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Abstract
Hierarchical and overlapping clustering are two
prevalent phenomena that often coexist in real-
world system. While numerous studies have ex-
amined these two structures separately, character-
izing and evaluating their hybrid forms remains
an open challenge. To bridge this gap, we initiate
the study of hierarchical overlapping clustering
on graphs by introducing a new cost function and
establishing its rationality through several intu-
itive properties. We further develop an approxi-
mation algorithm that achieves a constant approx-
imation factor for its dual version. Our approach
employs a recursive overlapping bipartition frame-
work based on local search, enabling a highly
scalable speed-up variant. Experimental results
demonstrate that this speed-up algorithm outper-
forms all baseline methods significantly in both
effectiveness (across synthetic and real datasets)
and scalability.

1. Introduction
Clustering on graphs is a major task in machine learning and
has a wide range of applications in many areas. Two funda-
mental categories have attracted in-depth study. The first is
hierarchical clustering (HC) that requires a recursive parti-
tioning of a graph into smaller clusters to form a cluster tree
(Dasgupta, 2016; Li & Pan, 2016; Cohen-Addad et al., 2019;
Charikar & Chatziafratis, 2017; Moseley & Wang, 2017;
Naumov et al., 2021). The other is overlapping clustering
(OC) that allows data points to belong to multiple clusters
(Orecchia et al., 2022; Zhang et al., 2007; Shen et al., 2009;
Chen et al., 2010; Nicosia et al., 2009; Whang et al., 2016;
Li et al., 2017; Yang & Leskovec, 2012a). Both structural
patterns are prevalent in real systems. Compared to using
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each structure in isolation, the hybrid structure of hierar-
chical overlapping clustering (HOC) that permits overlaps
between hierarchical clusters offers a more accurate repre-
sentation of complex relational data observed in real-world
scenarios. For instance, in social networks, an individual
may belong to multiple distinct groups, and these groups
can form larger overlapping communities centered around
different themes. In cooperation networks, the coauthors
of a paper can be regarded as a base-level cluster, and this
cluster may belong to more than one research field due to
the diversity of topics. The inherent complexity of the hy-
brid structure presents a formidable challenge in clustering
research. While HC and OC have been extensively studied
as separate paradigms, the critical domain of HOC remains
largely unexplored. In this paper, we address this problem.

Constructing a cost function is a usual starting point for
the research on both HC and OC. Similarly, a proper cost
function is helpful to evaluate the quality of HOC, which
formulates the HOC problem as an optimization task. In
this paper, we propose a new cost function for HOC, and
present an approximation algorithm for it. Our contributions
are summarized as follows.

(1) Cost function. We propose a cost function (Definition
2.8) that is the first one for HOC to our best knowledge. The
cost function is evaluated on HOC graphs, and can be unified
with Dasgupta’s cost function for HC trees in the specific
case of non-overlap. We give a comprehensive study on the
rationality of this cost function by providing examples and a
series of properties including compatibility (Property 2.11),
additivity of nodes (Property 2.12) and binary optimality
(Property 2.13).

(2) Approximation algorithm. Based on our cost function,
we formulate the primal and the dual versions of the HOC
problem, respectively. We provide an a = 2

3
√
6
−Θ( 1+ϵ

n )-
approximation algorithm (Algorithm 2) for the dual k-HOC
problem, where k ∈ Z+ is an upper bound of key clusters
(explained in Definition 2.10), n is the number of graph
nodes, and ϵ is an arbitrarily small positive constant. We
also show that our algorithm achieves an approximation
factor (1−a)(1+dmax/davg) for the primal 2-OC problem.

(3) Effectiveness and scalability. We accelerate our ap-
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proximation algorithm by some simple heuristics during
the local search process, and verify its effectiveness and
scalability by experiments. On effectiveness, experimental
results demonstrate that on random graph models with good
embedded HOC structures, our algorithm outperforms all
other baselines and reconstructs the ground truths almost
perfectly. On scalability, benefiting from our elaborate cost
function and simple local search strategy, on real datasets
with around one million vertices and three million edges,
the runtime of our speed-up algorithm implemented on a sin-
gle laptop is only around 20% of the runtime of the fastest
baseline method proposed by (Orecchia et al., 2022) that is
run on a server with a cluster of machines.

1.1. Related work

Hierarchical graph clustering. The most popular cost
function for HC is proposed by (Dasgupta, 2016). Given a
weighted graph G = (V,E,w) and a cluster tree T , Das-
gupta’s cost is defined as

DasT (G) =
∑
i,j∈E

wij |V (i ∨ j)|, (1)

where i ∨ j denotes the least common ancestor (LCA) of i
and j in T , V (i ∨ j) represents the set of descendant leaf
nodes under i ∨ j, and |V (i ∨ j)| is its size. On similarity-
based graphs, optimization of HC trees can be performed by
minimizing Dasgupta’s objective. The intuition is that for
a good clustering tree, the edges with large weights ought
to be placed as far down from the root as possible, which
makes the number of leaves covered by its LCA as small
as possible. Dasgupta also showed that both minimizing
DasT (G) and maximizing DasT (G) are NP-hard.

Along this line of study, Dasgupta showed that recursive
bipartition applying Arora’s seminal algorithm for spars-
est cut problem (Arora et al., 2009) yields O(log1.5 n)-
approximation, and it was improved by (Roy & Pokutta,
2016) and (Charikar & Chatziafratis, 2017; Cohen-Addad
et al., 2019) to O(log n) and O(

√
log n), respectively. It is

also known to be SSE-hard to achieve any constant approxi-
mation factor for this objective (Charikar & Chatziafratis,
2017). Moseley and Wang studied the dual of Dasgupta’s
cost function and showed that the average linkage algo-
rithm achieves a (1/3)-approximation (Moseley & Wang,
2017). This factor has been improved by a series of works
to 0.336 (Charikar et al., 2019), 0.4246 (Ahmadian et al.,
2019) and 0.585 (Alon et al., 2020), respectively. There
are also some studies considering the problem of maximiz-
ing Dasgupta’s cost function on dissimilarity-based graphs
(Cohen-Addad et al., 2019; Charikar et al., 2019; Rahgoshay
& Salavatipour, 2021; Naumov et al., 2021).

Overlapping graph clustering. Newman and Girvan pro-
posed modularity in 2004 (Newman & Girvan, 2004), which

was one of the most popular cost functions for flat non-
overlap clustering. Many researchers have extended modu-
larity to the scope of OC. (Nepusz et al., 2008) and (Nicosia
et al., 2009) proposed the concept of belonging factor that
represents the intensity of a node or an edge belonging to a
cluster. A function of the belonging factor was introduced to
the definition of modularity to make it applicable to OC, and
a heuristic algorithm was proposed based on maximizing
the OC modularity. (Zhang et al., 2007), (Shen et al., 2009)
and (Chen et al., 2010) also proposed their own definitions
of belonging factor and cost functions based on modular-
ity. Inspired by these works, our cost function also utilizes
belonging factor for HOC.

On the worst-case guarantee analysis for OC, (Khandekar
et al., 2014) formulated the problem of minimizing the max-
imum or the sum of conductances of overlapping clusters,
with or without a bounded number of clusters. They pro-
posed the algorithms that achieve O(log n)-approximation
factors for the four kinds of versions, where n is the number
of vertices. The techniques behind the proof include the tree
decompositions (Räcke, 2002; 2008; Harrelson et al., 2003)
and a dynamic programming. As claimed in their work, the
complexity of the dynamic program hinders the scalability
of their methods.

Another representative work for OC is attributed to (Orec-
chia et al., 2022), in which two cost functions called ϵ-
overlapping ratio-cut (ϵ-ORC) and λ-hybrid ratio-cut (λ-
HCUT) respectively are proposed for OC with two over-
lapping clusters. Both cost functions are designed based
on the ratio-cut objective, and treat the overlapping part
of the two clusters as a penalty. Concretely, given a
graph G = (V,E,w, µ) with non-negative edge weights
w, vertex measure µ, and two overlapping clusters L and
R of vertices, they define two ratio-cut-like measures to
be qE [L,R] = w(L \ R,R \ L)/min{µ(L), µ(R)} and
qV [L,R] = µ(L∩R)/min{µ(L), µ(R)}. Then the ϵ-ORC
problem is defined to be the minimization of qE [L,R] under
the condition that qV [L,R] ≤ ϵ, and the λ-HCUT problem
is the minimization of qE [L,R] + λqV [L,R]. These two
problems are defined with hyper-parameters, which restricts
the applications and scalability of OC algorithms that solve
them. Moreover, since the edge weights w and vertex mea-
sure µ are usually derived from independent systems and
have different units, the linear combination of qE [L,R]
and qV [L,R] in λ-HCUT is less explainable. However, for
both ϵ-ORC and λ-HCUT, (Orecchia et al., 2022) gave a
nearly-linear-time O(log n)-approximation algorithm called
cm+ improve.

With regard to HOC, there is much less work. There are two
methods for dissimilarity-based vector data, for which some
heuristics based on density criterion (Jeantet et al., 2020)
and cut metrics (Gama et al., 2018) are utilized during the

2



Hierarchical Overlapping Clustering on Graphs: Cost Function, Algorithm and Scalability

clustering process. However, no cost function and theoreti-
cal analysis have been developed yet, which is just what our
work addresses.

2. A cost function for HOC
In this section, we formulate our cost function for HOC.
First of all, we briefly introduce the underlying idea. HOC
can be represented by a directed acyclic graph, called HOC
graph, that is a natural generalization of HC tree. Inspired
by Dasgupta’s cost function (Eq. 1) for HC, we extend the
LCA of an edge to its minimal common ancestor (MCA)
set, and introduce the belonging factor to measure the de-
gree by which a node, a cluster, or an edge belongs to an
ancestor. Intuitively, for a similarity-based graph, a quality
HOC graph should contain heavy edges into clusters that
are small and as far down from the root of the HOC graph as
possible. Overlapping is desirable when a node has strong
connections to more than one cluster simultaneously, in
which case, the belonging factor allows to suppress the cost
contributed by the edges incident to that node. This is the
crucial idea of our cost function for HOC.

Preliminaries. An undirected weighted graph G =
(V,E,w) is specified by a node set V , an edge set E ⊆
{(u, v)|u, v ∈ V }, and a weight function w : E → R+.
Let n = |V | and m = |E| represent the number of nodes
and that of edges, respectively. The degree of a node u,
denoted by du, is the sum of weights of all edges inci-
dent to u, i.e., du =

∑
(u,v)∈E w(u, v). Denote by G[U ]

the induced subgraph of G on the node set U . For any
A,B ⊆ V , let E(A) = {(u, v)|(u, v) ∈ E, u, v ∈ A},
E(A,B) = {(u, v)|(u, v) ∈ E, u ∈ A, v ∈ B}, w(A) =∑

(u,v)∈E(A) w(u, v), w(A,B) =
∑

(u,v)∈E(A,B) w(u, v).
For a node v ∈ V,w(v,A) =

∑
a∈A,(v,a)∈E w(v, a). For

any E′ ⊆ E, w(E′) =
∑

e∈E′ w(e).

Partial ordering relationship of two nodes N and N ′ on a
directed acyclic graph D, denoted by N ≤ N ′, means that
N ′ is reachable from N , and we say that N and N ′ are
comparable in this case, and incomparable otherwise. An
anti-chain L = {N1, N2, N3, ...} on D is a set of nodes on
D satisfying that any two nodes in L are incomparable.

HC on graph G is represented by an HC tree T . It has n
leaves corresponding to the nodes of G. For any internal
node N , let V (N) be the set of leaves that treat N as an an-
cestor. Let u∨ v be u and v’s LCA on T . A weighted graph
G = (V,E,w) is similarity-based if the larger w(u, v) is,
the more similar u and v are. The cost function for HOC dis-
cussed in this paper is proposed for similarity-based graphs.

Definition 2.1 (HOC graph). Given a graph G, an HOC D
on G is a directed acyclic graph that satisfies the following
three constraints: (1) There is only one node of D with
out-degree of 0, referred to as the root node and denoted

by R. (2) There are n nodes of D with in-degree of 0,
corresponding to all the nodes in V , referred to as leaf
nodes. (3) For each non-root node of D, its parent node set
{N1, N2, ...}, which is the collection of nodes it points to
directly, forms an anti-chain.

On an HOC graph, two nodes satisfying X ≤ Y means that
V (X) is a subset of V (Y ). Note that we do not need the
converse also holds, because although syntactically we have
V (X) ⊆ V (Y ), semantically in practice, X and Y may
have unrelated meanings from two different systems that
are organized by different mechanisms. HOC graph extends
the concept of HC tree by allowing each non-root node
to have multiple parent nodes that are incomparable with
each other. It is a canonical representation for hierarchical
set containment that a subset is only allowed to point to
a minimal set that contains it. If each non-root node has
out-degree one, an HOC graph degenerates into an HC tree.
The distance dis(X,Y ) is the length of the shortest path
from X to Y . The height of D is the maximum distance
from any leaf to the root, that is. maxv∈V dis(v,R). The
width of an HOC graph is the length of the longest anti-
chain that consists of non-leaf nodes. For any node N on D,
Let N− denote the set of N ’s parent nodes and N− denote
the set of N ’s children nodes. Figure 1 demonstrates three
HOC graphs of height 2 for a graph G that consists of two
triangles intersecting at a single node, in which D2 is an HC
tree without overlap, while the other two are overlapping..
Definition 2.2 (MCA set). The MCA set for nodes u
and v in D is defined as Muv = {N |N ∈ D,u, v ∈
V (N), and ∀X ∈ N−, u /∈ V (X) or v /∈ V (X)}.

The term ”minimal” in the above definition means that any
child node of this common ancestor of u and v is not a
common ancestor any more, and thus cannot be further
reduced. This is an extension of the unique LCA on HC
trees to multiple ones on HOC graphs. For convenience,
when u, v are two endpoints of an edge, we also say a
common ancestor of this edge (u, v). As illustrated in D3

of Figure 1, Mbc = {N1, N2}, Mae = {R}.

Then we introduce belonging factor that is a key ingredient
of our cost function. We define two kinds of belonging
factors on an HOC graph D, node-to-node and edge-to-
node belonging factors, that are generalizations of those
proposed by (Nepusz et al., 2008) and (Nicosia et al., 2009)
for OC. The belonging factor of node X (resp. edge (u, v))
to node Y represents the degree for which X (resp. edge
(u, v)) belongs to Y .
Definition 2.3 (node-to-node belonging factor). The node-
to-node belonging factor of X to Y , denoted by αX,Y , is
defined recursively. First, define the node-to-node belonging
factor for each parent-child node pair on D, whose value
can be assigned freely as long as it satisfies the following
two constraints: (1) 0 ≤ αX,Y ≤ 1 for all X ∈ D and
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(a) The original graph G (b) HOC graph D1 (c) HOC graph D2 (d) HOC graph D3

Figure 1. An example of HOC graphs. The costs HD1(G) = 18, HD2(G) = 21, HD3(G) = 24.

Y ∈ X−; (2)
∑

Y ∈X− αX,Y = 1 for each non-root node
X ∈ D. Second, for other relationships of X and Y , αX,Y

is defined as

αX,Y =


∑

N∈X− αX,N · αN,Y X ≤ Y,X ̸= Y

1 X = Y

0 otherwise
(2)

To better understand the belonging factor, we give an equiv-
alent and intuitive definition via path-oriented interpretation,
thereby uncovering the multiplicative intuition embedded
in this concept. For any two comparable nodes X ≤ Y ,
denote by PX,Y the set of all paths from X to Y . For
each path p = [p0, p1, ..., plen(p)] ∈ PX,Y , let p0 = X ,
plen(p) = Y , len(p) be the length of p. Then the node-
to-node belonging factor αX,Y is equivalently defined as
αX,Y =

∑
p∈PX,Y

∏len(p)−1
i=0 αpi,pi+1 if X ≤ Y,X ̸= Y ,

and has the same values as Eq. (2) for the other two cases.
That is, αX,Y is the sum of the multiplication of all be-
longing factors of parent-child pairs along each path from
X to Y . The equivalence is easy to verify by induction.
The node-to-node belonging factor has some fundamental
properties.
Property 2.4. If Y is the only parent node of X , then
αX,Y = 1.
Property 2.5. The node-to-node belonging factor of any
node to the root is 1, that is, αN,R = 1 for any N ∈ D.
Property 2.6. For two nodes X,Y of D satisfying X ≤ Y ,
and any node set S, if (1) S is an anti-chain, (2) for any
p ∈ PX,Y , |p ∩ S| = 1, then αX,Y =

∑
N∈S αX,N · αN,Y .

Property 2.4 unifies HOC graph and common HC tree. Prop-
erty 2.5 coincides with the common sense that any cluster
and leaf belong totally to the root. Property 2.6 implies
that the node-to-node belonging factor of X to its ances-
tor Y can be disassembled by some (minimal) anti-chain
that blockades all paths from X to Y . The proofs of the
above properties are provided in Appendix A.1. Based on
node-to-node belonging factor, we define the edge-to-node
belonging factor as follows.

Definition 2.7 (edge-to-node belonging factor). For an edge

(u, v) in graph G, let X ∈ Muv be one of its MCA. The
edge-to-node belonging factor βX

(u,v) of (u, v) with respect
to X is defined as βX

(u,v) = fX
(u,v)/

∑
Y ∈Muv

fY
(u,v), where

fX
(u,v) = αu,X · αv,X .

βX
(u,v) is normalized over all MCAs of (u, v) to guarantee

that the mass of its belonging factors to its all MCAs sums
up to 1. A natural option is the uniform allocation to each
parent. That is, for each non-root node X ∈ D and Y ∈
X−,

αX,Y =
1

|X−|
. (3)

We adopt this definition of belonging factor in Section 3.
As illustrated in D1 of Figure 1, the leaf c has two minimal
ancestors N1 and N2, for each of which has belonging factor
1/2, and all edges in G belongs totally to N1 or N2. In D3,
the leaves b, c and d have both N1 and N2 as their minimal
ancestors with belonging factor 1/2 to each, and the edge-
to-node belonging factors of (b, c) and (c, d) to either N1 or
N2 are 1/2. We also demonstrate another toy example of
3-length path in Appendix A.2.

Now, we are ready to introduce our HOC cost function based
on the edge-to-node belonging factor.

Definition 2.8 (cost function for HOC). Given a graph G
and an HOC graph D of G, the cost function of D on G is
defined as

HD(G) =
∑

(u,v)∈E

(
w(u, v) ·

∑
N∈Muv

βN
(u,v) · |V (N)|

)
.

The cost function contains two summations. The first is over
all edges, and the second is over the MCAs of the endpoints
of corresponding edge. Compared with Dasgupta’s cost
function (1), HD(G) generalizes it from HC to HOC by
assigning a belonging factor for each MCA of each edge.

Definition 2.9 (HOC problem). The HOC problem on a
similarity-based graph G is defined as minD HD(G) under
some proper constraints on the HOC graph D.
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The intuition behind minimizing the cost function on
similarity-based graphs is the same as Dasgupta’s cost func-
tion, that is, to assign heavy edges to the clusters as small
as possible. On an HOC graph, this can be achieved by
ensuring that the MCAs of these edges are as far down from
the root as possible.

As illustrated in Figure 1, according to Definition 2.8, the
costs of D1, D2 and D3 are 18, 21 and 24, respectively.
We provide the calculating process in Appendix A.3. We
can see that D1, which is intuitively more reasonable than
D2 and D3, has the smallest cost. It is also demonstrated
that introducing overlaps has the advantage of reducing the
MCAs of edges, thereby decreasing their costs (compare
D2 to D1). On the other hand, this comes at the expense
of increasing the number of descendant leaves of the ances-
tors. So, excessive overlap gets punished (compare D1 to
D3). Therefore, our cost function balances insufficient and
excessive overlaps.

Remark. Note that HOC is quite different from HC since
it allows possibly an exponential number of overlapping
clusters without any restriction, and thus proper constraints
on D are necessary. However, we need to be very careful in
formulating the constraints. In fact, there is a trivial solution
that treats two endpoints of each edge as a cluster, which
achieves the minimum cost 2w(E). This solution is in fact
an intuitive way for overlapping cluster settings since only
similar nodes can be linked together, but due to the large
number of clusters, it makes no sense. This is quite different
from the optimization of Dasgupta’s cost function for HC.
A natural restriction on HOC graphs may be on the number
of clusters. However, since an HOC graph has hierarchical
clusters, we seek to have a meaningful constraint on the
cluster number. To this end, we utilize the width of an HOC
graph, which is the length of the longest anti-chain on it.
Definition 2.10 (k-HOC problem). The k-HOC problem
on a similarity-based graph G is defined as minD HD(G)
for which the width of the HOC graph D is at most k.

To better understand this problem, let us consider a non-
overlapping HC tree first. Therein, the width means the
largest number of bottom and smallest non-overlapping clus-
ters whose children are all leaves. They can be considered as
a set of key clusters that are closest to the leaves on the tree.
Similarly, on an HOC graph, since a longest anti-chain is
located, intuitively, as far down from the root as possible to
blockade leaf-to-root paths, the width measures the number
of incomparable bottom clusters that contain the leaves.

Moreover, we define k-OC problem to be the k-HOC prob-
lem in which we additionally restrict the height of D at most
2, in which case HOC degrades to OC. A fundamental case
is 2-OC that allows only two overlapping clusters. 2-OC
can be considered as a key ingredient of HOC with multiple
clusters since it could be a nice way to construct a k-HOC

graph by recursively calling 2-OC algorithm in a top-down
fashion. In Section 3, our algorithm for k-HOC proceeds in
this way.

Next, we give some fundamental properties of our HOC
cost function, and prove them in Appendix A.4.
Property 2.11 (Compatibility). If D is an HC tree, then
HD(G) = DasD(G) =

∑
(u,v)∈E w(u, v) · |u ∨ v|.

Property 2.12 (Additivity on nodes). For any node N
on D, let ED

N denote the set of edges treating N as
an MCA, i.e., ED

N = {(u, v)|(u, v) ∈ E,N ∈ Muv}.
The HOC cost function can be rewritten as HD(G) =∑

N∈D

(
|V (N)| ·

∑
(u,v)∈ED

N
βN
(u,v) · w(u, v)

)
.

Property 2.13 (Binary optimality). As long as the con-
straints for the HOC problem are not violated, binary branch-
ing on each non-leaf node (i.e., the number of children is at
most 2) is desirable for an optimal HOC graph.

Property 2.11 indicates that our cost function for HOC can
be unified with Dasgupta’s cost. That is, under the constraint
of hierarchical non-overlapping clustering, our cost function
for HOC problem degrades to Dasgupta’s objective whose
optimization is NP-hard (Dasgupta, 2016). Property 2.12
provides an alternative interpretation of the cost function
from another perspective, for which it can be seen as the sum
of costs associated with each node. Note that Dasgupta’s
cost also has the last two properties.

Primal and dual versions of HOC problem. Next,
we introduce the primal and the dual HOC problems.
Note that besides the trivial lower bound 2w(E) for
HD(G), we also have a trivial upper bound nw(E),
since the size of any common ancestor of two leaves
on D is at most n. So, we define the primal k-HOC
problem, denoted by k-HOC-P, to be minD{HD(G)}
as Definition 2.9. We define the dual k-HOC prob-
lem, denoted by k-HOC-D, to be maxD{nw(E) −
HD(G)}, that is, by Definition 2.8, maximizing∑

(u,v)∈E

(
w(u, v) ·

∑
N∈Muv

βN
(u,v)(n− |V (N)|)

)
over

D. This cost is the compatible counterpart of Mosley and
Wang’s dual HC cost (Moseley & Wang, 2017) in the HOC
setting. The solutions to the primal and dual problems
achieve optima on the same HOC graph. Similarly, let k-
OC-P and k-OC-D denote the corresponding versions of
OC problem, respectively.

3. An algorithm for k-HOC
In this section, we propose our algorithm for the k-HOC
problem. We adopt Eq. (3) as the node-to-node belonging
factor. Since our algorithm is a recursive process of 2-OC,
we study 2-OC first, and then apply it to k-HOC. Note that
overlapping bipartition is a fundamental problem for OC,
and is also the theme (Orecchia et al., 2022)’s theoretical
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Algorithm 1 Algorithm for 2-OC

Input: an undirected graph G = (V,E,w)
Output: node sets A,B and C for 2-OC
n← |V |, p← 1√

6
, x← p

1+2p

Define a new costtemp(A,B,C) = w(E)− w(A,C) +
xw(B)
Divide arbitrarily V into three disjoint parts A, B, C
satisfying |A| = |C| = pn, |B| = (1 − 2p)n, such that
the edge with the maximum weight are not in E(A,C)
repeat

Exchange any two nodes from different sets of A, B,
C whenever costtemp can be amplified by more than
1 + ϵ/n2 times

until get stuck
return A, B, C.

study. So our 2-OC problem has its own interests from
the perspective of our new cost function. Compared with
the complicated “cut-matching and improve” approach of
(Orecchia et al., 2022), our method for 2-OC takes a simple
local search heuristic based on our cost function, which
makes our algorithm much more scalable.

3.1. An approximation algorithm for 2-OC

Cost functions for 2-OC. In the 2-OC setting, given a
graph G = (V,E,w), we restrict the height of the HOC
graph to 2 and the number of children of the root R to
2. Suppose that two clusters N1 = A ∪ B and N2 =
C ∪ B overlap on B. By Definition 2.8, the cost function
of 2-OC-P can be formulated as costprimal(A,B,C) =
[w(A) +w(A,B)](|A|+ |B|) + [w(B,C) +w(C)](|B|+
|C|)+ (|A|+2|B|+|C|)w(B)

2 +w(A,C)n, and 2-OC-P can be
formulated as

min
A,B,C⊆V

costprimal(A,B,C) (2-OC-P)

We also have the cost function costdual(A,B,C) = (w(A+

B)− w(B)
2 )|C|+(w(B+C)− w(B)

2 )|A| for 2-OC-D, and
2-OC-D can be formulated as

max
A,B,C⊆V

costdual(A,B,C) (2-OC-D)

The derivation of the forms of costprimal and costdual is
presented in Appendix B.1. We remark that although our
cost functions for 2-OC look complicated, they are hyper-
parameter free and natural from the perspective of HOC,
which is superior to the objective proposed by (Orecchia
et al., 2022). Then we propose our algorithm for 2-OC.

Approximation algorithm for 2-OC. Algorithm 1 is a sim-
ple local search process for 2-OC. It first defines a surrogate
cost function costtemp(A,B,C) = w(E) − w(A,C) +
xw(B), and initializes A, B, C arbitrarily (e.g. a random

initialization). After that, the nodes in A, B, C exchange
pairwisely on the condition that current cost can be am-
plified by 1 + ϵ/n2 times, that is, costtemp(A

′, B′, C ′) >
(1+ϵ/n2)costtemp(A,B,C), where A′, B′, C ′ are the node
sets after exchanging corresponding to A, B, C respectively,
and ϵ > 0 is a small constant. It doesn’t terminate until no
pair of nodes meets the exchange condition. For the worst-
case guarantee, we have the following theorem.

Theorem 3.1. Algorithm 1 achieves an approximation fac-
tor a = 2

3
√
6
− Θ( 1+ϵ

n ) for 2-OC-D with time complexity
O(ϵ−1n4 logm) for any ϵ > 0.

The idea of the proof of Theorem 3.1 is as follows. Since
nw(E) is a trivial upper bound on the objective function,
we only have to show that costdual ≥

(
2

3
√
6
−Θ( 1+ϵ

n )
)
·

nw(E). Since Algorithm 1 fixes the sizes of A, B, C, we
only need to build the relationship between w(E) and edge
weights of different parts in the cost function. A lower
bound on the latter related to w(E) (Inequality (11)) can be
obtained by the three stuck exchange conditions when the
iteration terminates. The detailed proof of Theorem 3.1 is
provided in Appendix B.2. Moreover, we have the following
proposition to demonstrate the tightness of our guarantee in
some sense.

Proposition 3.2. For the complete graph Kn, the optimal
2-OC-D value OPT (Kn) =

(
2

3
√
6
−Θ( 1n )

)
nw(E).

Proposition 3.2 implies that, if an approximation algorithm
for 2-OC-D is designed based on the upper bound nw(E) of
costdual, the optimal approximation factor cannot be better
than 2

3
√
6
−Θ( 1n ). Its proof is provided in Appendix B.3.

Approximation guarantee algorithm for 2-OC-P. We also
show that Algorithm 1 is actually a good approximation
algorithm for 2-OC-P. We simply treat the output of Algo-
rithm 1 as the result for 2-OC-P, and we have the following
approximation guarantee for 2-OC-P.

Theorem 3.3. The approximation factor of Algorithm 1
for 2-OC-P is (1− a)(1 + dmax/davg), where dmax is the
maximum degree of all nodes, davg is the average degree,
and a = 2

3
√
6
−Θ( 1+ϵ

n ).

We prove Theorem 3.3 in Appendix B.4. By this theorem,
we have two corollaries for regular and bounded-degree
graphs, respectively.

Corollary 3.4. If the graph G is d-regular, then the approx-
imation factor of Algorithm 1 for 2-OC-P on G is 2(1− a).

Corollary 3.5. If the degree of each node in unweighted
graph G is upper bounded by a constant d, then the ap-
proximation factor of Algorithm 1 for 2-OC-P on G is
(1 + d)(1− a).

6
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Algorithm 2 Algorithm for k-HOC

Input: an undirected graph G = (V,E,w), an integer
k ≤ n
Output: a k-HOC graph D
initialize D with all leaves pointing to the root r
S ← {r}
repeat
Xmax ← argmaxX∈S{∆(X)}
Apply Algorithm 1 to the subgraph induced by Xmax

and obtain two internal nodes XL, XR

S ← S \ {Xmax}
S ← S ∪ {XL, XR}
Add XL and XR to D as Xmax’s left and right child,
respectively, and redirect the leaves to their correspond-
ing parents

until |S| = k or each set in S has a size 2
Merge identical nodes in D into a single one while keep-
ing all the connections on them
Remove all redundant directed edges (X,Y ) for which
there is another path from X to Y in D
return D.

3.2. An approximation algorithm for k-HOC

Now we turn to k-HOC. We assume that k ≤ n for practical
significance. Since the width of the HOC graph is no more
than k, we invoke the 2-OC algorithm k − 1 times to guar-
antee this. We first construct a binary tree (excluding the
leaves) for the internal nodes, and then merge the identical
ones that consists of the same set of leaves, while keeping
all directed edges on them. In each iteration, the splitting
cluster is chosen greedily according to the relative benefit
of cost. Formally, we define ∆(X) = costdual(X)

|V (X)|w(X) for the
most bottom clusters X , where costdual(X) is the dual cost
obtained by the 2-OC algorithm on the subgraph induced by
X . In each round, we choose the X with the largest ∆(X)
to split. This procedure is described as Algorithm 2.

Now we show that D output by Algorithm 2 is a legal k-
HOC graph. By definition 2.1, we have to show that the
parents of any non-root node form an anti-chain, and the
width of D is at most k. For any node X , since we remove
all the directed edges (X,Y ) for which there is another path
from X to Y in D, X− is obviously an anti-chain. Since
the 2-OC algorithm is called for at most k − 1 times, the
width of D before merging is at most k. Since merging does
not increase the width, the final D is a k-HOC graph.

Time complexity. The runtime of Algorithm 2 consists
of three parts: the recursive division, merging identical
nodes and removing redundant edges. In the division step,
it calls Algorithm 1 at most k − 1 times, which takes
O(kϵ−1n4 logm) time. In the node merging step, an ef-
ficient implementation leverages bitmaps and sorting. The

bitmap of each internal node whose length is n indicates the
membership of each leaf. It is necessary to check whether
O(k) bitmaps are the same, which takes O(nk log k) time.
In the edge removing step, a redundant edge (X,Y ) can be
identified by reversing it and checking the reachability from
X to Y . This takes O((n+ k)2) time. Combining all three
parts, the total runtime is O(kϵ−1n4 logm).

For the approximation guarantee, we have

Theorem 3.6. Algorithm 2 achieves an approximation fac-
tor 2

3
√
6
−Θ( 1+ϵ

n ) for the dual k-HOC problem.

Proof. To prove Theorem 3.6, we only have to show that
the dual cost is at least that of Algorithm 1 which is lower
bounded by

(
2

3
√
6
−Θ( 1+ϵ

n )
)
· nw(E). Then the approx-

imation factor follows from the fact that nw(E) upper
bounds the dual cost of any HOC graph.

Note that Algorithm 1 achieves a dual cost at least(
2

3
√
6
−Θ( 1+ϵ

n )
)
·nw(E) for 2-OC-D, in which nw(E) is

an upper bound for the cost of the dual HOC problem with
any constraints. So, Theorem 3.6 follows if the final dual
cost is no less than the one after the first round of invoking
Algorithm 1.

Let N1 and N2 be the two overlapping clusters that Algo-
rithm 1 yields in the first round of the repeat loop, and e ∈ E
be an edge that treats N1 or N2 as a common ancestor. Then
the root r is not an MCA of e, since otherwise, r forms an
chain with N1 or N2. In the next iterations, r will not be
included in the MCA set of e during both splitting and merg-
ing process. Since N1 and N2 have the same size, no matter
how the belonging factors of e change, the final primal cost
that e contributes will not exceed that after the first round of
invoking Algorithm 1. This proves Theorem 3.6.

A speed-up version. Algorithms 1 and 2 have theoretical
significance, but are not efficient enough in practice. More-
over, the setting of fixed sizes of A, B and C in Algorithms
1 is too rigid to fit for flexible scenarios. For scalability
and practical application of our algorithm, we propose the
speed-up version (Algorithm 3) of Algorithm 1 and use it
in Algorithm 2 to yield our speed-up algorithm for k-HOC.
Their effectiveness and scalability will be verified in Section
4. Two easy heuristics are proposed for acceleration, and
the pseudocode is presented as Algorithm 3.

(1) Initialization based on ratio-cut (Hagen & Kahng, 1992):
Instead of the random strategy for the initial trisection, we
use the spectral clustering algorithm RatioCut to split the
node set into two pieces, denoted by X,Y , let A = X ,
B = ∅, C = Y . Then the nodes move greedily among A,
B, and C instead of exchange.

(2) Batch migration: Starting from the initial A, B, C,

7
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Algorithm 3 Speed-up algorithm for 2-OC

Input: an undirected graph G = (V,E,w), batch migra-
tion number ℓ
Output: node sets A, B and C for 2-OC
X,Y ← RatioCut(G)
A← X , B ← ∅, C ← Y
repeat

Calculate the delta of costdual when each node moves
to the other two sets, and select the one with the larger
increment as the potential action at that node
Let S be the node set that brings costdual increment
t← min{|S|, ℓ}
Move the top-t nodes with the largest increment

until S is empty
return A, B, C.

calculate the variation of the cost for each node when it
moves to another set, and select a batch of ℓ nodes with
positive and the largest variation of cost to move in one
step UNTIL all nodes get stuck. In our experiment, we set
ℓ = 32. If there are less than ℓ nodes that need to move, we
move all of them.

Replacing Algorithm 1 with Algorithm 3 in Algorithm 2,
we get the speed-up version of k-HOC algorithm.

4. Experiments
In this section, we verify by experiments the effectiveness
and scalability of the speed-up version of Algorithm 2,
which demonstrates the validity of our cost function as well.
Our experiments were performed on a personal computer
equipped with a 2.3GHz quad-core Intel i5 processor with
8GB memory. For the source codes and datasets, please
refer to https://github.com/Hardict/HOC.

Baselines. We include three baselines, named Dasgupta,
OHC’20 (Jeantet et al., 2020) and cm+ improve (Orecchia
et al., 2022), respectively. The latter two are not fit for the
HOC settings directly and require some modifications. Then
we introduce each method and our modifications.

Dasgupta is simply the speed-up version of Algorithm 2
except that it always keeps B empty in the subroutine Al-
gorithm 1. So, it degrades to optimizing Dasgupta’s cost
with width k in our local search fashion. We adopt this
baseline in order to see whether we can really benefit from
overlapping compared with the non-overlapping counterpart
of Dasgupta’s cost.

OHC’20 (Jeantet et al., 2020) works for HOC on
dissimilarity-based vector data only. It is a density-based
algorithm that proceeds in an agglomerative bottom-up fash-
ion. To fit to similarity-based graph clustering in our set-
tings, we feed to OHC’20 as input the spectral embedding

that consists of the top-k eigenvectors of the Laplacian ma-
trix. Since this method need to deal with all-pair distance, it
is not able to work on large graphs.

cm+improve (Orecchia et al., 2022) is a nearly linear-time
O(log n)-approximation algorithm that works for overlap-
ping bipartition only. We substitute cm+ improve for the
2-OC algorithm that is used in our k-HOC process. How-
ever, there are many hyper-parameters to adjust in it, and
we have chosen some mild values in our experiments.

Datasets and evaluation. For synthetic datasets, we employ
the overlapping stochastic block model (OSBM), a gener-
alized version of SBM that allows for overlapping clusters.
We introduce it in Appendix C.1. In our experiments, we
modify OSBM to preset two hierarchies. We assume that
each node belongs to at most two clusters. Thus, the total
number of nodes is exactly the sum of entries in the upper
triangle of the membership matrix Z. For simplicity of
implementation, all clusters are of the same size and have
the same size of overlaps between clusters. For a 2-level
hierarchical structure, we choose three probability values
0 ≤ p1 ≤ p2 ≤ p3 ≤ 1, in which p1 is the inter-link proba-
bility between clusters on the first level, p2 is the inter-link
probability between clusters on the second level, and p3 is
the intra-link probability within each cluster. So now, the
probability of edge presence between any two nodes in the
overlapping region is 1− (1− p3)

2.

We use NMI for OC (McDaid et al., 2011) for evalua-
tions, and its formal definition is provided in Appendix
C.2. Since NMI is only suitable for non-hierarchical clus-
ters, we evaluate our algorithm at each level of HOC
graphs. For real datasets, we adopt Amazon, Youtube,
and DBLP (Yang & Leskovec, 2012b) that are provided
by http://snap.stanford.edu/data and are also
used in (Orecchia et al., 2022). Due to lacking ground truth
for HOC, we onlu evaluate scalability on the real datasets.

Effectiveness. We demonstrate in Figure 2 the results on
OSBM datasets with varying sizes. We show the time, cost,
and NMI results of our k-HOC algorithm and the baselines.
It can be observed that the runtime of our HOC algorithm
that generates four overlapping bottom clusters for dense
graph of size 5000 is only around 80s, and that for sparse
graph of size 105 is less than 15min, while keeping ex-
tremely high NMIs. We do not show the results of OHC’20
for sparse graphs since it is not able to terminate in one hour
for a graph of size 104. The cost results indicate that our
algorithm outperforms OHC’20, and we have indeed gained
benefits of cost from overlapping when compared with the
non-overlapping counterpart of Dasgupta’s cost. We evalu-
ate NMI on the two hierarchies respectively. For OHC’20,
since it cannot restrict the hierarchy numbers, in each round
of evaluation, we choose the level that achieves the highest
NMI compared with the ground truth. The NMIs of our
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Figure 2. The results of time, cost, and NMI. In each figure, the x-axis indicates the graph size. The graphs in the first row are small and
dense, while those in the second row are large and sparse. We take k = 4 in OSBM, and in each cluster, the size ratio of overlapping
to non-overlapping is 9:1. In the fist row, p1 = 10−3, p2 = 5 × 10−3, p3 = 0.5. In the second row, p1 = 10−4, p2 = 2 × 10−4,
p3 = 5× 10−3. Regard to the last two columns of NMI results, “level 1” is the first level that contains the two high-level clusters, and
“level 2” is the second one that contains the four low-level clusters. Each point is calculated on average over 5 trials, and error bar indicates
standard deviation.

k-HOC algorithm on both levels are almost 1.0 on dense
graphs, and also above 0.95 on sparse graphs, which demon-
strates that it achieves high accuracy in reconstruction on
each level. We visualize a result in Appendix C.4.

Scalability. The first column of Figure 2 has demonstrated
that our k-HOC algorithm is efficient on synthetic graphs,
especially much better than OHC’20. Next, on large real
datasets, we show in Table 1 the advantage of our algorithm
over cm + improve in scalability. For a fair comparison,
we compare our 2-OC algorithm with it. It can be seen
that the runtime of our algorithm that is run on a laptop
on all datasets is much shorter than the runtime of cm +
improve that is run on a server 1. In particular, on Youtube
dataset that has around one million nodes and three million
edges, the runtime of our algorithm implemented on a single
personal computer is less than 12 minutes, which is only
around 20% of the runtime of cm + improve that is run
on a server. Although (Orecchia et al., 2022) has showed
that cm+ improve has nearly linear runtime based on the
solid nearly linear-time algorithm of (Chen et al., 2022) for
the maximum-flow problem, they actually use the HIPR
implementation (Cherkassky et al., 1994) with the push-
labeled method. This possibly limits the efficiency of cm+
improve. The advantage of our algorithm in efficiency

1cm + improve can’t terminate in a few hours on too large
datasets when it is run on our computer. Due to the mismatch
of computing resources, the results in the last column of Table
1 are from Table 3 of the original paper (Orecchia et al., 2022)
whose experimental operating environment is reported to include
a cluster of machines with 24 Cores (2x 24 core Intel Xeon Silver
4116 CPU @ 2.10GHz), 48 threads and 128GB RAM. In a sharp
contrast, we have only used a personal computer.

benefits from our elaborate cost function and the simple
local search strategy.

Table 1. Scalability performance on real datasets
dataset n m time cm time

Amazon 334863 925872 <3min 15-18min
Youtube 1134890 2987624 <12min 55-75min

DBLP-all 317080 1049866 <3min –
DBLP-cm 83114 409541 <21s 2-4min

5. Conclusions and future work
Conclusions. In this paper, we study the HOC problem
on graphs from the aspects of cost function, algorithm and
scalability. We have proposed a cost function and given
some fundamental properties. We have developed an ap-
proximation algorithm that achieves a constant factor for the
dual k-HOC problem. A speed-up version of our algorithm
based on some easy heuristics during local search has good
performances in HOC reconstruction and good scalability.

Future work. There are many directions worth further
study. The first is about approximation algorithm for the
primal k-HOC problem for k > 2. Although we know
the complementary relationship between the primal and
the dual problems, the approximation guarantees are quite
different. The second is about variant versions of the HOC
problem, e.g., having other constraints on HOC graphs and
alternative definitions of node-to-node and edge-to-node
belonging factors. These flexible settings may adapt to
different application scenarios.
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A. Supplements to the cost function for HOC
In this section, we provide some supplementary proofs and examples for our HOC cost function.

A.1. Proofs of the properties of belonging factor

(1) Proof of Property 2.4

Proof. By Definition 2.3,
∑

Y ∈X− αX,Y = 1. When Y is the only parent of X , αX,Y = 1.

(2) Proof of Property 2.5

Proof. We prove it by induction. We group the nodes on an HOC graph D by the distances from the root R. For each integer
i, let Si = {N ∈ D|dis(N,R) = i}. Then we prove the property by induction on i. For each N ∈ S1, since |N−| = 1, we
have αN,R = 1. Suppose that for each X ∈ Sk, αX,R = 1, and then for each N ∈ Sk+1, by the recursive definition of α,
αN,R =

∑
X∈N− αN,X · αX,R =

∑
X∈N− αN,X = 1.

(3) Proof of Property 2.6

Proof. Since S is an anti-chain and every path from X to Y passes through one node in S, all paths from X to Y can be
divided into |S| subsets according to whether a node N ∈ S is on the path or not. Then Property 2.6 can be verified directly
by the definition of α.

αX,Y =
∑

p∈PX,Y

len(p)−1∏
i=0

αpi,pi+1

=
∑
N∈S

∑
p:N∈p

len(p)−1∏
i=0

αpi,pi+1

=
∑
N∈S

 ∑
p∈PX,N

len(p)−1∏
i=0

αpi,pi+1

 ∑
p∈PN,Y

len(p)−1∏
i=0

αpi,pi+1


=
∑
N∈S

αX,N · αN,Y

A.2. A toy example of belonging factor

(a) Original graph G: a path of 4 nodes. (b) An HOC graph of G.

Figure 3. Illustration of HOC.

In order to better understand node-to-node and edge-to-node belonging factors, we give an example in this section.

12
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As shown in Figure 3, graph G is a path of 4 nodes, and a possible HOC graph is shown in Figure (b).

Table 2 demonstrates the MCA set of each leaf node pair. Table 3 shows the node-to-node belonging factor of each
child-to-parent node pair on the HOC graph, and those of any others can be calculated by Definition 2.3. For example,

αb,N4 = αb,N1 · αN1,N4 + αb,N2 · αN2,N4 =
1

2
× 1 +

1

2
× 1

2
=

3

4
,

αb,N5 = αb,N2 · αN2,N5 =
1

2
× 1

2
=

1

4
.

Table 2. MCA sets
node pair (u, v) (a, b) (a, c) (a, d) (b, c) (b, d) (c, d)

Muv {N1} {N2} {R} {N2} {N5} {N3}

Table 3. node-to-node belonging factors (child to parents)
node pair (X,Y ) (a,N1) (b,N1) (b,N2) (c,N2) (c,N3) (d,N3)

αX,Y 1 1/2 1/2 1/2 1/2 1
node pair (X,Y ) (N1, N4) (N2, N4) (N2, N5) (N3, N5) (N4, R) (N5, R)

αX,Y 1 1/2 1/2 1 1 1

We can also verify the properties of the node-to-node belonging factor. Here we only verify Property 2.6, and other properties
can be easily verified. Let X = b, Y = N4, S = {N1, N2}. We can verify that S satisfies all conditions of Property 2.6.
Then

αb,N4 =
∑
N∈S

αb,N · αN,N4 = αb,N1 · αN1,N4 + αb,N2 · αN2,N4 =
1

2
× 1 +

1

2
× 1

2
=

3

4
.

Again, let X = b, Y = R, S = {N4, N5}. Then

αb,R =
∑
N∈S

αb,N · αN,R = αb,N4 · αN4,R + αb,N5 · αN5,R =
3

4
× 1 +

1

4
× 1 = 1.

Table 4. edge-to-node belonging factors
edge (u, v) MCAs βN

(u,v)

(a, b) N1 1
(b, c) N2 1
(c, d) N3 1

Table 4 shows edge-to-node belonging factors of all edges and their MCAs. Because each edge has only one MCA, its
edge-to-node belonging factor is 1.

A.3. Cost calculation for the running example

For reading convenience, we demonstrate the example again in Figure 4.

In D1, all edges have only one MCA, so the edge-to-node belonging factors of them are 1. The graph contains 6 edges in all,
and each MCA has 3 descendant leaf nodes, resulting in the cost HD1(G) = 6× 3 = 18.

D2 is not overlapping. For (a, b), (a, c), (b, c), their MCA has 3 descendant leaf nodes. For (d, e), the MCA has 2 descendant
leaf nodes. For (c, d), (c, e), their MCA has 5 descendant leaf nodes. All together, the cost HD2(G) = 3×3+2+2×5 = 21.

In D3, consider 6 terms separately corresponding to the 6 edges. Taking (b, c) as an example, it has two MCAs. Due to
symmetry, the edge-to-node belonging factors of (b, c) regarding to both ancestors are 0.5. Therefore, the cost contributed by
(b, c) is 0.5×4+0.5×4 = 4. Thus, the cost HD3(G) = 1×4+1×4+(0.5×4+0.5×4)+(0.5×4+0.5×4)+1×4+1×4 = 24.

13
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(a) The original graph G (b) HOC graph D1 (c) HOC graph D2 (d) HOC graph D3

Figure 4. An example of HOC graphs. The costs HD1(G) = 18, HD2(G) = 21, HD3(G) = 24.

A.4. Proofs of properties of the cost function

(1) proof of Property 2.11 (compatibility)

Proof. When D is an HC tree, the MCA of edge (u, v) is unique and degenerates to the LCA on the HC tree, and the
edge-to-node belonging factor is also 1. Then, we get

HD(G) =
∑

(u,v)∈E

(
w(u, v)

∑
N∈Muv

βN
(u,v) · |V (N)|

)
=

∑
(u,v)∈E

w(u, v) · |u ∨ v| = DasD(G).

(2) Proof of Property 2.12 (additivity on nodes)

Proof. It follows easily by exchanging the summations in the definition of HG(D).

HD(G) =
∑

(u,v)∈E

(
w(u, v)

∑
N∈Muv

βN
(u,v) · |V (N)|

)
=
∑
N∈D

|V (N)| ·
∑

(u,v)∈ED
N

βN
(u,v) · w(u, v)

 .

(3) Proof of Property 2.13 (binary optimality)

(a) The original local structure (b) After binary branching

Figure 5. Binary optimality of HOC graphs

Proof. As shown in Figure 5, assume that (a) represents a local pattern of a non-leaf node on HOC graph D, where
node N has at least three children N1, N2, and N3. For any edge (u, v) treating N as an MCA, u and v cannot belong

14
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both to any individual cluster of N1, N2 or N3, since otherwise, N would not be the MCA of them. Without loss of
generality, let’s assume that u belongs to N1 and v belongs to N2 (or v belongs to N2 and N3 simultaneously).

Now, the binary branching operation inserts a new node X as the parent of N1 and N2, which turns into the structure
shown in (b). As a result, the MCA for (u, v) becomes X . Then we show that after the binary branching, the overall
cost HD(G) does not increase.

After binary branching, since every original path from u to N via N1 passes through X now, and αX,N ′ = 1, we
have αu,N = αu,N ′ ≥ αu,X . For the same reason, αv,N ≥ αv,X . Therefore, βN

(u,v) ≥ βX
(u,v). Additionally, we have

|V (X)| < |V (N)|, implying that w(u, v)βN
(u,v)|V (X)| < w(u, v)βN

(u,v)|V (N)|. This leads to a reduction in the cost
function associated with this term. Note that the cost reduction holds for any such edge (u, v) that treats N as an
MCA. By Property 2.12, the cost function can be expressed as

∑
N∈D |V (N)| ·

∑
(u,v)∈ED

N
βN
(u,v) ·w(u, v). The above

operation affects only the cost of a single node. For other nodes, the edge-to-node belonging factor and the number of
descendant leaf nodes remain unchanged, thus their values do not change. As a result, the overall cost HD(G) does not
increase..

B. Supplements to the algorithms
In this section, we provide some supplements to our algorithms.

B.1. Primal and dual problems of 2-OC

Following is the derivation process of the forms of costprimal and costdual for 2-OC.

HD(G) =
∑

(u,v)∈E

w(u, v)
∑

N∈Muv

βN
(u,v) · |V (N)|

=
∑

(u,v)∈E(A)

w(u, v)(|A|+ |B|) +
∑

(u,v)∈E(A,B)

w(u, v)(|A|+ |B|)

+
∑

(u,v)∈E(C)

w(u, v)(|B|+ |C|) +
∑

(u,v)∈E(B,C)

w(u, v)(|B|+ |C|)

+
∑

(u,v)∈E(B)

w(u, v)
(
βN1

(u,v) · (|A|+ |B|) + βN2

(u,v) · (|B|+ |C|)
)

+
∑

(u,v)∈E(A,C)

w(u, v)n

= w(A)(|A|+ |B|) + w(A,B)(|A|+ |B|) + w(C)(|B|+ |C|) + w(B,C)(|B|+ |C|)

+
1

2
w(B)(|A|+ |B|+ |B|+ |C|) + w(A,C)n

= (w(A) + w(A,B))(|A|+ |B|) + (w(B,C) + w(C))(|B|+ |C|)

+w(B)
|A|+ 2|B|+ |C|

2
+ w(A,C)n.

Explanation of the derivation: We classify the edges into six parts, denoted by E(A), E(A,B), E(B,C), E(C), E(B),
E(A,C), and calculate the cost of each part separately. For (u, v) ∈ E(A), E(A,B), the only MCA is N1, βN1

(u,v) =

1, |V (N1)| = |A|+ |B|. Similarly, for (u, v) ∈ E(C), E(B,C), the only MCA is N2, βN2

(u,v) = 1, |V (N2)| = |B|+ |C|.
For (u, v) ∈ E(B), the MCAs are N1, N2, and βN1

(u,v) = βN2

(u,v) = 1
2 . For (u, v) ∈ E(A,C), the only MCA is R,

βR
(u,v) = 1, |V (R)| = n.
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Observe that

|A|+ |B|, |B|+ |C|, |A|+ 2|B|+ |C|
2

< n,

|A|+ |B|+ |C| = n,

w(E) = w(A) + w(B) + w(C) + w(A,B) + w(B,C) + w(A,C),

|A|+ |B| = n− |C|,
|B|+ |C| = n− |A|,
|A|+ 2|B|+ |C|

2
= n− |A|+ |C|

2
.

Then we have

costprimal(A,B,C)

= (w(A) + w(A,B))(|A|+ |B|) + (w(B,C) + w(C))(|B|+ |C|) + w(B)
|A|+ 2|B|+ |C|

2
+ w(A,C)n

= (w(A) + w(A,B))(n− |C|) + (w(B,C) + w(C))(n− |A|) + w(B)(n− |A|+ |C|
2

) + w(A,C)n

= nw(E)−
(
w(A) + w(A,B) +

w(B)

2

)
|C| −

(
w(C) + w(B,C) +

w(B)

2

)
|A|

= nw(E)−
(
w(A+B)− w(B)

2

)
|C| −

(
w(B + C)− w(B)

2

)
|A|.

B.2. Proof of Theorem 3.1

We prove Theorem 3.1 with two lemmas respectively.

Lemma B.1. The time complexity of Algorithm 1 is O(n
4 logm

ϵ ).

Proof. Let wmax be the maximum edge weight, then w(E) ≤ mwmax, xw(B) ≤ xmwmax, and so costtemp = w(E)−
w(A,C)+xw(B) ≤ (1+x)mwmax. Observe that the edge with the maximum weight is not in E(A,C) in the initial state,
and so costtemp ≥ wmax. In each iteration, costtemp increases by 1 + ϵ

n2 times, then the maximum number of iterations

is no more than log1+ ϵ
n2

((1 + x)mwmax/wmax) = O(n
2 logm

ϵ ). In each iteration, it takes O(n2) time to calculate the
variation caused by the swap of each node pair and update w(A,C) and w(B). Therefore, the overall time complexity is
O(n

4 logm
ϵ ).

Lemma B.2. The approximation factor of Algorithm 1 is 2
3
√
6
−Θ( 1+ϵ

n ). That is, A, B, C output by the algorithm satisfy

costdual ≥
(

2

3
√
6
−Θ

(
1 + ϵ

n

))
costdual(A

∗, B∗, C∗),

where A∗, B∗, C∗ is an optimal solution.

Proof. Let’s consider the status of A, B, C after the termination of Algorithm 1. Note that exchanging any two nodes from
any two of sets A, B, C at this time cannot make costtemp(A

′, B′, C ′) larger than (1 + ϵ
n2 )costtemp(A,B,C) any more,

where A′, B′, C ′ denote the corresponding sets after the exchange, respectively. Let costold = costtemp(A,B,C). In other
words, if an exchange is performed on any pair of nodes, then costnew ≤ (1+ ϵ

n2 )costold, where costnew denotes costtemp

after the exchange. Define ∆ = costnew − costold, and then we get ∆ ≤ ϵ
n2 costold.

Next, we analyze the ∆ value caused by node exchange. First of all, let’s establish some relationships on node swap for later
use. For a ∈ A, b ∈ B, c ∈ C, consider the following three cases.

(1) Swap a and b: w(A′, C ′)− w(A,C) = w(b, C)− w(a,C), w(B′)− w(B) = w(a,B)− w(a, b)− w(b, B).

(2) Swap b and c: w(A′, C ′)− w(A,C) = −w(c, A) + w(b, A), w(B′)− w(B) = −w(b, B) + w(c,B)− w(b, c).

16



Hierarchical Overlapping Clustering on Graphs: Cost Function, Algorithm and Scalability

Figure 6. Illustration of 2-OC clustering and node swap

(3) Swap a and c: w(A′, C ′)− w(A,C) = −w(a,C)− w(c, A) + w(a,A) + w(c, C) + 2w(a, c), w(B′)− w(B) = 0.

Recall that ∆ = costnew − costold = −(w(A′, C ′)−w(A,C)) + x(w(B′)−w(B)). Therefore, by substituting the above
equations, we can obtain the value of ∆ for each case.

(1) For any a ∈ A, b ∈ B, swapping a, b, we have ∆ = −w(b, C)+w(a,C)+x(w(a,B)−w(a, b)−w(b, B)) ≤ ϵ
n2 costold.

Summing over all a, b, we have

−pnw(B,C) + (1− 2p)nw(A,C) + x ((1− 2p)nw(A,B)− w(A,B)− 2pnw(B)) ≤ ϵ

n2
p(1− 2p)n2costold. (4)

(2) For any b ∈ B, c ∈ C, swapping b, c, by the symmetry of A,C, we have

−pnw(A,B) + (1− 2p)nw(A,C) + x((1− 2p)nw(B,C)− w(B,C)− 2pnw(B)) ≤ ϵ

n2
p(1− 2p)n2costold. (5)

(3) For any a ∈ A, c ∈ C, swapping a, c, ∆ = w(a,C)+w(c, A)−w(a,A)−w(c, C)− 2w(a, c) ≤ ϵ
n2 costold. Summing

over all a, c, we have

pnw(A,C) + pnw(A,C)− 2pnw(A)− 2pnw(C)− 2w(A,C) ≤ ϵ

n2
p2n2costold,

and then

−w(A)− w(C) ≤ −pn− 1

pn
w(A,C) +

ϵp2costold
2pn

. (6)

Summing up Inequalities (4) and (5), we get

((−p+ (1− 2p)x)n− x) · (w(A,B) + w(B,C))− 4pxnw(B) ≤ (−2 + 4p)nw(A,C) + 2ϵp(1− 2p)costold. (7)

Substituting x = p
1+2p into Inequality (7), we get

−4p2n+ p

1 + 2p
(w(A,B) + w(B,C) + w(B)) +

p

1 + 2p
w(B) ≤ (−2 + 4p)nw(A,C) + 2ϵp(1− 2p)costold. (8)

Multiplying the coefficient 4p2n+p
1+2p on both sides of Inequality (6), we get

−4p2n+ p

1 + 2p
(w(A) + w(C)) ≤ −4p2n+ p

1 + 2p
· pn− 1

pn
w(A,C) +

4p2n+ p

1 + 2p
· ϵp

2costold
2pn

. (9)
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Summing up Inequalities (8) and (9), we have

−4p2n+ p

1 + 2p
w(E) +

p

1 + 2p
w(B) ≤

(
(−2 + 4p)n− 4p2n+ p

1 + 2p
· 2pn− 1

pn

)
w(A,C)

+2ϵp(1− 2p)costold +
4p2n+ p

1 + 2p
· ϵp

2costold
2pn

. (10)

After removing w(B) on the left, we get

4p2n+ p

1 + 2p
w(E) ≥

(
(2− 4p)n+

4p2n+ p

1 + 2p
· 2pn− 1

pn

)
w(A,C)

− 2ϵp(1− 2p)costold −
4p2n+ p

1 + 2p
· ϵp

2costold
2pn

. (11)

So w(A,C) is upper bounded as

w(A,C) ≤
4p2n+p
1+2p w(E) + 2ϵp(1− 2p)costold +

4p2n+p
1+2p ·

ϵp2costold
2pn

(2− 4p)n+ 4p2n+p
1+2p ·

2pn−1
pn

≤ 4p2n2 + pn

2n2 − 2pn− 1
w(E) +

2np(−6p2 + p+ 1)ϵ

2n2 − 2np− 1
w(E) +

p2(4np+ 1)(3p+ 1)ϵ

2(2p+ 1)(2n2 − 2np− 1)
w(E)

=

(
2p2 +Θ

(
1

n

))
w(E) + Θ

( ϵ
n

)
w(E)

=

(
2p2 +Θ

(
1 + ϵ

n

))
w(E). (12)

So

w(E)− w(A,C) ≥
(
1− 2p2 −Θ

(
1 + ϵ

n

))
w(E).

Therefore,

costdual(A,B,C) =

(
w(A+B)− w(B)

2

)
|C|+

(
w(B + C)− w(B)

2

)
|A|

= (w(A+B) + w(B + C)− w(B))pn

= (w(E)− w(A,C))pn

≥
(
1− 2p2 −Θ

(
1 + ϵ

n

))
w(E)pn

=

(
−2p3 + p−Θ

(
1 + ϵ

n

))
nw(E)

≥
(
−2p3 + p−Θ

(
1 + ϵ

n

))
costdual(A

∗, B∗, C∗). (13)

The fact costdual ≤ nw(E) is used for the last inequality. Substituting p = 1√
6

into Inequality (13), we get

costdual(A,B,C) ≥
(

2

3
√
6
−Θ

(
1 + ϵ

n

))
costdual(A

∗, B∗, C∗). (14)

Remarks: We have a rounding error in costdual(A,B,C) incurred by setting |A|, |B|, |C| to be integers in the above proof.
But because the error is additive and aggregated only a constant multiple of w(E), it can be absorbed safely in Θ

(
1+ϵ
n

)
.

By Lemma B.1, B.2, Theorem 3.1 follows.
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B.3. Proof of Proposition 3.2

Proof. We show that the optimal 2-OC-D value OPT (Kn) = ( 2
3
√
6
−Θ( 1n ))nw(E). Consider any A, B, C, let x = |A|,

y = |B|, z = |C|. Let

f(x, y, z) = costdual(A,B,C) =

(
x(x− 1)

2
+ xy +

y(y − 1)

4

)
z +

(
z(z − 1)

2
+ yz +

y(y − 1)

4

)
x,

and our goal is maxx,y,z∈Z+,x+y+z=n f(x, y, z).

First prove that f(x, y, z) takes the maximum value when x = y.

Consider (x, y, z)→
(
x+z
2 , y, x+z

2

)
, then we have

f

(
x+ z

2
, y,

x+ z

2

)
− f(x, y, z)

=
x+ z

2

[
x+ z

2

(
x+ z

2
− 1

)
+ (x+ z)y +

y(y − 1)

2

]
− x+ z

2

y(y − 1)

2
− 2xyz − xz(x+ z − 2)

2

=
x+ z − 2

2

[
(x+ z)2 − 4xz

4

]
+

(x+ z)2 − 4xz

2
y

≥ 0,

which indicates that when y is given, f gets maximum when x = z. So our problem is transformed into

max
x,y∈Z+,2x+y=n

g(x, y) =

[
(x− 1)x+ 2xy +

y(y − 1)

2

]
x,

which is equivalent to

max
0<x<n

2

h(x) =

[
(x− 1)x+ 2x(n− 2x) +

(n− 2x)(n− 2x− 1)

2

]
x.

After simplification

h(x) =

[
(x− 1)x+ (n− 2x)

n− 1 + 2x

2

]
x =

[
(x− 1)x+

n2 − 4x2 − (n− 2x)

2

]
x,

and taking derivative

h
′
(x) = −3x2 +

n2 − n

2
,

we know that h(x) achieves the maximum value at x =
√

n2−n
6 . For the optimal solution value, we have

OPT (Kn) = −
n2 − n

6

√
n2 − n

6
+

n2 − n

2

√
n2 − n

6
=

n2 − n

3

√
n2 − n

6
.

Finally, note that nw(E) = n · n(n−1)
2 = n3−n2

2 . Then we have

OPT (Kn)

nw(E)
=

n2−n
3

√
n2−n

6

n3−n2

2

=
2

3
√
6

√
n2 − n

n2
=

2

3
√
6

(
1− 1

n+
√
n2 − n

)
=

2

3
√
6
−Θ

(
1

n

)
.

This completes the proof of Proposition 3.2.
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B.4. Proof of Theorem 3.3

In the section, we prove Theorem 3.3 that provides an approximation guarantee for 2-OC-P.

Proof. Let cost∗dual and cost∗primal be the optimal objective values, costdual and costorimal be the values that Algorithm 1
outputs, for 2-OC-D and 2-OC-P, respectively. Let a be the approximation factor of Algorithm 1 to nw(E) for the dual
problem, and b be the approximation factor of Algorithm 1 to cost∗primal for the primal problem. We have the following
relationship.

Lemma B.3. b ≤ (1− a)(1 + cost∗dual/cost
∗
primal).

Proof. Note the following relationships hold.

cost∗primal + cost∗dual = costprimal + costdual = n · w(E),

and

costdual ≥ a · nw(E).

Therefore, we have

costprimal = nw(E)− costdual ≤ nw(E)− anw(E) = (1− a)(cost∗primal + cost∗dual).

That is,
costprimal/cost

∗
primal ≤ (1− a)(1 + cost∗dual/cost

∗
primal).

Lemma B.3 follows.

Since we already have a = 2
3
√
6
−Θ( 1n ), if we can give an upper bound on cost∗dual/cost

∗
primal, then we also have an upper

bound on b. The following lemma provides this upper bound.

Lemma B.4. For 2-OC-D and 2-OC-P, cost∗dual/cost
∗
primal ≤ ρmax/ρavg ≤ dmax/davg, where ρavg = w(E)/|V | is the

average density, ρmax is the maximum density of all induced subgraphs, dmax is the maximum degree of all nodes, and davg
is the average degree of all nodes.

Note that Lemma B.4 also holds for the dual and primal cost ratio determined by any HOC graph.

Proof. Let A∗, B∗, C∗ be the optimal solution (no matter whether it is primal or dual because the two problems are
equivalent), let cost∗primal denote costprimal(A

∗, B∗, C∗) and cost∗dual denote costdual(A
∗, B∗, C∗) for short.

cost∗dual = |C∗|
(
w (A∗) + w (A∗, B∗) +

1

2
w (B∗)

)
+ |A∗|

(
w (C∗) + w (B∗, C∗) +

1

2
w (B∗)

)
,

cost∗primal = (|A∗|+ |B∗|)
(
w (A∗) + w (A∗, B∗) +

1

2
w (B∗)

)
+(|B∗|+ |C∗|)

(
w (C∗) + w (B∗, C∗) +

1

2
w (B∗)

)
+ nw (A∗, C∗) .

Consider two cases of cost∗dual/cost
∗
primal.

(1) If cost∗dual/cost
∗
primal ≤ 1, then b = 2(1− a).
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(2) If cost∗dual/cost
∗
primal ≥ 1, namely cost∗dual ≥ cost∗primal, substituting into the specific form of the objective function,

we have

|C∗|
(
w (A∗) + w (A∗, B∗) +

1

2
w (B∗)

)
+ |A∗|

(
w (C∗) + w (B∗, C∗) +

1

2
w (B∗)

)
≥ (|A∗|+ |B∗|)

(
w (A∗) + w (A∗, B∗) +

1

2
w (B∗)

)
+(|B∗|+ |C∗|)

(
w (C∗) + w (B∗, C∗) +

1

2
w (B∗)

)
+ nw (A∗, C∗) .

Then we get

(|C∗| − |A∗| − |B∗|)
(
w (A∗) + w (A∗, B∗) +

1

2
w (B∗)

)
+(|A∗| − |B∗| − |C∗|)

(
w (C∗) + w (B∗, C∗) +

1

2
w (B∗)

)
≥ nw (A∗, C∗) .

This holds if and only if

(|C∗| − |A∗|)(w(A∗) + w(A∗, B∗)− w(C∗)− w(B∗, C∗))

≥ nw(A∗, C∗) + |B∗|(w(A∗) + w(A∗, B∗) + w(B∗) + w(C∗) + w(B∗, C∗)),

which implies that
(|C∗| − |A∗|)(w(A∗) + w(A∗, B∗)− w(C∗)− w(B∗, C∗)) ≥ 0.

Without loss of generality, we assume that |C∗| ≥ |A∗|, w(A∗) + w(A∗, B∗) ≥ w(C∗) + w(B∗, C∗). We consider two
types of scaling for cost∗dual/cost

∗
primal.

Scale 1: replace |A∗| with |C∗| for the numerator, remove nw(A∗, C∗) for the denominator, replace |C∗| with |A∗|, and
then we get

cost∗dual
cost∗primal

≤
|C∗|(w(A∗) + w(A∗, B∗) + 1

2w(B
∗)) + |C∗|(w(C∗) + w(B∗, C∗) + 1

2w(B
∗))

(|A∗|+ |B∗|)(w(A∗) + w(A∗, B∗) + 1
2w(B

∗)) + (|B∗|+ |A∗|)(w(C∗) + w(B∗, C∗) + 1
2w(B

∗))

=
|C∗|(w(A∗) + w(A∗, B∗) + w(B∗) + w(C∗) + w(B∗, C∗))

(|A∗|+ |B∗|)(w(A∗) + w(A∗, B∗) + w(B∗) + w(C∗) + w(B∗, C∗))

=
|C∗|

|B∗|+ |A∗|
.

Scale 2: replace the numerator w(C∗) + w(B∗, C∗) with w(A∗) + w(A∗, B∗), remove the denominator Contents of |B∗|,
and then we have

cost∗dual
cost∗primal

≤
(|A∗|+ |C∗|)(w(A∗) + w(A∗, B∗) + 1

2w(B
∗))

|A∗|(w(C∗) + w(B∗, C∗) + 1
2w(B

∗)) + |C∗|(w(C∗) + w(B∗, C∗) + 1
2w(B

∗)) + (|A∗|+ |C∗|)w(A∗, C∗)

≤
(|A∗|+ |C∗|)(w(A∗) + w(A∗, B∗) + 1

2w(B
∗))

(|A∗|+ |C∗|)(w(C∗) + w(B∗, C∗) + 1
2w(B

∗) + w(A∗, C∗))

=
w(A∗) + w(A∗, B∗) + 1

2w(B
∗)

w(C∗) + w(B∗, C∗) + 1
2w(B

∗) + w(A∗, C∗)
.

Therefore,

cost∗dual
cost∗primal

≤ max

{
1,min

{
|C∗|

|A∗|+ |B∗|
,

w(A∗) + w(A∗, B∗) + 1
2w(B

∗)

w(C∗) + w(B∗, C∗) + 1
2w(B

∗) + w(A∗, C∗)

}}
.
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Let

x =
|C∗|

|A∗|+ |B∗|

y =
w(A∗) + w(A∗, B∗) + 1

2w(B
∗)

w(C∗) + w(B∗, C∗) + 1
2w(B

∗) + w(A∗, C∗)
.

We have
|A∗|+ |B∗| = 1

1 + x
|V |,

and
w(A∗) + w(A∗, B∗) +

1

2
w(B∗) =

y

1 + y
w(E).

Recall that |C∗| > |A∗|, w(A∗)+w(A∗, B∗) > w(C∗)+w(B∗, C∗), and observe that the density of the induced subgraph
G[A∗ +B∗] should be large. Set ρmax = maxU⊆V

{
w(E(G[U ]))

|U |

}
to be the maximum density of the induced subgraph on

G, E(G[U ]) to be the edge set of G[U ], ρavg = w(E)
|V | to be the average density of G, and then

w(A∗) + w(A∗, B∗) + 1
2w(B

∗)

|A∗|+ |B∗|
=

y(1 + x)

1 + y
· w(E)

|V |
≤ w(A∗ +B∗)

|A∗|+ |B∗|
≤ ρmax.

We have
y(1 + x)

1 + y
≤ ρmax

ρavg
.

Now according to the value of min(x, y), we consider the following two cases.

(1) x ≤ y, we have

x =
(1 + y)x

1 + y
=

x+ xy

1 + y
≤ y + xy

1 + y
=

y(1 + x)

1 + y
≤ ρmax

ρavg
.

(2) x > y, we have

y =
y(1 + x)

1 + x
<

y(1 + x)

1 + y
≤ ρmax

ρavg
.

Therefore,

min

{
|C∗|

|A∗|+ |B∗|
,

w(A∗) + w(A∗, B∗) + 1
2w(B

∗)

w(C∗) + w(B∗, C∗) + 1
2w(B

∗) + w(A∗, C∗)

}
≤ ρmax

ρavg
.

Then for cost∗dual/cost
∗
primal, we have

cost∗dual
cost∗primal

≤ max

{
1,

ρmax

ρavg

}
=

ρmax

ρavg
.

Calculating ρmax is difficult. However, it can be observed that the average degree d ≤ dmax on G[U ], and w(E(G[U ])) =
d|U |
2 . So, we have an upper bound on ρmax, that is

ρmax =
w(E(G[U ]))

|U |
≤ d · |U |

2|U |
≤ dmax

2
.

On the other hand,

ρavg =
w(E)

|V |
=

davg · |V |
2|V |

=
davg
2

.
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This implies that
ρmax

ρavg
≤ dmax

davg
.

Therefore, cost∗dual

cost∗primal
≤ ρmax

ρavg
≤ dmax

davg
, and this completes the proof of Lemma B.4.

Combining Lemmas B.3 and B.4, Theorem 3.3 follows.

C. Supplements to Experiments
In this section, we provide supplementary information and results on our experiments.

C.1. Definition of OSBM

OSBM is specified by a pair of real numbers p1, p2 (0 ≤ p1 ≤ p2 ≤ 1), and a k × k symmetric membership matrix Z, in
which each row or column indicates a cluster and each entry is a natural number. Zij (i ̸= j) represents the number of
overlapping nodes between the i-th and the j-th clusters, and Zii represents the number of nodes in the i-th cluster that do
not present overlap. Denote by C1, ...Ck the planted overlapping clusters. p1 represents the inter-link probability between
each pair of clusters, while p2 represents the intra-link probability within each cluster. For two nodes in the overlapping
region, we have two independent samples, and the edge exits if either of the samples generates one. Equivalently, the
probability of edge presence between any two nodes in the overlapping region is 1− (1− p2)

2.

C.2. Definition of the NMI for OC

The normalized mutual information (NMI) was originally developed as a distance measure for non-overlapping partitions.
The work in (McDaid et al., 2011) put forward the NMI for OC that represents a natural generalization from the original
NMI. Formally, for two different groups of overlapping clusters X = {x1, x2, ...}, Y = {y1, y2, ...} on the same graph
G = (V,E), where xi, yi are clusters, let p(xi) = |xi|/|V |, p(yi) = |yi|/|V |, p(xi, yj) = |xi ∩ yj |/|V |. It should be
noted that, unlike the classic NMI used for non-overlapping partitions, p(xi) and p(yi) cannot be interpreted as probability
distributions due to the overlaps within X and Y . We define the entropy of random variables, joint entropy and mutual
information respectively as follows:

H(X) = −
∑
xi∈X

p(xi) log p(xi), H(Y ) = −
∑
yi∈Y

p(yi) log p(yi),

H(X,Y ) = −
∑

xi∈X,yj∈Y

p(xi, yj) log p(xi, yj),

I(X : Y ) = H(X) +H(Y )−H(X,Y ).

Then the NMI of X,Y is defined as

NMI(X,Y ) =
I(X : Y )

max(H(X), H(Y ))
.

NMI(X,Y ) is in the range [0, 1], and equals 1 if and only if X and Y are exactly coincident.

C.3. Evaluation on the MNIST dataset

To show intuitively that our algorithm is able to find out the blurred overlapping area of datasets, we run our 2-OC algorithm
on the MNIST dataset (LeCun et al., 1998), which is a benchmark of handwritten digits containing ten classes of images
labeled by 0 ∼ 9, respectively. We select two pairs of labels that are easily confused by hand writing, i.e., 1 vs. 7, 3 vs.
8, and construct a k-nearest neighbor graph for each of them. Each node of the graph represents an image of handwritten
digit, and the similarity is measured by applying the Gaussian kernel function to the Euclidean distance of pixel vectors.
We remark that not all embeddings (e.g., word embeddings) that are generated by modern-day AI models are suitable for
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clustering. We just find that pixel vector in MNIST is somewhat a good use-case to showcase our results of overlapping,
ambiguous samples.

The parameters, NMI, size of the overlapping part, the costs of ground truth (GT, non-overlap) and 2-OC output are
summarized in Table 5. NMI is calculated with the non-overlapping ground truth of data points, although our algorithm
gives overlapping results. However, the NMI for the labels 1 vs. 7 is above 0.9, and only 4 digits, which can be viewed as
ambiguous ones, are allocated in the overlapping part. We demonstrate all of them in Figure 7(a). For the labels 3 vs. 8,
there are 60 ambiguities. We demonstrate four of them in Figure 7(b). A significant factor that impacts the accuracy of our
algorithm is that we simply use the pixel vectors of digits which is a very rough representation of images.

(a) labels 1 vs. 7

(b) labels 3 vs. 8

Figure 7. Demonstrations of the ambiguous samples our 2-OC algorithm yields.

Table 5. Parameters and results on the MNIST dataset
label size k NMI overlapping size GT cost (non-overlap) 2-OC cost
1 vs. 7 7877 + 7293 100 0.926 4 7.37× 109 7.33× 109

3 vs. 8 7141 + 6825 100 0.812 60 6.47× 109 6.54× 109

C.4. Visualization of four overlapping clusters

We visualize in Figure 8 a 4-HOC results of Algorithm 2 on a small graph that is generated from OSBM and contains 100
nodes and 629 edges. It has four embedded overlapping clusters of size 27, each of which contains 22 or 24 nodes that
entirely belong to the cluster. There are 6 overlapping regions, each of which corresponds to a pair of overlapping clusters
out of the 4 ones, and each region contains 2 nodes. We label them from 91 to 100. We demonstrate the ground-truth
membership of all nodes in Tables 6 and 7. The edge presence probabilities are p1 = 0.01, p2 = 0.05 and p3 = 0.3.

Table 6. Membership of level-2 nodes in each of the four clusters. Each diagonal entry numbers the nodes that belong exclusively to
the corresponding cluster. The entry (i, j) (i ̸= j) denotes the node numbers in the overlapping region between clusters i and j. In the
visualization, the corresponding colors of clusters 1, 2, 3, and 4 are red, green, blue, and yellow , respectively, while the overlapping nodes
are the mixed colors of their clusters.

cluster label 1 2 3 4
1 1-22 96 91,97 92,98
2 96 23-44 93,99 94,100
3 91,97 93,99 45-66 95
4 92,98 94,100 95 67-90
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Table 7. Membership of level-1 nodes in each of the two clusters. Clusters 1 and 2 form one cluster, denoted by (1, 2), on level 1, while
clusters 3 and 4 form the other one, denoted by (3, 4).

cluster label (1,2) (3,4)
(1,2) 1-44,96, 91-94, 97-100
(3,4) 91-94, 97-100 45-90,95

(a) Ground truth of the 4 clusters (Level 1). (b) The result of our algorithm (Level 1).

(c) Ground truth of the 4 clusters (Level 2). (d) The result of our algorithm (Level 2).

Figure 8. Visualization of a 4-HOC clustering.

Table 8. List of misclassified nodes given by our algorithm on level 1.
node number cluster label in ground truth cluster label by the k-HOC algorithm

100 (1,2),(3,4) (3,4)

Table 9. List of misclassified nodes given by our algorithm on level 2.
node number cluster label in ground truth cluster label by the k-HOC algorithm

100 2,4 4
70 4 3,4

Our algorithm bipartitions the node set at the first level into two overlapping clusters, one consists of red and green (1 and 2),
the other blue and yellow (3 and 4). It achieves NMI = 0.964 on this level. At the second level, it achieves NMI = 0.959
for the four ground-truth overlapping clusters. In Figure 8, we visualize this result. Our algorithm successfully captures the
overall outlines of the clusters, except membership errors on only two nodes, whose labels are 70 and 100. We list them in
Tables 8 and 9. The node 100 is misclassified into non-overlapping region on the first level while the node 70 is misclassified
into overlapping communities on the second level.
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