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ABSTRACT

The goal of Object-Centric Learning (OCL) is to enable machine learning sys-
tems to decompose complex scenes into discrete, interacting objects, supporting
compositional generalization and human-like reasoning. However, existing OCL
methods often fail to capture interactions from both attribute-level (semantic) and
object-level (spatial) perspectives. While scene graph methods complement OCL
by abstracting scenes as structured graphs, they typically rely on supervision. This
position paper argues for a probabilistic perspective on Scene Graph Modelling
(SGM), grounded in causal abstraction as a unifying view on causality, OCL, and
scene graphs by considering object interactions as invariant mechanisms within
object-level graphs, enabling us to generate causally consistent scene compositions.
We substantiate our position with thorough conceptual discussion, rigorous defini-
tions, conjectures, and examples, demonstrating how this perspective bridges the
gap between unsupervised object discovery and explicit scene graph reasoning.

1 INTRODUCTION

Spatial Representational Segregation Causal Abstraction for Composition

Figure 1: Figure illustrates the process of causal
abstraction for a composition resulting in causally
related variables in z using spatially segregated
object-centric representations s.

To achieve human-level understanding, machine
learning systems must be capable of represent-
ing the world in terms of distinct, interacting
objects Bengio et al. (2013b). The concept of
objectness—the ability to perceive the environ-
ment as a composition of discrete, identifiable
entities—has long been recognized as critical
for enabling situation-aware AI systems that ex-
hibit human-like reasoning capabilities (Lake
et al., 2017; Schölkopf & von Kügelgen, 2022).
This fundamental ability to decompose complex
scenes into objects and parts forms the basis of
compositional generalization, a key feature that
allows humans to efficiently learn from limited
examples and adapt to new environments (Rock, 1973; Hinton, 1979).

The fundamental requirement of compositional OCL is to ensure attribute and object level disen-
tanglement. Attributes are common features across all objects involved in the scene generation for
example features like light-position, camera position, and so on. Attribute disentanglement is a key
objective in generative modelling such as Variational Auto Encoders (VAEs) (Kingma & Welling,
2013). The identifiability of these features has been a common area of research in identifiable
representation learning, particularly with the Non-linear Independent Component Analysis (NICA)
learning paradigm Khemakhem et al. (2020a;b); Willetts & Paige (2021). However, given these
attributes are learned and not well defined, learning causal relationships among these attributes is
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another ill-defined problem and is the core of Causal Representation Learning (CRL) Schölkopf et al.
(2021); Yao et al. (2024).
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NICA
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OCL

(a) Learning (b) Prior factorisation
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Compositional
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Figure 2: Illustration of a hierarchical progression across learning paradigms, latent variable fac-
torization, and sample generation capabilities grouped by color-coded regions. IF assumes fully
independent latent variables, with a prior factorization

∏
i p(zi), enabling iid sample generation.

NICA introduces conditional independencies in the latent space, factorized as
∏

i p(zi | c), enabling
conditional samples. CRL generalizes NICA by uncovering cause-effect relationships via SCMs,
with factorization p(zi | pai), allowing conditional and counterfactual sample generation. OCL
extends CRL by structuring the latent space as a mixture of objects, capturing both feature-level and
object-level causal interactions, with factorization

∏
i p(z

p
i | papi , cpa

p
i ), enabling conditional, coun-

terfactual, and compositional generation. In all cases, an appropriate mixing function is assumed.
While NICA and CRL have made substantial advances in learning complex latent structures with
identifiability guarantees, their applications in OCL remain limited. Most of the works in OCL
that perform attribute disentanglement, including Burgess et al. (2019); Chen et al. (2021); Kim &
Mnih (2018); Kori et al. (2024); Greff et al. (2019; 2020), rely on Independent Factorisation (IF) of
attributes similar to VAEs. Some recent advances in OCL have demonstrated the potential to imbue
machine learning models with the notion of objectness by learning structured, spatially disentangled
representations directly from raw observations (Locatello et al., 2020; Engelcke et al., 2021; Löwe
et al., 2024; Kori et al., 2023). While in most of these methods, the main focus is on object discovery,
the interaction between and across object features is, in our view, yet to be thoroughly explored. Here,
identifiability is crucial because it dictates the conditions under which latent causes can be reliably
recovered from observed data (Hyvärinen & Pajunen, 1999; Locatello et al., 2019; Hyvärinen & Oja,
2000). Recent research in OCL has established theoretical guarantees with assumptions on mixing
functions or latent distributions that ensure object-centric representations are identifiable (Brady
et al., 2023; Lachapelle et al., 2024; Kori et al., 2024). However, these methods rely on the IF setting,
limiting the possibilities of learning relations among and across object features. To model these
relations as illustrated in Fig. 1, we need concepts from CRL to capture scene compositions . The
problem of composition is non-trivial as the interactions increase combinatorially with the increase in
number of objects von Kügelgen et al. (2020); Wiedemer et al. (2023); Tangemann et al. (2021).

Here we argue that an ideal OCL method should aim to capture higher-order (i) conditional, (ii)
causal, and (iii) compositional relationships between attributes and objects, where the system learns
representations that are inherently compositional and capture both feature-level and object-level
causal interactions. This view aligns with philosophical perspectives, such as Kant’s view that
causality is a necessary structure imposed by the mind to organise sensory experience (Kant, 1908),
and Fodor’s idea of compositional symbolic representations (Fodor, 1975). It also resonates with
neuroscientific insights into hierarchical processing in the brain, where dynamic interactions between
attributes and objects occur, and causal reasoning, akin to Bayesian inference mechanisms used in
the prefrontal cortex (Tenenbaum et al., 2011). By integrating these principles, ideal OCL can bridge
low- and high-level semantic understanding, reflecting the complex nature of human perception and
the structured nature of real-world environments.

Scene Graph Modelling (SGM) is another line of work which deals with the abstraction of objects/-
components in the scene and their complex relationships and provides rich semantic information of
an image Gu et al. (2019), in the form of <subject, object, predicate>. Scene graphs
are mainly considered in scenarios like visual question answering, image captioning, and action
recognition Teney et al. (2017); Yao et al. (2018); Li et al. (2022). Scene graphs naturally align with
the goals of OCL, representing a scene’s latent structure as a graph where nodes correspond to objects,
and edges represent semantic relationships, such as spatial, functional, or causal interactions (Krishna
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et al., 2017; Johnson et al., 2015; Gu et al., 2019); however, most of these methods heavily rely on
supervision for identifying objects and their interactions. Recent methods Wei et al. (2024); Gao et al.
(2024); Kim et al. (2024); Wang et al. (2024) use large language models (LLMs) o r large vision
language models (VLMs) as an implicit scene graph which is used in conditioning the generation
of samples. Most of these do not provide explicit control over attributes and object interactions.
Gao et al. (2024) uses GPT4 to generate scene graphs from text prompts, providing object-level
control with explicit scene graphs. von Kügelgen et al. (2020) provide a graphical abstraction for
layer-wise compositional abstraction, Deng et al. (2021) provide a graphical abstraction of part-object
relations, capturing the hierarchy involved in scene generation. In a similar spirit, we propose causal
abstraction for composition, where we model object interactions as interactions between object-level
graph. Unlike Deng et al. (2021); Yuan et al. (2024), which aims to learn to pose and view equivariant
object representations, the object-level graph in this setting captures the invariant mechanisms across
all the objects.

However, the challenge of identifiability of representations and dependencies still persists. Identifia-
bility in modern machine learning models can be considered as a Bayes optimal model that guarantees
the test loss to have a unique minimizer, essential to recover the true data-generating process. In
this paper, with probabilistic perspective on SGM, we position compositional OCL as a general
learning paradigm that subsumes CRL, NICA, and IF models as special cases and should be an
integral part of the research agenda. With this, we consider the progression of learning paradigms
as follows (illustrated in Fig. 2): (i) IF: assumes fully independent latent variables and enables
the generation of iid samples. (ii) NICA: introduces conditional independencies in latent variables,
allowing conditional sample generation. (iii) CRL: extends NICA by uncovering cause-effect rela-
tionships through Structural Causal Models (SCMs), resulting in counterfactual reasoning. (iv) OCL:
builds upon CRL by structuring the latent space as a mixture of objects, capturing both feature-and
object-level causal interactions, thus enabling the generation of compositional samples. In summary,
our main contributions are:

1) Highlighting the modelling scenarios in both CRL and OCL fields, unifying them with
causal abstractions;

2) Provide a probabilistic interpretation of scene graphs through compositional graphs, with
multiple examples and scenarios demonstrating its implications;

3) Introduce the concept of latent compositional models with mechanism invariance, discuss
its implications for learning compositional and causal graphs, along with possible modelling
approaches and theoretical extensions to validate guarantees.

2 COMPOSITIONAL OCL: A UNIFYING VIEW

Here, we introduce notations, outline the components of the data generation process and introduce
the concept of causal abstraction from a compositional perspective.

2.1 DATA GENERATING PROCESS
y1

y2

y3

s1

s2

s3

z1

z2

z3

x1

x2

x3

x

Figure 3: This graphical model illustrates the data
generation process, starting with observed group-
ing variables y1, . . . , y|V | (|V | = 3 shown for il-
lustration), which are used to sample independent
object representations s1, . . . , sK . These represen-
tations are then combined to form z, capturing both
attribute-level and object-level relationships. Fi-
nally, z is used to generate object-level partitions
in the observation space, x1, . . . ,x|V |. All parti-
tions together compose the observed scene, x.

Let K = {1, . . . ,K} represent all object indices,
with a subset V ⊆ K generating the observation
x ∈ X . As shown in Fig. 3 (and in Eqn. 1),
xV = {xv ∈ X v,∀v ∈ V } represents image
partitions, where x is the composition of ele-
ments in xV , and X v ⊂ X ⊂ Rdx . Observed
variable y groups components (xvs) across X .
Latent variables z = {zv ∈ Z,∀v ∈ V }, with
Z ⊂ Rdz , encode dependencies across fea-
tures zvj . Each partition xv depends only on
its corresponding zv with relation xv = fd(z

v).
Independent counterparts s = {s1, . . . , s|V |}
are defined as s = {ge(x, y1), . . . , ge(x, y|V |)},
where s ∈ S ⊆ S1 × · · · × SK , Sk ⊆ Rds .
A volume-preserving transformation z = gz(s)
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captures relationships among object features. Finally, the compound feature extractor is defined as
ϕ(s) := (gs ◦ (fc ◦ fd ◦ gz))(s), extracting features for a composed image rather than an observed
image.

x = fc([x
1, . . . ,x|V |]) = fc(fd([z

1, . . . , z|V |])) = fc([fd(z
1), . . . , fd(z

|V |)])

= fc([fd(gz(y
1, s)), . . . , fd(gz(y

|V |, s))]) (1)

Illustration OCL: Grouping from a compositional perspective refers to spatial disentanglement of
and categorisation of objects in V , the total number of distinct groups. Providing control over the
generation of scenes with objects of interest given by yv, this grouping can also be with respect to
size, colour, or any of the observable properties which capture the uniqueness of objects in a scene.

Illustration CRL: Note that in the case of CRL methods, we do not need fc,x as xv are observed, y
behaves as the observational grouping variable. This grouping of observed variables is common in
many real-world applications, as detailed in Morioka & Hyvärinen (2023), and is used in many differ-
ent forms, as in the form of multiple views in Yao et al. (2023), as augmentations in Von Kügelgen
et al. (2021), and as interventional set in Brehmer et al. (2022).

2.2 CAUSAL ABSTRACTION FOR COMPOSITION

We introduce the notion of compositional graphs, building the formalisation of causal graphs Pearl
(2009) and viewing them as probabilistic interpretations of scene graphs.
Remark 2.1. A causal graph G (definition A.1)factorises the distribution p(z) =

∏n
i=1 p(zi | pai),

where pai ⊆ {z1, . . . , zn} \ zi is a set of parents of zi w.r.t. graph G.
Example 1. (Instantaneous Causal Effects.) As shown in Fig. 1, the observation is modelled as the
output of an SCM, with inputs including light source position, object positions, shadows, sizes, and
colours. The interactions between these features are depicted in Fig. 4a. Notably, object-specific
properties such as pose and orientation are treated as confounders and are excluded from the causal
graph, as we focus solely on features that represent invariant mechanisms across all objects in the
dataset.
Definition 2.2. (Compositional Graph: G) A compositional graph is a meta-graph capturing
interactions between different causal graphs, which can be denoted with G = (V C , H) =
(
⋃

k∈K V k,
⋃

k∈K Ek
⋃
Em), where:

• V C = {G1, . . . ,GK} represents causal graph for individual objects, where Gk =
(V k, Ek),∀k ∈ [K] is a causal graph as defined above.

• Em = {epqij | epqij corresponds to meta edges capturing interactions between ith variable of
Gp and jth variable of Gq}, i.e., edge epqij captures the causal influence between zqj → zpi

Remark 2.3. In a compositional setting, we have a set of latent representations z = {z1, . . . , z|V |},
where zk is sampled from separate environments given by zk ∼ p(zk | cpak, yk), where yk

categorical variables conditioning a variable to a particular environment. Similar to parents in causal
setting we consider cpapi ⊆

⋃
q∈V,q ̸=p{z

q
j | ∀j ∈ dim(zq)}, describing compositional parents, which

is the set of all the variables across environments causing the feature zpi , they can be treated as a
causal parents but in a different environment. Invariant edges across environments can be considered
causal graphs. Additionally, it is essential to note that compositional graphs are scene-dependent,
capturing the interaction between invariant causal graphs. The resulting latent distribution can be
factorised as:

p(z) ∝
∏

p,q∈K,p̸=q

p(zp | zq, yp) =
∏
p∈K

∏
i

p(zpi | cpapi ∪ papi , y
p) (2)

Example 2. (Causal Abstraction for Composition.) Building upon Example 1, we extend the
discussion to object relations within a scene, using the same instantiation of causal graphs for
Torus, Cube, and Pyramid, as shown in Fig. 1. This instantiation remains valid since the underlying
mechanisms—such as shadow formation due to object size and light source—are consistent and
invariant across different objects. The edges in the graph (ref. Fig. 5) represent compositional
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behaviours; for example, the Cube’s position causally influences the Pyramid’s position when the
Pyramid is placed above it. Similarly, the Torus’ position is causally linked to the Cube’s position.

x1

z11z12

z13

z14

z15

(a)

xxv

zv1zv2

zv3

zv4

zv5
|V |

(b)

Figure 4: (a) Instantaneous causal graph repre-
senting the causal relationships among variables
for a single object, where z11 to z15 correspond to
object-shadow, object-size, light-position, object-
position, and object-color, respectively. (b)
Compositional graph depicted using plate no-
tation, where the plate labelled |V | represents
multiple instances of the invariant causal graph
for different objects. Interactions across objects
are illustrated with elliptical arrows spanning the
plate, and the observed data x is modelled as
the combined result of all |V | objects and their
interactions.

The compositional graph provides a probabilistic
interpretation of scene graphs, integrating both
spatial and semantic relationships. Its edges
capture attribute-level (semantic) reasoning,
e.g., <object-size, shadow-length,
causes>, or object-level (spatial) reasoning,
e.g., <torus, cube, leans on>.

Lemma 2.4. (Acyclicity of composition) The com-
bined compositional graph remains acyclic when:

L.1: Circular consistency: No circular in-
teractions are introduced between any
graph pairs (Gp,Gq), i.e., there are no
loops in Em. Example: If there is an
edge (zpi → zqj) ∈ Em, then (zqj →
zpi ) /∈ Em.

L.2: Causal consistency: For any two nodes
zpi , z

q
j , if there is an edge (zpi → zpj ) ∈

Ep, then (zqj → zpi ) /∈ Em.

Interpretation: The first constraint is straight forward, ensuring Em does not contain any direct
cycles. The second constraint preserves consistency in the causal direction between features across
groups. Together, these constraints ensure G retains its acyclic nature. In the context of physical
systems, in Fig. 5, acyclicity in the composition of interacting objects is inherently maintained. This
means that the cause-and-effect relationships between the objects — such as the influence of the light
source on the shadows cast by the cube and torus or the way the position and size of one object can
impact the other — follow a directed, non-circular flow. However, some complex biological systems
do break these acyclicity properties Sachs et al. (2005), which we do not consider in this work.

To capture the notion of latent distribution respecting compositional nature, we consider parametrised
Markov random fields (MRFs), capturing pairwise interactions between the elements of spj and zqi .
Based on the parametrization of MRFs, we consider two different potential functions, gz and ḡz ,
where gz is a pairwise potential function, which captures causal relation across objects modelling
compositions. In contrast, ḡz captures the instantaneous causal interactions for a given component.
As illustrated in Morioka & Hyvärinen (2023), the parametric interpretation of gz, ḡz is general
enough to capture many different classes of SEMs, resulting in a latent distribution (Eqn. 3).

p(z) ∝
∏

p,q∈K
exp (ḡz(z

p, sp; y)) ·

 ∏
(i,j)∈|Zp|×|Zq|

exp
(
λpq
ij gz(z

p
i , s

q
j)
) (3)

Terms gz(z
p
i , s

q
j) captures the sample-specific functional relations like the influence of cube size

on the shadow of a torus in Example 2, while λpq
ij captures the existence of these compositional

edges. Here, the component level interaction p(zp | zq) is modelled with an axillary variable s which
are considered to satisfy ICA assumption resulting in p(s) =

∏
p(sv) (ref. Fig. 3). We do this by

estimating zp with all independent base representations {s1, . . . , s|V |}.
Remark 2.5. Note that based on the joint distribution, the potential function ḡz depends on a
component level grouping reflected by y,∀k ∈ [K], which in Morioka & Hyvärinen (2023) is
assumed to be known in the form of observational groups, while in OCL, this further requires weak
supervision (classification labels for objects in the scene), breaking equivariance property, which is
implicit in OCL Locatello et al. (2020); Wang et al. (2023); Emami et al. (2022); Kori et al. (2023;
2024). Additionally, the potential function gz , needs a further set of assumptions to factories Eqn. 3
to reflect the directionality of cause and effect.
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Figure 5: Example of particular instantiation of
Fig. 4b (with V = {1, 2, 3}, resulting in x1,x2

and x3 corresponding to torus, cube, and pyra-
mid, respectively), illustrating the scene in Fig.
1. Here, zv1 to zv5 correspond to object-shadow,
object-size, light-position, object-position, and
object-color, respectively. Blue arrows in the
graph correspond to compositional edges (Em).

Graph Extraction: Considering the invariance
of causal graphs across groups, we get the same
causal graph G for all k ∈ K. It is important to
note that causal graph G is contained in a com-
positional graph G and reflects the inter-group
weighted adjacency matrix. Let C = {Cpq}ij
correspond to adjacency matrices of G for ev-
ery node pair (i, j) ∈ |Zp| × |Zq| for a given
scene, as detailed in examples 1 & 2. Similar to
Reizinger et al. (2023), we link the notion of Jaco-
bian Jg−1

z
of function gz to compositional graph.

Note we consider C to be concatenated matrix in
R|V ||dz|×|V ||dz| resulting the combined Jacobian
as illustrated in Fig. 6. Finally, we consider two
matrices A and B to be structurally equivalent
(A ∼DAG B) if both matrices follow the same
sparsity structure.

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

*
*
*
*
*
*

Figure 6: The figure demonstrates the Jacobian of
gz , and the resulting compositional graph between
attributes z expressed as a function of independent
variables s. Block diagonals reflect the causal rela-
tions between attributes, while off-diagonal entries
show compositional relations. Coloured diamonds
in a Jacobian reflect entries corresponding to their
edges in a compositional graph.

Invariant Mechanisms: As detailed in exam-
ples 1 & 2, given the mechanisms are consistent
across objects in a scene, we need a way to en-
force this behaviour when our SCM is modelled
in a parametric sense. We propose the follow-
ing mechanism consistency regularisations (ref.
definition 2.6), based on a Jacobian of the con-
sidered SCM.
Definition 2.6. (Mechanism consistency) The
causal relation among features for a particu-
lar component is given by Gp which is cap-
tured by ds × ds Jacobian matrix given Jpp

g−1
z

,
we define mechanism consistency as: LMC =

Ez∈Z

[∑|V |
p=1 ∥J

pp

g−1
z

(z)− J00
g−1
z

(z)∥f
]
.

Interpretation: The regularisation basically en-
courages all the block-diagonals with dimension
dz of a Jacobian Jg−1

z
to follow the same spar-

sity structure. This basically forces the paramet-
ric SCM to use the same set of parameters for all objects.

DAG regularisation: Lemma 2.4 establishes conditions for compositional interactions to ensure
the resulting joint composition graph is a DAG. To enforce DAG structure in SEM gz , we apply a
continuous DAG penalty over the Jacobian J (we later show, J ∼DAG I − C). We leverage the
findings of Nazaret et al. (2023), which demonstrate that minimizing the largest eigenvalue λ(J)
ensures DAG soundness. Augmented Lagrangian scheme with hyperparameters α and ρ, which are
progressively increased during training, LDAG = ∥J∥2f + ρh(J)2 + αh(J) where h(J) = |λ(J)|.

Compositional
Consistency

Figure 7: The figure demonstrates the generalisa-
tion of latent space as a result of optimising com-
positional consistency.

Compositional Consistency: Similar to
Wiedemer et al. (2023), to ensure compositional
generalisability, we use compositional consis-
tency, which basically points towards a fixed
point of ϕ, given by s = ϕ(s). Which is
achieved by maximising the posterior log prob-
abilities for all possible random compositions.
Conjecture 2.7. (Compositional consistency)
Given the full support over S by observational
data X , maximising the posterior q(ϕ(s))∀s ∈
S, while preserving high likelihood over p(x)
results in compositional generalisation of con-
sidered LCM. Which means for any random composition s ∈ S, (fc ◦ fd ◦ gz)(s) is optimised to be
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(a) (b) (c)

Figure 8: (a) “Two glasses, one with milk and the other with wine, both fully filled.", (b) “A laptop
on top of a table.", and (c) “A table placed on top of a laptop." These examples illustrate generated
samples from GPT-4o with highlighted predicates, demonstrating issues with VLMs and the need for
our unified perspective.

in-distribution of p(x), LCC = −Es∈S [log q(ϕ(s))]. Interpretation: As illustrated in Fig. 7, S ′ is
the inferred latent space of observational data capturing the possible interactions of objects s1 and
s2 as reflected in observed data, while S demonstrates the space captured by all possible random
compositions while preserving data fidelity.

Training objective: The model would be trained via likelihood maximisation with additional regu-
larisations, encouraging the representations to have consistent mechanisms that follow DAG structure
while ensuring generalisation on compositions. The resulting objective, with hyperparameters β, γ
and δ is given by Ltotal := −Ez∼q(z|x,y) log(p(x | z) + βLCC + γLMC + δLDAG

3 WHY DOES IT MATTER?

As VLMs and foundation models continue to evolve, the need for structured, interpretable, and
compositional representations becomes increasingly evident in achieving human-aligned, safe, fair,
robust, and generalisable representations. While these models excel at capturing broad patterns from
large datasets, their ability to generalise to novel, compositional, and causal reasoning tasks remains
limited. Fig. 8 highlights such challenges. In Fig. 8(a), the mechanism of filling a glass should be
consistent, independent of the specific instance (glass of milk vs glass of wine), yet the model fails to
learn this invariant mechanism and instead learns instance-specific mechanisms. This demonstrates
the necessity of the proposed perspective on invariant mechanisms that maintain causal consistency
in a compositional setting.

Figures 8(b) and (c) further illustrate compositional inconsistencies. Both scenarios—a laptop on
a table and a table on a laptop—are physically plausible and causally consistent. However, the
model hallucinates in the latter case, failing to generalise in that scenario, highlighting the lack of
compositional generalisability. This is crucial for ensuring out-of-distribution (OOD) generalisation
capabilities, and accurate modelling of rare yet realistic events Wiedemer et al. (2023). Building
on these observations, we outline the theoretical and practical implications of a probabilistic SGM
perspective that unifies both CRL and OCL.

Transferability: The proposed causal abstraction provides a direction for developing System-2
agents by bridging perception and abstract reasoning. This perspective suggests that by grounding
dataset-level objects in scenes (Lake et al., 2017; Schölkopf et al., 2021; Kori et al., 2023), models
could potentially generalise across unseen scenes through invariant mechanisms. Such grounded
representations facilitates task transferability and human-like reasoning (Tenenbaum et al., 2011),
providing new avenues for integrating perception-driven neural networks with symbolic reasoning
for planning and decision-making (Bengio et al., 2013a; Mao et al., 2019; Proietti & Toni, 2023).

Robustness: This perspective aligns with applying causal inference principles, such as intervention
and counterfactual reasoning, to scene modelling, as partially explored by Mansouri et al. (2022; 2023).

7



Models leveraging invariant mechanisms may capture object features even under partial observability,
reducing the risk of hallucinations. Exploring this robustness is particularly promising for critical
applications, such as autonomous driving (Schölkopf et al., 2021) and medical diagnosis (Castro
et al., 2020).

Generalisation: Enforcing mechanism consistency across image partitions could lead to representa-
tions that are both causal and invariant across objects, improving OOD generalisation (Schölkopf et al.,
2021). Additionally, compositional consistency enables model to generalise to novel environments in
a causally consistent manner.

Counterfactual Reasoning and Controllability: Extending counterfactual reasoning in OCL
through causal abstraction holds significant potential. Existing generative models (Goodfellow et al.,
2014; Mirza & Osindero, 2014; Karras, 2019; Kingma & Welling, 2013; Song & Ermon, 2019)
lack fine-grained control, often resulting in hallucinations or poor OOD generalisation (Reizinger &
Krishnan, 2024). By formalising compositional graphs in the latent space, this perspective points
towards new methods for controllable and interpretable generation, which extends to applications
like image editing and embodied AI systems.

Despite these promising implications, several challenges remain to provide promising future direction:

Identifiability in Complex Scenes. Ensuring the identifiability of object-centric causal variables
in complex, the current formalism provides an informal proof under explicitly made assumptions;
rigorously establishing identifiability for general setting will be crucial for many use cases.

Mechanism Invariances. The proposed approach enforces invariances across image partitions, but
extending these invariances to handle temporal dependencies is an interesting direction to model the
physical properties of the system. For instance, considering the scene in Fig. 1, if a torus is observed
pushing the cube within a temporal sequence, this interaction reveals important properties such as the
mass of objects and provides insight into friction within the environment. Such temporal extensions
can improve the model’s ability to infer dynamical causal relationships, making it more suitable for
applications in physical reasoning, robotic manipulation, and scene understanding.

Systematic Evaluation. Given all the existing OCL datasets do not provide access to compositional
or causal graphs that are used in generating particular scenes, it would be an important direction to
define relevant metrics to evaluate these properties additionally, creating a detailed environment to
generate synthetic/realistic scenes along with compositional structure would be very beneficial to
the field in general. Some of the existing environments Authors (2024); Greff et al. (2022) can be
modified for this purpose.

4 CONCLUSION

In this position paper, we proposed a unifying perspective that integrates OCL and CRL through a
probabilistic view SGM with causal abstraction. By conceptualizing object interactions as invariant
mechanisms embedded within object-level graphs, we outlined a structured approach that captures
both semantic and spatial dependencies, extending existing paradigms such as IF, NICA, and CRL.

Here, we provide a perspective substantiated through rigorous conceptual arguments and demonstra-
tive scenarios compelling reasoning for how this approach could mitigate key challenges in foundation
models, including hallucinations, lack of structured reasoning, and poor generalization. Specifically,
by embedding causal reasoning within object-centricity, our perspective suggests that future AI
systems can: 1) Enhance controllability and reliability in structured scene generation. 2) Improve
generalization by aligning learned representations with real-world structured environments. 3) Enable
compositional/counterfactual reasoning, allowing robust inference over novel interactions. While our
claims remain theoretical, we argue that formalizing composition as a causal abstraction presents
a promising direction for developing AI systems that are interpretable, compositional, and robust.
This perspective has broad implications for autonomous systems, robotics, and medical AI, where
structured and generalizable scene understanding is critical, moving beyond pattern recognition to
structured, human-aligned intelligence.
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A ADDITIONAL DEFINITIONS AND ASSUMPTIONS

Definition A.1. (Causal Graph: G) Let the causal graph G = (V,E) be a directed acyclic graph
(DAG) that represents causal relationships:

• V = z ∈ Z = {z1, . . . , zn} ∈ {Z1, . . . ,Zn} are the nodes, representing causal variables.

• E ⊆ V ×V are the directed edges encoding pairwise causal dependencies between variables,
i.e., zi → zj represents that zi causally influences zj .

Assumption A.2. (β−disentanglement, Lachapelle et al. (2023)) Let s = {sB ,∀B ∈ B} be a set
of features wrt partition set B. The learned mixing function f is said to be B disentangled wrt true
decoder f̃ if there exists a permutation respecting diffeomorphism vB = f̃−1 ◦ f ∀B ∈ B which for
a given feature s can be expressed as vB(s) = vB(sB).

Assumption A.3 (Weak Injectivity). Let f : Z → X be a mapping between latent space and image
space, where dim(Z) ≤ dim(X ). The mapping fd is weakly injective if there exists x0 ∈ X and
δ > 0 such that |f−1({x})| = 1, ∀x ∈ B(x0, δ) ∩ f(Z), and {x ∈ X : |f−1({x})| = ∞} ⊆ f(Z)
has measure zero w.r.t. to the Lebesgue measure on f(Z) (cf. Kivva et al. (2022)).

Remark A.4. In words, Assumption A.3 says that a mapping fd is weakly injective if: (i) in a small
neighbourhood around a specific point x0 ∈ X the mapping is injective – meaning each point in this
neighbourhood maps to exactly one point in the latent space Z; and (ii) while fd may not be globally
injective, the set of points in X that map back to an infinite number of points in Z (non-injective
points) is almost non-existent in terms of the Lebesgue measure on the image of Z under fd.

Definition A.5. (Additive composition function) A function fc : M×X → X is said to be additive
if, for x ∼ X ,m ∼ M with x = {x1, . . . ,x|V |} and m = {m1, . . . ,m|V |}, it can be expressed as
fc(m,x) =

∑|V |
v=0 m

v ⊙ xv = x. When M is constrained, such that
∑|V |

v=0 m
v = 1,mv > 0, the

following properties are inherently satisfied:

D.1. when mv ⊙ xv satisfy β−disentanglement assumption A.2, given partition masks, composi-
tion function can be approximately inverted with xv = mv ⊙ x,

D.2. ordering invariance of elements in (x,m) together.

Definition A.6. (Latent compositional models (LCM)) M = ⟨X , gz, fd, fc,Y⟩, which consists of:

D.1. X = X 1 × · · · × X |V |: observational data space,

D.2. gz : S → Z: Structural Equation Model (SEM) mapping papi ∪ cpapi to zpi ,

D.3. fd : Zv → X v: mixing function mapping slot subspace to observational subspace X v ,

D.4. fc : X 1 × · · · × X |V | → X : an additive composition function, given by definition A.5,

D.5. y: observed grouping variable.

Conjecture A.7. (Identifiability of LCM) For any two models M = ⟨X , gz, fd, fc,Y⟩ and
M′ = ⟨X , g′z, f

′
d, f

′
c,Y⟩, the following properties ensure their identifiability (M ∼ M′), meaning

pM(x, y) = pM′(x, y):

P.1: Identical observational spaces: X ,Y for both models,

P.2: Latent distribution structure : pM(z) and pM′(z) follow the structure defined by Eqn. 2,

P.3: Weak injectivity: fd maps each z ∈ Z uniquely to a ball of radius δ > 0 in X ,

P.4: Scalar latent variables: gz and g′z are sets of scalar endogenous zvi ∈ R and exogenous
svi ∈ R variables,

P.5: Regularizations: Constraints on compositional consistency (Eqn. ??), DAG regularisation,
and mechanism consistency are optimized.
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Interpretation: The conjecture ensures identifiability by constraining LCMs: P.1 and P.2 ensures
the same observation (X ,Y) and model classes are considered across LCMs, P.3 ensures that the
decoder fd guarantees that every latent state z uniquely determines a region in the observational
space X , crucial for identifiability Kivva et al. (2022), P.4 ensures that considered variables are
scalar in nature, and finally, P.5 ensures all the regularisations are optimised, where compositional
consistency and invariant mechanisms are essential for generalisation, making sure that support for
object representation is full Wiedemer et al. (2023) and encourages similar latent representations
along with functions in both LCMs, DAG consistency enforces a valid latent graph structure by
penalizing cycles, ensuring a sound SEM. Together, these properties ensure the LCM results in
learning true compositional model.

Conjecture A.8. (Jg−1
z

∼DAG (I − C)) In case when LCM is identifiable, we can show that
Jacobian Jg−1

z
is structurally equivalent to (I −C).

Interpretation: When an LCM is identifiable, the Jacobian of SEM is faithful to the compositional
graph involved in data generation. This means we can use I −C for invariant mechanism and DAG
regularisations.

B PUTTING THINGS IN CONTEXT

In this section, we link our theory to existing OCL and CRL works, highlighting their relations.

B.1 RELATION TO SPATIAL MIXTURES

Considering a mixing coefficient π over a categorical environment variable y, we can restructure Eqn.
3 as a mixture of exponentials:

p(z) ∝
|V |∑
p=1

πp exp
(
ϕ̄(zp, sp; yp)

)
·

∏
q∈K

∏
(i,j)∈|Zp|×|Zq|

exp
(
λpq
ij ϕ1(s

p
i , z

q
j)
) (4)

Previous works such as Greff et al. (2017), Kori et al. (2024), Yuan et al. (2024), and Burgess et al.
(2019) have shown that, from a probabilistic perspective, the latent distribution in unsupervised
object-discovery methods can be interpreted as spatial mixtures. Kori et al. (2024) and Krimmel
et al. (2024) demonstrate that more recent methods along slot-attention line of work can reduce the
latent distribution to Gaussian Mixture Models (GMMs) or Von Mises-Fisher (vMF) distributions,
depending on the chosen distance function. In our case, the model represents a generalized approach
to spatial mixtures. When we assume that latent factors are statistically independent both within
and across environments (i.e., λpq

ij = 0 for all (i, j, p, q)), the latent distribution p(z) simplifies to a
GMM, as shown in Eqn. 2. This distribution can be further extended to capture compositional graph
structures and LCM, making it suitable for modelling more complex dependencies in the latent space.

What does this mean? The latent distribution in Eqn. 4 generalizes traditional spatial mixture
models by incorporating pairwise dependencies between object features. This demonstrates that
providing a probabilistic interpretation of scene graphs can be achieved by considering pairwise
interactions, where the term λpq

ij ϕ1(s
p
i , z

q
j) can be interpreted as edges and functions in a scene graph,

capturing both object- and attribute-level interactions.

B.2 RELATION TO INVARIANCE THEORY

The proposed formulation of invariant mechanisms can be understood through the lens of invari-
ance principles in CRL, as introduced by Yao et al. (2024). In the context of sample-level invari-
ances (Von Kügelgen et al., 2021; Yao et al., 2023), consider two observed images (x1,x2) that
share underlying structural similarities due to transformations such as augmentations, changes in
viewpoint, or pose shifts. By encoding these images into latent representations z1 = g(x1) and
z2 = g(x2), the invariant CRL frameworks identifies a subset of invariant latent variables c1, c2 ⊆ Z
that remain stable across both samples, such that for any z /∈ c1, c2, we have ∂h1(c1)

∂z = ∂h2(c2)
∂z = 0.

However, similar to observational grouping in Morioka & Hyvärinen (2023), we consider grouping of
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image x components by grouping variable y. Each partition corresponds to an object or component
in the image and by minimising mechanism consistency, ensures learning invariant object- and
attribute-level interactions across scenes.

What does this mean? The proposed formalisation can be reduced to invariant representation
learning as in Yao et al. (2024) by appropriately grouping observed data via categorical conditioning
variable y. In essence, the approach unifies CRL and scene graph modelling by grounding scene
understanding in invariant causal structures, by capturing object- and attribute-level interactions.
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