
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STATE-SPACE MODELS CAN LEARN IN-CONTEXT BY
GRADIENT DESCENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep state-space models (Deep SSMs) have shown capabilities for in-context
learning on autoregressive tasks, similar to transformers. However, the architec-
tural requirements and mechanisms enabling this in recurrent networks remain
unclear. This study demonstrates that state-space model architectures can perform
gradient-based learning and use it for in-context learning. We prove that a sin-
gle structured state-space model layer, augmented with local self-attention, can
reproduce the outputs of an implicit linear model with least squares loss after one
step of gradient descent. Our key insight is that the diagonal linear recurrent layer
can act as a gradient accumulator, which can be ‘applied’ to the parameters of
the implicit regression model. We validate our construction by training randomly
initialized augmented SSMs on simple linear regression tasks. The empirically
optimized parameters match the theoretical ones, obtained analytically from the
implicit model construction. Extensions to multi-step linear and non-linear re-
gression yield consistent results. The constructed SSM encompasses features of
modern deep state-space models, with the potential for scalable training and effec-
tiveness even in general tasks. The theoretical construction elucidates the role of
local self-attention and multiplicative interactions in recurrent architectures as the
key ingredients for enabling the expressive power typical of foundation models.

1 INTRODUCTION

The current generation of Large Language Models (LLMs) and foundation models are extremely
capable and have started proliferating in several real-world applications. These models are based
on the transformer architecture (Vaswani et al., 2017), and a big part of their capability has been at-
tributed to in-context learning (Wei et al., 2023; Lu et al., 2023). In-context learning in transformers
is relatively well studied (Wies et al., 2023; Pan et al., 2023; Guo et al., 2023; Garg et al., 2023). A
prominent explanation for the mechanism used by transformers to do in-context learning is that the
model performs in-context learning by gradient descent (von Oswald et al., 2023; Akyürek et al.,
2024). But, the quadratic dependence of transformers on the input length makes them computa-
tionally expensive. To mitigate this, there has been much work on alternatives based on recurrent
networks, such as state-space models (Gu et al., 2021; Gu & Dao, 2023) and linear recurrent net-
works (Orvieto et al., 2023). These recurrent models can perform inference efficiently since the
computational complexity of recurrent networks is linear in the sequence length. At the same time,
linear recurrent networks allow parallelization across the sequence during training using associative
scan. The latest versions of these models are competitive with transformers at scale (Dao & Gu,
2024; De et al., 2024), and also capable of in-context learning (Grazzi et al., 2024). However, the
mechanism they use for in-context learning remains unclear.

This work focuses on the in-context learning mechanism of State-Space Models (SSMs). Multiple
variations of state-space models have recently shown competitive performance at scale (Gu & Dao,
2023; De et al., 2024), while earlier generations struggled with scaling (Smith et al., 2022; Poli
et al., 2023). All SSMs, linear attention models, and other linear recurrent networks share a common
formalism of being linear recurrent networks interleaved with non-linear layers. On the other hand,
the ability to do in-context learning seems to be a hallmark of most recent scalable variants (Grazzi
et al., 2024). Which features of these successful models contribute to in-context learning, as opposed
to earlier variants? Using a constructive approach, we pinpoint input-dependent input and output
processing, as the key features required for in-context learning.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

We show that SSMs with local self-attention, a form of input-dependent input processing, can per-
form in-context learning analogously to transformers, i.e. through gradient descent steps on an
implicit linear regression problem. The key insight we use is that the state of the recurrent network
can be used to aggregate gradients of the parameters of the implicit linear model, which can later
be ‘applied’ to the initial parameters of the implicit model. Using the general SSM formalism, we
show how to design the recurrent and output equations that enable them to do in-context learning.
Our construction, which we call GD-SSM, is not restricted to in-context learning tasks and performs
well on general-purpose prediction problems.

In summary, our contributions are to show that:

• one-layer SSMs with diagonal recurrence, two-dimensional state, and input-dependent in-
put and output processing can perform one step of minibatch gradient descent on a an
implicit least-squares loss function;

• multi-step (minibatch) gradient descent can be achieved by stacking the 1-layer model;
• gradient descent for an implicit non-linear regression problem can be achieved by augment-

ing the SSMs with non-linearities;
• a randomly initialized model trained on regression tasks learns parameters that match our

construction for in-context learning tasks based on regression.

2 BACKGROUND

A sequence model operates on an input sequence S = {st}Tt=1 ∈ RT×f , where T is also referred
to as the context-length and f is the feature dimension.

Contemporary sequence models based on transformers interleave self-attention with MLP layers to
perform sequence processing. The self-attention performs sequence-mixing while the MLPs per-
form channel-mixing. The most common form of self-attention has been the scaled dot-product
self-attention, which embeds the sequence into a query Q = SWQ, key K = SWK and value
V = SWV , where WQ,WK ∈ Rf×m,WV ∈ Rf×d, and then calculates the output of attention as

SA(S) = softmax
(
QKT

√
m

)
V . (1)

Local self-attention (Beltagy et al., 2020) uses the same form as Eq. 1, but on an input sequence that
is a subset of the full sequence, with a sliding window.

By discarding the softmax (and scaling for simplicity) , self-attention can be written in a linear form

LSA(S) = QKTV . (2)

Deep SSMs are sequence models that replace the self-attention with a linear recurrent network, to
perform the sequence-mixing. In the most general form, the recurrent SSM block consists of a
recurrent state Zt ∈ Rd×m updated iteratively as

Zt = A(st) ∗Zt−1 +B(st) , (3)

where A,B : Rf → Rd×m, and ∗ is some multiplication operator (e.g. matrix or element-wise
multiplication).

The output of the SSM is often calculated by an input-dependent linear transformation of the current
state

ot = Zt U(st) , (4)

combined with a non-linearity as

o′
t = U2 (ot ⊙ σ(U1ot)) ,

where ⊙ is elementwise multiplication.

Transformers with linear attention can also be written in this recurrent form Katharopoulos et al.
(2020a)

Zt = Zt−1 + v(st)⊗ k(st) , (5)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where v(st) = W T
V st ∈ Rd, k(st) = W T

Kst ∈ Rm and ⊗ is the outer product. This is a recurrent
reformulation of the part of Eq. 2 containing V and K in recurrent form.

S4 (Gu et al., 2021) and multi-headed S5 (Smith et al., 2022) can also be written in this form

Zt = AZt−1 +Bst , (6)

where A and B are learnable parameters of appropriate dimension, and Zt consists of m heads of
dimension d each (although multiple heads are not used in the original paper).

If local self-attention is used to process the input before being fed into the SSM, all instances of st
would be replaced by a context vector

ct = SA(S′) or ct = LSA(S′) ,

where S′ ⊂ S is a subsequence of the whole sequence, and (L)SA denotes the (linear) self-attention
operation.

3 SSMS CAN EMULATE GRADIENT DESCENT ON LINEAR REGRESSION TASKS

We will now show that an SSM as described in Section 2 can perform gradient descent on an implicit
linear model to minimize a least squares loss (for particular choices of parameters). Extensions to
non-linear regression models are considered in Section 3.3.

Consider a linear regression problem. The goal is to minimize the corresponding least squares loss
using gradient descent. The linear model will be the implicit model on which the SSM performs
gradient descent. Performing mini-batch (batch size > 1) gradient descent on the parameters of
this implicit model involves two steps: (i) to accumulate gradients of the loss with respect to the
parameters, and (ii) apply the accumulated gradient to the initial value of the parameters of the linear
model to calculate the updated parameters. Predictions can be made with the updated parameters by
combining them linearly with the input.

Assume the training samples for the linear regression problem are provided as a sequence of inputs
and targets. A large enough SSM can then accumulate the gradients of the loss function in its state
if a local self-attention-like layer processes the sequence inputs before the recurrence1.

Given the accumulated gradients, the next-step emission of the SSM is equivalent to i) updating
the parameters of the implicit model gradient and ii) computing the model output with the updated
parameters. Multiple steps of gradient descent can be achieved by stacking multiple layers, while
nonlinearity in the implicit model can be handled by adding nonlinear input-output embedding lay-
ers. We argue that the architecture that allows a single layer to perform gradient descent provides
the inductive bias for the model to do in-context learning.

3.1 SINGLE STEP 1-DIMENSIONAL LINEAR REGRESSION

Consider a linear regression model with 1-d output for simplicity

y = wTx , (7)

for parameter w ∈ Rf . This is the implicit linear model we aim to reproduce for in the 1-
dimensional target case. Given dataset of N samples D = {⟨xi, yi⟩}Ni=0,x ∈ Rf , y ∈ R, the
associated least squares loss is

L(D;w) =
1

2N

N∑
i=1

||ŷi − yi||22 =
1

2N

∑
i

(
wTxi − yi

)2
. (8)

The best fit for w is the minimum of L over w ∈ Rf . The gradient of the loss calculated on the first
t samples of the dataset is

∇wL(D1:t;w0) =
1

t

t∑
i=1

(
wT

0 xi − yi
)
xi ,

1A SSM layer with input-dependent recurrence would be able to simulate a local self-attention layer, but
with significantly increased computational and conceptual complexity.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where D1:t denotes the first t samples in D. The unscaled gradient,

gw0(D1:t) =

t∑
i=1

(
wT

0 xi − yi
)
xi ,

can be recursively calculated as

gw0
(D1:t) = gw0

(D1:t−1) +
(
wT

0 xt − yt
)
xt . (9)

Scaling the gw0(D1:t) gives the mini-batch gradient ∇wL(D1:t;w0) =
1
t gw0(D1:t) for minibatch

size t.

To make a prediction, ŷ, we apply the gradient to the parameters of the linear model in Eq. 7 and
compute the corresponding output, i.e.

ŷt+1 = (w0 − η∇w0
L(D1:t;w0))

T xt+1 ,

= (w0 −
η

t
gw0

(D1:t))
T xt+1 .

When w0 = 0, this reduces to

ŷt+1 = −η

t
gw0

(D1:t)
T xt+1 . (10)

Implementation as an SSM: Equation 9, which is a linear recurrence equation, can be imple-
mented by an appropriately constructed SSM.

Proposition 1 Given a diagonal linear recurrent layer, and tokens sj = cj = [xj yj ,xj+1], for j =
1, . . . , N , and [. . .] concatenation, xj , yj drawn from a linear model, one can construct recurrent
matrix A(sj), input B(sj) and output matrix U(sj) such that each recurrent step for every token
sj produces ŷj+1 = −(∆w)Txj+1 as output, where ∆w is one step of gradient descent, i.e.
∆w = η∇wL. The test input xN+1 is contained in token cN , and produces the test prediction
ŷN+1.

Specifically, if we use zt ∈ Rf to denote the state of the recurrent network and let it directly
correspond to the vector gw0(D1:t), the equivalent SSM layer is a linear recurrence equation,

zt = I zt−1 + (wT
0 xt − yt)xt . (11)

The state of the SSM, zt, represents the implicit linear regression problem through the unscaled
accumulated gradients of the least squares loss with respect to the parameters w0 of the implicit
linear model.

As linear regression is performed on the training dataset D = {⟨xi, yi⟩}Ni=0, the SSM receives
the training data in the form of a sequence as input. In the most general case, this is a sequence
s1 = x1, s2 = [0, ..., y1], . . . where [. . .] denoting concatenation and yi is padded with f − 1 zeros
for its dimensions to match that of xi. This more general case is discussed in the next section. But
here, we will consider a case which simplifies our construction.

Let s1, s2, . . . be a sequence of constructed context vectors st = ct, where each ct = [xtyt,xt+1] ∈
R2f , and let us assume w0 = 0 for simplicity 2. If the sequence input weights Ψ ∈ R2f×f are such
that ΨT ct = xtyt, Eq. 11 can be written as an SSM (Eq. 3), i.e.

zt = I zt−1 +Ψ ct . (12)

A parameter matrix, Ψ, satisfies equation 12 if all but the first f diagonal entries are zero. The state
of this network is the unscaled gradient t∇w0

L(D1:t;w0) and the state recursion accumulates the
gradients as in step (i) above.

The accumulated gradient is then ‘applied’ to the implicit model’s initial parameters, w0, before
computing the (N + 1)-th output. With w0 = 0, the output is

ot = βzT
t Θct , (13)

2The more general case is treated for the case of multi-step GD in Appendix A.2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where β = − η
N , η is the learning rate, and N is the number of training points or, equivalently,

the total length of the context. The SSM final output, ot above, corresponds to a prediction of the
trained linear model, ŷt+1 in Eq. 10, if Θ obeys Θct = xt+1. It is easy to check that Θ satisfies
this condition if all but its last f diagonal entries are zero (see Figure 3 for a concrete example).
Note that the output in Eq. 13 matches the general form of the SSM output in Eq. 4 (without the
non-linearity).

The above shows that the following SSM

ct = [xtyt,xt+1] , (14)
zt = I zt−1 +Ψ ct , (15)

ot = βzT
t Θct = ŷt+1 . (16)

can perform gradient descent on the parameters w0 of the implicit linear model and use this mech-
anism for in-context learning. The specific structure of the SSM in equation 14 demonstrates the
importance of multiplicative processing, for both the inputs and outputs.

3.2 SINGLE STEP N-DIMENSIONAL LINEAR REGRESSION

In this section, we generalize the construction above to the N-dimensional case. Without loss of
generality, we assume the input and the target, x and y, have both dimensions f i.e. x,y ∈ Rf .
If this is not the case, the input and output dimensionality can be matched by defining appropriate
embeddings3. We can then treat the N-dimensional system as f 1-D linear regression problems, one
for each element of y.

Proposition 2 Given a diagonal linear recurrent layer augmented with local self-attention with
sliding window of size 3, and tokens s2j = xj and s2j+1 = yj , for j = 1, . . . , N , xj ,yj drawn
from a linear model, one can construct recurrent matrix A(sj), input B(sj) and output matrix
U(sj) such that each recurrent step for every token sj produces ŷj+1 = −(∆W)Txj+1 as output,
where ∆W is one step of gradient descent, i.e. ∆W = η∇WL. The test input xN+1 is contained
in token s2N+2, and produces the test prediction ŷN+1.

Similar to Eq. 11, we show the above by writing the SSM as

Zt = Zt−1 + yt x
T
t , (17)

where Zt corresponds to the parameters of the implicit linear model, W ∈ Rf×f , and we assume,
for simplicity, that W = 04. The output is

ot = βZt xt+1 . (18)

See Appendix A.1 for the full derivation.

To see how this can be written in the form of Eq. 3, let the input sequence consist of the training
dataset of the implicit linear regression problem (as before). This time, we cast the training dataset
into a standard sequence s1, s2, . . ., where

s2j = xj , (19)
s2j+1 = yj , (20)

and si denotes the i-th sequence element of the input, such that s2j+2 = xj+1.

At each step, the state update, in Eq. 17, and the output, in Eq. 18, include xt,yt,xt+1. This
necessitates the introduction of a quadratic (in si) local self-attention mechanism. Let Ct be the
context matrix for the local self-attention, i.e. a sliding window of length three running through the
sequence,

Ct =


...

...
...

xt yt xt+1

...
...

...

 . (21)

3E.g. with dimensions k, l into the same higher dimension k + l = f by concatenation with appropriately
sized zero vectors, or through a linear transformation to dimension f .

4The more general case is discussed in Appendix A.2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The local self-attention operation, CQCT , is a truncated form of Eq. 2. When Q =
(

1
0
0

)
(0 1 0) =[

0 1 0
0 0 0
0 0 0

]
, plugging CQCT into the second term in Eq. 17 produces an SSM with input ytx

T
t .

The SSM can now be written as in Eq. 3, i.e.

Zt = Zt−1 +CtQCT
t ,

with output

ot = βZt Ct q ,

where q =
(

0
0
1

)
makes the output ŷt+1 as in Eq. 10. The output also matches the form of the general

SSM output in Eq. 4. The construction allows us to perform gradient descent on the parameters of
an arbitrary dimensional implicit model. We call this type of SSM a GD-SSM.

Eq. 3 shows that the recurrent state of the SSM is 2-dimensional, as in most recently proposed
SSMs (Dao & Gu, 2024). The local self-attention reproduces the local linear self-attention of Eqs. 2
and 5. As for the 1-dimensional case, the self-attention higher-order dependencies, CQCT , is key
for making the SSM learn (in-context) an implicit (linear) regression model.

3.3 GENERALISING TO ANY REGRESSION PROBLEM

Multi-step gradient descent: The proposed construction can be extended to multi-step gradient
descent. Since each layer of a GD-SSM produces the parameters of the implicit linear model updated
by one step of GD, this is equivalent to stacking together multiple layers. In our derivations above,
we assumed the initial parameter of the implicit linear model is 0. In the multi-step GD, all layers
other than the first will correspond to a non-zero initialised implicit linear model. Technically,
extra gradient steps in the implicit model introduce one additional term in the gradient accumulation
equation. Each of the two terms requires a separate (parallel) recurrence and is performed by a
dedicated layer. At the end, the states are combined to obtain the multiple-step GD update, with
minor extra computational burdens. See Appendix A.2 for a detailed construction of multi-step GD.

Non-linear regression: Non-linear regression can be handled by adding MLP layers to the GD-
SSM. In the previous sections, we let GD-SSM accumulate the gradients of a linear regressor. Addi-
tional MLP layers can learn to transform the state of these linear layers into quantities corresponding
to the gradient of the implicit non-linear model. See Appendix A.3 for a detailed explanation.

Regularisation terms in the loss: As the recurrent layers only accumulate the gradients, we can
separate the gradient calculation and accumulation from its application. This has a practical advan-
tage. Any input-independent regularisation term, e.g. L2 norms, can be added to the model without
changing the recurrence structure. See Appendix A.4 for details.

4 TRAINED LINEAR RECURRENT NETWORKS DO EMULATE GRADIENT
DESCENT ON LINEAR REGRESSION TASKS

We investigated if the GD-SSM variant of the general SSM architecture does do gradient descent in-
context learning. To do this, we trained a randomly initialised model on various in-context learning
tasks for linear and non-linear regression. In each case, the sequence token input to the model
consisted of the inputs x and target values y from the training dataset D, and the model was expected
to output the prediction for the query (test) x given in the last timestep. The models were trained to
minimize the mean squared error between the test prediction and target.

4.1 SINGLE STEP 1-DIMENSIONAL LINEAR REGRESSION

We first tested the simplest case of one-step gradient descent on a linear regression problem with
scalar predictions/targets. This corresponds directly to the construction in Section 3.1. To do this,
similar to Garg et al. (2023); von Oswald et al. (2023), we randomly generated linear regression

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

A B C D

Figure 1: Comparing one step of GD with a trained single layer GD-SSM for 1-dimensional
regression: A: Trained single layer SSM loss and Gradient descent based weight-construction loss
are identical. B: Cosine similarity and the L2 distance between models as well as their predictions.
C: Comparison of loss between Gradient Descent (GD) and the SSM layer model for different input
sizes N = Nx. D: The trained single 1-D SSM layer, and gradient descent show identically loss (in
log-scale) when provided input data different than during training i.e. with scale of 1. We display
the mean/std. or the single runs of 5 seeds.

tasks consisting of training and test points, and trained the model to make a prediction for the test
input using the training input as context.

We generated randomly sampled linear regression tasks τ in the following way: Each task (con-
text) τ consisted of a sequence of in-context training data Dτ = {⟨xτ,i, yτ,i⟩}Ni=1 and test point
⟨xτ,N+1, yτ,N+1⟩. To generate this, the xτ,is are sampled from a uniform distribution xτ,i ∼
U(−1, 1)f . Then, for each task τ , the parameters of its implicit linear model wτ is sampled from
a normal distribution, so that each element [wτ]i ∼ N (0, 1). This is used to calculate the yτ,is for
each corresponding xτ,i using yτ,i = wT

τ xτ,i.

The sequence S = {sτ,1, ..., sτ,N} is constructed so that sτ,t = cτ,t = [xτ,tyτ,t,xτ,t+1], with [. . .]
denoting the vector concatenation operation, and ct is the constructed context vector. Note that this
includes the query xτ,N+1 in cN . We will use a more general construction in the next section. The
outputs of the GD-SSM at time T = N is the prediction for xN+1 i.e. SSM(Sτ)N = ŷτ,N+1, with
target yτ,N+1 = wτxτ,N+1. The model was trained to minimize the expected squared prediction
error, averaged over linear regression tasks τ :

min
θ

Eτ

[
∥ŷθ (cτ,1, . . . , cτ,N)− yτ,test∥2

]
,

where θ are the randomly initialised parameters of the GD-SSM. We evaluate our model on multiple
metrics:

1. L2 norm between the difference in predictions ∥ŷθ(xτ,test)− ŷθGD(xτ,test)∥2 where ŷθGD is
the prediction from the GD based construction.

2. Cosine similarity between the sensitivities ∂ŷθGD (xτ,test)

∂xtest
and ∂ŷθ(xτ,test)

∂xtest
.

3. L2 norm between the sensitivites.
4. Loss of the two models where validation data is sampled from U(−α, α)ni , with a different

α than the one used in training.
5. The loss of two models when trained for different number of feature dimensions f .

Figure 1 shows the results of this comparisons. We find that these metrics show excellent agreement
between the trained model and GD, over different hyperparameters. To test if the trained network
has learned a general purpose learning rule as opposed to fitting to the dataset, that is to test if
the trained network generalises to linear regression tasks outside the training distribution, we draw
values of inputs from U(−α, α). We see that our model generalises to both cases.

4.2 SINGLE STEP N-DIMENSIONAL LINEAR REGRESSION

In the more general case where we allow the targets yτ,i to be of arbitrary dimension, we also
relax other assumptions in the form of the input. Notably, instead of constructing the inputs in a
particular way, we let the sequence be similar to a more natural sequence of x1,y1,x2,y2, . . ., i.e.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

BA

0.5 1.0 1.5 2.0
where x U(,)

10 1

100

101

Lo
ss

Test on larger inputs

GD
Trained GD-SSM

C D

Figure 2: Comparing one step of GD with a trained single layer GD-SSM for N-dimensional
regression: A: Trained single layer GD-SSM loss and Gradient descent based weight-construction
loss are identical. B: Cosine similarity and the L2 distance between models as well as their pre-
dictions. C: Comparison of loss between Gradient Descent (GD) and the SSM layer model for
different input sizes f . D: The trained GD-SSM layer, and gradient descent show identically loss (in
log-scale) when provided input data different than during training i.e. with scale of 1. We display
the mean/std. or the single runs of 5 seeds.

A B C

Figure 3: Comparison of learned weights a GD-SSM with the Gradient descent based construction.
A: Comparison of local self attention weights of trained GD-SSM with the Gradient descent based
construction. B: Comparison of recurrent parameters of trained GD-SSM with the Gradient descent
based construction. Since the recurrence parameters are tensors, for the ease of visualisation, each
diagonal entry is the mean of the corresponding diagonal recurrence matrix. C: Comparison of skip
connection weights of trained GD-SSM with the Gradient descent based construction.

s2j = xj ; s2j + 1 = yj . This requires the introduction of a local self-attention mechanism with
attention window of 3 as discussed in Section 3.2. The local self-attention mechanism allows the
model to access inputs from multiple adjacent timesteps, and not just the current one. We perform
the same comparisons as in Section 4.1, and find that the model trained from a random initialisation
has an excellent match with the construction, both in the output/loss metrics (Figure 2) and in the
parameters it ends up with (Figure 3).

We compared loss metrics for GD-SSM with other standard models including one- and two-layer
transformers, and S5 (Smith et al., 2022). We found that, on exactly the same sequence token inputs,
only the GD-SSM and a 2-layer transformer reached the same loss as actual GD, while other SSMs
such as S5 struggle to perform ICL with 1 layer (Figure 4C).

4.3 MULTI-STEP AND NON-LINEAR REGRESSION

To perform multi-step GD, we tested a GD-SSM with multiple-layers, where each layer of the GD-
SSM does 1-step of GD as shown in Appendix A.2. The token construction is identical to that used
for N-dimensional linear regression, and each layer includes the local self-attention mechanism. In
Figure 4A, we show that that trained network is able to reach the same loss as the multi-step GD.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

B CA

0 2500 5000 7500 10000 12500 15000 17500 20000
Training steps

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

2-step GD
1-layer GD-SSM
2-layer GD-SSM

0 02500 5000 7500 10000 10000 20000 3000012500 15000 17500 20000
Training steps Training steps

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Lo
ss

1-step GD
2-step GD
1-layer GD-SSM(wo MLP)
1-layer GD-SSM(with MLP)
2-layer GD-SSM(wo MLP)
2-layer GD-SSM(with MLP)

L2
 N

or
m

0.30

0.20

0.40

0.50

0.60

0.70

Figure 4: A: Comparison of GD-SSM performance with single layer and two layers on regression
task. B: Comparison of GD-SSM performance with and without MLP layers in single layer and
multi-layer setup on non-linear regression task. C: Comparison with other models on 1-D regres-
sion. The GD-SSM model was evaluated with both 1-layer and 2-layer configurations, and the S5,
Mamba, and Griffin models were included for comparison. TF refers to linear Transformer models,
with both 1-layer and 2-layer variants tested to evaluate their performance. A similar plot for N-D
regression is shown in Figre 5.

Finally, to be able to handle any regression task, we tested GD-SSM with an MLP layer on non-linear
regression tasks. Again, we see that the trained model is able to reach the same level of performance
as performing GD directly on the dataset (Figure 4B).

5 RELATED WORK

In-context learning in transformers has been studied extensively, and various mechanisms have been
proposed to explain it (Hendel et al., 2023; von Oswald et al., 2023; Akyürek et al., 2022). Of those,
the most prominent is that the self-attention mechanism performs gradient descent on a linear loss. A
construction with linear self-attention was demonstrated by von Oswald et al. (2023). While linear-
self attention can be written as an RNN (Katharopoulos et al., 2020b), the results of von Oswald
et al. (2023) depends on the tokens being constructed in a specific way, which limits the generality
of their construction. Moreover, the most common type of self-attention used is softmax scaled dot-
product self-attention rather than linear self-attention, and the basic linear self-attention mechanism
used in von Oswald et al. (2023) is not competitive with softmax self-attention. Whereas, we show
a construction that uses local-self attention with state-space models, which has been shown to be
competitive with softmax self-attention transformers (De et al., 2024).

Liu et al. (2024) formulate the SSM layer as an online optimization objective with exact solution.
Similarly, Sun et al. (2024) use the state of the SSM to perform GD. But both these papers con-
sider online updates, that is minibatch size 1 updates. One layer of their model is not capable of
performing larger minibatch updates. Moreover, without local self-attention, their online optimiza-
tion objective is limited to using single sequence tokens with a single-layer. And finally their goal
is not to explain how in-context learning happens with existing architectures, but rather to develop
entirely new SSM variants using the idea that an optimization process can be used for compressing
information as well, which is the key property required of a recurrent network.

The combination of local-self attention with Mamba has been used in for improving performance in
multiple instances, including most recently (De et al., 2024; Ren et al., 2024). But these papers do
not specifically construct their model for ICL, nor do they attempt to distill inductive biases required
for ICL in state-space models.

6 DISCUSSION

This work establishes a clear connection between state-space models (SSMs) and gradient-based in-
context learning. We have demonstrated, both theoretically and empirically, that SSMs can emulate
gradient descent on implicit regression models, providing a mechanistic explanation for their in-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

context learning capabilities. Our construction, GD-SSM, reveals the crucial role of architectural
features such as local self-attention and multiplicative output interactions in enabling this behavior.
These findings not only explain the success of recent SSM variants in in-context learning tasks but
also provide valuable insights for the design of future sequence models.

The alignment between our theoretical construction and the behavior of trained models suggests
that the gradient descent mechanism may be a natural inductive bias in these architectures. This
understanding opens new avenues for analyzing and improving sequence models, potentially leading
to more efficient and effective architectures for a wide range of tasks.

Future research could explore the implications of this mechanism in larger-scale models, more com-
plex tasks, and real-world applications. Additionally, investigating how this understanding can be
leveraged to enhance the design and training of state-space models could yield significant advance-
ments in the field of sequence modeling.

REFERENCES

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? Investigations with linear models, November 2022. URL http:
//arxiv.org/abs/2211.15661. arXiv:2211.15661 [cs].

Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-Context Language Learning: Ar-
chitectures and Algorithms, January 2024. URL http://arxiv.org/abs/2401.12973.
arXiv:2401.12973 [cs] version: 2.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The Long-Document Transformer,
December 2020. URL http://arxiv.org/abs/2004.05150. arXiv:2004.05150 [cs].

Tri Dao and Albert Gu. Transformers are SSMs: Generalized Models and Efficient Algorithms
Through Structured State Space Duality, May 2024. URL http://arxiv.org/abs/2405.
21060. arXiv:2405.21060 [cs].

Soham De, Samuel L. Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Al-
bert Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, Guillaume Des-
jardins, Arnaud Doucet, David Budden, Yee Whye Teh, Razvan Pascanu, Nando De Freitas,
and Caglar Gulcehre. Griffin: Mixing Gated Linear Recurrences with Local Attention for Ef-
ficient Language Models, February 2024. URL http://arxiv.org/abs/2402.19427.
arXiv:2402.19427 [cs].

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp.
1126–1135. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/
finn17a.html.

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What Can Transformers Learn
In-Context? A Case Study of Simple Function Classes, August 2023. URL http://arxiv.
org/abs/2208.01066. arXiv:2208.01066 [cs].

Riccardo Grazzi, Julien Siems, Simon Schrodi, Thomas Brox, and Frank Hutter. Is Mamba Capable
of In-Context Learning?, February 2024. URL http://arxiv.org/abs/2402.03170.
arXiv:2402.03170 [cs].

Albert Gu and Tri Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces,
December 2023. URL http://arxiv.org/abs/2312.00752. arXiv:2312.00752 [cs].

Albert Gu, Karan Goel, and Christopher Re. Efficiently Modeling Long Sequences with Structured
State Spaces. In International Conference on Learning Representations, October 2021. URL
https://openreview.net/forum?id=uYLFoz1vlAC.

Tianyu Guo, Wei Hu, Song Mei, Huan Wang, Caiming Xiong, Silvio Savarese, and Yu Bai.
How Do Transformers Learn In-Context Beyond Simple Functions? A Case Study on Learn-
ing with Representations. October 2023. URL https://openreview.net/forum?id=
ikwEDva1JZ.

10

http://arxiv.org/abs/2211.15661
http://arxiv.org/abs/2211.15661
http://arxiv.org/abs/2401.12973
http://arxiv.org/abs/2004.05150
http://arxiv.org/abs/2405.21060
http://arxiv.org/abs/2405.21060
http://arxiv.org/abs/2402.19427
https://proceedings.mlr.press/v70/finn17a.html
https://proceedings.mlr.press/v70/finn17a.html
http://arxiv.org/abs/2208.01066
http://arxiv.org/abs/2208.01066
http://arxiv.org/abs/2402.03170
http://arxiv.org/abs/2312.00752
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=ikwEDva1JZ
https://openreview.net/forum?id=ikwEDva1JZ

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Roee Hendel, Mor Geva, and Amir Globerson. In-Context Learning Creates Task Vectors, October
2023. URL http://arxiv.org/abs/2310.15916. arXiv:2310.15916 [cs].

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
RNNs: Fast Autoregressive Transformers with Linear Attention, June 2020a. URL https:
//arxiv.org/abs/2006.16236v3.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers
are RNNs: Fast Autoregressive Transformers with Linear Attention. In Proceedings of the
37th International Conference on Machine Learning, pp. 5156–5165. PMLR, November 2020b.
URL https://proceedings.mlr.press/v119/katharopoulos20a.html. ISSN:
2640-3498.

Bo Liu, Rui Wang, Lemeng Wu, Yihao Feng, Peter Stone, and Qiang Liu. Longhorn: State Space
Models are Amortized Online Learners, July 2024. URL http://arxiv.org/abs/2407.
14207. arXiv:2407.14207 [cs].

Sheng Lu, Irina Bigoulaeva, Rachneet Sachdeva, Harish Tayyar Madabushi, and Iryna Gurevych.
Are Emergent Abilities in Large Language Models just In-Context Learning?, September 2023.
URL http://arxiv.org/abs/2309.01809. arXiv:2309.01809 [cs].

Antonio Orvieto, Samuel L. Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
canu, and Soham De. Resurrecting Recurrent Neural Networks for Long Sequences, March 2023.
URL http://arxiv.org/abs/2303.06349. arXiv:2303.06349 [cs].

Jane Pan, Tianyu Gao, Howard Chen, and Danqi Chen. What In-Context Learning ”Learns”
In-Context: Disentangling Task Recognition and Task Learning, May 2023. URL http:
//arxiv.org/abs/2305.09731. arXiv:2305.09731 [cs].

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y. Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena Hierarchy: Towards Larger Convo-
lutional Language Models, April 2023. URL http://arxiv.org/abs/2302.10866.
arXiv:2302.10866 [cs].

Liliang Ren, Yang Liu, Yadong Lu, Yelong Shen, Chen Liang, and Weizhu Chen. Samba: Simple
Hybrid State Space Models for Efficient Unlimited Context Language Modeling, June 2024. URL
http://arxiv.org/abs/2406.07522. arXiv:2406.07522 [cs].

Jimmy T. H. Smith, Andrew Warrington, and Scott Linderman. Simplified State Space Layers
for Sequence Modeling. September 2022. URL https://openreview.net/forum?id=
Ai8Hw3AXqks.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
Chen, Xiaolong Wang, Sanmi Koyejo, Tatsunori Hashimoto, and Carlos Guestrin. Learning to
(Learn at Test Time): RNNs with Expressive Hidden States, August 2024. URL http://
arxiv.org/abs/2407.04620. arXiv:2407.04620 [cs].

Masayuki Tanaka. Weighted sigmoid gate unit for an activation function of deep neural network.
Pattern Recognition Letters, 135:354–359, 2020. ISSN 0167-8655. doi: https://doi.org/10.1016/
j.patrec.2020.05.017. URL https://www.sciencedirect.com/science/article/
pii/S0167865518307773.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neu-
ral Information Processing Systems 30, pp. 5998–6008. Curran Associates, Inc., 2017. URL
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, Joao Sacramento, Alexander Mord-
vintsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers Learn In-Context by Gra-
dient Descent. In Proceedings of the 40th International Conference on Machine Learning,
pp. 35151–35174. PMLR, July 2023. URL https://proceedings.mlr.press/v202/
von-oswald23a.html. ISSN: 2640-3498.

11

http://arxiv.org/abs/2310.15916
https://arxiv.org/abs/2006.16236v3
https://arxiv.org/abs/2006.16236v3
https://proceedings.mlr.press/v119/katharopoulos20a.html
http://arxiv.org/abs/2407.14207
http://arxiv.org/abs/2407.14207
http://arxiv.org/abs/2309.01809
http://arxiv.org/abs/2303.06349
http://arxiv.org/abs/2305.09731
http://arxiv.org/abs/2305.09731
http://arxiv.org/abs/2302.10866
http://arxiv.org/abs/2406.07522
https://openreview.net/forum?id=Ai8Hw3AXqks
https://openreview.net/forum?id=Ai8Hw3AXqks
http://arxiv.org/abs/2407.04620
http://arxiv.org/abs/2407.04620
https://www.sciencedirect.com/science/article/pii/S0167865518307773
https://www.sciencedirect.com/science/article/pii/S0167865518307773
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://proceedings.mlr.press/v202/von-oswald23a.html
https://proceedings.mlr.press/v202/von-oswald23a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao
Liu, Da Huang, Denny Zhou, and Tengyu Ma. Larger language models do in-context learning
differently, March 2023. URL http://arxiv.org/abs/2303.03846. arXiv:2303.03846
[cs].

Noam Wies, Yoav Levine, and Amnon Shashua. The Learnability of In-Context Learning, March
2023. URL http://arxiv.org/abs/2303.07895. arXiv:2303.07895 [cs].

12

http://arxiv.org/abs/2303.03846
http://arxiv.org/abs/2303.07895

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 N-D LINEAR REGRESSION

The implicit linear model of N-dimensional (N = f) linear regression is

ŷ = W Tx ,

for W ∈ Rf×f and ŷ,x ∈ Rf . The loss is

L(D;W0) =
1

2N

∑
i

(
W T

0 xi − yi

)T (
W T

0 xi − yi

)
. (22)

The gradient of this loss calculated using the first t samples D1:t is

∇WL(D1:t;W0) =
1

t

t∑
i=1

∂

∂W

(
W T xi − yi

)T (
W T xi − yi

)∣∣∣∣
W=W0

.

For notational simplicity, we will write this as f 1-D regression problems, one for each element of
y. Using [W]:,i to denote the i-th column of matrix W , using [W0]:,i to denote the i-th column of
matrix W0 and using [yt]i = [W]T:,i xt to denote the i-th element of vector yt,

g(D1:t; [W0]:,i) = g(D1:t−1; [W0]:,i) +
(
[W0]

T
:,i xt − [yt]i

)
xt , (23)

where 1
t g(D1:t; [W0]:,i) = [∇WL(D1:t;W0)]:,i.

Implementation as a linear recurrent network: The input is given as in Eqs. 19 & 20, with
context matrix constructed as in Eq. 21.

The local self attention calculates CQCT , which is then provided as input to the SSM layer. If

Q =
(

1
0
0

)(
0
1
0

)T
=
[
0 1 0
0 0 0
0 0 0

]
, this corresponds to the input to the SSM being [yt]ixt (assuming

W = 0).

Defining Zt ∈ Rf×f as the state of the SSM, where [Zt]:,i = g(D1:t; [W0]:,i)
T (note the transpose),

and assuming W0 = 0, the equations Eq. 23 for all is (all columns) can be written as a single
equation

Zt = Zt−1 +CtQCT
t ,

with output

ot = − η

N
Zt Ct q .

If q =
(

0
0
1

)
, this corresponds exactly to the output ŷt+1 = −η∇WL(D1:t;W0)

T xt+1. This
provides a construction that allows us to perform gradient descent on the parameters of an arbitrary
dimensional input model.

A.2 MULTI-STEP GD

Proposition 3 Given 1, . . . , L diagonal linear recurrent layers, each augmented with local self-
attention with sliding window of size 3, and sequence tokens s2j = xj and s2j+1 = yj , for j =
1, . . . , N , drawn from a linear model, for each layer l, one can construct pairs of recurrent matri-
ces A(l,1)(sj),A

(l,2)(sj), inputs B(l,1)(sj),B
(l,2)(sj) and output matrices U (l,1)(sj),U

(l,2)(sj)
such that each recurrent step for every token sj produces ŷj+1 = (∆lW)Txj+1 as output, where
∆lW is the update for l steps of gradient descent, i.e. ∆lW = ((W0 − η∇WL(D;W0)) −
η∇WL(D; (W0 − η∇WL(D;W0)))...l times). The test input xN+1 is contained in token s2N+2,
and produces the test prediction ŷN+1.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

We have so far assumed that W0 = 0 thus far, which for the first layer corresponds to initialising the
parameters of the equivalent linear model to all zeros. For multi-step GD, the second layer onwards
have a non-zero initial value of parameters, so let’s derive a general form for a layer that performs
GD with non-zero initialisation.

Starting from Eq. 23, repeated below for convenience,

g(D1:t; [W0]:,i) = g(D1:t−1; [W0]:,i) +
(
[W0]

T
:,i xt − [yt]i

)
xt ,

we note that this accumulates two different components –
(
[W0]

T
:,i xt

)
xt and [yt]i xt.

We propose having two different heads (per layer) to accumulate these quantities separately (i)
[yt]i xt and (ii) xt xt.

Defining Zt ∈ Rm×m as the state of the SSM, where [Zt]:,i = g(D1:t; [W0]:,i)
T (note the trans-

pose), the recurrent network corresponding to the accumulation of (i) is the same as before:

Zt = Zt−1 +CtQCT
t .

For (ii), we can write an equivalent recurrent network

Z̃t = Z̃t−1 +CtQ̃CT
t ,

If Q̃ =
(

1
0
0

)(
1
o
0

)T
=
[
1 0 0
0 0 0
0 0 0

]
, this corresponds to the input to the SSM being xtx

T
t .

The output at layer l is

o
(l)
t = (Wl−1 +∆lW) Ct q ,

where

∆lW = − η

N

(
W T

l−1 Z̃
(l)
t −Z

(l)
t

)
.

In summary, at each layer, there are two linear recurrent layers, and the output includes a multiplica-
tive combination across layers and with the external input.

Since each recurrent layer is performing the same operation, one could also loop the output of each
layer back to do multiple steps of GD.

A.3 NON-LINEAR GD

Let us consider a non-linear regression problem with a least squares loss, where the output labels are
again 1-dimensional for simplicity. For a given dataset of N samples D = {< xi, yi >}Ni=0,x ∈
Rf , y ∈ R, predictions from a non-linear model are generated using

ŷ = g(wTx) ,

for w ∈ Rf and where g is some non-linear function such as sigmoid or an MLP. This will be our
implicit non-linear model for this 1-dimensional target case.

The best fit for w is found by minimizing the loss

L(D;w0) =
1

2N

N∑
i=1

||ŷi − yi||22 =
1

2N

∑
i

(
g(wT

0 xi)− yi
)2

.

The gradient of the loss calculated on the first t samples of the dataset is

∇wL(D1:t;w0) =
1

t

t∑
i=1

(
g(wT

0 xi)− yi
)
g′(wT

0 xi)xi ,

where D1:t denotes the first t samples in D, and g′ denotes the first derivative of g.

We define the term g but without containing g, as

gw0
(D1:t) =

t∑
i=1

(
wT

0 xi − yi
)
xi ,

which can be recursively calculated as before. Note that this quantity is not the unscaled gradient
anymore. In this case we have the following Proposition:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Proposition 4 Given a diagonal linear recurrent layer augmented with local self-attention with
sliding window of size 3, followed by a MLP layer, and tokens s2j = xj and s2j+1 = yj , for
j = 1, . . . , N , drawn from a non-linear model, one can construct recurrent matrix A(sj), input
B(sj) and output matrix U(sj) such that each recurrent step for every token sj produces ŷj+1 =
−(∆W)Txj+1 as output, where ∆W is one step of gradient descent, i.e. ∆W = η∇WL. The
test input xN+1 is contained in token s2N+2, and produces the test prediction ŷN+1.

Writing this as an SSM exactly as in 12 (with the same Ψ)

zt = I zt−1 +Ψ ct ,

we now need to calculate the output as

ŷt+1 = −η∇w0
L(D1:t;w0)

T xt+1 .

The interleaved MLP layer f would need to learn a mapping such that

f

(
t∑

i=1

(
wT

0 xi − yi
)
xi

)
=

t∑
i=1

(
g(wT

0 xi)− yi
)
g′(wT

0 xi)xi ,

which it will be able to since it is an universal approximator. This can then be used to calculate the
output as

ot = f(zt)
TΘct .

A.4 REGULARISATION TERMS IN THE LOSS

For example, if we wished to change the loss function in Eq. 22 to include L2 regression,

L(D;W) =
1

2N

N∑
i=1

||ŷi − yi||22 + ||W ||22 ,

this will change the gradient to be

∇wL(D1:t;W0) =
1

t

t∑
i=1

∂

∂W
||ŷi − yi||22 + 2W0 .

To construct an SSM that does GD on this loss instead of the one in Eq. 8, all we’d have to do is
change the ∆W in the output to be

∆lW = − η

N

(
W T

l−1 Z̃
(l)
t −Z

(l)
t +Wl−1

)
.

A.5 EXPERIMENTAL DETAILS OF 1-D REGRESSION

The dataset construction and the model evaluation methods are same as that used in von Oswald
et al. (2023). Each task (context) τ consists of in-context training data Dτ = {(xτ,i, yτ,i)}Ni=1 and
test point (xτ,N+1, yτ,N+1). At every optimization step of the model, we sample the regression
parameters Wτ ∼ N (0, I). We then sample xτ,i ∼ U(−1, 1)f and construct a scalar target yτ,i =
Wτxτ,i, where f is the feature size of the input. To evaluate the model, a set of 104 tasks are sampled
and mean squared error is calculated.

To evaluate the proposed model, we conducted experiments using a constructed token dataset with
an input feature size of 10. The model architecture is a single-layer, state space model (SSM) with
a hidden dimension of 20. Initialization was performed with 2 blocks and an SSM latent size of 10.
No activation function was used during training.

The training process spanned a maximum of 300,000 epochs with a batch size of 64. A cosine
annealing schedule and linear warmup were utilized for the learning rate, beginning with an initial
SSM learning rate of 1 × 10−4 for optimizing the SSM parameters using the AdamW optimizer.
The global learning rate for the remaining parameters was set to 2 × 10−4, and these parameters
were also optimized using AdamW. A weight decay of 0.05 was applied to regularize the model and
prevent overfitting.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.6 EXPERIMENTAL DETAILS OF N-D REGRESSION

The setup is similar to 1-d regression, but we sample no different regression parameters W k
τ ∼

N (0, I), where no is the dimension of vector yτ,i and 1 <= k <= no. We then construct target
ykτ,i = W k

τ xτ,i for all k. For all our experiments, we choose no = f . We have evaluated the model
based on all the experiments that are used for the 1-D regression evaluation.

To have the model prediction equivalent to one step gradient descent, we train the single layer GD-
SSM using Adam optimizer, with an initial learning rate of 0.0001 for recurrent parameters with
cosine annealing. For all the other parameters we double the learning rate that is used for recurrent
parameters. In all our experiments, each optimization step contains 64 tasks.

A.7 EXPERIMENTAL DETAILS OF MULTI-STEP AND NON-LINEAR REGRESSION

To emulate the multi-step regression task, we train the multi-layer GD-SSM architecture, without
applying any non-linearity between the layers. We use the same hyper-parameters that are used for
the N-d regression tasks. We compare the validation loss of the regression task between the learned
model and the model based on construction.

For non-linear regression tasks, we use the experiments from Finn et al. (2017) and follow the data
construction of von Oswald et al. (2023). To the output of the linear GD-SSM layer, we add a
non-linear function, weighted sigmoid gated unit (Tanaka, 2020), as used in (Smith et al., 2022).
For all the non-linear regression tasks, an input embedding layer is used in addition to the model
architecture used for linear regression tasks. The hyper-parameters are the same that is used for all
the previous tasks, and the trained model loss is compared with a model with GD-SSM layer/layers
based on gradient descent construction and trained non-linearity layer/layers.

Figure 5: Comparison with other models on N-D regression. The GD-SSM model was evaluated
with both 1-layer and 2-layer configurations, and the S5, Mamba, and Griffin models were included
for comparison. TF refers to linear Transformer models, with both 1-layer and 2-layer variants tested
to evaluate their performance.

16

	Introduction
	Background
	SSMs can emulate gradient descent on linear regression tasks
	Single step 1-dimensional linear regression
	Single Step N-dimensional linear regression
	Generalising to any regression problem

	Trained linear recurrent networks do emulate gradient descent on linear regression tasks
	Single step 1-dimensional linear regression
	Single step N-dimensional linear regression
	Multi-step and non-linear regression

	Related work
	Discussion
	Appendix
	N-D linear regression
	Multi-step GD
	Non-linear GD
	Regularisation terms in the loss
	Experimental details of 1-d regression
	Experimental details of N-d regression
	Experimental details of multi-step and non-linear regression

