
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DEEP NETWORKS LEARN FEATURES FROM LOCAL
DISCONTINUITIES IN THE LABEL FUNCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks outperform kernel machines on several datasets due to fea-
ture learning that happens during gradient descent training. In this paper, we an-
alyze the mechanism through which feature learning happens and use a notion of
features that corresponds to discontinuities in the true label function. We hypoth-
esize that the core feature learning mechanism is label function discontinuities at-
tracting model function discontinuities during training. To test this hypothesis, we
perform experiments on classification data where the true label function is given
by an oblique decision tree. This setup allows easy enumeration of label function
discontinuities, while still remaining intractable for static kernel/linear methods.
We then design/construct a novel deep architecture called a Deep Linearly Gated
Network (DLGN), whose discontinuities in the input space can be easily enumer-
ated. In this setup, we provide supporting evidence demonstrating the movement
of model function discontinuities towards the label function discontinuities dur-
ing training. The easy enumerability of discontinuities in the DLGN also enables
greater mechanistic interpretability. We demonstrate this by extracting the param-
eters of a high-accuracy decision tree from the parameters of a DLGN. We also
show that the DLGN is competitive with ReLU networks and other tree-learning
algorithms on several real-world tabular datasets.

1 INTRODUCTION

Neural networks and deep learning have demonstrated exceptional performance across diverse do-
mains, but their learning mechanism and exact reason for outperforming linear/kernel models still
remain largely a mystery. Another issue with neural networks is the black box nature of the models,
by which any parameters (other than the first layer parameters) are difficult to interpret directly.

There have been several tools built to study the learning dynamics of gradient descent and perform
post-hoc interpretation of learned models. The most common characteristics of these are as follows:

• Approximate the learning dynamics of neural networks with much simpler setups – like
kernel methods (Arora et al., 2019) or deep linear models (Saxe et al., 2014).

• Study dynamics of single (or two) hidden layer models under special data and settings to
go beyond the settings of kernel methods or deep linear models (Damian et al., 2022; Ba
et al., 2022; Nichani et al., 2023).

• Approximate the learned non-linear neural model with linear approximations around a
given query input (Ribeiro et al., 2016; Selvaraju et al., 2017).

These approaches serve a valuable purpose but have their share of cons, namely –

• Deep linear models are incapable of learning non-linear models, and fixed kernel methods
are incapable of learning “data-dependent-features”.

• Analyses of single hidden layer models for specific data settings like the parity function
fail to capture the need/behaviour of multiple layers.

• All post-hoc interpretability approaches based on local approximations suffer from a lack of
faithfulness guarantees– i.e. how useful/valuable is the ‘interpreted’ feature to the learned
model?

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

To this end, we introduce and study a novel architecture which is more powerful than kernel ma-
chines and deep linear networks (i.e. it is capable of learning non-linear data-dependent features)
while being ‘mechanistically interpretable’ (i.e. the model output breaks down exactly into a sum of
components, each of which has a simple structure). Using this architecture, we gather and provide
supporting evidence for claims below that would not be possible without it.

• The advantage of feature learning methods (like ReLU networks) over kernel machines lies
in their ability to align the model discontinuities to the label function discontinuities.

• The existence of multiple layers enables the ‘local’ nature of the discontinuity finding –
each layer operates in the context set by other layers, and hence, discontinuities that might
be minor (or not even exist) in a global context can become significant and drive the learning
process.

1.1 OVERVIEW/CONTRIBUTIONS

In Section 2, we review recent literature on feature learning in deep networks. In Section 3 we define
the concept of label function discontinuities and give an interesting setting where these form natural
features and can be easily enumerated. In Section 4 we propose a novel architecture called the
deep linearly gated network (DLGN). In Section 5 we provide supporting evidence for our claim of
label function discontinuities attracting model features during training. In Section 6 we demonstrate
that the DLGN architecture enables better control and is more amenable to being mechanistically
interpreted by constructing a decision tree directly from the parameters of learned DLGNs. In
Section 7 we give empirical results on some binary classification datasets and show that feature
learning methods (like the DLGN) outperform fixed kernel methods and are comparable to ensemble
methods like random forests.

1.2 NOTATION/SETUP

We consider a binary classification task, with training set S = {(x1, y1), . . . , (xn, yn)} where
xi ∈ Rd is drawn from some distribution D, and yi = f∗(xi) ∈ {+1,−1}. The ultimate goal
is to generalize well by finding a classifier f : Rd→{+1,−1} such that f(x) = f∗(x) with high
probability over x drawn from D. For any positive integer a we denote the set {1, 2, . . . , a} as [a].
We denote by 1(condition) as a {0, 1} valued variable that takes 1 if the condition is true and 0
otherwise.

2 RELATED WORK

A brief overview of some related work in the topic of neural network feature learning is given below.

Neural Nets as Kernel Machines: An infinite-width neural net at initialisation is equivalent
to a Gaussian processes with a particular kernel, and learning can be viewed as computing the
posterior of the label function, based on the training data likelihood (Lee et al., 2017). Jacot
et al. (2018) introduced the Neural Tangent Kernel (NTK), which approximates an infinite-width
neural network trained with gradient descent to a kernel machine. Arora et al. (2019) analysed
the width at which neural networks act approximately similar to kernel machine, this number
while being finite is much larger than typical widths seen in practical networks. Daniely &
Malach (2020) showed that neural nets are not just equivalent to kernel-methods, and are capable
of succeeding in situations where kernel methods provably fail. The constant NTK setting
simply asserts no feature learning takes place, in contrast to empirical results. Tools to study the
change of the NTK features during training are an interesting and active area of research. (Atanasov
et al., 2022; Damian et al., 2022; Hu et al., 2020; Ba et al., 2022; Chizat et al., 2019; Liu et al., 2020).

Feature Learning in Neural Nets: ReLU networks (Fukushima, 1969) have been a workhorse of
deep learning and are the current focus of several theoretical results that aim to explain the success of
deep learning over kernel methods (Ghorbani et al., 2020). ReLU networks can learn important data
characteristics known as “features”, though the term can be ambiguous. Neural networks undergo
feature learning, developing data representations during the process (Damian et al., 2022). Some
research proposes that neural nets learn low-frequency functions (Rahaman et al., 2019; Cao et al.,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2019) and simple features (Shah et al., 2020) first while training, and as the iteration progresses, it
gradually learns more complex features (Kalimeris et al., 2019; Hu et al., 2020). Other schools of
thought on this being the last layer neurons (Daniely, 2017; Lee et al., 2019) are a natural feature
choice as the prediction function can simply be viewed as a linear function of the last layer.

Modifying neural nets to understand feature learning: A ReLU network can be viewed as a deep
linear network with an input-dependent sub-network selection. Lakshminarayanan & Vikram Singh
(2020) make this explicit by constructing an alternate architecture which builds two separate mod-
els – one for input-dependent sub-network selection and another for the deep linear network that
the input goes through – and showed that feature learning happens via learning of active sub-
networks . Disjunctive normal networks (Sajjadi et al., 2016) that utilize the disjunctive normal
form, Gated Linear Networks (GLN) (Veness et al., 2021; Budden et al., 2020; Saxe et al., 2022)
a backpropagation-free architecture where each unit (neuron) learns locally using data-dependent
gating (context) are some other recent papers that enable a better study of feature learning in deep
networks by constructing a different and (arguably) simpler architecture than standard ReLU nets.

3 LOCAL DISCONTINUITIES IN THE LABEL FUNCTION

From the perspective of a learning algorithm trying to fit a classification model on the training
data, the only visible aspect is a d-dimensional scatter plot with labels coloured by their label.
From this viewpoint, the most interesting aspects are regions of the input space that see a colour
change. This has been well studied for linearly separable data using the language of geometry and
maximum-margins. Extending this idea to linearly-non-separable data is tricky. We try to capture
this behaviour using a notion of ‘discontinuities’ in the label function. Intuitively, the number of
such discontinuities has to be small for the problem to be learnable with a reasonable number of
data points (Klivans et al., 2008).

We define the local discontinuity coefficient (LDC) of a contiguous region R ⊆ Rd and a manifold
M = {x ∈ Rd : f(x) = 0} cutting through the regionR for a function f : Rd→R as follows:

γ(R, f) = 1
2

∣∣∣∣E[Y | X ∈ R, f(X) > 0
]
− E

[
Y | X ∈ R, f(X) < 0

]∣∣∣∣
where the expectation is w.r.t (X,Y ) with X ∼ D and Y = f∗(X). We will call γ(Rd, f) as the
global discontinuity coefficient (GDC) of f . Note that the LDC is a property of the data distribution
D and labelling function f∗. We will say that the scope of discontinuity at f isR if γ(R, f) is large.

For example, if the data can be separated by a hyperplane {x : w⊤x+ b = 0}, then γ(Rd,w⊤x+
b) = 1, and the scope of discontinuity of w⊤x+ b is the entire space Rd. The regionR corresponds
to the scope of the discontinuity, and γ(R, f) captures the accuracy of the classifier sign(f(x))
within this scope. We argue that such local discontinuities in the label function are what drive
feature learning in deep networks.

As an illustrative running example, we consider a labelling function f∗ given by an Oblique Decision
Tree (ODT) (Bertsimas & Dunn, 2017; Murthy et al.; 1994; Wickramarachchi et al., 2016; Carreira-
Perpinán & Tavallali, 2018). ODTs are decision trees with linear internal node functions u⊤x + b,
and a data point branches left/right depending on the sign of this value. These generalise standard
decision trees. ODT labelling functions are particularly hard to learn for fixed-feature learning
methods such as kernel machines, but allows for easy enumeration of all its discontinuities

In particular, we consider complete ODTs with node hyperplanes orthogonal to each other and each
leaf node having an equal number of data points (we call these COB-ODTs short for complete or-
thogonal balanced ODTs). COB-ODTs are particularly hard for classic greedy tree learning methods
such as CART (Breiman et al., 1984) to learn. This is because the hyperplanes corresponding to in-
ternal nodes (and the root node in particular) are all balanced (they have an equal number of positive
and negative data points on both sides of the hyperplane). Hence they do not get picked by greedy
methods under metrics such as information gain or Gini-Index. Other ODT learning methods that
are purportedly global (Zantedeschi et al., 2020; Bertsimas & Dunn, 2017; Lee & Jaakkola, 2020)
also fail to identify internal node hyperplanes for unknown reasons. Finite decision trees that do not
contain the internal node hyperplanes in a COB-ODT label function are guaranteed to have poor test

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0

1

2

(a) ODT h-planes of root, children

0

1

2

4

5

6

3

(b) ODT h-planes of grandchildren

7

8

9

10

11

12

13

14

0

1

2

3 4

5

6

(c) Shaded leaf node regions.

Figure 1: Hyperplanes and labelling function for a complete ODT of depth 3 over a 2d input space.
The children of an internal node i are 2i+ 1 and 2i+ 2. Green and red shades indicate positive and
negative labels respectively. Note that the hyperplanes are not orthogonal here – the input dimension
must be greater than the number of internal nodes for a COB ODT to exist.

error. On several such COB-ODT settings, where all fixed-feature learning methods and tree algo-
rithms fail, deep ReLU nets and another deep architecture introduced in the next section succeed.
Experimental results supporting these observations are given in Table 2.

It is important to note that the entire hyperplane corresponding to an internal node is not a discon-
tinuity. For example, in the ODT in Figure 1(c), only parts of the line corresponding to root node 0
(or internal nodes 1 to 6) is a discontinuity. Also note that, despite the importance of the hyperplane
corresponding to node 0, it would not be picked first by any greedy tree learner – the ratio between
a number of positive and negatively labelled points is approximately the same on both sides of the
hyperplane. This is exactly true for any data labelled by a COB-ODT.

Clearly, all the internal node hyperplanes all correspond to label function discontinuities – i.e. a
randomly chosen point close to the hyperplane boundary has a chance of flipping labels if it moves
to the other side of the hyperplane. No other hyperplane has this property. All internal node linear
functions f have an appropriate regionR such that γ(R, f) = 1, but the total mass of the regionR,
given by P (X ∈ R) is of the order of 2−depth(internal node). An illustration of the computation of γ is
given in the Appendix.

We thus have a complex, non-trivial setting with a natural notion of data features. But in order to
test our hypothesis of ‘model features align with data features’ we need a deep network architecture
whose features (which are also simply discontinuities in the model function) can be easily enumer-
ated. Unfortunately, that is not possible with standard architectures like ReLU nets. To this end we
propose the deep linearly gated network architecture.

4 DEEP LINEARLY GATED NETWORKS(DLGN)

In this section, we define the DLGN architecture and give its details. We emphasise that the DLGN
architecture is not being proposed as a better architecture for classification than ReLU networks. Its
main purpose is to serve as a more transparent stand-in for ReLU networks. An apt description
for the DLGN would be “a midway point between deep linear networks and ReLU networks”.
DLGNs (like ReLU nets) learn useful non-linear features and outperform kernel methods while
having structural simplicity (like deep linear networks).

4.1 ARCHITECTURE DETAILS

The deep linearly gated network has an architecture similar to a ReLU network and is defined by neu-
rons residing in multiple layers. For simplicity, we assume the architecture consists of L hidden lay-
ers with m neurons in each layer. The architecture is parameterized by matrices W 1,W 2, . . . ,WL

and U2, . . . , UL and vectors u1,uL+1. The matrices W 2, . . . ,WL and U2, . . . UL are all of shape
m×m. W 1 has shape m× d. u1 and uL+1 are vectors of size m.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The architecture is most naturally described using the notion of paths, which we denote by π =
(i1, . . . , iL) ∈ [m]L, giving the sequence of hidden nodes that the path consists of. Let Π = [m]L

denote the set of all paths in the network. The output of the model is given as follows:

ŷ(x) =
∑
π∈Π

gπfπ(x) (1)

where fπ is called the path gating function for path π and gπ ∈ R is the value of path π. The path
gating function fπ is defined by (what we call) the gating network – a deep linear network with
weights W 1, . . . ,WL. The path gating function fπ is decomposed as a product of individual neuron
gating functions that make up the path π. The path gating function for path π = (i1, . . . , iL) is

fπ(x) =

L∏
ℓ=1

1
(
ηℓ
iℓ
(x) ≥ 0

)
(2)

∀ℓ ∈ [L], ηℓ(x) = W ℓηℓ−1(x) = V ℓx (3)

where η0(x) = x and ∀ℓ ∈ [L] the matrices V ℓ ∈ Rm×d form the ‘effective’ weights of the neurons
in layer ℓ and are given as V ℓ = W ℓW ℓ−1 . . .W 1. We call the hyperplane {x : ηℓ

iℓ
(x) = 0} as the

gating hyperplane corresponding to neuron iℓ in layer ℓ.

The value gπ of a path π = (i1, . . . , iL) is also defined by a network called the value network – a
deep linear network with weights U2, . . . , UL,uL+1, no biases, and input given by u1. It is simply
the product of weights along the path π, i.e.

gπ = u1
i1

[
L∏

ℓ=2

U ℓ
iℓ,iℓ−1

]
uL+1
iL

(4)

The model as defined in Equation (1) seems computationally hard to implement in a forward pass,
but due to standard matrix multiplication properties, can be easily implemented at a cost that is less
than twice the cost of a ReLU net with the same mL hidden nodes. i.e.

ŷ(x) = ⟨uL+1, hL(x)⟩ (5)
where h1(x) = 1(η1(x) ≥ 0) ◦ u1 and hℓ(x) = 1(ηℓ(x) ≥ 0) ◦

(
U ℓhℓ−1(x)

)
for ℓ > 1. The

gates η are as defined in Equation 3. The symbol ◦ represents elementwise multiplication. A proof
for this equality is given in the Appendix along with a short note on how the DLGN is related to the
ReLU network.

In order to learn the gating function parameters and back-propagate the gradient to W , we replace the
indicator function by a sigmoid. i.e. 1(a ≥ 0) with σ(βa) where σ is the standard sigmoid function
and β > 0 is a hyperparameter. A figure illustrating the DLGN architecture with an example is
given in the Appendix.

4.2 VARIANTS

We also consider two natural variants of the DLGN architecture. The first is a simple
re-parameterisation, where the gating network fπ is parameterised directly by the matrices
V 1, V 2, . . . , V L, each of shape m × d, instead of using the parameters W 1, . . . ,WL. Clearly,
this reparameterisation does not lose any representation power. We call this variant as DLGN-SF
(for shallow features).

In another variant, we use an explicit parameterisation of the coefficients gπ instead of using a value
network. This parameterisation is clearly more powerful than the standard DLGN parameterisation
in the previous section. However, this requires a parameter tensor of size mL and is not practical for
large L and m. We call this variant as DLGN-VT (for value tensor).

4.3 DISCONTINUITY ENUMERATION

The model ŷ in Equation equation 1 is a linear combination of path gating functions. The discontinu-
ities in ŷ are simply the union of discontinuities of fπ over all paths π. While there are exponentially
many gating functions fπ , they decompose further into a product of neuron gating functions, which
are indicator functions over half-spaces. Thus, the set of all discontinuities can very simply be
enumerated by considering the mL hyperplanes corresponding to the neuron gating functions.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0

1

2

4

5

6

3

(a) Layer1 trained hyperplanes

0

1

2

4

5

6

3

(b) Layer2 trained hyperplanes

0

1

2

4

5

6

3

(c) Layer3 trained hyperplanes

Figure 2: An illustration of DLGN hyperplanes after training on data in Fig 1c.

5 TRAINING ATTRACTS MODEL FEATURES TOWARDS LABEL FEATURES

We now have a labelling function f∗ based on a COB-ODT and a model function ŷ based on a
DLGN. The discontinuities of both f∗ and ŷ can be easily enumerated, and the discontinuities of
both functions are in the form of hyperplanes. We can now evaluate the main claim of the paper.

A DLGN trained on data labelled by a COB-ODT shows several interesting properties. The most
important of these properties is a tendency of the effective hyperplane of the gating neurons given
by V ℓ

i to cluster around the ODT node hyperplanes.

Figure 2 illustrates an example scenario when a 3-hidden layer DLGN is trained on data given in Fig-
ure 1(c). The initial hyperplanes (lines in this case) ηℓ(x) = 0 as shown in Appendix Figure 5(a-c)
are essentially random. However, after training, the hyperplanes in the later layers show a remark-
able tendency to move towards the hyperplanes corresponding to the decision tree – particularly that
of nodes close to the root (See Figures 2(a-c)). The relative idleness of the first layer hyperplanes
seems to be an artefact of parameterising the gating network by a deep linear network. This does not
happen for DLGN-SF where the gating network effective weights V ℓ are parameterised directly.

Table 1: Number of DLGN hyperplanes (after training) within a given distance of the label function
ODT hyperplanes. The 15 ODT internal nodes are numbered 0 to 14, with 0 as the root. The distance
of the closest (initial and trained) DLGN hyperplane to all the ODT hyperplanes is given in the last
2 rows. The DLGN has 4 hidden layers with 20 neurons in each layer, i.e. L = 4,m = 20.

Distance 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.1 4 2 2 1 1 1 1 1 1 1 1 1 1 1 1
0.2 12 3 5 2 1 1 1 1 1 1 1 1 1 1 1
0.3 13 3 5 2 1 1 1 2 1 1 1 1 1 2 1

Closest Dist.(init) 1.26 1.22 1.21 1.25 1.23 1.24 1.23 1.17 1.27 1.28 1.17 1.23 1.27 1.22 1.26
Closest Dist.(final) 0.05 0.07 0.06 0.07 0.1 0.06 0.05 0.06 0.09 0.08 0.07 0.07 0.06 0.09 0.06

Note that Figure 2 is a schematic illustration, and the decision tree hyperplane-seeking behaviour of
the DLGN hyperplanes is exaggerated to illustrate the idea properly. Table 1 gives the results of a
typical experiment on a synthetic dataset in which the data is a 100-dimensional vector uniformly
distributed on the surface of the unit sphere and labelled by a depth-4 COB-ODT with 15 internal
nodes. A 4-hidden layer DLGN with 20 neurons in each layer was trained on this dataset containing
30000 data points. Table 4 gives the same for a DLGN architecture with 100 neurons in each hidden
layer. For each node in the ODT, we count the number of DLGN hyperplanes within a distance
of 0.1, 0.2, and 0.3 from it. The distance between two hyperplanes H(v) = {x : v⊤x = 0} and
H(z) = {x : z⊤x = 0} is min

(∥∥∥ z
∥z∥ −

v
∥v∥

∥∥∥ ,∥∥∥ z
∥z∥ + v

∥v∥

∥∥∥) .
For large d, most pairs of vectors are orthogonal to each other, and hence, a typical value of dist(v, z)
is about

√
2. At initialisation, there are almost no DLGN hyperplanes close (say distance less than

0.3) to any of the ODT hyperplanes. But it can be clearly seen from Table 1 that the training process
attracts the DLGN hyperplanes towards the ODT hyperplanes. This happens most notably for the

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0

(a) Level 0

1 2

(b) Level 1

3 4 5 6

(c) Level 2

Figure 3: DLGN based ODT Learning. Illustration of the recursive procedure where for each level
starting at 0, we have 2level DLGNs trained on different splits of the data given by previous levels.
The main result of each training run is the largest cluster of the learned DLGN hyperplanes, which
is shown in the figures by red dashed lines.

root node, (13 out of the 80 DLGN gating hyperplanes end up close to the root node hyperplane),
despite the root node having almost zero information gain or accuracy increase in the greedy decision
tree construction setting. We conjecture that discontinuities in the label function serve as attractors
for the DLGN gating hyperplanes under SGD. The strength of this attraction towards a hyperplane
f(x) = 0 is proportional to the scope of the label function discontinuity around this hyperplane (or
the largest regionR for which γ(R, f) = 1).

We believe that there is a fundamental principle of feature learning in deep networks at play here,
and studying the reason for this behaviour and proving it theoretically is a promising future direction
that is beyond the scope of this paper.

6 MECHANISTIC INTERPRETABILITY OF DLGNS

The exact decomposition of the DLGN as a sum of the product of half-space indicator functions
allows for a degree of control and reusability of the learned parameters that are not possible with a
black box architecture like the ReLU network. We demonstrate this aspect of DLGNs by construct-
ing a completely different type of model, namely an ODT, directly by copying parameters from
learned DLGNs.

The decision tree extraction procedure is based on the principle conjectured in the previous section.
Figure 3 gives a schematic illustration of the procedure. In the first stage, a DLGN is trained on the
entire data. Our conjectured principle would then imply that the hyperplane with the largest scope
of discontinuity (which would be the hyperplane of the root node of the ODT corresponding to f∗)
would attract more DLGN hyperplanes than others, resulting in a detectable cluster around it. A
clustering is performed over the learned DLGN hyperplanes, and the largest cluster is chosen (See
Figure 3(a)). The cluster centre corresponding to it is chosen as the root node in the final decision
tree. Based on the root node hyperplane, the training data can be split into two halves, and the
procedure can be repeated on both halves recursively (See Figure 3(b,c)) until the data for training
becomes too small or contains only one class. An oblique decision tree can thus be constructed by
incorporating the largest cluster centres of the trained DLGN hyperplanes in the appropriate nodes
of a tree.

The details of the above procedure are given in Algorithm 1. It returns a decision tree consisting of
internal nodes and leaf nodes. Internal nodes are represented by a hyperplane and pointers to two
child nodes. Leaf nodes are represented by a value that is either +1 or −1. The key subroutine in

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm 1 Building a decision tree from trained DLGN
Arguments: Binary classification training set containing pairs (xi, yi)
Outputs: Root of an ODT

1: function BUILDTREE(data)
2: if IMPURE(data) and LARGE(data) then
3: left,right,v∗ ← DISCONTHYPERPLANE(data)
4: leftST← BUILDTREE(left)
5: rightST← BUILDTREE(right)
6: return NODE(v∗, leftST, rightST)
7: end if
8: lv← MAJORITYLABEL(data)
9: return NODE(value=lv)

10: end function

Algorithm 2 Finding Discontinuous Hyperplane
Arguments: Binary classification training set containing pairs (xi, yi)
Outputs: Data split into 2 halves along a hyperplane, and the hyperplane parameters w

1: function DISCONTHYPERPLANE(data)
2: model← TRAINDLGN(data)
3: V ← GATEHYPERPLANES(model)
4: v∗ ← LARGESTCLUSTERCENTER(V )
5: left, right← SPLITDATA(data,v∗)
6: return left, right,v∗

7: end function

Algorithm 1 is the DISCONTHYPERPLANE function detailed in Algorithm 2. It trains a DLGN on a
classification dataset, clusters the DLGN hyperplanes, and splits the data based on this hyperplane.
In our experiments, we used the DBScan (Ester et al., 1996) algorithm for clustering the DLGN
hyperplanes as it is robust to outliers.

We call this end-to-end procedure of constructing an ODT from learned DLGNs as DLGN-DT.
The total complexity of the DLGN-DT procedure is about depth times the cost of learning a single
DLGN – even though 2depth DLGNs are learned, most of them are learned on significantly smaller
subsets of the data, and the complexity of clustering simply depends on the architecture size which
is typically a small constant.

We emphasise that we are not proposing DLGN-DT as an alternate decision tree procedure. The
main purpose of the DLGN-DT procedure is to show that we have better control and understanding
of parameters in the DLGN. This is analogous to a mechanic demonstrating an understanding of
a car, by dismantling it and building two motorcycles and a diesel electricity generator from it.
This is fundamentally different from reusing the first few layers of a pre-trained convolutional net
for feature extraction for the following reasons. Firstly, the atomic element that is copied is at the
level of parameters and not sub-networks. Secondly, the new model is a decision tree which is a
completely different type of model from neural networks trained via gradient descent. Thirdly, the
new architecture (ODT) is not fine-tuned or retrained based on the data.

7 EXPERIMENTS

DLGN and its variants are more interpretable than a ReLU architecture, while still having powerful
feature learning capabilities. Thus, they form an important tool in understanding the learning
process of deep neural network. DLGNs in the special setting of a COB-ODT label function can
also be used to illustrate the core feature learning hypothesis in the paper. In this section, we
experimentally show that DLGNs, apart from being more interpretable, outperform static kernel
methods, tree and non-tree algorithms and ReLU methods on COB-ODT synthetic datasets and are
comparable in performance to ensemble tree methods on real tabular datasets.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Test accuracy on synthetic datasets

Dataset char. DLGN Non tree algo Tree algo
Data n d dlgn dlgns dlgnv relu disnn gln svl svm sdt cart rf zan tao dlgnd
SDI 20000 20 96.1 97.4 98.4 90.6 89.8 66.8 63.4 76.5 68.9 57.3 65.9 84.9 60.3 93.1
SDII 30000 100 94.3 90.3 95.8 82.3 74.8 61.3 61.9 66.8 62.2 54.5 58.8 64.7 56.1 88.2
SDIII 50000 500 65.1 63.6 62.2 62.1 61.6 59.6 60.7 62.3 61.9 51.5 54.6 61.3 52.7 62.5

Table 3: Test accuracy on tabular datasets

Dataset char. DLGN Non tree algo Tree algo
Data n d dlgn dlgnv relu disnn gln svl svm sdt cart rf zan tao
Adult 29000 14 85.7 85.0 83.2 84.6 83.3 81.1 84.2 84.8 83.0 86.1 84.5 85.1
Bank 27000 16 91.6 91.3 89.6 91.2 90.4 89.9 90.7 91.3 90.3 91.3 91.1 90.9
Card 18000 23 81.6 81.2 78.4 80.9 80.4 80.6 81.1 81.3 77.6 81.2 81.3 80.6
Telesc 11000 10 88.2 87.2 87.7 87.7 85.6 79.4 87.1 86.4 82.9 88.1 87.0 84.9
Rice 2000 7 92.6 92.6 92.3 92.5 92.3 91.2 91.4 92.6 91.9 91.8 92.2 90.1
Stat 100 20 77.6 72.6 72.2 76.5 74.0 71.1 71.7 75.2 65.7 77.4 75.3 68.0
Spam 3000 57 94.4 94.0 94.1 94.0 92.1 92.3 93.1 93.4 89.4 94.8 93.1 91.2
Gyro 19000 8 98.8 98.3 98.4 98.4 98.3 98.3 98.1 98.4 98.7 99.1 98.6 98.6
Swar 14000 2400 100 100 100 87.5 99.6 100 100 100 99.9 100 100 99.9
Credit 12000 10 76.2 75.4 75.5 75.9 70.2 70.4 74.5 74.6 76.1 78.2 75.4 76.2
Elec 27000 7 82.8 80.6 82.7 79.6 77.5 73.6 78.5 75.8 86.3 87.6 76.5 76.4
Cover 396000 10 94.7 93.3 92.9 81.1 78.0 78.3 80.4 77.4 91.6 94.2 78.6 84.9
Pol 7000 26 98.9 98.0 98.2 97.9 93.8 87.8 97.7 98.2 96.6 97.4 97.6 95.4
House 9000 16 87.8 86.7 87.4 86.5 85.6 83.0 87.2 86.3 84.0 88.0 85.3 85.1
Mini 51000 50 93.6 93.4 93.2 91.0 88.6 89.3 89.3 88.9 89.9 93.1 91.7 88.8
Diab 50000 7 60.6 60.6 59.4 60.5 60.2 58.0 60.3 60.6 60.3 60.6 60.4 60.3
Jannis 40000 54 78.6 78.0 75.0 77.2 73.8 73.9 77.4 78.4 74.6 78.6 75.1 74.1
Bior 2000 419 76.2 74.3 76.9 73.6 74.3 73.5 77.5 76.9 70.5 78.8 72.5 72.9
Calif 14000 8 88.8 88.1 87.2 86.6 82.1 84.7 86.6 85.4 84.5 89.0 85.3 85.5
Heloc 7000 22 71.9 71.6 66.2 71.3 70.2 70.7 71.4 71.3 68.6 71.1 71.2 68.4

We evaluate the DLGN(dlgn), DLGN-SF(dlgns), DLGN-VT(dlgnv), and DLGN-DT(dlgnd) algo-
rithms, with width and depth hyperparameters chosen on a validation set. They are compared against
the following standard algorithms.

Non-tree algorithms: ReLU networks (Fukushima, 1969): Classic multilayer ReLU activation
neural network with depth and width as hyperparameters. Disjunctive normal networks (disnn)
(Sajjadi et al., 2016): A neural network architecture explicitly designed to learn a union of the
intersection of halfspaces, which exactly corresponds to the ODT labelling function with number
of polytopes and number of half-spaces per polytope as hyperparameters. Gated linear networks
(gln) (Veness et al., 2021): A backpropagation-free architecture where each unit (neuron) learns
locally and models nonlinear functions using data-dependent gating (context) with layer sizes, input
size and context map size as hyperparameters. Support vector machines (SVM) (Cortes & Vapnik,
1995): Constructs linear separators in a high dimensional space given by a non-linear kernel.
The kernel choice and its parameters and the regularization constant are the key hyperparameters.
Linear SVM (svl) corresponds to SVM with a linear kernel. Soft decision tree SDT(sdt) (Frosst
& Hinton, 2017): A soft decision tree made out of a trained neural network. Although it is
termed a decision tree, it gives a predictive distribution of classes at the leaf with the maximum
path probability rather than explicitly dividing the data into left and right nodes recursively. It
uses input dimension, output dimension, depth and the regularisation coefficient as hyperparameters.

Tree algorithms: Classification and regression tree CART(cart) (Breiman et al., 1984): It splits the
data greedily in a parallel-axis fashion and uses maximum depth, minimum samples split and mini-
mum samples leaf as main hyperparameters. Standard random forest (rf) (Ho, 1995): An ensemble
method operating by constructing multiple axis-parallel decision trees at training. Number of trees
estimators, maximum depth, minimum samples split and minimum samples leaf are its main hyper-
parameters. Zan-DT(zan) (Zantedeschi et al., 2020): A binary ODT learning algorithm that concur-

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

rently optimizes discrete and continuous parameters through sparse relaxation of a mixed-integer
program, facilitating gradient flow for joint optimization with tree depth, regularization, number of
layers and dropouts as hyperparameters. Tree alternating optimization TAO(tao) (Carreira-Perpinán
& Tavallali, 2018): An ODT learning algorithm where the initial tree parameters are optimized by
decreasing the misclassification error, using alternating optimization over node subsets that are sep-
arable with number of iterations, minimum sample nodes, minimum leaf samples and regularization
parameters as hyperparameters.
Appendix A.10 details the experimental setup and all the hyperparameter sets used for these algo-
rithms. The models exhibiting the highest performances are highlighted in bold in Tables 2 and 3,
giving results on synthetic and real tabular datasets.

7.1 PERFORMANCE ON SYNTHETIC DATASETS

We construct three different synthetic datasets, where the data labels comes from COB-ODTs. The
three datasets (SDI, SDII, and SDIII) have different input dimensions (20, 100, and 500, respec-
tively) and use decision trees with depth 4. The dataset characteristics (number of training points
n and input dimension d) and results on these synthetic datasets are described in Table 2. Almost
all the standard algorithms, including ODT learning algorithms, failed to perform satisfactorily on
these datasets. Standard ReLU nets give good accuracy for some of these datasets, but they are
sensitive to hyperparameter settings, particularly for higher dimensional data. Another qualitative
property of DLGN-DT that is not fully reflected in Table 2 is that the hyperplanes in the learned tree
closely match those in the true ODT. The main goal of designing DLGN and its variants is the study
of feature learning, but it is also important to observe that they are indeed learning models with high
accuracy and outperforming all other algorithms in some settings. The models exhibiting the highest
and second highest performance are highlighted in bold and blue respectively in Tables 2.

7.2 PERFORMANCE ON TABULAR DATASETS

We assessed the performance of our methods, DLGN(dlgn) and DLGN-VT(dlgnv), compared to
standard algorithms on real tabular datasets with the details of dataset characteristics (number of
training points n and input dimension d) outlined in Table 3. We used a total of 20 tabular binary
classification datasets for the comparative study of our models. Most datasets are available in the
UCI repository.1 Some are taken from OpenML benchmark: (Grinsztajn et al., 2022).2 We have
performed the experiments with 5 different train test splits and the mean is considered here. The
models exhibiting the highest performance are highlighted in bold, and models whose accuracy
lie in 95 per cent confidence interval of the best performing model is marked by blue in Tables 3.
We observe that the linear and kernel methods are almost always beaten by other algorithms which
can potentially learn data-dependent features. DLGN and random forests are the best among the
other algorithms. DLGN-VT also yielded competitive results while being more interpretable. This
illustrates that feature learning is a useful property for these datasets, and DLGNs are capable of
learning powerful features.

8 CONCLUSION

Feature learning in deep networks is a fundamental problem and this paper makes several advances
on this problem – it gives a novel hypothesis, a novel data setup , a novel architecture and a way
to verify if feature learning indeed happens during training. Exploiting this progress by getting
better learning algorithms and theoretically proving that the proposed feature learning mechanism
is present in training are exciting directions of future research. A further discussion of the feature
learning narrative in this paper is given in the Appendix.

1https://archive.ics.uci.edu/datasets
2https://www.openml.org/search?type=benchmark&study_type=task&sort=

tasks_included&id=298

10

https://archive.ics.uci.edu/datasets
https://www.openml.org/search?type=benchmark&study_type=task&sort=tasks_included&id=298
https://www.openml.org/search?type=benchmark&study_type=task&sort=tasks_included&id=298


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sanjeev Arora, Simon Shaolei Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang.
On exact computation with an infinitely wide neural net. In Neural Information Processing Sys-
tems (NeurIPS), 2019.

Alexander Atanasov, Blake Bordelon, and Cengiz Pehlevan. Neural networks as kernel learners. the
silent alignment effect. In In International Conference on Learning Representations, 2022.

Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-
dimensional asymptotics of feature learning: How one gradient step improves the representation.
Advances in Neural Information Processing Systems, 35:37932–37946, 2022.

Dimitris Bertsimas and Jack Dunn. Optimal classification trees. Machine Learning, 106:1039–1082,
2017.

Leo Breiman, Jerome Friedman, Richard A. Olshen, and Charles J. Stone. Classification and Re-
gression Trees. Chapman and Hall/CRC, 1st edition, 1984. doi: 10.1201/9781315139470.

David Budden, Adam Marblestone, Eren Sezener, Tor Lattimore, Gregory Wayne, and Joel Veness.
Gaussian gated linear networks. Advances in Neural Information Processing Systems, 33:16508–
16519, 2020.

Yuan Cao, Zhiying Fang, Yue Wu, Ding-Xuan Zhou, and Quanquan Gu. Towards understanding the
spectral bias of deep learning. arXiv preprint arXiv:1912.01198, 2019.

Miguel A Carreira-Perpinán and Pooya Tavallali. Alternating optimization of decision trees, with
application to learning sparse oblique trees. Advances in neural information processing systems,
31, 2018.

Lenaic Chizat, Edouard Oyallon, and Francis R. Bach. On lazy training in differentiable program-
ming. In Neural Information Processing Systems (NeurIPS), 2019.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20:273–297,
1995.

Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations
with gradient descent. In Conference on Learning Theory, pp. 5413–5452. PMLR, 2022.

Amit Daniely. Sgd learns the conjugate kernel class of the network. Advances in Neural Information
Processing Systems, 30, 2017.

Amit Daniely and Eran Malach. Learning parities with neural networks. Advances in Neural Infor-
mation Processing Systems, 33:20356–20365, 2020.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for
discovering clusters in large spatial databases with noise. In kdd, volume 96, pp. 226–231, 1996.

Nicholas Frosst and Geoffrey E Hinton. Distilling a neural network into a soft decision tree.
arXiv:1711.09784, 2017.

Kunihiko Fukushima. Visual feature extraction by a multilayered network of analog threshold ele-
ments. IEEE Transactions on Systems Science and Cybernetics, 5(4):322–333, 1969.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. When do neural
networks outperform kernel methods? Advances in Neural Information Processing Systems, 33:
14820–14830, 2020.

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform
deep learning on typical tabular data? Advances in neural information processing systems, 35:
507–520, 2022.

Tin Kam Ho. Random decision forests. In Proceedings of 3rd international conference on document
analysis and recognition, volume 1, pp. 278–282. IEEE, 1995.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Wei Hu, Lechao Xiao, Ben Adlam, and Jeffrey Pennington. The surprising simplicity of the early-
time learning dynamics of neural networks. Advances in Neural Information Processing Systems,
33:17116–17128, 2020.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

Dimitris Kalimeris, Gal Kaplun, Preetum Nakkiran, Benjamin Edelman, Tristan Yang, Boaz Barak,
and Haofeng Zhang. Sgd on neural networks learns functions of increasing complexity. Advances
in neural information processing systems, 32, 2019.

Adam R Klivans, Ryan O’Donnell, and Rocco A Servedio. Learning geometric concepts via gaus-
sian surface area. In 2008 49th Annual IEEE Symposium on Foundations of Computer Science,
pp. 541–550. IEEE, 2008.

Chandrashekar Lakshminarayanan and Amit Vikram Singh. Neural path features and neural path
kernel: Understanding the role of gates in deep learning. Advances in Neural Information Pro-
cessing Systems, 33:5227–5237, 2020.

Guang-He Lee and Tommi S. Jaakkola. Oblique decision trees from derivatives of relu networks. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=
Bke8UR4FPB.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha
Sohl-Dickstein. Deep neural networks as gaussian processes. arXiv preprint arXiv:1711.00165,
2017.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in neural information processing systems, 32, 2019.

Chaoyue Liu, Libin Zhu, and Misha Belkin. On the linearity of large non-linear models: when
and why the tangent kernel is constant. Advances in Neural Information Processing Systems, 33:
15954–15964, 2020.

Sreerama K Murthy, Simon Kasif, Steven Salzberg, and Richard Beigel. Oc1: A randomized algo-
rithm for building oblique decision trees. Citeseer.

Sreerama K Murthy, Simon Kasif, and Steven Salzberg. A system for induction of oblique decision
trees. Journal of artificial intelligence research, 2:1–32, 1994.

Eshaan Nichani, Alex Damian, and Jason D. Lee. Provable guarantees for nonlinear feature learning
in three-layer neural networks. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=fShubymWrc.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International conference
on machine learning, pp. 5301–5310. PMLR, 2019.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

Mehdi Sajjadi, Mojtaba Seyedhosseini, and Tolga Tasdizen. Disjunctive normal networks. Neuro-
computing, 218:276–285, 2016.

Andrew Saxe, Shagun Sodhani, and Sam Jay Lewallen. The neural race reduction: Dynamics of
abstraction in gated networks. In International Conference on Machine Learning, pp. 19287–
19309. PMLR, 2022.

12

https://openreview.net/forum?id=Bke8UR4FPB
https://openreview.net/forum?id=Bke8UR4FPB
https://openreview.net/forum?id=fShubymWrc


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear dy-
namics of learning in deep linear neural network. In In International Conference on Learning
Representations, 2014.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netrapalli. The
pitfalls of simplicity bias in neural networks. Advances in Neural Information Processing Systems,
33:9573–9585, 2020.

Joel Veness, Tor Lattimore, David Budden, Avishkar Bhoopchand, Christopher Mattern, Agnieszka
Grabska-Barwinska, Eren Sezener, Jianan Wang, Peter Toth, Simon Schmitt, et al. Gated linear
networks. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 10015–
10023, 2021.

Darshana Chitraka Wickramarachchi, Blair Lennon Robertson, Marco Reale, Christopher John
Price, and J Brown. Hhcart: an oblique decision tree. Computational Statistics & Data Anal-
ysis, 96:12–23, 2016.

Valentina Zantedeschi, Matt J. Kusner, and Vlad Niculae. Learning binary decision trees by argmin
differentiation. In International Conference on Machine Learning, 2020. URL https://api.
semanticscholar.org/CorpusID:235422116.

13

https://api.semanticscholar.org/CorpusID:235422116
https://api.semanticscholar.org/CorpusID:235422116


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DLGN ILLUSTRATIONS

x1

x2

Input Layer 1 Layer 2

W1 W2

−1

2

2

1

0

−2−1

−1

0

2

−2

1

b1 b2

(a) Gating Network

2.0

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

−1x1 − 2x2 + 2 = 0

Path value = 16

X2

X1

−2x1 − 4x2 + 5 = 0

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

−1x1 − 2x2 + 2 = 0

Path value = 0
X2

X1

−4x1 − 2x2 + 6 = 0

Layer 1 Layer 2

u1
U2

−2

−2

−1

0

−2

−2

0

Output

u3

4

1

(b) Value Network

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Path value = 4
X2

X1

−4x1 − 2x2 + 6 = 0

1x1 − 1x2 − 1 = 0

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Path value = 2
X2

X1

1x1 − 1x2 − 1 = 0

−2x1 − 4x2 + 5 = 0

Figure 4: An illustration of DLGN network and node hyperplanes

Figure 4(a) and 4(b) give an example DLGN operating on a 2-dimensional input with 2 layers and
2 neurons per layer, i.e. d = m = L = 2. Figure 4(c) illustrates the region of activation for all the
mL = 4 paths given by the gating network 4(a). The value network in Figure 4(b) gives the path
value for all these paths by multiplying the appropriate weights in the path.

A.2 DLGN GATING HYPERPLANE CLUSTERING WITH LARGER WIDTH

Table 4: Number of DLGN hyperplanes (after training) within a given distance of the label function
ODT hyperplanes. The 15 ODT internal nodes are numbered 0 to 14, with 0 as the root. The distance
of the closest (initial and trained) DLGN hyperplane to all the ODT hyperplanes is given in the last
2 rows. The DLGN has 4 hidden layers with 100 neurons in each layer, i.e. L = 4,m = 100.

Distance 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.1 6 2 1 1 0 0 0 0 0 0 0 0 1 0 0
0.2 18 3 1 1 0 0 1 0 1 1 0 1 1 0 1
0.3 27 4 1 1 0 1 1 0 1 1 0 2 1 0 1

Closest Dist.(init) 1.16 1.2 1.19 1.21 1.11 1.21 1.14 1.19 1.20 1.15 1.18 1.20 1.14 1.20 1.18
Closest Dist.(final) 0.06 0.08 0.09 0.08 0.38 0.22 0.15 0.45 0.12 0.12 0.57 0.14 0.08 0.68 0.11

A.3 DETAILS OF THE DLGN ARCHITECTURE VARIANTS

We also consider two natural variants of the DLGN architecture. The first is a simple
re-parameterisation, where the gating network fπ is parameterised directly by the matrices
V 1, V 2, . . . , V L, each of shape m × d, instead of using the parameters W 1, . . . ,WL. Clearly,
this reparameterisation does not lose any representation power. We call this parameterisation as
DLGN-SF (for shallow features).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0

1

2

4

5

6

3

(a) Layer1 initial h-planes

0

1

2

4

5

6

3

(b) Layer2 initial h-planes

0

1

2

4

5

6

3

(c) Layer3 initial h-planes

0

1

2

4

5

6

3

(d) Layer1 trained h-planes

0

1

2

4

5

6

3

(e) Layer2 trained h-planes

0

1

2

4

5

6

3

(f) Layer3 trained h-planes

Figure 5: An illustration of DLGN hyperplanes before and after training on data in Fig 1c.

Table 5: Distance table for DLGN-SF Layers: 4 Nodes per layer: 10

Distance 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.1 1 1 1 1 0 0 0 1 0 0 1 0 0 0 0
0.2 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0
0.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Closest Dist.(init) 1.20 1.22 1.26 1.27 1.24 1.24 1.25 1.22 1.29 1.27 1.24 1.26 1.15 1.26 1.25
Closest Dist.(final) 0.05 0.07 0.08 0.08 0.12 0.11 0.13 0.09 0.18 0.26 0.08 0.16 0.10 0.14 0.21

Another variant that we use an explicit parameterisation of the coefficients gπ instead of using a
value network. This parameterisation is also clearly more powerful than the standard DLGN param-
eterisation in the previous section. However, this requires a parameter tensor of size mL and is not
really practical for large L and m. We call this reparameterisation as DLGN-VT (for value tensor).

All of these models can be extended to allow a bias parameter for the gating network so that the
functions ηℓ can also be affine functions instead of strict linear functions, but we do not discuss this
version here for the purpose of simplicity.

Number of DLGN hyperplanes (after training) within a given distance of the label function ODT
hyperplanes of DLGN-VT and DLGN-SF are shown in Table 6 and Table 5. At initialization, all
these numbers are equal to zero. The 15 ODT internal nodes are numbered 0 to 14, with 0 as the
root. Results of similar experiments as DLGN (Table 1) shown in Table 5 and 6 for DLGN SF and
DLGN VT respectively depicts identical hyperplane-seeking properties of these two variants of the
DLGN architecture as well. For each node in the ODT, we count the number of DLGN hyperplanes
within a distance of 0.1, 0.2, and 0.3 from it.

A.4 LOCAL DISCONTINUITY COEFFICIENT ILLUSTRATION

Figure 6 gives an example of regions R1,R2 and R3 and manifold functions f1, f2. Based on the
definition of the local discontinuity coefficient γ, we have the following. The manifold given by the
root node f1(x) = 0 has high γ value in the smaller scopeR1, but has a much smaller γ value in the
larger scope ofR2. i.e. γ(R1, f1) ≈ 1 and γ(R2, f1) ≈ 0. The manifold given by any ODT internal

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 6: Distance table for DLGN-VT Layers: 4 Nodes per layer: 10

Distance 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.1 3 2 2 0 2 2 1 1 0 1 2 1 1 1 1
0.2 3 2 2 0 2 2 1 1 0 2 2 1 1 1 1
0.3 3 2 2 0 2 2 1 1 1 2 2 1 1 1 1

Closest Dist.(init) 1.16 1.27 1.23 1.22 1.28 1.22 1.18 1.17 1.27 1.26 1.19 1.21 1.26 1.23 1.21
Closest Dist.(final) 0.03 0.05 0.06 0.35 0.08 0.09 0.06 0.09 0.24 0.06 0.04 0.07 0.05 0.07 0.05

R1

R2

f1(x) = u1
>x + b1 = 0

R3

f2(x) = u2
>x + b2 = 0

Figure 6: An illustration of Local Discontinuity Coefficient.

node hyperplane has a scope within which it is discontinuous, e.g. the scope of discontinuity of the
manifold f2(x) = 0 would correspond toR3, i.e. γ(R3, f2) ≈ 1.

A.5 PROOF OF DLGN COMPUTATION EQUIVALENCE

In this section we prove that Equation 1 is implemented by Equation 5.

For any ℓ ∈ [L], let Dℓ(x) be an m ×m diagonal matrix, whose (i, i)th entry is 1 if the ith hidden
node in hidden layer ℓ is active and 0 otherwise, i.e.

[Dℓ(x)]i,i = 1(ηℓ
i (x) ≥ 0)

where η is the gating function defined in Equation 3. We suppress the dependence of Dℓ on x for
convenience below. Consider the following function of x :

ỹ(x) = (uL+1)⊤DLULDL−1 . . . D2U2D1u1 = (uL+1)⊤

(
2∏

ℓ=L

DℓU ℓ

)
D1u1 (6)

We will show that the above expression is equal to the RHS of equation 1 when the path values gπ
are represented as a product of pairwise terms as in Equation 4.

Writing the equation above as product of L+1 matrices, with the first and last being vectors of size
m and the intermediate matrices (DℓU ℓ) as matrices of size m×m, and expanding the terms of the
matrix product as a sum of mL terms

ỹ(x) =
∑

(iL,iL−1,...,i1)∈[m]L

(
uL+1
iL

2∏
ℓ=L

(
Dℓ

iℓ,iℓ
U ℓ
iℓ,iℓ−1

)
D1

i1,i1u
1
i1

)

=
∑

(iL,iL−1,...,i1)∈[m]L

(
L∏

ℓ=1

Dℓ
iℓ,iℓ

(x)

)(
u1
i1

L∏
ℓ=2

(
U ℓ
iℓ,iℓ−1

)
uL+1
iL

)
=

∑
π∈[m]L

fπ(x)gπ

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

To see that the RHS of Equation 6 also corresponds to the RHS of equation 5, just observe that
hk(x) =

∏2
ℓ=k

(
Dℓ(x)U ℓ

)
D1(x)u1. Thus the computational procedure given by Equation 5,

exactly implements the conceptual path decomposition given in Equation 1.

A.6 RELATION BETWEEN THE RELU NETWORK AND THE DLGN

While the DLGN might seem like a completely different architecture from the ReLU network, it is
quite intimately related to and motivated from the ReLU network.

The ReLU network can also be expressed in a matrix product format like Equation 6. However, the
elements of the diagonal matrices Dℓ (except the first layer with ℓ = 1) are not simple halfspace
indicator functions. They still correspond to whether the corresponding node is ‘active’ or ‘not
active’.

In this case, we can still view elements of the matrices Dℓ as features of the network, which cor-
responds to the standard usage of features as the activation maps of neurons. The ReLU network
features would correspond to ‘bent hyperplanes’. However, the simple view of connected but sepa-
rate features that the DLGN affords is no longer viable. We currently have no insight into why bent
hyperplane features could be better than straight hyperplanes.

A.7 VALUE OF THE FEATURE LEARNING NARRATIVE FROM DLGN

We believe that the feature learning insights drawn from DLGN are applicable in general. More
importantly, we believe that it can shed light on several phenomena that remain mysteries with deep
networks. Some of the mysteries and candidate answers motivated from this paper are given below.

Q: Is neural network training using gradient descent parameter efficient?

A: No. The greedy nature of gradient descent, pushes multiple interconnected parts towards
the same feature when it is potentially not required. e.g. In Table 4 the distances of learned
DLGN hyperplanes (with width m = 100) to the ODT hyperplanes are given. While the
root node hyperplane is discovered separately by multiple gating hyperplanes, some of the
other internal nodes are left in the lurch. This causes poor generalisation. Potentially, this
narrative can be exploited to make gradient descent less greedy.

Q: How does gradient descent discover the label function discontinuities in high dimensional
input space?

A: The full labeling function may be far from being a linear separator, but when data is re-
stricted within a small enough scope, one of the manifolds making up the decision bound-
ary could very well be a good classifier (this argument uses the insight that even in high-
dimensional data, if it is linearly separable, picking up the separator can be done in a
compute and data efficient manner). This causes that manifold to be picked up by one of
the components of the deep network, and thereby making the rest of the learning problem
easier and kickstarting a virtuous cycle.

Q: Why does neural network pruning enable better learning of smaller architectures than train-
ing the smaller architecture from scratch?

A: We assume effective learning happens only in problems where the number of label function
discontinuities is small. Significant parts of the neural network are simply not necessary to
represent the discontinuities, which can be done by a small fraction of the trained deep net-
work model. A large width network is still better for training, because (say) doubling the
number of neurons per layer increases the number of paths by a factor of 2L. This increases
the chances of some path picking a right scope during training enabling the learning of the
appropriate label function discontinuity. Once the learning is complete, a significant frac-
tion of the network which were unlucky to not have gotten a good scope can be removed.

Q: What is the role of layers in deep networks? Is increasing the number of layers always
beneficial?

A: The main role of layers is to give context/scope to other layers. For example, with a depth
4 ODT labelling function, a DLGN with 3 or lesser number of hidden layers would not be
able to give a good scope to any neuron. A DLGN with 5 or more layers is just unnecessary.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 7: Synthetic Datasets Generation

dataset total samples train samples(n) n features(d) depth seed thres generate data
SDI 40000 20000 20 4 365 0 through code
SDII 60000 30000 100 4 365 0 through code
SDIII 100000 50000 500 4 365 0 through code

This is reflected in our experiments as well, where depth 4 DLGN performed best for a
depth 4 ODT labelling function.

A.8 DETAILS OF SUBROUTINES USED IN DLGN-DT

This function takes into account the DLGN model after training. It iteratively calculates the effective
weights of the layer using the formula V ℓ = W ℓW ℓ−1 . . .W 1 as in lines 3 of the algorithm. It finally
returns each layer’s effective weight (hyperplanes) as a vector.

Algorithm 3 Return gates of a trained DLGN model
Arguments: A DLGN model with parameters W 1, . . . ,WL,u1, U2, . . . , UL,uL+1

Outputs: mL hyperplanes in the input dimension
1: function GATEHYPERPLANES(model)
2: for l← 1 to L do
3: V ℓ ←W ℓW ℓ−1 . . .W 1

4: end for
5: return V ← V 1, . . . , V L

6: end function

A.9 DATASETS USED

We have used 3 synthetic datasets and 20 tabular datasets to evaluate the performance of our model
DLGN and its variants against some standard algorithms. In this section, we will elaborately de-
scribe the datasets used.

A.9.1 SYNTHETIC DATASETS:

This dataset is synthetically generated with specified dimensions from a labelling function f∗ given
by an Oblique Decision Tree (ODT) with depth and a defined number of data points as given in
Table 7. The datapoints x are drawn uniformly from the surface of a d-dimensional sphere of radius
1, centred at the origin. We used COB-ODTs as mentioned in Section 3 with biases kept at zero.
The leaf node labels are chosen so that sibling labels get opposite signs. The final output includes
the pruned data, labels, and information about the tree’s structure. Three synthetic datasets (SD) are
used, named SDI, SDII, and SDIII.
Table 7 presents the parameters used for constructing the datasets.

A.9.2 TABULAR DATASETS:

We used a total of 20 tabular binary classification datasets for the comparative study of our mod-
els. Most datasets are available in the UCI repository https://archive.ics.uci.edu/
datasets. Some are taken from the OpenML benchmark, as given in the paper (Grinsztajn et al.,
2022). https://www.openml.org/search?type=benchmark&study_type=task&
sort=tasks_included&id=298. The dataset download URL is in Table 8. After download-
ing the datasets, they are preprocessed by dropping rows with missing values, converting categorical
features using Label Encoding, Standardizing numerical features, and Encoding the target variables
to 0 and 1.

Figure 5 illustrates an example scenario when a 3-hidden layer DLGN is trained on data given in
Figure 1(c). The initial hyperplanes(h-planes) given by V 1 and V 2 and V 3 as shown in Figure 5(a-c)

18

https://archive.ics.uci.edu/datasets
https://archive.ics.uci.edu/datasets
https://www.openml.org/search?type=benchmark&study_type=task&sort=tasks_included&id=298
https://www.openml.org/search?type=benchmark&study_type=task&sort=tasks_included&id=298


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 8: Tabular datasets

data download link
Adult https://archive.ics.uci.edu/static/public/2/adult.zip
Bank https://archive.ics.uci.edu/static/public/222/bank+

marketing.zip
Card https://archive.ics.uci.edu/static/public/350/default+of+

credit+card+clients.zip
Telesc https://archive.ics.uci.edu/static/public/159/magic+gamma+

telescope.zip
Rice https://archive.ics.uci.edu/static/public/545/rice+cammeo+

and+osmancik.zip
Stat http://archive.ics.uci.edu/static/public/144/statlog+

german+credit+data.zip
Spam http://archive.ics.uci.edu/static/public/94/spambase.zip
Gyro https://archive.ics.uci.edu/static/public/755/

accelerometer+gyro+mobile+phone+dataset.zip
Swar https://archive.ics.uci.edu/static/public/524/swarm+

behaviour.zip
Credit https://api.openml.org/data/v1/download/22103185/credit.

arff
Elec https://api.openml.org/data/v1/download/22103245/

electricity.arff
Cover https://api.openml.org/data/v1/download/22103246/

covertype.arff
Pol https://api.openml.org/data/v1/download/22103247/pol.arff
House https://api.openml.org/data/v1/download/22103248/house_

16H.arff
Mini https://api.openml.org/data/v1/download/22103253/

MiniBooNE.arff
Diab https://api.openml.org/data/v1/download/22111908/

Diabetes130US.arff
Jannis https://api.openml.org/data/v1/download/22111907/jannis.

arff
Bior https://api.openml.org/data/v1/download/22111905/

Bioresponse.arff
Calif https://api.openml.org/data/v1/download/22111914/

california.arff
Heloc https://api.openml.org/data/v1/download/22111912/heloc.

arff

are essentially random. However, after training, the hyperplanes in the later layers show a remark-
able tendency to move towards the hyperplanes corresponding to the decision tree – particularly that
of nodes close to the root (See Figures 5(d-f)).

A.10 EXPERIMENTAL SETUP DETAILS

A.10.1 TRAIN VALIDATION TEST SPLIT:

For the synthetic datasets SDI, SDII, and SDIII, the dataset is split into 50% train, 25% test, and
25% validation set. Models are trained on the training data and validated on the validation set, and
then the test score is reported against the test data with the best hyperparameters. Similarly, for the
tabular datasets, the dataset is split into 60% train, 20% test, and 20% validation set.

19

https://archive.ics.uci.edu/static/public/2/adult.zip
https://archive.ics.uci.edu/static/public/222/bank+marketing.zip
https://archive.ics.uci.edu/static/public/222/bank+marketing.zip
https://archive.ics.uci.edu/static/public/350/default+of+credit+card+clients.zip
https://archive.ics.uci.edu/static/public/350/default+of+credit+card+clients.zip
https://archive.ics.uci.edu/static/public/159/magic+gamma+telescope.zip
https://archive.ics.uci.edu/static/public/159/magic+gamma+telescope.zip
https://archive.ics.uci.edu/static/public/545/rice+cammeo+and+osmancik.zip
https://archive.ics.uci.edu/static/public/545/rice+cammeo+and+osmancik.zip
http://archive.ics.uci.edu/static/public/144/statlog+german+credit+data.zip
http://archive.ics.uci.edu/static/public/144/statlog+german+credit+data.zip
http://archive.ics.uci.edu/static/public/94/spambase.zip
https://archive.ics.uci.edu/static/public/755/accelerometer+gyro+mobile+phone+dataset.zip
https://archive.ics.uci.edu/static/public/755/accelerometer+gyro+mobile+phone+dataset.zip
https://archive.ics.uci.edu/static/public/524/swarm+behaviour.zip
https://archive.ics.uci.edu/static/public/524/swarm+behaviour.zip
https://api.openml.org/data/v1/download/22103185/credit.arff
https://api.openml.org/data/v1/download/22103185/credit.arff
https://api.openml.org/data/v1/download/22103245/electricity.arff
https://api.openml.org/data/v1/download/22103245/electricity.arff
https://api.openml.org/data/v1/download/22103246/covertype.arff
https://api.openml.org/data/v1/download/22103246/covertype.arff
https://api.openml.org/data/v1/download/22103247/pol.arff
https://api.openml.org/data/v1/download/22103248/house_16H.arff
https://api.openml.org/data/v1/download/22103248/house_16H.arff
https://api.openml.org/data/v1/download/22103253/MiniBooNE.arff
https://api.openml.org/data/v1/download/22103253/MiniBooNE.arff
https://api.openml.org/data/v1/download/22111908/Diabetes130US.arff
https://api.openml.org/data/v1/download/22111908/Diabetes130US.arff
https://api.openml.org/data/v1/download/22111907/jannis.arff
https://api.openml.org/data/v1/download/22111907/jannis.arff
https://api.openml.org/data/v1/download/22111905/Bioresponse.arff
https://api.openml.org/data/v1/download/22111905/Bioresponse.arff
https://api.openml.org/data/v1/download/22111914/california.arff
https://api.openml.org/data/v1/download/22111914/california.arff
https://api.openml.org/data/v1/download/22111912/heloc.arff
https://api.openml.org/data/v1/download/22111912/heloc.arff


1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 9: DLGN and DLGN-SF hyperparameters space

Parameters Set of values searched on
num layers 3, 4, 5
num nodes(each layer) 10, 20, 50, 100, 200, 500, 1000
beta 3, 10, 20, 30
learning rate(lr) 0.1, 0.01, 0.02, 0.05, 0.001, 0.005, 0.0001
epochs 200, 300, 500
batches 1, 10, 100
optimizers Adam, SGD
weight decay 0, 0.1

Table 10: DLGN-VT hyperparameters space

Parameters Set of values searched on
num layers 3, 4
num nodes(each layer) 10, 20
beta 3, 10, 20, 30
learning rate(lr) 1., 0.1, 0.01, 0.02, 0.05, 0.001, 0.005, 0.0001
epochs 200, 300, 500,1000,5000,10000,15000
batches 1, 10, 100
optimizers Adam, SGD
weight decay 0, 0.1
C 0.1, 0.03, 1.0
max iter 100, 500, 1000
penalty l1, l2
solver liblinear

A.10.2 NUMBER OF FOLDS:

Based on the algorithms used, the number of folds used is also varied. For standard ML algorithms
like CART, Random Forest, SVM, and SVM Linear, we use 3-fold cross-validation; for most other
algorithms, including DLGNs, we use one-fold size.

A.10.3 HARDWARE:

All the experiments are performed on Kaggle, and all the neural network-based experiments use
GPU, whereas traditional ML algorithms are performed on CPU. Kaggle provided GPUs, such as
GPU T4 x2 and GPU P100.

A.10.4 HYPERPARAMETERS TUNING:

Each algorithm used in this paper has a different set of hyperparameters, and hyperparameter tuning
is one of the most important aspects for getting the best accuracy. Here, for each algorithm, we
extensively searched from a collection of hyperparameters and validated their result on the valida-
tion set to obtain the best-performing hyperparameters. Test results are reported based on the best
hyperparameters. The below tables give a list of all hyperparameters for each algorithm used.

Table 9 contains the hyperparameter set used in training the DLGN and DLGN-SF models on all the
datasets. The trained model is tested on a validation set, and the best hyperparameter combination
is found, which is then used to get the test accuracy. Parameters num layers, num nodes(each layer),
and beta are the most important hyperparameters.

Table 10 contains the hyperparameter set used in training the DLGN-VT model on all the datasets.
The trained model is tested on a validation set, and the best hyperparameter combination is found,
which is then used to get the test accuracy. Along with the DLGN parameters, it has C, max iter,
penalty and solver as additional parameters.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 11: DLGN-DT hyperparameters space

Parameters Set of values searched on
num layers 3, 4, 5
num nodes(each layer) 10, 20, 50, 100, 200, 500, 1000
beta 3, 10, 20, 30
learning rate(lr) 0.1, 0.01, 0.02, 0.05, 0.001, 0.005, 0.0001
epochs 200, 300, 500
batches 1, 10, 100
optimizers Adam, SGD
weight decay 0, 0.1
eps 0.1, 0.2, 0.3
min samples 1, 2, 3, 5, 7, 10, 15, 22, 40
max depth 1 to 10

Table 12: ReLU hyperparameters space

Parameters Set of values searched on
num layers 3, 4, 5
num nodes(each layer) 10, 20, 50, 100, 200, 500, 1000
learning rate(lr) 0.1, 0.01, 0.02, 0.05, 0.001, 0.005, 0.0001
epochs 200, 500, 1000
optimizers Adam, SGD
weight decay 0, 0.1

Table 11 contains the hyperparameter set used in training the DLGN-DT models on all the datasets.
The trained model is tested on a validation set, and the best hyperparameter combination is found,
which is then used to get the test accuracy. It has eps, min samples and max depth as important
parameters for finding the cluster centre and depth of the tree constructed.

Table 12 contains the hyperparameter set used in training the ReLU models on all the datasets. The
trained model is tested on a validation set, and the best hyperparameter combination is found, which
is then used to get the test accuracy.

Table 13 contains the hyperparameter set used in training the Linear SVM models on all the datasets.
The trained model is tested on a validation set, and the best hyperparameter combination is found,
which is then used to get the test accuracy. Here, kernel is set to Linear for Linear SVM.

Table 14 contains the hyperparameter set used in training the Non-linear SVM models on all the
datasets. The trained model is tested on a validation set, and the best hyperparameter combination is
found, which is then used to get the test accuracy. Here, the kernel is set to Non-linear Kernels like
rbf or sigmoid.

Table 15 contains the hyperparameter set used in training the CART model on all the datasets. The
trained model is tested on a validation set, and the best hyperparameter combination is found, which
is then used to get the test accuracy. max depth is the most important hyperparameter to train.

Table 16 contains the hyperparameter set used in training the random forest model on all the
datasets. The trained model is tested on a validation set, and the best hyperparameter combination
is found, which is then used to get the test accuracy. n estimators define the number of estimators in
the random forest as one of the most vital hyperparameters.

Table 17 contains the hyperparameter set used in training the SDT model on all the datasets. The
trained model is tested on a validation set, and the best hyperparameter combination is found, which
is then used to get the test accuracy. depth is the tree depth of SDT which is the most vital hyperpa-
rameter to tune.

Table 18 contains the hyperparameter set used in training the TAO model on all the datasets. The
trained model is tested on a validation set, and the best hyperparameter combination is found, which

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 13: SVM Linear hyperparameters space

Parameters Set of values searched on
C 0.1, 0.5, 1, 2, 5
kernel Linear

Table 14: SVM hyperparameters space

Parameters Set of values searched on
C 0.1, 0.5, 1, 2, 5
kernel rbf, sigmoid
gamma scale, auto, 0.001, 0.01, 0.1, 1, 10
degree 2, 3, 4, 5

is then used to get the test accuracy. n iters, max leaf nodes and min node samples are important
hyperparameters to train.

Table 19 contains the hyperparameter set used in training the Zan-DT models on all the datasets.
The trained model is tested on a validation set, and the best hyperparameter combination is found,
which is then used to get the test accuracy. depth, reg and mlp layer are vital parameters.

Table 20 contains the hyperparameter set used in training the Disnn model on all the datasets. The
trained model is tested on a validation set, and the best hyperparameter combination is found, which
is then used to get the test accuracy. A value of 10-15 for n polytopes list and m list works best.

Table 21 contains the hyperparameter set used in training the GLN model on all the datasets. The
trained model is tested on a validation set, and the best hyperparameter combination is found, which
is then used to get the test accuracy. layer sizes, num nodes and context map size are important
parameters. context map size = 4 gives the best result.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 15: CART hyperparameters space

Parameters Set of values searched on
criterion gini, entropy
splitter best, random
max depth 1 to 10
min samples split 1 to 10
min samples leaf 1, 2, 4, 5
max features sqrt, log2

Table 16: Random Forest hyperparameters space

Parameters Set of values searched on
criterion gini, entropy
n estimators 10, 20, 50, 100
max depth 1 to 10
min samples split 1 to 10
min samples leaf 1, 2, 4, 5
max features sqrt, log2

Table 17: SDT hyperparameters space

Parameters Set of values searched on
depth 1 to 10
lamda 0.1, 0.01, 0.02, 0.05, 0.001
learning rate(lr) 0.1, 0.01, 0.02, 0.05, 0.001, 0.005, 0.0001
epochs 200, 300, 500
batches 32, 64, 128
weight decay 0, 0.1, 0.0005

Table 18: TAO hyperparameters space

Parameters Set of values searched on
n iters 10, 20, 30
max leaf nodes 5, 10, 15
randomize tree True, False
update scoring accuracy
min node samples tao 1, 2, 3, 4, 5
min leaf samples tao 1, 2, 3, 4, 5
reg param 0.1, 0.01, 0.02, 0.05, 0.001

Table 19: Zan-DT hyperparameters space

Parameters Set of values searched on
depth 1 to 10
reg 0.1, 0.01, 1.48, 1.5, 2
mlp layer 3, 4, 5
dropout 0.0, 0.01, 0.05, 0.07, 0.1
lr 0.1, 0.01, 0.02, 0.05, 0.001
epochs 200, 300, 500
batches 32, 64, 128, 512

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 20: Disnn hyperparameters space

Parameters Set of values searched on
n polytopes list 1 - 15,20,30,100
m list 1 - 15,20,30,100

Table 21: GLN hyperparameters space

Parameters Set of values searched on
layer sizes 3,4,5
num nodes 5,10,20,50
context map size 2 to 10
lr 0.1, 0.01, 0.02, 0.05, 0.001,0.00025

24


	Introduction
	Overview/Contributions
	Notation/Setup

	Related Work
	Local Discontinuities in the Label Function
	Deep Linearly Gated Networks(DLGN)
	Architecture Details
	Variants
	Discontinuity Enumeration

	Training attracts Model Features towards Label Features
	Mechanistic Interpretability of DLGNs
	Experiments
	Performance on Synthetic Datasets
	Performance on Tabular Datasets

	Conclusion
	Appendix
	DLGN Illustrations
	DLGN Gating Hyperplane Clustering with Larger Width
	Details of the DLGN architecture variants
	Local Discontinuity Coefficient Illustration
	Proof of DLGN Computation Equivalence
	Relation Between the ReLU Network and the DLGN
	Value of the Feature Learning Narrative from DLGN
	Details of subroutines used in DLGN-DT
	Datasets used
	Synthetic Datasets:
	Tabular Datasets:

	Experimental Setup Details
	Train_Validation_Test Split:
	Number of folds:
	Hardware:
	Hyperparameters tuning:



