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Abstract

We introduce a new general identifiable framework for principled disentanglement
referred to as Structured Nonlinear Independent Component Analysis (SNICA).
Our contribution is to extend the identifiability theory of deep generative models
for a very broad class of structured models. While previous works have shown
identifiability for specific classes of time-series models, our theorems extend this to
more general temporal structures as well as to models with more complex structures
such as spatial dependencies. In particular, we establish the major result that
identifiability for this framework holds even in the presence of noise of unknown
distribution. Finally, as an example of our framework’s flexibility, we introduce
the first nonlinear ICA model for time-series that combines the following very
useful properties: it accounts for both nonstationarity and autocorrelation in a fully
unsupervised setting; performs dimensionality reduction; models hidden states; and
enables principled estimation and inference by variational maximum-likelihood.

1 Introduction

A central tenet of unsupervised deep learning is that noisy and high dimensional real world data is
generated by a nonlinear transformation of lower dimensional latent factors. Learning such lower
dimensional features is valuable as they may allow us to understand complex scientific observations
in terms of much simpler, semantically meaningful, representations (Morioka et al., 2020; Zhou and
Wei, 2020). Access to a ground truth generative model and its latent features would also greatly
enhance several other downstream tasks such as classification (Klindt et al., 2021; Banville et al.,
2021), transfer learning (Khemakhem et al., 2020b), as well as causal inference (Monti et al., 2019;
Wu and Fukumizu, 2020).

A recently popular approach to deep representation learning has been to learn disentangled features.
Whilst not rigorously defined, the general methodology has been to use deep generative models such
as VAEs (Kingma and Welling, 2014; Higgins et al., 2017) to estimate semantically distinct factors
of variation that generate and encode the data. A substantial problem with the vast majority of work
on disentanglement learning is that the models used are not identifiable – that is, they do not learn
the true generative features, even in the limit of infinite data – in fact, this task has been proven
∗hermanni.halva@helsinki.fi
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impossible without inductive biases on the generative model (Hyvärinen and Pajunen, 1999; Locatello
et al., 2019). Lack of identifiability plagues deep learning models broadly and has been implicated as
one of the reasons for unexpectedly poor behaviour when these models are deployed in real world
applications (D’Amour et al., 2020). Fortunately, in many applications the data have dependency
structures, such as temporal dependencies which introduce inductive biases. Recent advances in both
identifiability theory and practical algorithms for nonlinear ICA (Hyvärinen and Morioka, 2016, 2017;
Hälvä and Hyvärinen, 2020; Morioka et al., 2021; Klindt et al., 2021; Oberhauser and Schell, 2021)
exploit this and offer a principled approach to disentanglement for such data. Learning statistically
independent nonlinear features in such models is well-defined, i.e. those models are identifiable.

However, the existing nonlinear ICA models suffer from numerous limitations. First, they only
exploit specific types of temporal structures, such as either temporal dependencies or nonstationarity.
Second, they often work under the assumption that some ’auxiliary’ data about a latent process is
observed, such as knowledge of the switching points of a nonstationary process as in Hyvärinen
and Morioka (2016); Khemakhem et al. (2020a) . Furthermore, all the nonlinear ICA models cited
above, with the exception of Khemakhem et al. (2020a), assume that the data are fully observed and
noise-free, even though observation noise is very common in practice, and even Khemakhem et al.
(2020a) assumes the noise distribution to be exactly known. This approach of modelling observation
noise explicitly is in stark contrast to the approach taken in papers, such as Locatello et al. (2020),
who instead consider general stochasticity of their model to be captured by latent variables – this
approach would be ill-suited to the type of denoising one would often need in practice. Lastly, the
identifiability theorems in previous nonlinear ICA works usually restrict the latent components to a
specific class of models such as exponential families (but see Hyvärinen and Morioka (2017)).

In this paper we introduce a new framework for identifiable disentanglement, Structured Nonlinear
ICA (SNICA), which removes each of the aforementioned limitations in a single unifying framework.
Furthermore, the framework guarantees identifiability of a rich class of nonlinear ICA models that is
able to exploit dependency structures of any arbitrary order and thus, for instance, extends to spatially
structured data. This is the first major theoretical contribution of our paper.

The second important theoretical contribution of our paper proves that models within the SNICA
framework are identifiable even in the presence of additive output noise of arbitrary, unknown
distribution. We achieve this by extending the theorems by Gassiat et al. (2020b,a). The subsequent
practical implication is that SNICA models can perform dimensionality reduction to identifiable latent
components and de-noise observed data. We note that noisy-observation part of the identifiability
theory is not even limited to nonlinear ICA but applies to any system observed under noise.

Third, we give mild sufficient conditions, relating to the strength and the non-Gaussian nature of the
temporal or spatial dependencies, enabling identifiability of nonlinear independent components in
this general framework. An important implication is that our theorems can be used, for example, to
develop models for disentangling identifiable features from spatial or spatio-temporal data.

As an example of the flexibility of the SNICA framework, we present a new nonlinear ICA model
called ∆-SNICA . It achieves the following very practical properties which have previously been
unattainable in the context of nonlinear ICA: the ability to account for both nonstationarity and
autocorrelation in a fully unsupervised setting; ability perform dimensionality reduction; model latent
states; and to enable principled estimation and inference by variational maximum-likelihood methods.
We demonstrate the practical utility of the model in an application to noisy neuroimaging data that
is hypothesized to contain meaningful lower dimensional latent components and complex temporal
dynamics.

2 Background

We start by giving some brief background on Nonlinear ICA and identifiability. Consider a model
where the distribution of observed data x is given by pX(x;θ) for some parameter vector θ. This
model is called identifiable if the following condition is fulfilled:

∀(θ,θ′) pX(x;θ) = pX(x;θ′)⇒ θ = θ′ . (1)

In other words, based on the observed data distribution alone, we can uniquely infer the parameters
that generated the data. For models parameterized with some nonparametric function estimator f , such
as a deep neural network, we can replace θ with f in the equation above. In practice, identifiability
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might hold for some parameters, not all; and parameters might be identifiable up to some more or
less trivial indeterminacies, such as scaling.

In a typical nonlinear ICA setting we observe some x ∈ RN which has been generated by an invertible
nonlinear mixing function f from latent independent components s ∈ RN , with p(s) =

∏N
i=1 p(s

(i)),
as per:

x = f(s) , (2)

Identifiability of f would then mean that we can in theory find the true f , and subsequently the
true data generating components. Unfortunately, without some additional structure this model is
unidentifiable, as shown by Hyvärinen and Pajunen (1999): there is an infinite number of possible
solutions and these have no trivial relation with each other. To solve this problem, previous work
(Sprekeler et al., 2014; Hyvärinen and Morioka, 2016, 2017) developed models with temporal
structure. Such time series models were generalized and expressed in a succinct way by Hyvärinen
et al. (2019); Khemakhem et al. (2020a) by assuming the independent components are conditionally
independent upon some observed auxiliary variable ut: p(st|ut) =

∏N
i=1 p(s

(i)
t |ut) . In a time series

context, the auxiliary variable might be history, e.g. ut = xt−1, or the index of a time segment to
model nonstationarity (or piece-wise stationarity). (It could also be data from another modality, such
as audio data used to condition video data (Arandjelovic and Zisserman, 2017).)

Notice that the mixing function f in (2) is assumed bijective and thus identifiable dimension reduction
is not possible in most of the models discussed above. The only exceptions, we are aware of, are
Khemakhem et al. (2020a); Klindt et al. (2021) who choose f as injective rather than bijective.
Further, Khemakhem et al. (2020a) assume additive noise on the observations x = f(s) + ε , which
allows to estimate posterior of s by an identifiable VAE (iVAE). We will take a similar strategy in
what follows.

3 Definition of Structured Nonlinear ICA

In this section, we first present the new framework of Structured Nonlinear ICA (SNICA) – a broad
class of models for identifiable disentanglement and learning of independent components when data
has structural dependencies. Next, we give an example of a particularly useful specific model that fits
within our framework, called ∆-SNICA , by using switching linear dynamical latent processes.

3.1 Structured Nonlinear ICA framework

Consider observations (xt)t∈T = ((x
(1)
t , . . . , x

(M)
t ))t∈T where T is a discrete indexing set of arbitrary

dimension. For discrete time-series models, like previous works, T would be a subset of N. Crucially,
however, we allow it to be any arbitrary indexing variable that describes a desired structure. For
instance, T could be a subset of N2 for spatial data.

We assume the data is generated according the following nonlinear ICA model. First, there exist
latent components s(i) = (s

(i)
t )t∈T for i ∈ {1, . . . , N} where for any t, t′ ∈ T, the distributions of

(s
(i)
t )16i6N and (s

(i)
t′ )16i6N are the same, which is a weak form of stationarity. Second, we assume

that for any m ∈ N∗ and (t1, . . . , tm) ∈ Tm, p(st1 , . . . , stm) =
∏N
i=1 p(s

(i)
t1 , . . . , s

(i)
tm): that is, the

components are unconditionally independent. We further assume that the nonlinear mixing function
f : RN → RM with M > N is injective, so there may be more observed variables than components.
Finally, denote observational noise by εt ∈ RM and assume that they are i.i.d. for all t ∈ T and
independent of the signals s(i). Putting these together, we assume the mixing model where for each
t ∈ T,

xt = f(st) + εt , (3)

where st = (s
(1)
t , . . . , s

(N)
t ). Importantly, εt can have any arbitrary unknown distribution, even with

dependent entries; in fact, it may even not have finite moments.

The main appeal of this framework is that, under the conditions given in next section, we can now
guarantee identifiability for a very broad and rich class of models.

First, notice that all previous Nonlinear ICA time-series models can be reformulated and often
improved upon when viewed through this new unifying framework. In other words, we can create
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Figure 1: Graphical models for the SNICA framework

models that are very much like those previous works, and capture their dependency profiles, but
with the changes that by assuming unconditional independence and output noise we now allow them
to perform dimension reduction (this does also require some additional assumptions needed in our
identifiability theorems below). To see this, consider the model in Hälvä and Hyvärinen (2020)
which captures nonstationarity in the independent components through a global hidden Markov chain.
We can transform this model into the SNICA framework if we instead model each independent
component as its own HMM (Figure 1a), with the added benefit that we now have marginally
independent components and are able to perform dimensionality reduction into low dimensional
latent components. Nonlinear ICA with time-dependencies, such as in an autoregressive model,
proposed by Hyvärinen and Morioka (2017) is also a special case of our framework (Figure 1b),
but again with the extension of dimensionality reduction. Furthermore, this framework allows for
a plethora of new Nonlinear ICA models to be developed. As described above, these do not have
to be limited to time-series but could for instance be a process on a two-dimensional graph with
appropriate (in)dependencies (see Figure 1c). However, we now proceed to introduce a particularly
useful time-series model using our framework.

3.2 ∆-SNICA : Nonlinear ICA with switching linear dynamical systems

While the above framework has great generality, any practical application will need a specific model.
Next we propose one which combines the following properties of previous nonlinear ICA models into
a single model: ability to account for both nonstationarity and autocorrelation in a fully unsupervised
setting, to perform dimensionality reduction and model hidden states. Real world processes, such
as video/audio data, financial time-series, and brain signals, exhibit these properties – disentangling
latent features in such data would hence be very useful.

Our new model is depicted in Figure 1d. The independent components are generated by a Switching
Linear Dynamical System (SLDS) (Ackerson and Fu, 1968; Chang and Athans, 1978; Hamilton,
1990; Ghahramani and Hinton, 2000) with additional latent variables to express rich dynamics.
Formally, for each independent component i ∈ {1, . . . , N}, consider the following SLDS over some
latent vector y

(i)
t :

y
(i)
t = B(i)

ut y
(i)
t−1 + b(i)

ut + ε(i)
ut , (4)

where ut := u
(i)
t is a state of a first-order hidden Markov chain (u

(i)
t )t=1:T . Crucially, we assume that

the independent components at each time-point are the first elements y(i)
t,1 of y

(i)
t = (y

(i)
t,1, . . . , y

(i)
t,d)

T ,

i.e. s(i)
t = y

(i)
t,1. The rest of the elements in y

(i)
t are latent variables modelling hidden dynamics.

The great utility of using such a higher-dimensional latent variable is that this model allows us, for
example, as a special case, to consider higher-order ARMA processes, thus modelling each s(i)

t as
switching between ARMA processes of an order determined by the dimensionality of yt. We call the
ensuing model ∆-SNICA ("Delta-SNICA", with delta as in "dynamic").
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4 Identifiability

In this section, we present two very general identifiability theorems for SNICA. We basically decouple
the problem into two parts. First, we consider identifying the noise-free distribution of f(st) from
noisy data. Theorem 1 states conditions—on tail behaviour, non-degeneracy, and non-Gaussianity—
under which it is possible to recover the distribution of a process based on noisy data with unknown
noise distribution. Second, we consider demixing of the nonlinearly mixed data. Theorem 2 provides
general conditions—on temporal or spatial dependencies, and non-Gaussianity—that allow recovery
of the mixing function f when there is no more noise. We then consider application of these theorems
to SNICA.

4.1 Identifiability with unknown noise distribution

Consider the model
xt = zt + εt , (5)

where (zt)t∈T is a family of random variables in RM such that all zt, t ∈ T, have the same marginal
distribution, and (εt)t∈T is a family of independent (over t) and identically distributed random
variables, independent of (zt)t∈T. Let P be the common distribution of each εt, for t ∈ T. Let t1
and t2 in T, and consider the following assumptions.

• (A1) [Tail behaviour] For some ρ < 3, there exist A and B such that for all λ ∈ RN ,

E[exp(〈λ, zt1〉)] 6 A exp(B‖λ‖ρ) .

• (A2) [Non-degeneracy] For any η ∈ CM , E[exp{〈η, zt2〉}| zt1 ] is not the null random
variable.

• (A3) [Non-Gaussianity] The following assertion is false: there exist a vector η ∈ RM and
independent random variables z̃ and u, such that u is a non dirac Gaussian random variable
and 〈η, zt1〉 has the same distribution as z̃ + u.

We defer the detailed discussion on the practical meaning of the assumptions (A1-A3) in the context
of SNICA to Section 4.3. We next present Theorem 1 which establishes identifiability under unknown
noise (its proof is postponed to Section A.1 in the Supplementary Material):

Theorem 1 Assume that assumptions (A1), (A2) and (A3) hold for some (t1, t2) ∈ T2. Then, up
to translation, for all m > 2, for all (t3, . . . , tm) ∈ Tm−2, the application that associates the
distribution of (zt1 , . . . , ztm) and P to the distribution of (xt1 , . . . ,xtm) is one-to-one.

Here, up to translation means that adding a constant vector to all εt, and substracting this constant to
all zt, t ∈ {t1, . . . , tm}, does not change the distribution of (xt1 , . . . ,xtm). The proof of Theorem 1
extends that of Theorem 1 in (Gassiat et al., 2020b), see also (Gassiat et al., 2020a), which assumed
sub-Gaussian noise-free data. Our extension allows the noise-free data to have heavier tails, which is
important since (noise-free) data in many real-world applications is super-Gaussian, i.e. heavy-tailed,
as is well-known in work on linear ICA (Hyvärinen et al., 2001).

Importantly, there is no assumption on the unknown noise distribution in Theorem 1. In fact, it does
not even assume a mixing as in ICA, and thus extends greatly outside of the framework of this paper.

4.2 Identifiability of the mixing function

Based on Theorem 1, it is possible to recover the distribution of the noise-free data in SNICA in (3)
by setting zt = f(st). Next, we consider under which conditions the mixing function f is identifiable.
Denote by S = S(1) × · · · × S(N) the support of the distribution of all st. We consider the situation
where each S(i) ⊂ R, 1 6 i 6 N , is connected, so that each S(i) is an interval. We assume moreover
that the injective mixing function f is a C2 diffeomorphism between S and a C2 differentiable
manifoldM ⊂ RM . Formally, this means that there exists an atlas {ϕϑ : Uϑ → RN}ϑ∈Θ ofM
such that for all ϑ, ϑ′ ∈ Θ, the map ϕϑ ◦ ϕ−1

ϑ′ is a C2 map, and f is a bijection RN →M such that
for all ϑ ∈ Θ, ϕϑ ◦ f and f−1 ◦ ϕ−1

ϑ have continuous second derivatives. The sets Uϑ, ϑ ∈ Θ, cover
M and are open inM. The proof of Theorem 2 is postponed to Section A.2 in the Supplementary
Material.
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Theorem 2 Assume that there exist m > 2 and (t1, . . . , tm) ∈ Tm such that the vector
(s

(i)
t1 , . . . , s

(i)
tm) has a density p

(i)
m which is C2 on (S(i))m. Assume moreover that there exist

(k, l) ∈ {1, . . . ,m}2 with k 6= l such that the following assumptions hold with Q(i)
m = log p

(i)
m .

• (B1) (Uniform (k, l)-dependency). For all i ∈ {1, . . . , N}, the set of zeros of ∂2

∂s
(i)
tk
∂s

(i)
tl

Q
(i)
m

is a meagre subset of (S(i))m, i.e. it contains no open subset.

• (B2) (Local (k, l)-non quasi Gaussianity). For any open subset A ⊂ Sm, there exists at
most one i ∈ {1, . . . , N} such that there exists a function α : Rm−1 → R and a constant
c ∈ R such that for all s ∈ A,

∂2

∂s
(i)
tk
∂s

(i)
tl

Q(i)
m = c α(s

(i)
tk
, s

(i)
(−tk,−tl))α(s

(i)
tl
, s

(i)
(−tk,−tl)) , (6)

where s
(i)
(−tk,−tl) is (s

(i)
t1 , . . . , s

(i)
tm) without the coordinates tk and tl.

Then, f−1 can be recovered up to permutation and coordinate-wise transformations from the distribu-
tion of (f(st1), . . . , f(stm)).

4.3 Applications to SNICA

In this section, we provide additional comments on the assumptions (A1-A3) and (B1-B2) and their
verification in the context of SNICA.

Assumption (A1) is a condition on the tails of the noise-free data: it allows tails that are somewhat
heavier than Gaussian tails. It is in fact equivalent to assuming that for some ρ̃ > 3/2, there exists
A′, B′ > 0 such that for all t > 0, P(‖zt1‖ > t) 6 A′ exp(−B′tρ̃).

Assumption (A2) is a non-degeneracy condition likely to be fulfilled for any randomly chosen
SNICA model parameters. As an example, consider a model such as Fig. 1c, where there exist hidden
variables (ut)t∈T taking values in a finite set {1, . . . ,K} such that the pairs of variables (zt, ut) have
the same distribution for all t ∈ T, and such that conditioned on (ut)t∈T, the variables (zt)t∈T are
independent and the distribution of zt only depends on ut. (As a special case, this model includes
the temporal HMM setting described in Fig. 1a.) Let (t1, t2) ∈ T2. For all u, v ∈ {1, . . . ,K}, let
π(u) = put1 (u) be the mass function of ut1 , Q(u, v) = put2 |ut1 (v|u) be the transition matrix from
ut1 to ut2 , and γu(z) = pzt1 |ut1 (z|u) be the density of zt1 conditionally to ut1 = u. By assumption,
it is also the density of zt2 conditionally to ut2 = u. Theorem 3 provides sufficient conditions for
assumption (A2) to hold:

Theorem 3 Assume that Q has full rank, minu π(u) > 0 and the (γu)16u6K are linearly indepen-
dent, then (A2) is satisfied as soon as the functions (η 7→

∫
exp(〈η, z〉)γv(z)dz)16v6K do not have

simultaneous zeros.

Besides the non-simultaneous zeros assumption, the assumptions of Theorem 3 are reminiscent of
those used for the identifiability of non-parametric hidden Markov models, see for instance Gassiat
et al. (2016); Lehéricy (2019). The key element is that zt1 and zt2 are not independent. Thus, we see
that (A2) holds if the π and the γ are not degenerate (in the precise sense given by Theorem 3), for the
latent state models in Figs. 1a,1c.Another situation where (A2) holds is when zt2 is a complete statistic
(Lehmann and Casella, 2006) in the statistical model {Pzt2 |zt1 (·|zt1)}zt1 , where Pzt2 |zt1 (·|zt1) is
the distribution of zt2 conditionally to zt1 . Consider the two following examples where this holds: 1)
When the model {Pzt2 |zt1 (·|zt1)}zt1 is an exponential family. In this situation, complete statistics
are known. 2) Autoregressive models with additive innovation of the form zt2 = h(zt1) + vt2 for
some bijective function h when the additive noise vt2 is a complete statistic in the statistical model
{Pvt2 |zt1 (·|zt1)}zt1 (note that vt2 cannot be independent of zt1 here). The case in Fig. 1b is typically
covered by this example.

Assumption (A3) states that no direction of the noise free data has a non Dirac Gaussian variable
component. It holds as soon as zt = f(st) and the range of f is such that its orthogonal projection on
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any line is not the full line. This assumption holds for instance in the following cases: 1) The range
of f is compact, or 2) the range of f is contained in a half-cylinder, that is, there exists a hyperplane
such that the range of f is only on one side of this hyperplane and the projection of the range of f on
this hyperplane is bounded.

Assumption (B1) and Assumption (B2) are similar to those in (Hyvärinen and Morioka, 2017;
Oberhauser and Schell, 2021) in the special case of time-series, i.e. T = N. (B1) then entails
that there must be sufficiently strong statistical dependence between nearby time points. (B2) is a
condition which excludes Gaussian processes and processes which can be trivially transformed to be
Gaussian. (For treatment of the Gaussian case, see Appendix B in Supplementary Material.) We can
further provide a simple and equivalent formulation when the independent components s(i) follow
independent and stationary HMMs with two hidden states, which is a special case of SNICA. Denote
by γ(i)

0 and γ(i)
1 the densities of s(i)

t conditionally to {u(i)
t = 0} and {u(i)

t = 1} respectively.

Theorem 4 Assume that the stationary distribution π of the hidden chain is such that 0 < π(0) < 1
and that its transition matrix is invertible. Then (B1) and (B2) are satisfied with m = 2 if and only if
on any open interval, γ(i)

0 and γ(i)
1 are not proportional.

Thus, a very simple HMM leads to these conditions being verified. Hyvärinen and Morioka (2017)
already showed that the conditions (B1) and (B2) also hold in the case of non-Gaussian autoregressive
models. Thus, we see that our identifiability theory applies both in the case HMM’s (Fig 1a) and
autoregressive models (Fig 1b), the two principal kinds of temporal structure proposed in previous
work, while extending them to further cases and combinations such as in Fig 1c,1d.

A simplification of (B1,B2) It is also possible to combine the assumptions (B1) and (B2) in one,
while slightly weakening the generality. The key is to notice that (6) in (B2) implies the derivative in
(B1) is zero, by setting c = 0. But there is still the difference that (B2) considers all but one index
while (B1) considers all indices i. If we simply assume (6) does not hold for any i, we can replace
(B1) and (B2) by the new condition:

• (B’) For any open subset A ⊂ Sm and for any i ∈ {1, . . . , N}, a function α : Rm−1 → R
and a constant c ∈ R do not exist such that (6) would hold for all s ∈ A.

Note that Hyvärinen and Morioka (2017) defined uniform dependency and (non-)quasi-Gaussianity
as two separate properties, but in fact their assumption of non-quasi-Gaussianity was weaker than
ours: it did not consider all open subsets separately, which is why this simplification was not possible
for them. We believe their definition of non-quasi-Gaussianity was in fact not quite sufficient to prove
their theorem, and our stronger version may be needed, in line with Oberhauser and Schell (2021).

5 Experiments

Estimation method One challenge is that it is not practically possible to learn ∆-SNICA by
exact maximum-likelihood methods. Instead, we perform learning and inference using Structured
VAEs (Johnson et al., 2016) – the current state-of-art in variational inference for structured models.
Specifically, this consists of assuming that the latent posterior factorizes as per q(y(1:N)

1:T , u
(1:N)
1:T ) =∏N

i=1 q(y
(i)
1:T )q(u

(i)
1:T ), which allows us to optimize the resulting evidence lower bound (ELBO):

log L̂ = Eq
[ T∑
t=1

log p(xt | s(1)
t , ..., s

(N)
t )

]
+

N∑
i=1

(
−KL

[
q(u

(i)
1:T )

∣∣∣∣p(u(i)
1:T )

]
+ H

[
q(s

(i)
1:T )

]

+ Eq
[

log p(s
(i)
1 | u

(i)
1 )

]
+

T∑
t=2

Eq
[

log p(s
(i)
t | s

(i)
t−1, u

(i)
t )

])
. (7)

Since all the distributions are in conjugate exponential families (encoder neural network is used to
approximate the natural parameters of the nonlinear likelihood term) efficient message passing can
be used for inference, and the mixing function is learned as decoder neural network. Even though
this method lacks consistency guarantees (but see Wang and Blei (2018)), we find that our model
performs very well. A more detailed treatment of estimation and inference of ∆-SNICA is given in
Appendix C. Our code will be openly available at https://github.com/HHalva/snica.
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(a) Identifiability experiment
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Figure 2: (a) Mean absolute correlation coefficients between ground-truth independent components
and their estimates by ∆-SNICA , IIA-HMM, LGSSM and iVAE∗, with different orders of complexity
(number of layers) and two different dimensions of observed (12, 24) and latent (6, 12) data. (b)
Mean absolute correlation coefficient between estimated noise free data and ground-truth noise free
data for same set of models except IIA-HMM. Please note the difference in y-axis scales.

5.1 Experiments on simulated data

The identifiability theorems stated above hold in the limit of infinite data. Additionally, a consistent
estimator would be required to learn the ground-truth components. In the real world, we are limited
by data and estimation methods and hence it is unclear as to what extent we are actually able to
estimate identifiable components – and whether identifiability reflects in better performance in real
world tasks. To explore this, we first performed experiments on simulated data. We compared the
performance of our model to the current state-of-the-art, IIA-HMM (Morioka et al., 2021), as well
as identifiable VAE (iVAE) (Khemakhem et al., 2020a) and standard linear Gaussian state-space
model (LGSSM). Since iVAE is not able to handle latent auxiliary variables, we allow it to "cheat"
by giving it access to the true data generating latent-state, thereby creating a presumably challenging
baseline (denoted iVAE∗ in our figures). LGSSM was included as a naive baseline which is only able
to estimate linear mixing function.

Investigating identifiability and consistency We simulated 100K long time-sequences from the ∆-
SNICA model and computed the mean absolute correlation coefficient (MCC) between the estimated
latent components and ground truth independent components (see Supplementary material for further
implementation details). More precisely, to illustrate the dimensionality reduction capabilities
we considered two settings where the observed data dimension M , was either 12 or 24 and the
number of independent components, N was 3 and 6, respectively. Since IIA-HMM is unable to
do dimensionality reduction, we used PCA to get the data dimension to match that of the latent
states. We considered four levels of mixing of increasing complexity by randomly initialized MLPs
of the following number of layers: 1 (linear ICA), 2, 3, and 5. The results in Figure 2a) illustrate the
clearly superior performance of our model. The especially poor performance of IIA-HMM maybe
explained by lack of noise model, much simpler latent dynamics, and lost information due to PCA
pre-processing. See Appendix D for further discussion and training details.

Application to denoising ∆-SNICA is able to denoise time-series signals by learning the generative
model and then performing inference on latent variables. Specifically, SVAE learns the encoder
network which is used to perform inference on the posterior of the independent components. We
illustrate this using the same settings as above, with the exception that we now use our learned
encoder and inference to get the posterior means of the independent components and input these in to
the estimated decoder to get predicted noise-free observations, denoted as f̂(st) – we measured the
correlation between f̂(st) and the ground-truth f(st). Note that IIA-HMM, is not able to perform this
task. The results in Figure 2b) show that the other models, designed to handle denoising, perform
well at this task, as would be expected – identifiability of the latent state is not necessary for good
denoising performance. For LGSSM, denoising is done with the Kalman Smoother algorithm.
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5.2 Experiments on real MEG data

To demonstrate real-data applicability, ∆-SNICA was applied to multivariate time series of electrical
activity in the human brain, measured by magnetoencephalography (MEG). Recently, many studies
have demonstrated the existence of fast transient networks measured by MEG in the resting state and
the dynamic switching between different brain networks (Baker et al., 2014; Vidaurre et al., 2017).
Additionally, such MEG data is high-dimensional and very noisy. Thus this data provides an excellent
target for ∆-SNICA to disentangle the underlying low-dimensional components.

Data and Preprocessing We considered a resting state MEG sessions from the Cam-CAN dataset.
During the resting state recording, subjects sat still with their eyes closed. In the task-session data,
the subjects carried out a (passive) audio–visual task including visual stimuli and auditory stimuli.
We exclusively used the resting-session data for the training of the network, and task-session data
was only used in the evaluation. The modality of the sensory stimulation provided a class label that
we used in the evaluation, giving in total two classes. We band-pass filtered the data between 4 Hz
and 30 Hz (see Supplementary Material for the details of data and settings).

Methods The resting-state data from all subjects were temporally concatenated and used for
training. The number of layers of the decoder and encoder were equal and took values 2, 3, 4. We
fixed the number of independent components to 5 so that our result can be fairly compared to those in
Morioka et al. (2021). To evaluate the obtained features, we performed classification of the sensory
stimulation categories by applying feature extractors trained with (unlabeled) resting-state data to
(labeled) task-session data. Classification was performed using a linear support vector machine
(SVM) classifier trained on the stimulation modality labels and sliding-window-averaged features
obtained for each trial. The performance was evaluated by the generalizability of a classifier across
subjects. i.e., one-subject-out cross-validation. For comparison, we evaluated the baseline methods:
IIA-HMM and IIA-TCL (Morioka et al., 2021). We also visualized the spatial activity patterns
obtained by ∆-SNICA , using the weight vectors from encoder neural network across each layer.

Results Figure 3 a) shows the classification accuracies of the stimulus categories, across different
methods and the number of layers for each model. The performances by ∆-SNICA were consistently
higher than those by the other (baseline) methods, which indicates the importance of the modeling of
the MEG signals by ∆-SNICA . Figure 3 b) shows an example of spatial patterns from the encoder
network learned by the ∆-SNICA . We used the visualization method presented in (Hyvärinen and
Morioka, 2016). We manually picked one out of the hidden nodes from the third layer in encoder
network, and plotted its weighted-averaged sensor signals, We also visualized the most strongly
contributing second- and first-layer nodes. We see progressive pooling of L1 units to form left lateral
frontal, right lateral frontal and parietal patterns in L2 which are then all pooled together in L3
resulting in a lateral frontoparietal pattern. Most of the spatial patterns in the third layer (not shown)
are actually similar to those previously reported using MEG (Brookes et al., 2011). Appendix E
provides more detail to the interpretation of the ∆-SNICA results.

6 Related work

Previous works on nonlinear ICA have exploited autocorrelations (Hyvärinen and Morioka, 2017;
Oberhauser and Schell, 2021) and nonstationarities (Hyvärinen and Morioka, 2016; Hälvä and
Hyvärinen, 2020) for identifiability. The SNICA setting provides a unifying framework which
allows for both types of temporal dependencies, and further, extends identifiability to other temporal
structures as well as any arbitrary higher order data structures which has not previously been
considered in the context of nonlinear ICA. Another major theoretical contribution here is to show
that identifiability with noise of unknown, arbitrary distribution, while previous work on noisy
nonlinear ICA assumed noise of known distribution and known variance (Khemakhem et al., 2020a).

Importantly, the SNICA framework is fully probabilistic and thus accommodates higher order latent
variables, leading to "purely unsupervised" learning. This is in large contrast to previous research
which have been developed for the case where we are able to observe some additional auxiliary
variable, such as audio signals accompanying video (Hyvärinen et al., 2019; Khemakhem et al.,
2020a,b), or heuristically define the auxiliary variable based on time structure (Hyvärinen and
Morioka, 2016). In practice this means that we are able to estimate our models using (variational)
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Figure 3: ∆-SNICA on MEG data. (a) Classification accuracies of linear SVMs trained with auditory-
visual data to predict stimulus category, with feature extractors trained by ∆-SNICA in advance with
resting-state data. Each point represents a testing accuracy on a target subject (chance level: 50%).
Horizontal dotted line is PCA-only baseline. (b) Example of spatial patterns of the components
learned by ∆-SNICA (L=3). Each topography corresponds to one spatial pattern. L3: approximate
total spatial pattern of one third-layer unit. L2: the patterns of the three second-layer units maximally
contributing to this L3 unit. L1: for each L2 unit, the two most strongly contributing first-layer units.

MLE, which is more principled than the heuristic self-supervised methods in most earlier papers. The
only existing frameworks allowing MLE (Hälvä and Hyvärinen, 2020; Khemakhem et al., 2020a)
used model restricted to exponential families, and had either no HMM or a very simple one.

The switching linear dynamical model, ∆-SNICA in Section 3.2, shows the above benefits in the
form of a single model. That is, unlike previous nonlinear ICA models, it combines: 1) temporal
dependencies and "non-stationarity" (or HMM) in a single model 2) dimensionality reduction within
a rigorous maximum likelihood learning and inference framework, and 3) a separate observation
equation with general observational noise. This results in a very rich, realistic, and principled model
for time series.

Very recently, Morioka et al. (2021) proposed a related model by considering innovations of time
series to be nonstationary. However, their model is noise-free, restricted to exponential families
of at least order two, and not applicable to the spatial case, thus making our identifiability results
significantly stronger. From a more practical viewpoint, their model suffers from the fact that it either
does not allow for dimensionality reduction (if an HMM is used) or requires a manual segmentation
(if HMM is not used). Nor does it have a clear distinction into a state dynamics equation and a
measurement equation which allows for cleaning or denoising of the data.

Limitations Our identifiability theory makes some restrictive assumptions, and it remains to be
seen if they could be lifted in future work. In particular, the data is not allowed to have too heavy
tails; the noise must be additive, and independent of the signal; and the practical interpretation of
some of the assumptions, such as (A3) is difficult. It is also difficult to say whether our assumption of
unconditionally independent components is realistic in practice. Regarding practical applications, our
specific model only scratches the surface of what is possible in this framework. In particular, we did
not develop a model with spatial distributions, nor did we model non-Gaussian observational noise –
our main aim was to lay the foundations for the relevant identification theory. Future work should aim
to make the estimation more efficient computationally; this is a ubiquitous problem in deep learning,
but specific solutions for this concrete problem may be achievable (Gresele et al., 2020).

7 Conclusion

We proposed a new general framework for identifiable disentanglement, based on nonlinear ICA
with very general temporal dynamics or spatial structure. Observational noise of arbitrary unknown
distribution is further included. We prove identifiability of the models in this framework with high
generality and mathematical rigour. For real data analysis, we propose a special case which subsumes
the properties of all existing time series models in nonlinear ICA, while generalizing them in many
ways (see Section 6 for details). We hope this work will contribute to wide-spread application of
identifiable methods for disentanglement in a highly principled, probabilistic framework.
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