Under review as a conference paper at ICLR 2025

STATE-SPACE MODELS CAN LEARN IN-CONTEXT BY
GRADIENT DESCENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep state-space models (Deep SSMs) have shown capabilities for in-context
learning on autoregressive tasks, similar to transformers. However, the architec-
tural requirements and mechanisms enabling this in recurrent networks remain
unclear. This study demonstrates that state-space model architectures can per-
form gradient-based learning and use it for in-context learning. We prove that a
single structured state-space model layer, augmented with local sliding window
attention, can reproduce the outputs of an implicit linear model with least squares
loss after one step of gradient descent. Our key insight is that the diagonal lin-
ear recurrent layer can act as a gradient accumulator, which can be ‘applied’ to
the parameters of the implicit regression model. We validate our construction by
training randomly initialized augmented SSMs on simple linear regression tasks.
The empirically optimized parameters match the theoretical ones, obtained ana-
lytically from the implicit model construction. Extensions to multi-step linear and
non-linear regression yield consistent results. The constructed SSM encompasses
features of modern deep state-space models, with the potential for scalable train-
ing and effectiveness even in general tasks. The theoretical construction elucidates
the role of sliding window attention and multiplicative interactions in recurrent
architectures as the key ingredients for enabling the expressive power typical of
foundation models.

1 INTRODUCTION

The current generation of Large Language Models (LLMs) and foundation models are extremely
capable and have started proliferating in several real-world applications. These models are based
on the transformer architecture (Vaswani et al., 2017), and a big part of their capability has been at-
tributed to in-context learning (Wei et al., 2023; Lu et al., 2023). In-context learning in transformers
is relatively well studied (Wies et al., 2023; Pan et al., 2023; Guo et al., 2023; Garg et al., 2023). A
prominent explanation for the mechanism used by transformers to do in-context learning is that the
model performs in-context learning by gradient descent (von Oswald et al., 2023; Akyiirek et al.,
2024). But, the quadratic dependence of transformers on the input length makes them computa-
tionally expensive. To mitigate this, there has been much work on alternatives based on recurrent
networks, such as state-space models (Gu et al., 2021; Gu & Dao, 2023) and linear recurrent net-
works (Orvieto et al., 2023). These recurrent models can perform inference efficiently since the
computational complexity of recurrent networks is linear in the sequence length. At the same time,
linear recurrent networks allow parallelization across the sequence during training using associative
scan. The latest versions of these models are competitive with transformers at scale (Dao & Gu,
2024; De et al., 2024), and also capable of in-context learning (Grazzi et al., 2024). However, the
mechanism they use for in-context learning remains unclear.

This work focuses on the in-context learning mechanism of State-Space Models (SSMs). Multiple
variations of state-space models have recently shown competitive performance at scale (Gu & Dao,
2023; De et al., 2024), while earlier generations struggled with scaling (Smith et al., 2022; Poli
et al., 2023). All SSMs, linear attention models, and other linear recurrent networks share a common
formalism of being linear recurrent networks interleaved with non-linear layers. On the other hand,
the ability to do in-context learning seems to be a hallmark of most recent scalable variants (Grazzi
etal., 2024). Which features of these successful models contribute to in-context learning, as opposed

Under review as a conference paper at ICLR 2025

to earlier variants? Using a constructive approach, we pinpoint input-dependent input and output
processing, as the key features required for in-context learning.

We show that SSMs with local sliding window attention, a form of input-dependent input processing,
can perform in-context learning analogously to transformers, i.e. through gradient descent steps on
an implicit linear regression problem. The key insight we use is that the state of the recurrent network
can be used to aggregate gradients of the parameters of the implicit linear model, which can later be
‘applied’ to the initial parameters of the implicit model. Using the general SSM formalism, we show
how to design the recurrent and output equations that enable them to do in-context learning. Our
construction, which we call GD-SSM, results in a state-space model that is potentially applicable to
general-purpose tasks as much as in-context learning tasks.

In summary, our contributions are to show that:

* one-layer SSMs with diagonal recurrence, two-dimensional state, and input-dependent in-
put and output processing can perform one step of minibatch gradient descent on an implicit
least-squares loss function;

* multi-step (minibatch) gradient descent can be achieved by stacking the 1-layer model;
* gradient descent for an implicit non-linear regression problem can be achieved by augment-
ing the SSMs with non-linearities;

 arandomly initialized model trained on regression tasks learns parameters that match our
construction for in-context learning tasks based on regression.

2 BACKGROUND

A sequence model operates on an input sequence S = {s;}7_; € RT*f, where T is also referred
to as the context-length and f is the feature dimension.

Contemporary sequence models based on transformers interleave self-attention with MLP layers to
perform sequence processing. The self-attention performs sequence-mixing while the MLPs per-
form channel-mixing. The most common form of self-attention has been the scaled dot-product
self-attention, which embeds the sequence into a query Q = SWg, key K = SWy and value
V = SWy,, where Wgo, Wi € RS “m Wy € R/*¢ and then calculates the output of attention as

SA(S) = softmax (Q\/I;T) V. (1)

Sliding window attention (Beltagy et al., 2020) uses the same form as Eq. 1, but on an input sequence
that is a subset of the full sequence, with a sliding window.

By discarding the softmax (and scaling for simplicity), self-attention can be written in a linear form
LSA(S) = QK"V, 2
where LSA denotes linear self-attention.

Deep SSMs are sequence models that replace the self-attention with a linear recurrent network, to
perform the sequence-mixing. In the most general form, the recurrent SSM block consists of a
recurrent state Z; € R?*™ updated iteratively as

Zt = A(St) * Zt—l + B(St) y (3)

where A, B : R/ — R4*™ and * is some multiplication operator (e.g. matrix or element-wise
multiplication).

The output of the SSM is often calculated by an input-dependent linear transformation of the current
state

o, =Z;U(sy), 4
combined with a non-linearity as

0, =U; (0 ®c(Uyoy)) ,

Under review as a conference paper at ICLR 2025

where © is elementwise multiplication.

Transformers with linear attention can also be written in this recurrent form Katharopoulos et al.
(2020a)

Zy=Z,_1+v(s) @k(st), (5)

where v(s;) = Wil's, € R% k(s;) = WEs, € R™ and ® is the outer product. This is a recurrent
reformulation of the part of Eq. 2 containing V' and K in recurrent form.

S4 (Gu et al., 2021) and multi-headed S5 (Smith et al., 2022) can also be written in this form
Zy = AZ; | + Bsy, (6)

where A and B are learnable parameters of appropriate dimension, and Z; consists of m heads of
dimension d each (although multiple heads are not used in the original paper).

If sliding window attention is used to process the input before being fed into the SSM, all instances
of s; would be replaced by a context vector

c; =SA(S') or ¢, =LSA(Y),

where S’ C S is a subsequence of the whole sequence, and (L)SA denotes the (linear) self-attention
operation.

3 SSMS CAN EMULATE GRADIENT DESCENT ON LINEAR REGRESSION TASKS

We will now show that an SSM as described in Section 2 can perform gradient descent on an implicit
linear model to minimize a least squares loss (for particular choices of parameters). Extensions to
non-linear regression models are considered in Section 3.3.

Consider a linear regression problem. The goal is to minimize the corresponding least squares loss
using gradient descent. The linear model will be the implicit model on which the SSM performs
gradient descent. Performing mini-batch (batch size > 1) gradient descent on the parameters of
this implicit model involves two steps: (i) to accumulate gradients of the loss with respect to the
parameters, and (ii) apply the accumulated gradient to the initial value of the parameters of the linear
model to calculate the updated parameters. Predictions can be made with the updated parameters by
combining them linearly with the input.

Assume the training samples for the linear regression problem are provided as a sequence of inputs
and targets. A large enough SSM can then accumulate the gradients of the loss function in its state
if a sliding window attention-like layer processes the sequence inputs before the recurrence’.

Given the accumulated gradients, the next-step emission of the SSM is equivalent to i) updating
the parameters of the implicit model gradient and ii) computing the model output with the updated
parameters. Multiple steps of gradient descent can be achieved by stacking multiple layers, while
nonlinearity in the implicit model can be handled by adding nonlinear input-output embedding lay-
ers. We argue that the architecture that allows a single layer to perform gradient descent provides
the inductive bias for the model to do in-context learning.

3.1 SINGLE STEP 1-DIMENSIONAL LINEAR REGRESSION

Consider a linear regression model with 1-d output for simplicity

y=w'z, (7)

for parameter w € Rf. This is the implicit linear model we aim to reproduce for in the 1-
dimensional target case. Given dataset of N samples D = {(z;,y:)}N,z € Rf,y € R, the
associated least squares loss is

N
1 . 1
E(D;w):ﬁZHyi—yng:WZ(wTwi—yif : ®)
i=1 7

'A SSM layer with input-dependent recurrence would be able to simulate a sliding window attention layer,
but with significantly increased computational and conceptual complexity.

Under review as a conference paper at ICLR 2025

The best fit for w is the minimum of £ over w € R/. The gradient of the loss calculated on the first
t samples of the dataset is

V E(Dl ity wo

w\)—l

t
E wl x; —) x;,
i=1

where D;.; denotes the first ¢t samples in D. The unscaled gradient,

t
gwo Dl t § w() Ty —) T,
i=1

can be recursively calculated as

Guwo (D1:t) = Guo (Pri—1) + (Wl @ — yi) ¢ .)
Scaling the gap, (D1:¢) gives the mini-batch gradient Vo, £(D1.¢; wo) = % Jw, (D1:¢) for minibatch
size t.

To make a prediction, ¢, we apply the gradient to the parameters of the linear model in Eq. 7 and
compute the corresponding output, i.e.

Jir1 = (Wo — NVapo L(D1.5w0)) T @441,

= (w0 — Tguy (D))" @rs1
When wg = 0, this reduces to
Ger1 = = Guo (Do) @ess (10)

Implementation as an SSM: Equation 9, which is a linear recurrence equation, can be imple-
mented by an appropriately constructed SSM.

Proposition 1 Given a diagonal linear recurrent layer, and tokens s; = ¢; = [y;, Tj+1), for j =

., N, and [...] concatenation, x;,y; drawn from a linear model, one can construct recurrent
matrix A(s;), input B(s;) and output matrix U (s;) such that each recurrent step for every token
s; produces 11 = —(Aw)T$j+1 as output, where Aw is one step of gradient descent, i.e.
Aw = nV L. The test input x 1 is contained in token cy, and produces the test prediction
UN+1-

Specifically, if we use z; € RS to denote the state of the recurrent network and let it directly
correspond to the vector g.,, (D1.+), the equivalent SSM layer is a linear recurrence equation,

ze=Tz1+ (wix, —y)xy . (11)

The state of the SSM, z;, represents the implicit linear regression problem through the unscaled
accumulated gradients of the least squares loss with respect to the parameters wg of the implicit
linear model.

As linear regression is performed on the training dataset D = {(z;,y;)}¥,, the SSM receives
the training data in the form of a sequence as input. In the most general case, this is a sequence
81 =x1,82 =[0,...,y1], ... where [...] denoting concatenation and y; is padded with f — 1 zeros
for its dimensions to match that of x;. This more general case is discussed in the next section. But
here, we will consider a case which simplifies our construction.

Let s1, 89, . . . be a sequence of constructed context vectors s; = ¢, where each ¢; = [@1ys, X1 11] €
R2f, and let us assume wy = O for simplicity 2. If the sequence input weights ¥ € R2/*f are such
that ¥7¢, = x,y,, Eq. 11 can be written as an SSM (Eq. 3), i.e.

= Ithl + ‘I’Ct . (12)

The more general case is treated for the case of multi-step GD in Appendix A.2.

Under review as a conference paper at ICLR 2025

A parameter matrix, W, satisfies equation 12 if all but the first f diagonal entries are zero. The state
of this network is the unscaled gradient ¢ V,, £(D1.+; wy) and the state recursion accumulates the
gradients as in step (i) above.

The accumulated gradient is then ‘applied’ to the implicit model’s initial parameters, w, before
computing the (N + 1)-th output. With wy = 0, the output is

o1 = Bz Ocy, (13)

where 5 = —4;, 7 is the learning rate, and N is the number of training points or, equivalently,
the total length of the context. The SSM final output, o; above, corresponds to a prediction of the
trained linear model, §;41 in Eq. 10, if ® obeys ©@c; = x;41. It is easy to check that © satisfies
this condition if all but its last f diagonal entries are zero (see Figure 3 for a concrete example).
Note that the output in Eq. 13 matches the general form of the SSM output in Eq. 4 (without the
non-linearity).

The above shows that the following SSM

¢t = [Ty, Teg], (14)
zr=Iz_1+¥c, (15)
Oy = 52?@675 = Qt+1 . (16)

can perform gradient descent on the parameters wy of the implicit linear model and use this mech-
anism for in-context learning. The specific structure of the SSM in equation 14 demonstrates the
importance of multiplicative processing, for both the inputs and outputs.

3.2 SINGLE STEP N-DIMENSIONAL LINEAR REGRESSION

In this section, we generalize the construction above to the N-dimensional case. Without loss of
generality, we assume the input and the target, = and y, have both dimensions f i.e. =,y € R/,
If this is not the case, the input and output dimensionality can be matched by defining appropriate
embeddings’. We can then treat the N-dimensional system as f 1-D linear regression problems, one
for each element of y.

Proposition 2 Given a diagonal linear recurrent layer augmented with local sliding window atten-

tion with sliding window of size 3, and tokens soj = x; and 83511 = y;, forj =1,..., N, x;,y;
drawn from a linear model, one can construct recurrent matrix A(s;), input B(s;) and output ma-
trix U(s;) such that each recurrent step for every token s; produces §j+1 = —(AW)Tx; 1 as

output, where AW is one step of gradient descent, i.e. AW = nNw L. The test input T 1 is
contained in token sap 2, and produces the test prediction Yy 1.

Similar to Eq. 11, we show the above by writing the SSM as
Zi=Zy 1ty a7

where Z; corresponds to the parameters of the implicit linear model, W & Rf*S and we assume,
for simplicity, that W = 0*. The output is

or=PBZyxyi1. (18)
See Appendix A.1 for the full derivation.

To see how this can be written in the form of Eq. 3, let the input sequence consist of the training
dataset of the implicit linear regression problem (as before). This time, we cast the training dataset
into a standard sequence s1, So, . . ., where

82]‘ = ZCj s (19)
Soj41 =Y, (20)

3E.g. with dimensions k, ! into the same higher dimension k + | = f by concatenation with appropriately
sized zero vectors, or through a linear transformation to dimension f.
*The more general case is discussed in Appendix A.2.

Under review as a conference paper at ICLR 2025

and s; denotes the i-th sequence element of the input, such that s5;45 = x;11.

At each step, the state update, in Eq. 17, and the output, in Eq. 18, include =, y;, T;y1. This
necessitates the introduction of a quadratic (in s;) sliding window attention mechanism. Let C; be
the context matrix for the sliding window attention, i.e. a sliding window of length three running
through the sequence,

Ci=|Ty Y Typ1| . 21

The sliding window attention operation, CQC7, is a truncated form of Eq. 2. When Q =
(é) (o10) = {% é §}, plugging CQCT into the second term in Eq. 17 produces an SSM with
input y;x!.

The SSM, which corresponds to GD-SSM, can now be written as in Eq. 3, i.e.
Zy =21+ CtQCtT7
with output

o, =p2,Cq,

where g = (((é) makes the output ¢; 1 as in Eq. 10. The output also matches the form of the general

SSM output in Eq. 4. The construction allows us to perform gradient descent on the parameters of
an arbitrary dimensional implicit model. We call this type of SSM a GD-SSM. When we train the
model for ICL tasks, the parameters @, q as well as the embeddings for x, y are randomly initialized
and trained using a mean-squared error loss.

Eq. 3 shows that the recurrent state of the SSM is 2-dimensional, as in most recently proposed
SSMs (Dao & Gu, 2024). The sliding window attention reproduces the local linear self-attention of
Egs. 2 and 5. As for the 1-dimensional case, the self-attention higher-order dependencies, C' QCT,
is key for making the SSM learn (in-context) an implicit (linear) regression model.

3.3 GENERALISING TO ANY REGRESSION PROBLEM

Multi-step gradient descent: The proposed construction can be extended to multi-step gradient
descent. Since each layer of a GD-SSM produces the parameters of the implicit linear model updated
by one step of GD, this is equivalent to stacking together multiple layers. In our derivations above,
we assumed the initial parameter of the implicit linear model is 0. In the multi-step GD, all layers
other than the first will correspond to a non-zero initialised implicit linear model. Technically,
extra gradient steps in the implicit model introduce one additional term in the gradient accumulation
equation. Each of the two terms requires a separate (parallel) recurrence and is performed by a
dedicated layer. At the end, the states are combined to obtain the multiple-step GD update, with
minor extra computational burdens. See Appendix A.2 for a detailed construction of multi-step GD.

Non-linear regression: Non-linear regression can be handled by adding MLP layers to the GD-
SSM. In the previous sections, we let GD-SSM accumulate the gradients of a linear regressor. Addi-
tional MLP layers can learn to transform the state of these linear layers into quantities corresponding
to the gradient of the implicit non-linear model. See Appendix A.3 for a detailed explanation.

Regularisation terms in the loss: As the recurrent layers only accumulate the gradients, we can
separate the gradient calculation and accumulation from its application. This has a practical advan-
tage. Any input-independent regularisation term, e.g. L2 norms, can be added to the model without
changing the recurrence structure. See Appendix A.4 for details.

Under review as a conference paper at ICLR 2025

4 TRAINED LINEAR RECURRENT NETWORKS DO EMULATE GRADIENT
DESCENT ON LINEAR REGRESSION TASKS

We investigated if the GD-SSM variant of the general SSM architecture does do gradient descent in-
context learning. To do this, we trained a randomly initialised model on various in-context learning
tasks for linear and non-linear regression. In each case, the sequence token input to the model
consisted of the inputs & and target values y from the training dataset D, and the model was expected
to output the prediction for the query (test) given in the last timestep. The models were trained to
minimize the mean squared error between the test prediction and target.

4.1 SINGLE STEP 1-DIMENSIONAL LINEAR REGRESSION

A 0.40 B 2.0 c b 10!

==+ GD 1 step =~ Model cos V¥ GD1step v GD 1 step 1
= 1-D GD-SSM 1.0 15 1-D GD-SSM -+ 1DGD-ssM 1

n
™

== Preds diff
Model diff

L2 Norm
S

¥

o
o
o
o

02 +
_v N +
0 0.0 0.0 0.0
0 10000 20000 30000 40000 0 10000 20000 30000 40000 To 20 30 40 50 0s 10 s 20
Training steps Training steps

Input dim a where x ~ U(-a,a)

Figure 1: Comparing one step of GD with a trained single layer GD-SSM for 1-dimensional
regression: A: Trained single layer GD-SSM loss and GD-SSM loss with the parameters from our
construction are identical. B: Cosine similarity and the L2 distance between models as well as their
predictions. C: Comparison of loss between Gradient Descent (GD) and the SSM layer model for
different input sizes N = N,. D: The trained single 1-D SSM layer, and gradient descent show
identically loss (in log-scale) when provided input data different than during training i.e. with scale
of 1. We display the mean/std. or the single runs of 5 seeds.

We first tested the simplest case of one-step gradient descent on a linear regression problem with
scalar predictions/targets. This corresponds directly to the construction in Section 3.1. To do this,
similar to Garg et al. (2023); von Oswald et al. (2023), we randomly generated linear regression
tasks consisting of training and test points, and trained the model to make a prediction for the test
input using the training input as context.

We generated randomly sampled linear regression tasks 7 in the following way: Each task (con-
text) 7 consisted of a sequence of in-context training data D, = {(x.;, ym‘>}£\;1 and test point
<;c77 N+15Yr, N+1). To generate this, the @, ;s are sampled from a uniform distribution Tr; ~
U(—1,1)/. Then, for each task 7, the parameters of its implicit linear model w, is sampled from
a normal distribution, so that each element [w,]; ~ A(0,1). This is used to calculate the Yr,iS for
each corresponding x, ; using y, ; = mem.

The sequence S = {s, 1, ..., S- n} is constructed so that s, ; = ¢, ¢ = [®r1Yr,i, Tr41], With ..]
denoting the vector concatenation operation, and ¢; is the constructed context vector. Note that this
includes the query @~ y41 in c. We will use a more general construction in the next section. The
outputs of the GD-SSM at time 7" = N is the prediction for & x4 i.e. SSM(S;)n = §r n+1, With
target Y- N+1 = W;Tr N+1. The model was trained to minimize the expected squared prediction
error, averaged over linear regression tasks 7:

meinET [”@9 (C‘r}h ceey CT,N) - y-r,testH2:| y

where 6 are the randomly initialised parameters of the GD-SSM. We evaluate our model on multiple
metrics:

1. L2 norm between the difference in predictions || (Zr west) — Yoep (T7test) ||, Where Jgg, is
the prediction from the GD based construction.

ag@(‘.p (l“r,lcsl)

090 (T test)
OTest :

and OTest

2. Cosine similarity between the sensitivities

3. L2 norm between the sensitivites.

Under review as a conference paper at ICLR 2025

4. Loss of the two models where validation data is sampled from U (—a,)™, with a different
« than the one used in training.

5. The loss of two models when trained for different number of feature dimensions f.

Figure 1 shows the results of this comparisons. We find that these metrics show excellent agreement
between the trained model and GD, over different hyperparameters. To test if the trained network
has learned a general purpose learning rule as opposed to fitting to the dataset, that is to test if
the trained network generalises to linear regression tasks outside the training distribution, we draw
values of inputs from U (—a, «). We see that our model generalises to both cases.

4.2 SINGLE STEP N-DIMENSIONAL LINEAR REGRESSION

0.40 20 v Test on larger inputs
l—- GD 7 Y— Vv ap
=== Trained GD-SSM R—

=== Model cos

v cp

151 < Trained GD-SSM 10'1 L Trained GD-SSM

15

0.8 E
£ ¥
= Preds diff o
Model diff v L

L2 Norm
=
o
Loss

0.5

0.0 - 0.0 X "
0 2500 5000 7500 10000 0 2000 4000 6000 8000 10000 510 20 35 50 0.5 1.0 1.5 2.0

Training steps Training steps Input dim a where x ~ U(-a,a)

Figure 2: Comparing one step of GD with a trained single layer GD-SSM for N-dimensional
regression: A: Trained single layer GD-SSM loss and GD-SSM loss with the parameters from our
construction are identical. B: Cosine similarity and the L2 distance between models as well as their
predictions. C: Comparison of loss between Gradient Descent (GD) and the SSM layer model for
different input sizes f. D: The trained GD-SSM layer, and gradient descent show identically loss (in
log-scale) when provided input data different than during training i.e. with scale of 1. We display
the mean/std. or the single runs of 5 seeds.

C
Sliding window attention weight B Recurrent weight Input skip weight

Trained Constructed Trained Constructed Trained Constructed

Figure 3: Comparison of learned weights a GD-SSM with the GD-SSM parameters from our con-
struction. A: Comparison of local self attention weights of trained GD-SSM with the GD-SSM
parameters from our construction. B: Comparison of recurrent parameters of trained GD-SSM with
the GD-SSM parameters from our construction. Since the recurrence parameters are tensors, for the
ease of visualisation, each diagonal entry is the mean of the corresponding diagonal recurrence ma-
trix. C: Comparison of skip connection weights of trained GD-SSM with the GD-SSM parameters
from our construction.

In the more general case where we allow the targets y, ; to be of arbitrary dimension, we also
relax other assumptions in the form of the input. Notably, instead of constructing the inputs in a
particular way, we let the sequence be similar to a more natural sequence of 1, Y1, 2, Y2, - . ., i.€.
89 = xj; 825 + 1 = y;. This requires the introduction of a sliding window attention mechanism
with attention window of 3 as discussed in Section 3.2. The sliding window attention mechanism

Under review as a conference paper at ICLR 2025

allows the model to access inputs from multiple adjacent timesteps, and not just the current one.
We perform the same comparisons as in Section 4.1, and find that the model trained from a random
initialisation has an excellent match with the construction, both in the output/loss metrics (Figure 2)
and in the parameters it ends up with (Figure 3).

We compared loss metrics for GD-SSM with other standard models including one- and two-layer
transformers, and S5 (Smith et al., 2022). We found that, on exactly the same sequence token inputs,
only the GD-SSM and a 2-layer transformer reached the same loss as actual GD, while other SSMs
such as S5 struggle to perform ICL with 1 layer (Figure 4C).

A 040 B 0.0030 C 17 1 step GD
— - lstep GD —- LstepGD = GD-SSM(1 layer)
= = 2-step GD = Mamba(1 layer)
—— GD-SSM(1 layer) 0.0025 == Mamba+LP(4 layer)
= Griffin(1 layer)
Griffin+LP(4 layer)
Linear SA(1 layer)
= Linear SA(2 layer)
S5(1 layer)

— - 2stepGD

0.35
= GD-SSM(1 layer) 0.84 |

GD-SSM(2 ayer) GD-SSM+MLP(L layer)
030 0.0020 —— GD-SSM(2 layer)
—— GD-SSM-+MLP(2 layer)

a "y
90 20,0015
g

0.4 4

L0 i 0.0010

0.5 0.0005
0.2 4

0.1 0. T T T
0 10000 20000 0 10000 20000 30000 0 20000 40000

Training steps Training steps Training steps

Figure 4: A: Comparison of GD-SSM performance with single layer and two layers on regression
task. B: Comparison of GD-SSM performance with and without MLP layers in single layer and
multi-layer setup on non-linear regression task. C: Comparison with other models on 1-D regres-
sion. The GD-SSM model was evaluated with both 1-layer and 2-layer configurations, and the S5,
Mamba, and Griffin models were included for comparison. TF refers to linear Transformer models,
with both 1-layer and 2-layer variants tested to evaluate their performance. A similar plot for N-D
regression is shown in Figure 6.

4.3 MULTI-STEP AND NON-LINEAR REGRESSION

To perform multi-step GD, we tested a GD-SSM with multiple-layers, where each layer of the
GD-SSM does 1-step of GD as shown in Appendix A.2. The token construction is identical to
that used for N-dimensional linear regression, and each layer includes the sliding window attention
mechanism. In Figure 4A, we show that that trained network is able to reach the same loss as the
multi-step GD.

Finally, to be able to handle any regression task, we tested GD-SSM with an MLP layer on non-linear
regression tasks. Again, we see that the trained model is able to reach the same level of performance
as performing GD directly on the dataset (Figure 4B).

5 RELATED WORK

In-context learning in transformers has been studied extensively, and various mechanisms have been
proposed to explain it (Hendel et al., 2023; von Oswald et al., 2023; Akyiirek et al., 2022). Of
those, the most prominent is that the self-attention mechanism performs gradient descent on a linear
loss. A construction with linear self-attention was demonstrated by von Oswald et al. (2023). While
linear-self attention can be written as an RNN (Katharopoulos et al., 2020b), the results of von
Oswald et al. (2023) depends on the tokens being constructed in a specific way, which limits the
generality of their construction. Moreover, the most common type of self-attention used is softmax
scaled dot-product self-attention rather than linear self-attention, and the basic linear self-attention
mechanism used in von Oswald et al. (2023) is not competitive with softmax self-attention. Whereas,
we show a construction that uses local-self attention with state-space models, which has been shown
to be competitive with softmax self-attention transformers (De et al., 2024). Zucchet et al. (2023)
show a correspondence between gated linear models (which include many commonly used forms
of SSMs) and linear self-attention, which is known to be able to do ICL. But compared to both
von Oswald et al. (2023) and Zucchet et al. (2023), our model is more parsimonious because of

Under review as a conference paper at ICLR 2025

the following: (1) In general, a linear self-attention model requires 32 parameters (f2 each for
query, key and value) for input dimension f> and without including the output projection, whereas
our model equivalently only requires f2 parameters, one each for each of the f? recurrent units.
(2) linear self-attention as constructed in von Oswald et al. (2023) requires 12 f? parameters to do
GD on a f x f linear regression problem, whereas ours still only requires f2 parameters. (3) to
construct a gated linear recurrent model from linear self-attention as done in Zucchet et al. (2023)
requires O3(d*) parameters for a linear self-attention with 3d? parameters. This blows up the size
of the model very significantly. On the other hand, since ours is a explicit and direct construction,
our model size remain proportional to the size of the linear regression problem.

Liu et al. (2024) formulate the SSM layer as an online optimization objective with exact solution.
Similarly, Sun et al. (2024) use the state of the SSM to perform GD. But both these papers consider
online updates, that is minibatch size 1 updates. One layer of their model is not capable of perform-
ing larger minibatch updates. Moreover, without sliding window attention, their online optimization
objective is limited to using single sequence tokens with a single-layer. And finally their goal is
not to explain how in-context learning happens with existing architectures, but rather to develop
entirely new SSM variants using the idea that an optimization process can be used for compressing
information as well, which is the key property required of a recurrent network.

The combination of local-self attention with Mamba has been used in for improving performance in
multiple instances, including most recently De et al. (2024); Ren et al. (2024). But these papers do
not specifically construct their model for ICL, nor do they attempt to distill inductive biases required
for ICL in state-space models.

6 DISCUSSION

This work establishes a clear connection between state-space models (SSMs) and gradient-based in-
context learning. We have demonstrated, both theoretically and empirically, that SSMs can emulate
gradient descent on implicit regression models, providing a mechanistic explanation for their in-
context learning capabilities. Our construction, GD-SSM, reveals the crucial role of architectural
features such as sliding window attention and multiplicative output interactions in enabling this
behavior. These findings not only explain the success of recent SSM variants in in-context learning
tasks but also provide valuable insights for the design of future sequence models.

The alignment between our theoretical construction and the behavior of trained models suggests
that the gradient descent mechanism may be a natural inductive bias in these architectures. This
understanding opens new avenues for analyzing and improving sequence models, potentially leading
to more efficient and effective architectures for a wide range of tasks.

Future research could explore the implications of this mechanism in larger-scale models, more com-
plex tasks, and real-world applications. Additionally, investigating how this understanding can be
leveraged to enhance the design and training of state-space models could yield significant advance-
ments in the field of sequence modeling.

REFERENCES

Ekin Akyiirek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? Investigations with linear models, November 2022. URL http:
//arxiv.org/abs/2211.15661. arXiv:2211.15661 [cs].

Ekin Akyiirek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-Context Language Learning: Ar-
chitectures and Algorithms, January 2024. URL http://arxiv.org/abs/2401.12973.
arXiv:2401.12973 [cs] version: 2.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The Long-Document Transformer,
December 2020. URL http://arxiv.org/abs/2004.05150. arXiv:2004.05150 [cs].

Tri Dao and Albert Gu. Transformers are SSMs: Generalized Models and Efficient Algorithms
Through Structured State Space Duality, May 2024. URL http://arxiv.org/abs/2405.
21060. arXiv:2405.21060 [cs].

3Using the same general assumption as in Section 3.2

10

http://arxiv.org/abs/2211.15661
http://arxiv.org/abs/2211.15661
http://arxiv.org/abs/2401.12973
http://arxiv.org/abs/2004.05150
http://arxiv.org/abs/2405.21060
http://arxiv.org/abs/2405.21060

Under review as a conference paper at ICLR 2025

Soham De, Samuel L. Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Al-
bert Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, Guillaume Des-
jardins, Arnaud Doucet, David Budden, Yee Whye Teh, Razvan Pascanu, Nando De Freitas,
and Caglar Gulcehre. Griffin: Mixing Gated Linear Recurrences with Local Attention for Ef-
ficient Language Models, February 2024. URL http://arxiv.org/abs/2402.19427.
arXiv:2402.19427 [cs].

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp.
1126-1135. PMLR, 06-11 Aug 2017. URL https://proceedings.mlr.press/v70/
finnl7a.html.

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What Can Transformers Learn
In-Context? A Case Study of Simple Function Classes, August 2023. URL http://arxiv.
org/abs/2208.01066. arXiv:2208.01066 [cs].

Riccardo Grazzi, Julien Siems, Simon Schrodi, Thomas Brox, and Frank Hutter. Is Mamba Capable
of In-Context Learning?, February 2024. URL http://arxiv.org/abs/2402.03170.
arXiv:2402.03170 [cs].

Albert Gu and Tri Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces,
December 2023. URL http://arxiv.org/abs/2312.00752. arXiv:2312.00752 [cs].

Albert Gu, Karan Goel, and Christopher Re. Efficiently Modeling Long Sequences with Structured
State Spaces. In International Conference on Learning Representations, October 2021. URL
https://openreview.net/forum?id=uYLFozlv1AC.

Tianyu Guo, Wei Hu, Song Mei, Huan Wang, Caiming Xiong, Silvio Savarese, and Yu Bai.
How Do Transformers Learn In-Context Beyond Simple Functions? A Case Study on Learn-
ing with Representations. October 2023. URL https://openreview.net/forum?id=
ikwEDvaldJZ.

Roee Hendel, Mor Geva, and Amir Globerson. In-Context Learning Creates Task Vectors, October
2023. URL http://arxiv.org/abs/2310.15916. arXiv:2310.15916 [cs].

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Frangois Fleuret. Transformers are
RNNs: Fast Autoregressive Transformers with Linear Attention, June 2020a. URL https:
//arxiv.org/abs/2006.16236Vv3.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Frangois Fleuret. Transformers
are RNNs: Fast Autoregressive Transformers with Linear Attention. In Proceedings of the
37th International Conference on Machine Learning, pp. 5156-5165. PMLR, November 2020b.
URL https://proceedings.mlr.press/v119/katharopoulos20a.html. ISSN:
2640-3498.

Bo Liu, Rui Wang, Lemeng Wu, Yihao Feng, Peter Stone, and Qiang Liu. Longhorn: State Space
Models are Amortized Online Learners, July 2024. URL http://arxiv.org/abs/2407.
14207. arXiv:2407.14207 [cs].

Sheng Lu, Irina Bigoulaeva, Rachneet Sachdeva, Harish Tayyar Madabushi, and Iryna Gurevych.
Are Emergent Abilities in Large Language Models just In-Context Learning?, September 2023.
URL http://arxiv.org/abs/2309.01809. arXiv:2309.01809 [cs].

Antonio Orvieto, Samuel L. Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
canu, and Soham De. Resurrecting Recurrent Neural Networks for Long Sequences, March 2023.
URL http://arxiv.org/abs/2303.06349. arXiv:2303.06349 [cs].

Jane Pan, Tianyu Gao, Howard Chen, and Danqi Chen. What In-Context Learning “Learns”

In-Context: Disentangling Task Recognition and Task Learning, May 2023. URL http:
//arxiv.org/abs/2305.09731. arXiv:2305.09731 [cs].

11

http://arxiv.org/abs/2402.19427
https://proceedings.mlr.press/v70/finn17a.html
https://proceedings.mlr.press/v70/finn17a.html
http://arxiv.org/abs/2208.01066
http://arxiv.org/abs/2208.01066
http://arxiv.org/abs/2402.03170
http://arxiv.org/abs/2312.00752
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=ikwEDva1JZ
https://openreview.net/forum?id=ikwEDva1JZ
http://arxiv.org/abs/2310.15916
https://arxiv.org/abs/2006.16236v3
https://arxiv.org/abs/2006.16236v3
https://proceedings.mlr.press/v119/katharopoulos20a.html
http://arxiv.org/abs/2407.14207
http://arxiv.org/abs/2407.14207
http://arxiv.org/abs/2309.01809
http://arxiv.org/abs/2303.06349
http://arxiv.org/abs/2305.09731
http://arxiv.org/abs/2305.09731

Under review as a conference paper at ICLR 2025

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y. Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher R€. Hyena Hierarchy: Towards Larger Convo-
lutional Language Models, April 2023. URL http://arxiv.org/abs/2302.10866.
arXiv:2302.10866 [cs].

Liliang Ren, Yang Liu, Yadong Lu, Yelong Shen, Chen Liang, and Weizhu Chen. Samba: Simple
Hybrid State Space Models for Efficient Unlimited Context Language Modeling, June 2024. URL
http://arxiv.org/abs/2406.07522. arXiv:2406.07522 [cs].

Jimmy T. H. Smith, Andrew Warrington, and Scott Linderman. Simplified State Space Layers
for Sequence Modeling. September 2022. URL https://openreview.net/forum?id=
Ai18HwW3AXgks.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
Chen, Xiaolong Wang, Sanmi Koyejo, Tatsunori Hashimoto, and Carlos Guestrin. Learning to
(Learn at Test Time): RNNs with Expressive Hidden States, August 2024. URL http://
arxiv.org/abs/2407.04620. arXiv:2407.04620 [cs].

Masayuki Tanaka. Weighted sigmoid gate unit for an activation function of deep neural network.
Pattern Recognition Letters, 135:354-359, 2020. ISSN 0167-8655. doi: https://doi.org/10.1016/
j-patrec.2020.05.017. URL https://www.sciencedirect.com/science/article/
pii/S0167865518307773.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neu-
ral Information Processing Systems 30, pp. 5998—6008. Curran Associates, Inc., 2017. URL
http://papers.nips.cc/paper/718l-attention-is-all-you—-need.pdf.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, Joao Sacramento, Alexander Mord-
vintsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers Learn In-Context by Gra-
dient Descent. In Proceedings of the 40th International Conference on Machine Learning,
pp- 35151-35174. PMLR, July 2023. URL https://proceedings.mlr.press/v202/
von-oswald23a.html. ISSN: 2640-3498.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao
Liu, Da Huang, Denny Zhou, and Tengyu Ma. Larger language models do in-context learning
differently, March 2023. URL http://arxiv.org/abs/2303.03846. arXiv:2303.03846
[cs].

Noam Wies, Yoav Levine, and Amnon Shashua. The Learnability of In-Context Learning, March
2023. URL http://arxiv.org/abs/2303.07895. arXiv:2303.07895 [cs].

Nicolas Zucchet, Seijin Kobayashi, Yassir Akram, Johannes von Oswald, Maxime Larcher, Angelika
Steger, and Jodo Sacramento. Gated recurrent neural networks discover attention, September
2023. URL http://arxiv.org/abs/2309.01775.

12

http://arxiv.org/abs/2302.10866
http://arxiv.org/abs/2406.07522
https://openreview.net/forum?id=Ai8Hw3AXqks
https://openreview.net/forum?id=Ai8Hw3AXqks
http://arxiv.org/abs/2407.04620
http://arxiv.org/abs/2407.04620
https://www.sciencedirect.com/science/article/pii/S0167865518307773
https://www.sciencedirect.com/science/article/pii/S0167865518307773
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://proceedings.mlr.press/v202/von-oswald23a.html
https://proceedings.mlr.press/v202/von-oswald23a.html
http://arxiv.org/abs/2303.03846
http://arxiv.org/abs/2303.07895
http://arxiv.org/abs/2309.01775

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 N-D LINEAR REGRESSION

The implicit linear model of N-dimensional (N = f) linear regression is

=Wwlg,

<

for W € R/*f and 4, € R/. The loss is
L(D; W) = Z Wiz, — yl) W'z, —yi) . (22)
2N

The gradient of this loss calculated using the first ¢ samples D;.; is

t

Z Ty — yi)T (WT Ti— yz)

— W=Ww,

Vw L(D1.; Wo) =

<~o—\n—l

For notational simplicity, we will write this as f 1-D regression problems, one for each element of
y. Using [W]. ; to denote the i-th column of matrix W, using [Wy]. ; to denote the i-th column of
matrix Wy and using [y;]; = [W]T; x, to denote the i-th element of vector y;,

g(D1.4; [Wol.i) = 9(Dra—1; [Wol.i) + (W)l @ — [wei) o (23)
where %g(DM; Wol.i) = [Vw L(Dhy; WO)]:J.

Implementation as a linear recurrent network: The input is given as in Egs. 19 & 20, with
context matrix constructed as in Eq. 21.

The local self attention calculates CQCT, which is then provided as input to the SSM layer. If
T
Q = (é) (((1;) = [§ 0 8] this corresponds to the input to the SSM being [y;];x; (assuming

Defining Z; € R/*/ as the state of the SSM, where [Z;]. ; = g(D1.4; [Wo]..;)T (note the transpose),
and assuming W, = 0, the equations Eq. 23 for all s (all columns) can be written as a single
equation

Z,=Z,_,+C.QC{,
with output

Or = —%Zt Ciq

If q = (@), this corresponds exactly to the output §; 1 = —nVwL(D1..; Wo)T 241, This

provides a construction that allows us to perform gradient descent on the parameters of an arbitrary
dimensional input model.

A.2 MULTI-STEP GD

Proposition 3 Given 1,. .., L diagonal linear recurrent layers, each augmented with sliding win-
dow attention with sliding window of size 3, and sequence tokens sy; = x; and 82541 = y;, for j =
1,..., N, drawn from a linear model, for each layer l, one can construct pairs of recurrent matri-
ces AL 1)(), AW (s5), inputs BUD (s;), B2 (s;) and output matrices UV (s;), UG (s;)
such that each recurrent step for every token s; produces §;11 = (AlW)ij+1 as output, where
AW is the update for | steps of gradient descent, i.e. AW = ((Wy — nVwL(D; Wy)) —
NVw L(D; (Wy — nVwL(D; Wy)))...Ltimes). The test input x 11 is contained in token San 12,
and produces the test prediction Yy 1.

13

Under review as a conference paper at ICLR 2025

We have so far assumed that W, = 0 thus far, which for the first layer corresponds to initialising the
parameters of the equivalent linear model to all zeros. For multi-step GD, the second layer onwards
have a non-zero initial value of parameters, so let’s derive a general form for a layer that performs
GD with non-zero initialisation.

Starting from Eq. 23, repeated below for convenience,
Q(Dlzt; [WO]:,i) = Q(Dlzt—l; [WO}:J) + ([WO]TZ Ty — [yt}z) T,

we note that this accumulates two different components — ([WO]TZ €,) x; and [y¢]; Ty.
We propose having two different heads (per layer) to accumulate these quantities separately (i)
[y¢]: ¢ and (ii) z; x.
Defining Z;, € R™*™ as the state of the SSM, where [Z,].; = g(D1.4; [Wo]..;)T (note the trans-
pose), the recurrent network corresponding to the accumulation of (i) is the same as before:

Zy =2y 1+ CtQCtT-
For (ii), we can write an equivalent recurrent network

Z,=Z,.1+CQCT,

~ 1\ (1\T 100 . . . T
IfQ = (8) (8) = [8 0 8} , this corresponds to the input to the SSM being x:x; .
The output at layer [is
o) = (Wi_i + A W) Ciq,
where
AlW = —% (leil Z~t(l) — Zt(l)) .

In summary, at each layer, there are two linear recurrent layers, and the output includes a multiplica-
tive combination across layers and with the external input.

Since each recurrent layer is performing the same operation, one could also loop the output of each
layer back to do multiple steps of GD.

A.3 NON-LINEAR GD

Let us consider a non-linear regression problem with a least squares loss, where the output labels are
again 1-dimensional for simplicity. For a given dataset of N samples D = {< x;,y; >}£\LO, T €
RS,y € R, predictions from a non-linear model are generated using

j=g(w'z),
for w € R/ and where g is some non-linear function such as sigmoid or an MLP. This will be our
implicit non-linear model for this 1-dimensional target case.

The best fit for w is found by minimizing the loss
1 & 1 2
. — A, — . 2 f— T . J— .
£(Piwn) = 57 31 = il = g 3 otz -)

The gradient of the loss calculated on the first ¢ samples of the dataset is
t
1
VwL(Dy.4;wo) = t Z (g(on x;) — yz) Ql(on x;)T;
i=1
where Dj.; denotes the first ¢ samples in D, and ¢’ denotes the first derivative of g.

We define the term g but without containing g, as
t
T
Guwo(Drt) = Y (wi @i — yi) @i,
i=1
which can be recursively calculated as before. Note that this quantity is not the unscaled gradient
anymore. In this case we have the following Proposition:

14

Under review as a conference paper at ICLR 2025

Proposition 4 Given a diagonal linear recurrent layer augmented with sliding window attention
with sliding window of size 3, followed by a MLP layer, and tokens so; = x; and Saj11 = Yj,
for j = 1,...,N, drawn from a non-linear model, one can construct recurrent matrix A(s;),
input B(s;) and output matrix U (s;) such that each recurrent step for every token s; produces
Yjt1 = —(AW) Tz ;11 as output, where AW is one step of gradient descent, i.e. AW = nVy L.
The test input x 1 is contained in token sz 2, and produces the test prediction Yy 41-

Writing this as an SSM exactly as in 12 (with the same ¥)
zg=Iz 1+ Pc,
we now need to calculate the output as
Jt41 =~V L(D1:¢; wo) " @pp1 -

The interleaved MLP layer f would need to learn a mapping such that

t t
/ (Z (on T — yi) mz) = Z (g(w(? x;) — yz) g’(w(?)T,
i=1 i=1
which it will be able to since it is an universal approximator. This can then be used to calculate the
output as

Ot = f(zt)T(-')ct .

A.4 REGULARISATION TERMS IN THE LOSS

For example, if we wished to change the loss function in Eq. 22 to include L2 regression,
N

1 X
L(D;W) = ﬁZHyi —wuills + W[5,
i=1

this will change the gradient to be

t
1 0
VLl (Dri; Wo) = = > oo [9i — yill5 +2Wo .
t & OW

To construct an SSM that does GD on this loss instead of the one in Eq. 8, all we’d have to do is
change the AW in the output to be

n A 1
AW =+ (vn{lzt()—thrvm,l).

A.5 EXPERIMENTAL DETAILS OF 1-D REGRESSION

The dataset construction and the model evaluation methods are same as that used in von Oswald
et al. (2023). Each task (context) 7 consists of in-context training data D, = {(z,;, ym)};\;l and
test point (z- n+1,Yr N+1). At every optimization step of the model, we sample the regression
parameters W, ~ N(0, I). We then sample z,; ~ U(—1,1)/ and construct a scalar target y, ; =
Wiz, ;, where f is the feature size of the input. To evaluate the model, a set of 10% tasks are sampled
and mean squared error is calculated.

To evaluate the proposed model, we conducted experiments using a constructed token dataset with
an input feature size of 10. The model architecture is a single-layer, state space model (SSM) with
a hidden dimension of 20. Initialization was performed with 2 blocks and an SSM latent size of 10.
No activation function was used during training.

The training process spanned a maximum of 300,000 epochs with a batch size of 64. A cosine
annealing schedule and linear warmup were utilized for the learning rate, beginning with an initial
SSM learning rate of 1 x 10~* for optimizing the SSM parameters using the AdamW optimizer.
The global learning rate for the remaining parameters was set to 2 x 10~%, and these parameters
were also optimized using AdamW. A weight decay of 0.05 was applied to regularize the model and
prevent overfitting.

15

Under review as a conference paper at ICLR 2025

A.6 EXPERIMENTAL DETAILS OF N-D REGRESSION

The setup is similar to 1-d regression, but we sample n,, different regression parameters WF ~
N(0,I), where n, is the dimension of vector Yris and 1 <= k <= n,. We then construct target
y’ﬁl = Wka., ; for all k. For all our experiments, we choose n, = f. We have evaluated the model
based on all the experiments that are used for the 1-D regression evaluation.

To have the model prediction equivalent to one step gradient descent, we train the single layer GD-
SSM using Adam optimizer, with an initial learning rate of 0.0001 for recurrent parameters with
cosine annealing. For all the other parameters we double the learning rate that is used for recurrent
parameters. In all our experiments, each optimization step contains 64 tasks.

Layer 1, Head 1

Sliding window attention weight Recurrent weight
Trained Constructed Trained Constructed

FEER

Layer 2, Head 1

Sliding window attention weight Recurrent weight
Trained Constructed Trained Constructed

"l B |

Layer 2, Head 2

Sliding window attention weight Recurrent weight Input skip weight
Trained Constructed Trained Constructed Trained Constructed

1 8| BL

Figure 5: Visualisation of the trained parameters for two layer GD-SSM on linear regression task.

A.7 EXPERIMENTAL DETAILS OF MODEL COMPARISON

Table 1 details the model configurations shown in Figure 4C. The base Griffin and Mamba models
were both trained using the Adam optimizer with a learning rate of 0.0001, matching S5’s configura-
tion. For the enhanced versions, Mamba+Linear was configured with 4 layers and 128 hidden states,
trained using the AdamW optimizer with a learning rate of 0.0001, and evaluated on both N-D and
1-D settings. Similarly, Griffin+Linear was structured with 4 layers, utilizing an LRU width of 128,
and 4 Multi-Query Attention (MQA) heads, trained with the Adam optimizer at a learning rate of
0.0001 in 1-D setting and 0.0002 in 2-D setting.

The architectural comparison in Table 1 highlights key differences between models. Griffin com-
bines two RG-LRU modules with one MQA module, while Mamba utilizes a more straightforward
structure with its basic building blocks. Our experiments show that Griffin achieves its best perfor-
mance (loss: 0.4114) with 2 heads and 2 layers, with additional parameter scaling showing minimal
improvements. Mamba maintains performance across different configurations, with losses ranging
from 0.4126 to 0.5388.

In subsequent experiments, we explored the effect of introducing Linear Projection into the Mamba
architecture. From the comparison between Figure 6 and Figure 4C, it can be clearly seen that
the combination of Mamba+Linear Projection brings significant performance improvement and
achieves excellent experimental results.

16

Under review as a conference paper at ICLR 2025

1.0
1 step GD I
= GD-SSM(1 layer) 0.8 |
—— GD-SSM(2 layers) {
=== Mamba(1 layer) 5 0.6
== Mamba+LP(4 layer) 2
Gr?ffin(l layer) N 041 1
Griffin+LP(4 layer) \ \
Linear SA(1 layer) \ ——
Linear SA(2 layer) 0.2 A -
S5(1 layer) T T T
0 20000 40000

Training steps

Figure 6: Comparison with other models on N-D regression. The GD-SSM model was evaluated
with both 1-layer and 2-layer configurations, and the S5, Mamba, and Griffin models were included
for comparison. Linear SA refers to linear self attention models, with both 1-layer and 2-layer
variants tested to evaluate their performance.

Griffin Model
head 1 2 2 5
layer 1 1 2 1
loss 0.7490 | 0.5665 | 0.4114 | 0.6047
Mamba Model
Model dimension 32 64 64 128
layer 1 1 2 4
loss 0.5388 | 0.4126 | 0.4179 | 0.4157
S5 Model
layer 1 2 4 6
loss 0.426 0.426 0.426 0.426

Table 1: Comparison of Griffin, Mamba and S5 Models with different layers/heads

We also compare the performance of S5 model on the N-dimensional linear regression task with
different number of layers. For each S5 model, we use model size and state size of 32, and an input
and output projection to transform the input data to the higher dimensional model size and vice-
versa. We also experiment with different model size and state size from a set of [10,64,128,256], but
do not observe any improvement in the performance. For training, Adam optimizer with a learning
rate of 0.0001 is used. We use zero-order hold method to discretize the state space system.

A.8 EXPERIMENTAL DETAILS OF MULTI-STEP AND NON-LINEAR REGRESSION

To emulate the multi-step regression task, we train the multi-layer GD-SSM architecture, without
applying any non-linearity between the layers. In our experiments, we use two layer GD-SSM
architecture. We use the same hyper-parameters that are used for the single layer GD-SSM. We
compare the validation loss of the regression task between the learned model and the model based on
construction. We observe the performance of two layer GD-SSM better than the GD-SSM initialised
with the parameters from our construction, so we train the GD-SSM model initialised with the
parameters from our construction 1000 steps to match the performance of a trained GD-SSM.

For non-linear regression tasks, we use the experiments from Finn et al. (2017) and follow the data
construction of von Oswald et al. (2023). To the output of the linear GD-SSM layer, we add a
non-linear function, weighted sigmoid gated unit (Tanaka, 2020), as used in (Smith et al., 2022).
For all the non-linear regression tasks, an input embedding layer is used in addition to the model
architecture used for linear regression tasks. The hyper-parameters are the same that is used for all
the previous tasks, and the trained model loss is compared with a model with GD-SSM layer/layers
based on gradient descent construction and trained non-linearity layer/layers. Similar to multi-step
linear regression, we observe the GD-SSM performance better than the GD-SSM initialised with the
parameters from our construction.

17

Under review as a conference paper at ICLR 2025

A.9 ABLATION STUDY: 1-D REGRESSION

This experiment analyzed the impact of the input matrix and output matrix construction on model
performance by performing an ablation study on the 1-D GD-SSM model. The experimental results
show that when both components exist at the same time, the model loss is the lowest (0.209); while
removing either component or both components at the same time will increase the loss to 0.426.
This shows that the construction of the input and output matrices is interdependent and needs to
exist at the same time to work. Keeping only one of them will not improve the model performance.

Model Input Construction | Output Construction | Loss
GD-SSM v v 0.209
GD-SSM X v 0.426
GD-SSM v X 0.426
GD-SSM X X 0.426

Table 2: Ablation test on 1-D GD-SSM

A.10 ABLATION STUDY: N-D REGRESSION

The two important features we propose for emulating gradient descent in our GD-SSM model ar-
chitecture are the sliding window attention and the multiplicative interaction between the hidden
state of the SSM and input. In this ablation study, we compare our proposed one layer GD-SSM
model performance with its variants where the sliding window attention and output skip connection
are turned off. The model performance shows that both these features are crucial for the model in
emulating a single step gradient descent update.

Model Sliding window attention | Multiplicative output skip-connection | Loss
GD-SSM v v 0.206
GD-SSM X v 0.41
GD-SSM 4 X 0.41
GD-SSM X X 0.41

Table 3: A comparison of our proposed model GD-SSM with its variants where two major features
sliding window attention and output skip connection are turned off.

18

	Introduction
	Background
	SSMs can emulate gradient descent on linear regression tasks
	Single step 1-dimensional linear regression
	Single Step N-dimensional linear regression
	Generalising to any regression problem

	Trained linear recurrent networks do emulate gradient descent on linear regression tasks
	Single step 1-dimensional linear regression
	Single step N-dimensional linear regression
	Multi-step and non-linear regression

	Related work
	Discussion
	Appendix
	N-D linear regression
	Multi-step GD
	Non-linear GD
	Regularisation terms in the loss
	Experimental details of 1-d regression
	Experimental details of N-d regression
	Experimental details of model comparison
	Experimental details of multi-step and non-linear regression
	Ablation Study: 1-D Regression
	Ablation Study: N-D Regression

