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Abstract

Topological deep learning is a formalism that is aimed at introducing topological1

language to deep learning for the purpose of utilizing the minimal mathematical2

structures to formalize problems that arise in a generic deep learning problem. In3

this article, we define and study the classification problem in machine learning in a4

topological setting. Using this topological framework, we show when the classifica-5

tion problem is possible or not possible in the context of neural networks. Finally,6

we demonstrate how our topological setting immediately illuminates aspects of7

this problem that are not as readily apparent using traditional tools.8

1. Introduction9

Recent years have witnessed increased interest in the role topology plays in machine learning and data10

science [5]. Topology is a natural tool that allows the formulation of many longstanding problems in11

these fields. For instance, persistent homology [10] has been overwhelmingly successful at finding12

solutions to a vast array of complex data problems [1, 2, 3, 6, 7, 9, 12, 16, 17, 18, 19, 20, 23, 25, 26].13

On the other hand, the role that topology plays in deep learning is still mostly restricted to techniques14

that attempt to enhance machine learning models [14, 4, 28]. However, we believe that topology15

can and will play a central role in deep learning and AI in general. Our purpose of this article is to16

introduce topological deep learning, a formalism that is aimed at introducing topological language to17

deep learning for the purpose of utilizing the minimal mathematical structures to formalize problems18

that arise in a generic deep learning problem.19

To this end we define and study the classification problem in a topological setting. Using this20

topological machinery, we show when the classification problem is possible or not possible in the21

context of neural networks. Finally, we show how the architecture of a neural network cannot be22

chosen independently from the topology of the underlying data. To demonstrate these results, we23

provide an example dataset and show how it is acted upon by a neural net from this topological24

perspective.25

2. Background26

A neural network, or simply a network, is a function Net ∶ Rdin Ð→ Rdout defined by a composition27

of the form:28

Net ∶= fL ○ ⋯ ○ f1 (1)

where the functions fi, 1 ≤ i ≤ L are called the layer functions. A layer function fi ∶ Rni Ð→ Rmi is29

typically a continuous, piece-wise smooth function of the following form: fi(x) = σ(Wi(x) + bi)30

where Wi is an mi × ni matrix, bi is a vector in Rmi , and σ ∶ R Ð→ R is an appropriately chosen31

nonlinear function that is applied coordinate-wise on an input vector (z1,⋯,zmi) to get a vector32

(σ(z1),⋯,σ(zmi)).33
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3. Data In a Topological Setting34

In the present article we clearly distinguished between data and the functions that operate on it.This35

distinction is important because data as a separate mathematical object have complex properties that36

intertwine non-trivially with the functions, that also have unique properties, that operate on the data.37

The purpose of this section is define the notion of data using topological notions.38

3.1. Topological Data39

Denote by Mn to a manifold M of dimension n. Let D =M i1
1 ⊍M i2

2 ⋯⊍M ik
k be a disjoint union of40

k compact manifolds. Let h ∶ D Ð→ E be a continuous function on D. We refer to the pair (D,h)41

as topological data and refer to E as the the ambient space of the topological data, or simply the42

ambient space of the data.43

A few remarks here must be made about the above definition. First note that the definition above is44

consistent with the statistical version. The space E, usually some Euclidean space, represents the45

ambient space of a probability distribution µ from which we sample the data. The support of µ is46

D ∶= h(D). The assumption that the data lives on a manifold-like structure is justified in the literature47

[11, 21]. 1
48

3.2. Topologically Labeled Data49

Let (D,h) be topological data with h ∶D → D ⊂ E. Let Y = {l1,⋯, ld} be a finite set. A topological50

labeling on D is a closed subset DL ⊂ D along with a surjective continuous function g ∶ DL → Y51

where Y is given the discrete topology. The triplet (D,h,g) will be called topologically labeled data.52

Topologically labeled data is a topological object that corresponds to labeled data in the typical53

statistical setting for a supervised classification machine learning problem.54

4. The Topological Classification Problem55

With the above setting we now demonstrate how to realize the classification problem as a topological56

problem. In what follows we set Dk to denote g−1(lk) for lk ∈ Y .57

Definition 1. Let (D,h,g) be topologically labeled data with, h ∶ D → D ⊂ Rn and g ∶ DL → Y58

where ∣Y∣ = d. A topological classifier on (D,h,g) is a continuous function f ∶ Rn → Rk. We say that59

f separates the topologically labeled data (D,h,g) if we can find k disjoint embedded k-dimensional60

discs A1,⋯,Ak in Rk such that f(Dk) ⊂ Ak.61

In general, a topologically labeled data can be knotted, linked and entangled together in a non-trivial62

manner by the embedding h, and the existence of a function f that separates this data is not immediate.63

The preceding description is an topological rewording of the classification problem typically given in64

a statistical setting. Indeed, a successful classifier tries to separate the labeled data by mapping the65

raw input data into another space where this data can be separated easily according to the given class.66

The function f is the learning function that we try to compute, in practice. The first question one67

could ask in this context is one of existence: given topologically labeled data (D,h,g) when can we68

find a function f that separates this data? We answer this question next.69

4.1. Topological Classifiers and Separability of Topologically Labeled Data70

We start with the binary classification problem, namely when ∣Y∣ = 2. We have the following71

proposition:72

Proposition 4.1. Let (D,h,g) by a topologically labeled data with h ∶ D Ð→ D ⊂ Rdin and73

g ∶ DL → {l1, l2}. Then there exists a topological classifier f ∶ Rdin → R that separates (D,h,g).74

Proof. The label function g ∶ DL Ð→ {l1, l2} induces a partition on DL into two disjoint closed sets75

D1 ∶= g−1(l1) and D2 ∶= g−1(l2). By Urysohn’s lemma there exists a function f∗ ∶ DL Ð→ [0,1]76

1While we make this assumption here, it not strictly necessary anywhere in our proofs.
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such that f∗(D1) = 0 and f∗(D2) = 1. Since DL is closed in Rdin then by Tietze extension theorem77

there exists an extension of f∗ to a continuous function f̂ ∶ Rin → R such that f∗(DL) = f(DL). In78

particular, f(D1) = 0 and f(D2) = 1. Hence the function f separates (D,h,g).79

Proposition 4.1 can be easily generalized to obtain functions that separate (D,h,g) in any Euclidean80

space Rk. Namely, for any k ≥ 1 there exists a continuous map F ∶ Rdin Ð→ Rk that separates81

(D,h,g). This can be done by defining F = (f1, f2) where f1 ∶ Rdin Ð→ [0,1] is the continuous82

function guaranteed by Urysohn’s Lemma and f2 ∶ Rdin Ð→ Rk−1 is an arbitrary continuous function.83

This function F clearly separates (X,h,g). We record this fact in the following proposition.84

Proposition 4.2. Let (D,h,g) by a topologically labeled data with h ∶D → D ⊂ Rdin and g ∶ DL →85

{l1, l2}. Then for any k ≥ 1 there exists a continuous map f ∶ Rdin → Rk that separates (D,h,g).86

Proposition 4.2 can be generalized to the case when the set Y has an arbitrary finite size. This can87

be done by because Urysohn’s Lemma remains valid when we start with n disjoint sets instead of 2.88

The following theorem, which generalizes 4.2, asserts the existence of a topological classifier f that89

separates any given topologically labeled data.90

Theorem 4.3. Let (D,h,g) be topologically labeled data with h ∶ D → D ⊂ Rdin and g ∶ DL → Y .91

Then there exists a continuous map f ∶ Rdin → Rk that separates (D,h,g) for any integer k ≥ 1.92

5. Neural Networks as Topological Classifiers93

Let (D,h,g) by a topologically labeled data with, h ∶ D → D ⊂ Rdin and g ∶ DL → Y = {l1,⋯ln}.94

Can we find a neural network defined on Rdin that separates the data (D,h,g) ? We start by framing95

the softmax classification networks using topological terminologies.96

Typical, classification neural networks have a special layer function at the end where one uses the97

softmax activation function 2. Denote by ∆n the nth simplex as the convex hull of the vertices98

{v0,⋯,vn} where vi = (0,...,1,...,0) ∈ Rn+1 with the lone 1 in the (i + 1)th coordinate.99

The softmax function on n vertices softmax ∶ Rn Ð→ Int(∆n−1) ⊂ Rn, is defined by the compo-100

sition S ○Exp where Exp ∶ Rn → (R+)n is defined by : Exp(x1,⋯,xn) = (exp(x1),⋯, exp(xn)),101

and S ∶ Rn →∆n−1 is defined by :S(x1,⋯,xn) = (x1/∑n
i=1 xi,⋯, xn/∑n

i=1 xi).102

A network Net is said to be a softmax classification neural network with n labels if the final layer103

of Net is softmax function with n vertices. Usually n is the number of labels in the classification104

problem. Each vertex vi in ∆n−1 corresponds to precisely one label li+1 ∈ Y for 0 ≤ i ≤ n − 1.105

For an input x ∈ D the point Net(x) is an element of ∆n−1. By definition, the point x is assigned to106

the label li+1 by the neural network if and only if Net(x) ∈ Int(V C(vi)) where V C(C) denotes107

the Voronoi cell of the set C and Int(A) denotes the interior of a set A. This immediately yields the108

following theorem.109

Theorem 5.1. Let (D,h,g) by a topologically labeled data with, h ∶ D → D ⊂ Rdin and g ∶ DL ⊂110

Rdin → {l1,⋯ln}. A softmax classification neural network Net ∶ Rdin → Int(∆n−1) separates111

(D,h,g) if and only if Net(Di+1) ⊂ Int(V C(vi)) for 0 ≤ i ≤ n − 1.112

Finally, to answer the question about the ability of a neural network to separate a topologically labeled113

data, we combine the result we obtained from Theorem 4.3 with the universality of neural networks114

[8, 13, 22] 3. The universality of neural networks essentially states that for any continuous function f115

we can find a network that approximates it to an arbitrary precision4. Hence we conclude that any116

topologically labeled data can effectively be separated by a neural network.117

2There are other types of classification neural networks but this is beyond the scope of our discussion here
3The universal approximation theorem is available in many flavors : one may fix the depth of the network

and vary the width or the other way around.
4The closeness between functions is with respect to an appropriate functional norm. See [8, 22] for more

details.
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6. Shape of Data and Neural Networks118

We end our discussion by briefly showing how the shape of input data is essential when deciding on119

the architecture of the neural network. Theorem 6.1 that if we are not careful about the choice of the120

first layer function of a network then we can always find a topologically labeled data that cannot be121

separated by this network.122

Theorem 6.1. Let Net be neural network of the form : Net = Net1 ○ f1 with f1 ∶ Rn Ð→ Rk such123

that f1(x) = σ(W (x) + b) and k < n and Net1 ∶ Rk Ð→ Rd is an arbitrary net. Then there exists a124

topologically labeled data (D,h,g) with h ∶D → D ⊂ Rn and g ∶ DL ⊂ D → Rd that is not separable125

by Net.126

Proof. Let D = D = {x ∈ Rn, ∣∣x∣∣ ≤ 2}. Let DL = D1 ⊍ D2 where D1 = {x ∈ Rn, ∣∣x∣∣ ≤ 0,9} and127

D2 = {x ∈ Rn,1 ≤ ∣∣x∣∣ ≤ 2}. Choose g ∶ DL Ð→ {l1,l2} such that g(D1) = l1 and g(D2) = l2.128

Let f1 be a function as defined in the Theorem. The matrix W ∶ Rn Ð→ Rk where k < n has a129

nontrivial kernel. Hence, there is a non-trivial vector v ∈ Rn such that W (v) = 0. Choose a point130

p1 ∈ D1 and a point p2 ∈ D2 on the line that passes through the origin and has the direction of v.131

We obtain W (p1) =W (p2) = 0. In other words, f1(p1) = f1(p2). Hence Net(p1) = Net(p2) and132

hence Net(D1) ∩Net(D2) ≠ ∅ and so we cannot find two embedded disks that separate the sets133

Net(D1), Net(D2).134

Note that in Theorem 6.1 the statement is independent of the depth of the neural network. This is also135

related to the work [15] which shows that skinny neural networks are not universal approximators.136

This is also related to the work in [24] where is was shown that a network has to be wide enough in137

order to successfully classify the input data.138

To demonstrate the role that the topology of data may play in regard to the architecture of a neural139

network we end our discussion by considering the following example. Let Net be a neural network140

given by the composition Net = f6 ○ f5 ○ f4 ○ f3 ○ f2 ○ f1. For 1 ≤ i ≤ 5 maps are given by141

fi ∶= Relu(Wi(x) + bi) such that W1 ∶ R2 → R5, W2 ∶ R5 → R5, W3 ∶ R5 → R2 and Wj ∶ R2 → R2
142

for 4 ≤ j ≤ 5. Finally, the function, f5 = softmax(W6(x) + b6) where W6 ∶ R5 → R2.143

We train this network on the annulus dataset given in the top left Figure in 1. In Figure 1 we144

also trace the activations as demonstrated in Figure 1. In the Figure we visualize the activations145

in higher dimension by projecting them using Isomap [27] to R3. Our choice of this algorithm as146

a dimensionality reduction algorithm is driven by the fact that the dataset we work with here is147

essentially a manifold; as such, projecting the space to a lower dimension with the Isomap algorithm148

should preserve most of the topological and geometric structure of the this space.149

Figura 1: The topological operations performed by a network on data sampled from the annulus and
colored by two lables.

Inspecting the activations in Figure 1 we make the following observation:150

1. A neural network can collapse the topological space either using the nonlinear Relu or by151

utilizing the linear part of a given layer function. This is the case with the map f3 ∶ R5 Ð→ R2.152

While the linear component is a projection onto R2, the network çhose"to project the space153

into 1− manifold since the second dimension is not needed for the final classification.154

2. Note that the yellow components are separated by the purple one, and in order to map both155

of these parts to the same part of the space, the net has to glue these two parts together.156

Indeed, the neural network quotients parts of the space as it sees it necessary. This is visible157

in W5, which acts as a projection, and again W6.158
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