
categorization and shooting details.

Feature List

Requirements

Materials

Analyze market CSV data to assess status, find 
opportunities and entry points.

Feature List

Requirements

Materials

Market research data

Develop game modifications using photography 
assets and creative elements.

Feature List

Requirements Description

 Materials

 Game source code 

+3 more features

+3 more features +3 more features

+4 more features
GameAnalysis

Display

Figure 5: Representative cases from RealDevBench across four domains with consistent triplet
structure (requirements, features, materials).

A.1 Display Domain Examples513

The Display domain focuses primarily on web development and content presentation applications514

requiring front-end development expertise, involving interactive display functionalities such as515

personal blogs, portfolios, corporate websites, e-commerce storefronts, documentation sites, and516

multimedia galleries.517

Display Task 1: Professional Portfolio Website

Requirement Description:
Create a professional personal portfolio website that showcases expertise and project experience. The
system will process provided materials to generate a comprehensive, responsive web presence with privacy-
conscious content filtering.

Feature List:
1. Navigation System: Fixed header with smooth scrolling navigation links

2. Hero Section: Professional profile photograph integration with dynamic introduction

3. Project Showcase: Interactive card-based layout with hover effects

4. Skills Visualization: Dynamic skill tag cloud with proficiency indicators

5. Social Integration: Elegant social media link collection with animations

6. Resume Access: Secure PDF download with privacy filtering

7. Responsive Design: Adaptive layout for all device types

Supplementary Materials: Resume document (PDF format), Professional profile photograph (JPG)

518
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Display Task 2: Social Link Tree

Requirement Description: I have a set of social media links and creative platform homepage
links. These materials need to be used to create a link navigation page that conveniently displays all my
links on a single page.
Please design and implement a social link navigation page based on the following requirements

Feature List:
1. Display a personal avatar and profile text.

2. Display all links as a list of buttons.

3. Links can be filtered by category tags.

4. Add a theme toggle button to support both light and dark modes.

5. Generate a QR code for the page to make it easy for others to scan and access.

Supplementary Materials: Link.md containing social media platform URLs

519

A.2 Analysis Domain Examples520

The Analysis domain challenges involve transforming raw data into actionable insights:521

Analysis Task 1: Blog Traffic Analysis

Requirement Description: Please design and implement the data analysis based on the following
requirements: I have a blog visit data CSV with PV, UV, visit duration, source page, etc. and want to
analyze the visit pattern and give optimization suggestions.

Feature List:
1. Draw a daily access trend graph to show the trend of blog access.

2. Provide a ranking of popular articles to show the most visited articles.

3. Plot the average dwell time graph to analyze how long readers stay on the page.

4. Provide visit source percentage to help me understand the source channels of visitors.

5. Provide page bounce rate table to analyze which pages have higher bounce rate.

6. Provide popular search terms cloud to show the keywords searched by users.

Supplementary Materials: Blog visit data.csv

522
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Analysis Task 2: Product Review Analysis

Requirement Description: Please design and implement the data analysis based on the following
requirements. I have a CSV of user review data for a product on an e-commerce platform containing ratings,
review text, date of purchase, etc., and would like to analyze these reviews and summarize the product
benefits and issues.

Feature List:
1. Draw a rating distribution chart to show the distribution of ratings for the product.

2. Provide a keyword extraction table to analyze the keywords appearing in user reviews.

3. Plot monthly rating trends and analyze changes in ratings over time.

4. Provide advantages and problems classification, summarize the advantages and disadvantages of the
product.

5. Provide the rate of favorable and unfavorable charts, showing the proportion of favorable and unfavor-
able reviews.

6. Provide an excerpt of popular reviews, showing what users are saying in key reviews.

Supplementary Materials: User comment data.csv

523
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A.3 Data Domain Examples524

The Data domain focuses on information processing and visualization systems:525

Data Task 1: Finance Tracker

Requirement Description: Please design and implement the dashboard based on the following
requirements: I have a CSV of a year’s worth of personal income and expense details, including dates,
categories, amounts, notes, and other information. Based on this data, create a personal finance analytics
Kanban board that can show income and expenditure trends and track budget execution.

Feature List:
1. Display a monthly income and expenditure trend chart.

2. Provide a pie chart of expenditure categories.

3. Display a budget execution progress bar.

4. Provide an income and expenditure breakdown grid.

5. Show a curve of balance changes.

6. Provides a monthly report out function.

Supplementary Materials: Personal income and expenditure details.csv

526

Data Task 2: Stock Data View

Requirement Description: Please design and implement the dashboard based on the following
requirements: I have a CSV file with historical stock data, including date, opening price, closing price,
trading volume, and related news headlines. Based on this data, I would like to create a dashboard to
display the market trends of the stock and help me analyze its movement.

Feature List:
1. Candlestick Chart (K-Line Chart): Display a candlestick chart to visualize the stock’s opening, closing,

high, and low prices over time.

2. Trading Volume Bar Chart: Show a bar chart that represents the trading volume on different days.

3. Technical Indicators Chart: Provide a chart with technical indicators like Moving Averages (MA),
Relative Strength Index (RSI), or Bollinger Bands.

4. News Sentiment Analysis Chart: Display a sentiment analysis chart showing the positive, negative, and
neutral sentiment of the related news headlines.

5. Correlation Heatmap: Provide a heatmap that shows the correlation between the stock price and other
related data (such as volume, technical indicators, etc.).

6. Data Export Feature: Provide a function that allows users to export the analyzed data in a format such
as CSV or Excel.

Supplementary Materials: Stock historical data.csv

527

A.4 Game Domain Examples528

The Game domain challenges test interactive entertainment application development:529
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Game Task 1: Mini Card Game

Requirement Description: Please develop a card battle game based on the following requirements,
where players can play turn-based battles against the computer.

Feature List:
1. Create a card display interface.

2. Implement a basic matchmaking system.

3. Add a simple AI opponent.

4. Implement a turn counter.

5. Judge the winners and losers and display the results.

6. Add a replay button.

Supplementary Materials: None

530

Game Task 2: TurboRally Game

Requirement Description: Turbo Rally is a racing game software that combines off-road driving
with intense rally racing. Players can choose from a variety of rugged vehicles and compete in thrilling rally
races on challenging off-road tracks. The objective is to navigate through rough terrain,dodge obstacles,and
reach the finish line in the shortest time possible. The game features realistic physics,dynamic weather
conditions,and stunning graphics to provide an immersive rally racing experience. Please design and
implement it based on the following requirements:

Feature List:
1. Implement a vehicle selection interface displaying a minimum of 5 different off-road vehicles with

distinct specifications (speed, handling, acceleration) and visual previews

2. Create a physics engine that simulates realistic vehicle behavior including suspension, terrain interac-
tion, and collision detection with obstacles

3. Develop a dynamic weather system that affects vehicle handling and track conditions (rain reduces
traction, mud affects speed, etc.)

4. Design a race tracking system that records lap times, checkpoint times, and maintains a leaderboard for
each track

5. Create at least 3 distinct off-road tracks with varying terrain types (mud, gravel, sand) and obstacles
(rocks, logs, water crossings)

6. Implement a real-time performance dashboard showing current speed, lap time, position, and track
progress during races

Supplementary Materials: None

531
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Appendix B AppEvalPilot Details532

B.1 Hierarchical Action Space533

The action space A of AppEvalPilot strikes a balance between expressiveness and operational534

efficiency, comprising four core actions that enable comprehensive automated testing capabilities, as535

shown in Table 4.536

Specifically, the agent operates within a structured action space consisting of four core commands,537

serving as the foundational components for complex interactions. The action space includes:538

• Open (app): Launches the target application via shortcut keys to enable quick context539

switching.540

• Run (code): Uses PyAutoGUI to simulate mouse and keyboard input for complex interaction541

sequences.542

• Tell (answer): Outputs test results to support validation and downstream metrics like543

AgentScore.544

• Stop: Ends the current test episode, managing execution boundaries.545

Action Implementation Purpose
Open (app) Using shortcut keys to quickly launch the

application (e.g., Win + [Search] + Enter)
Facilitates rapid context
switching

Run (code) Executes Python scripts via PyAutoGUI for
mouse and keyboard emulation

Enables complex interaction
sequences

Tell (answer) Outputs test results Provides reporting and valida-
tion

Stop Terminates the test episode Controls episode termination
Table 4: Action Space of AppEvalPilot. OpenApp is designed to facilitate the rapid initialization
of the testing environment for AppEvalPilot. The Run action constitutes the primary operational
module of AppEvalPilot, enabling flexible execution of testing procedures via Python code blocks.
The Tell action allows AppEvalPilot to output evaluation results. The Stop action terminates the
testing process.

B.2 Agent Execution Case Study546

This section presents case studies designed to demonstrate the agent’s ability to evaluate applications547

across a range of scenarios. Each case study includes the original software design requirements,548

the corresponding automated test cases, and the agent’s evaluation results. For enhanced clarity,549

screenshots of the agent’s operations and historical data are provided at our case study website5.550

Analysis of these cases will illustrate AppEvalPilot’s dynamic testing capabilities.551

B.3 Prompt for Test Case Generation552

5https://appevalpilot.realdev.world
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Test Case Examples

1. Navigation Verification: Persistent top navigation bar positioning during scrolling

2. Link Validation: Intra-page navigation link accuracy ("Home", "Projects", etc.)

3. Image Quality: Avatar image rendering quality and aspect ratio preservation

4. Content Integrity: Biographical text completeness and typographic consistency

5. Layout Testing: Project card list formatting and content integrity

6. Privacy Compliance: Verify absence of compensation data in project disclosures

7. Responsive Design: Skill tag cloud layout responsiveness across devices

8. Interactive Elements: Test hover effects on skill tags and buttons

9. External Links: Social media link destination accuracy verification

10. Download Function: PDF resume download functionality testing

11. File Integrity: Validate PDF file integrity and readability
553

Case Generation Prompt

You are a professional test engineer. Please generate a series of specific test cases based on the following
user requirements for the webpage.
Requirements:

1. Test cases must be generated entirely around user requirements, absolutely not missing any user
requirements

2. Please return all test cases in Python list format

3. When generating test cases, consider both whether the corresponding module is displayed on the
webpage and whether the corresponding function is working properly. You need to generate methods
to verify webpage functionality based on your knowledge.

4. Please do not implement test cases that require other device assistance for verification.

5. Please control the number of test cases to 15 20, focusing only on the main functionalities mentioned in
the user requirements. Do not generate test cases that are not directly related to the user requirements.

6. When generating test cases, focus on functional testing, not UI testing.

[Test Case Examples]

User Requirements: [demand]
Please return the test case list in List(str) format, without any additional characters, as the result will be
converted using the eval function.

554

B.4 Prompt for Test Result Judgment555

Test Judgement Prompt

The model results are labeled as ground truth. Please judge whether the described test case has been
successfully implemented based on the facts. If there is evidence that it has been implemented, just output
"Yes", otherwise output "No". If the model results indicate that the outcome cannot be determined, output
"Uncertain":

Test Case Description: [task_desc]

Model Result: [model_output]

Only answer with "Yes", "No", or "Uncertain"
556

B.5 Prompt for Test Execution557
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Test Execution Prompt
You are a professional and responsible web testing engineer (with real operation capabilities). I
will provide you with a test task list, and you need to provide test results for all test tasks. If you
fail to complete the test tasks, it may cause significant losses to the client. Please maintain the
test tasks and their results in a task list. For test cases of a project, you must conduct thorough
testing with at least five steps or more - the more tests, the more reliable the results.
[IMPORTANT]: You must test ALL test cases before providing your final report! Do not skip
any test cases or fabricate results without actual testing! Failing to complete the entire task list
will result in invalid test results and significant client losses.
Task Tips:
Standard Operating Procedure (SOP):

1. Determine test plan based on tasks and screenshots

2. Execute test plan for each test case systematically - verify each case in the task list one by
one

3. After completing each test case, you can use Tell action to report that individual test case
result

4. After completing ALL test case evaluations, use Tell action to report the COMPLETE
results in the specified format

Reporting Language: Answer in natural English using structured format (like dictionaries). Tell
me your judgment basis and results. You need to report the completion status of each condition
in the task and your basis for determining whether it’s complete.
Note that you’re seeing only part of the app(or webpage) on screen. If you can’t find modules
mentioned in the task (especially when the right scroll bar shows you’re at the top), try using
pagedown to view the complete app(or webpage).

558
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Test Execution Report Prompt
Inspection Standards:

1. Test cases are considered Pass if implemented on any page (not necessarily homepage).
Please patiently review all pages (including scrolling down, clicking buttons to explore)
before ending testing. You must understand relationships between pages - the first page
you see is the target app’s homepage.

2. If images in tested app(or webpage) modules aren’t displaying correctly, that test case fails.

3. You may switch to other pages on the app(or webpage) during testing. On these pages, just
confirm the test case result - don’t mark other pages-passed cases as Fail if subpages lack
features. Return to homepage after judging each case.

4. Trust your operations completely. If expected results don’t appear after an operation, that
function isn’t implemented - report judgment as False.

5. If target module isn’t found after complete app(or webpage) browsing, test case result is
negative, citing "target module not found on any page" as basis.

6. Don’t judge functionality solely by element attributes (clickable etc.) or text ("Filter by
category" etc.). You must perform corresponding tests before outputting case results.

7. When tasks require operations for judgment, you must execute those operations. Final
results can’t have cases with unknown results due to lack of operations (clicks, inputs etc.).

8. For similar test cases (e.g., checking different social media links), if you verify one link
works, you can assume others work normally.

For each individual test case completion, you can use Tell action to report just that result:

Tell ({"case_number": {"result": "Pass/Fail/Uncertain", "evidence": "Your evidence here
"}})

Even in these failure cases, you must perform sufficient testing steps to prove your judgment
before using the Tell action to report all results.

[VERIFICATION REQUIRED]: Before submitting your final report, verify that:
1. You have tested EVERY test case in the task list

2. Each test case has an explicit result (Pass/Fail/Uncertain)

3. Each result has supporting evidence based on your actual testing

Final Result Format (must include ALL test cases):
{

"0": {"result": "Pass", "evidence": "The thumbnail click functionality is working
correctly. When clicking on ’Digital Artwork 1’ thumbnail, it successfully
redirects to a properly formatted detail page containing the artwork’s title,
image, description, creation process, sharing options, and comments section."},

"1": {"result": "Uncertain", "evidence": "Cannot verify price calculation accuracy as
no pricing information is displayed"},

"2": {"result": "Fail", "evidence": "After fully browsing and exploring the web page,
I did not find the message board appearing on the homepage or any subpage."}

}

**Return only the result string. Do not include any additional text, markdown formatting, or
code blocks.**

559

B.6 Qualitative Analysis of Failure Modes560

To provide a deeper understanding of our agent’s behavior, we conducted a qualitative analysis of561

identified failure cases. This analysis reveals the characteristic limitations of our current approach562

and provides a roadmap for future improvements in agentic testing. Below, we present a table563

summarizing common failure modes with specific examples.564
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Project Test Case Failure Rea-
son Analysis Screenshot

Language
Spelling Bee

Verify that au-
dio playback
or definition
display for
quiz words
functions
correctly.

Missing
Necessary
Information

1.Lack of audio informa-
tion makes the evidence
insufficient.
2. The agent halluci-
nates a conclusion de-
spite the insufficient evi-
dence.

MoodMaker

Test if the
generated
playlist con-
tains between
10-15 songs.

Model Hallu-
cination

The LLM hallucinates.
It correctly identifies that
there are 3 songs but
fails to recognize that 3
is not within the 10-15
range.

Research Pa-
per Gallery

Click on a
paper title to
check if it
navigates to
the paper’s
details page.

Low-quality
Test Cases

The generated test case
was not aligned with
the actual implementa-
tion. The "details page"
was accessible by click-
ing "read more," not the
title, but the test case
was marked as failed
for not adhering to the
overly specific instruc-
tion.

Memory
Match

Flip all paired
cards to ver-
ify if the game
correctly iden-
tifies the com-
pleted state.

Need for
Advanced
Reasoning
Ability

The task requires the
agent to possess strong
logical thinking and
memory skills to track
and match pairs.

Space Shooter

Press the
spacebar or
the designated
shoot key to
check if the
spaceship fires
a projectile.

Need for Real-
time Feedback

A significant time lag ex-
ists between the agent’s
observation and its ac-
tion. By the time the
agent decides to act, the
environment has already
changed.
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Table 5 – continued from previous page

Project Test Case Failure Rea-
son Analysis Screenshot

Travel Blog

Check if the
webpage dis-
plays a map
module.

Differences in
Test Standards
Understand-
ing

The agent interpreted the
test case literally, pass-
ing it as long as a
map module was visible.
However, the actual re-
quirement implied that
the map module must
also be fully functional.

Table 6: Examples of Common Failure Modes in Agentic Testing.
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Appendix C Evaluation of Software Quality565

C.1 Manual Evaluation Process566

In our evaluation process, we invited a total of 12 individuals, comprising 9 QA specialists (1-3 years567

experience) and 3 senior testing experts (5+ years experience), all of whom are professionals in the568

field of computer science and experienced software testing engineers. For each project evaluation,569

we assign 3 QA specialists to conduct independent assessments, with 1 senior expert overseeing the570

quality assurance process. This team conducted comprehensive assessments of each collected task571

and the generated software projects.572

We first fix the generated software projects using Lovable [31] and establish reliable human ground573

truth labels through a rigorous two-level evaluation process: (1) Test case-level: For test cases ci574

generated by AppEvalPilot, we invite 3 QA specialists (1-3 years experience) to execute each test575

case and evaluate Pass/Failed/Uncertain outcomes; (2) Feature-level: Each project also receives576

independent scoring from 3 QA specialists who manually test generated software projects against577

feature lists, providing granular scores for each feature fi ∈ {0, 1} (Failed/Pass), with final validation578

by a senior expert. Therefore, each project quality is recorded as human_quality = 1
n

∑n
i=1 fi where579

n represents the total number of features.580

Feature-level Human Annotation Process. In the feature-level annotation phase, human annotators581

are required to independently design verification procedures and test cases based on the provided582

feature list and the implemented application. For each feature fi, annotators create approximately583

3-5 test case groups that comprehensively cover different aspects and edge cases of the feature584

implementation. These test cases are designed to systematically validate whether each feature meets585

the specified requirements through practical execution scenarios. Based on the execution results of586

these custom-designed test cases, annotators provide feature implementation labels with three possible587

outcomes: true (feature correctly implemented), false (feature failed or incorrectly implemented),588

and uncertain (ambiguous or partially implemented feature requiring further evaluation).589

Test Case Annotation Process. In the test case annotation phase, human annotators are tasked590

with executing the test cases generated by AppEvalPilot on the implemented applications. For each591

test case ci, annotators manually perform the specified actions step-by-step on the live application592

interface. This includes clicking buttons, filling forms, navigating between pages, and triggering593

interactive elements as described in the test case instructions. During execution, annotators carefully594

document the complete execution trajectory, recording each action performed, the system’s response,595

and any intermediate states encountered. For each test case, annotators provide comprehensive596

assessment results including: (1) the complete execution trace documenting each step performed and597

the corresponding system responses, (2) screenshots or screen recordings of key execution moments,598

(3) detailed descriptions of any deviations from expected behavior, and (4) a final evaluation label599

categorized as true (test case passed - application behavior matches expectations), false (test case600

failed with clear deviation from expected outcomes), or uncertain (ambiguous results requiring expert601

review, partial functionality or unclear expectations).602

Quality Assurance and Validation. Throughout both annotation phases, all human annotators work603

independently to ensure unbiased evaluation results. To maintain annotation quality and consistency,604

the assigned senior expert performs comprehensive secondary review of all annotation results for605

their designated project. This validation process involves identifying cases or features with significant606

assessment discrepancies across the three independent evaluations, conducting trajectory review and607

re-execution verification for disputed results, and ensuring the reliability and trustworthiness of the608

final ground truth labels.609

C.2 Code Quality610

We adopt the Code Quality assessment methodology from [23], employing integrated Claude-3.5-611

Sonnet for automated scoring of source files. For supported file extensions including .py, .html,612

.css, .js, .ts, .tsx, and .jsx, we scan the corresponding code files and concatenate their613

content, then utilize the LLM to evaluate and score the overall code quality. The core prompt is614

shown as follows.615
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The evaluation process generates individual scores for each feature in the feature list. We apply616

a threshold of 75: features scoring above 75 are marked as passed (1), while those scoring 75 or617

below are marked as failed (0). The final LLM score represents the pass rate across all features:618

LLM_score = number of passed features
total number of features .619

Code Quality Prompt

To perform a comprehensive evaluation of the provided code, focus on a meticulous and
step-by-step assessment using the established Software Evaluation Framework, aiming
to yield minimal assessment scores based on rigorous real-world high standards.

# Software Evaluation Framework
## Evaluation Criteria
1. Implementation

- Modularity: Code should be organized into logical, reusable components
- Architecture: Clear separation of concerns and appropriate design patterns
- Reusability: Components should be designed for potential reuse

2. Functionality
- Core Features: All specified features must be fully implemented
- Interactivity: Dynamic user interactions vs static implementations
- User Experience: Intuitive and responsive interface
- Error Handling: Comprehensive error management
- State Management: Proper handling of application state

3. Logical Flow
- Control Flow: Clear and efficient program execution paths
- Data Flow: Proper data transformation and management
- Event Handling: Appropriate response to system and user events
- Asynchronous Operations: Proper handling of async processes
- State Transitions: Clear and predictable state changes

4. Edge Cases
- Input Validation: Handling of invalid or unexpected inputs
- Boundary Conditions: Managing edge values and limits
- Resource Management: Handling resource exhaustion scenarios

5. Requirement Dependencies
- Feature Dependencies: Proper implementation of dependent features
- External Services: Correct integration with external services
- Database Schema: Proper database relationships and constraints

## Quality Metrics and Weightings
### Core Quality Dimensions (Total: 100 points)

1. Functional Correctness (25 points)
2. User Experience (25 points)
3. Maintainability (20 points)
4. Reliability \& Stability (20 points)
5. Security \& Data Protection (10 points)

# Query
{query}

# Requirements
{features}

# Code
{codes}

# Output Format
Output the evaluation results as a list of Boolean values and corresponding scores in

JSON format.
‘‘‘
[

{{
"requirement_id": "Task Id",
"satisfied": boolean, true or false, satisfies the requirement or not.
"score": int, 0 ~ 100, the minimal evaluation score based on the high standards.
"reason": "string, the detailed explanation of the evaluation in 3~5 sentences."

}},
]
‘‘‘
## Examples
{example}

# Output
"""

620
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