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ABSTRACT

The neural network has emerged as a practical approach to evaluate the Granger
causality in multivariate time series. However, most existing studies on Granger
causality inference are based on time-invariance. In this paper, we propose a novel
MLP architecture, Granger Causality Mixer (GC-Mixer), which extracts parame-
ters from the weight matrix causal matrix and imposes the hierarchical group lasso
penalty on these parameters to infer time-invariant Granger causality and auto-
matically select time lags. Furthermore, we extend GC-Mixer by introducing a
multi-level fine-tuning algorithm to split time series automatically and infer time-
varying Granger causality. We conduct experiments on the VAR and Lorenz-96
datasets, and the results show that GC-Mixer achieves outstanding performances
in Granger causality inference.

1 INTRODUCTION

Granger causality is a statistical framework for analyzing the causality between time series. It offers
a powerful tool to investigate temporal dependencies and infer the directionality of influence be-
tween variables (Maziarz, 2015; Friston et al., 2014; Shojaie & Fox, 2022). By examining the past
values of a series, Granger causality seeks to determine if the historical knowledge of one variable
improves the prediction of another (Bressler & Seth, 2011; Barnett & Seth, 2014). Revealing inner
interactions from observational time series has made Granger causality useful for the investigation
in many fields, such as econometrics (Mele et al., 2022), neuroscience (Chen et al., 2023b), climate
science (Ren et al., 2023), etc.

The Granger causality inference has conventionally relied on linear methods, such as the Vector
Autoregressive (VAR) (Seth et al., 2015; Rossi & Wang, 2019). However, due to the prevalence of
nonlinearity in most time series, applying linear methods to analyze nonlinear time series may lead
to false Granger causality inference. Consequently, there has been a growing interest in incorporat-
ing the neural network into the study of Granger causality, owing to the inherent nonlinear mapping
capability (Marcinkevičs & Vogt, 2021a). Recently, the Multi-Layer Perceptron (MLP) and Long
Short-Term Memory (LSTM) have emerged as prominent choices, garnering significant attention in
related research. Tank et al. (2021) propose component-wise MLP (cMLP) and LSTM (cLSTM),
which extract Granger causality from the first layer weights in the neural network and impose the
sparse penalties on weights to infer Granger causality. Nauta et al. (2019) proposes the Tempo-
ral Causal Discovery Framework (TCDF) based on the convolutional neural network and attention
mechanism, which automatically infer the time lag by looking up the highest kernel weight of the
input time series.

Although the models mentioned above can effectively infer Granger causality in time series, there
are still some limitations. Granger causality is time-varying in the real-world scenario, (Lu et al.,
2014; Li et al., 2018), whereas these models assume the Granger causality is time-invariant. In ad-
dition, even if the time series or its inner causal relationships change slightly, these models still need
to reselect appropriate hyperparameters. Otherwise, the inference accuracy will fluctuate wildly.
For these models, inferring time-varying Granger causality requires constantly changing hyperpa-
rameters, which is impractical in the real-world scenario. In this paper, we propose GC-Mixer for
Granger causality inference. We modify the configurations of the time series, and GC-Mixer can
maintain stable performance without changing the hyperparameters. Furthermore, we extend the
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model for the time-varying scenario by introducing a multi-level fine-tuning algorithm. Our main
contributions can be summarized as follows:

• We propose GC-Mixer, a novel model for time-invariant Granger causality inference. The
model is less susceptible to the influence of the group lasso hyperparameter, making it
well-suited for Granger causality inference. Our model applies a new approach to extract
Granger causality from the output of the Mixer Block, which is different from existing
models.

• A multi-level fine-tuning algorithm is proposed to extend GC-Mixer for automatic split-
ting time series to infer time-varying Granger causality. A multi-level fine-tuning algo-
rithm is proposed as an extension of GC-Mixer for automatic splitting time series to infer
time-varying Granger causality, which solves the problem that the optimal number of split
sequences is difficult to determine in the traditional manual splitting method.

• Experiments on VAR and Lorenz-96 datasets (Tank et al., 2021) validate that GC-Mixer
attains stable and outstanding performances in time-invariant and time-varying Granger
causality inference.

2 PRELIMINARY

2.1 VECTOR AUTOREGRESSIVE (VAR)

Assume a p-dimensional stationary time series xt with T observation time point (x1, . . . , xt). In the
VAR model, the tth time point xt can be written as a linear combination of the past K lags of the
time series:

xt =

K∑
k=1

A(k)xt−k + et (1)

where A(k) ∈ Rp×p is the regression coefficient matrix representing how time lag k effects the future
prediction, et is zero means. To infer Granger causality in the VAR model, group lasso penalty is
applied:

min
A(1),...,A(K)

T∑
t=K

∥xt −
K∑

k=1

A(k)xt−k∥22 + λ
∑
ij

∥A(1)
i,j , . . . , A

(K)
i,j ∥2 (2)

where λ is the hyperparameter that controls the level of penalty, ∥ · ∥2 denoted as the L2 norm. In
this model, if there exists a time lag k for which A

(k)
i,j ̸= 0, then time series j Granger-cause to time

series i.

2.2 NONLINEAR-AUTOREGRESSIVE (NAR)

Assume a p-dimensional non-stationary time series xt = [x<t1, . . . , x<tp], where x<ti =
(. . . , x<(t−2)i, x<(t−1)i). In the NAR model, the tth time point xt can be denoted as a function
g of its past time values:

xt = g (x<t1, . . . , x<tp) + et (3)

The function g takes the form of the neural network, such as MLP or LSTM. Similar to the VAR
model, the inference of Granger causality in NAR can be denoted as:

min
W

T∑
t=K

(xt − g (x<t1, . . . , x<tp))
2
+ λ

p∑
j=1

Ψ(W:,j) (4)
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Figure 1: The architecture of GC-Mixer.

where W is the weight matrix extracted from the neural network, Ψ is the group lasso penalty that
penalizes the parameters in W to zero. In the NAR model, if there exists a time lag k, W k

:,j contains
non-zero parameters, time series j Granger-causes to time series i.

2.3 COMPONENT-WISE NAR

In the NAR model, it is assumed that the prediction of xti depends on the same past time lag of
all the series. Nevertheless, xti may depend on different past-time lags from all series. To infer
the Granger causality from different time series and time lags, xti can be denoted by a nonlinear
function gi as:

xti = gi (x<t1, . . . , x<tp) + eti (5)
The Granger causality inference in component-wise NAR model is turned to:

min
W

T∑
t=K

(xti − gi (x<t1, . . . , x<tp))
2
+ λ

p∑
j=1

Ψ(W:,j) (6)

3 PROPOSED METHOD

3.1 GC-MIXER ARCHITECTURE

The architecture of GC-Mixer is illustrated in Figure 1. It contains a time-sliding window, N stacks
of Mixer Block, and a Causality Inference Block. Overlapped time subsequences obtained by the
time-sliding window are respectively input into the model. They go through a stack of Mixer Block
to fuse time and channel features, respectively. In the Causality Inference Block, the output of the
Mixer Block computes the Hadamard product with the input time subsequence. The result is fed
into an MLP with two fully-connected layers, a GELU activate function, and a batch normalization
for predicting xti.We define the output of the Mixer Block as the weight matrix corresponding to the
input subsequence, which serves as the basis for Granger causality inference. Same as cMLP, the
weight matrix is imposed on the hierarchical group lasso penalty for automatic time lag selection.
The components of GC-Mixer are shown as follows:

3.1.1 TIME-SLIDING WINDOWS

Assume a p-dimensional multivariate time series xt ∈ Rp×T with T time samples in each dimen-
sion. The time window width is K, which equals the maximum time lag. The time step is one.
As the time window slides through the time series, it generates T − K + 1 subsequences. These
subsequences are denoted as x(1), . . . , x(T−K+1) ∈ Rp×K , respectively.
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3.1.2 MIXER BLOCK

The Mixer Block stacks N times. Each block includes four fully-connected layers, two GELU
activation functions, and two residual connections. The block firstly projects x(n) along the time
domain:

U (n) = x(n) +W2ρ
(
W1

(
x(n)

))
(7)

where ρ is the GELU activation function. Then the Mixer Block projects
ˆ

U
(n)
t along the channel

domain:
Y (n) = ˆU (n) +W4ρ

(
W3

(
ˆU (n)

))
(8)

where ˆU (n) ∈ RK×p is the transpose of U
(n)
t . Y (n) ∈ RK×p is transposed to have the same

dimensions as the input subsequence x
(n)
t , which is denoted as the weight matrixW (n):

W (n) = ˆY (n) ∈ Rp×K (9)

3.1.3 CAUSALITY INFERENCE BLOCK

The Causality Inference Block includes two inputs: the subsequence x(n) ∈ Rp×K and the weight
matrix W (n) ∈ Rp×K . The Hadamard product of two matrices is computed, and the result is un-
folded into a vector M =

(
W

(n)
11 x

(n)
11 , . . . ,W

(n)
pK x

(n)
pK

)
. Following the Equation 5, each component

x
(n)
i corresponding to a separate gi. gi takes the form of an MLP with two fully-connected layers, a

GULE GULE activation function, and batch normalization. Finally, M is projected to the predicted
x
(n)
i through the gi:

x
(n)
i = gi

(
W

(n)
i,(11)x

(n)
11 , . . . ,W

(n)
i,(pK)x

(n)
pK

)
+ ei (10)

where W
(n)
i,(jk) is denoted as the the j row and k column of W corresponding to gi and time sub-

sequence xn. According to Equation 6, the inference of Granger causality in Equation 10 uses
component-wise NAR combined with lasso penalty:

min
W

T−K+1∑
n=1

(
x
(n)
i − gi

(
W

(n)
i,(11)x

(n)
11 , . . . ,W

(n)
i,(pK)x

(n)
pK

))2

+ λ

p∑
j=1

∥W (n)
i,(j,:)∥F (11)

where ∥ · ∥F is denoted as the Frobenius matrix norm. Meanwhile, a variant of group lasso called
hierarchical group lasso is applied on GC-Mixer, which has a nested group structure and imposes a
larger penalty for higher lags. The loss function is defined as:

L =
T−K+1∑

n=1

(
x
(n)
i − gi

(
W

(n)
i,(11)x

(n)
11 , . . . ,W

(n)
i,(pK)x

(n)
pK

))2

+

T−K+1∑
n=1

p∑
j=1

K∑
k=1

λ∥W (n)
i,(j,k), . . . ,W

(n)
i,(j,K)∥F

(12)

We define W as the causal matrix, which serves as the basis for Granger causality inference. In
our practice, the sparse penalty cannot penalize the parameters in the W to zero, which is the same
in cMLP and cLSTM. Therefore, if and only if for all subsequences n and lag K, the F -norm of
W

(n)
i,(j,k) more than a threshold ϵ, series j Granger-causes series i:

T−K+1∑
n

K∑
k=1

∥W (n)
i,(j,k)∥F ≥ ϵ (13)

We respectively impose the group lasso and hierarchical group lasso on GC-Mixer and cMLP and
cLSTM and find that all models perform better under the hierarchical group lasso. Therefore, the
following sections uniformly use the hierarchical group lasso as the sparse penalty.
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Algorithm 1 Multi-level fine-tuning algorithm
1: Lbest ←∞
2: i← 1
3: Pre-training xt according to Equation 12 to get the loss L.
4: while L < Lbest do
5: Lbest = L
6: i = i+ 1
7: Separate input time series xt into 2i−1 target time series.
8: Fine-tuning each target time series according to Equation 12 to get the corresponding loss

L1,L2, . . . ,L2i−1 .
9: L = (L1 + L2+, . . . ,+L2i−1)/2i−1

10: end while
11: Inferring Granger causality of each target time series according to Equation 13.
12: return Time-varying Granger causality inference.

3.2 EXTEND GC-MIXER FOR TIME-VARYING GRANGER CAUSALITY INFERENCE

An existing approach to infer time-varying Granger causality is to separate the input time series into
multiple segments and input these segments into the neural network to obtain a series of Granger
causality interactions(Shan et al., 2023; Ren et al., 2020). However, this method requires manu-
ally separating time series. In this section, we propose a multi-level fine-tuning algorithm to au-
tomatically separate time series and extend our GC-Mixer for more accurate time-varying Granger
causality inference, as shown in Figure 2.
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Figure 2: Multi-level fine-tuning.

In the pre-training stage, the input time series
xt is trained on GC-Mixer according to Equa-
tion 12 to capture its general features of the
time series. In the multi-level fine-tuning stage,
for each level i(i ≥ 2), we build 2i−1 target
GC-Mixer models and separate the input time
series xt into 2i−1 target time series. All the
weights and biases learned from the previous
level are transferred to the target models in the
current level for further training. We evaluate
whether the averaged fine-tuned loss of each
level is less than the previous level, and if so,
we continue to separate the time series until the
loss is no longer reduced. Finally, the Granger
causality corresponding to each target time se-
ries is inferred using Equation 13. By pool-
ing these results together, we obtain the time-
varying Granger causality inference. The time
complexity of the algorithm is O

(
(T −K + 1)× p×

(
2i − 1

))
. The detailed algorithm is demon-

strated in Algorithm 1.

We fine-tune the entire neural network rather than only the final output layer. Through multi-level
fine-tuning, the input time series can be automatically separated into multiple target time series,
allowing for more accurate time-varying Granger causality inference.

4 EXPERIMENTS

4.1 DATASETS

The first dataset is the VAR. For a p-dimensional time series xt, the vector autoregressive model is
given by:

xt = A(1)xt−1 +A(2)xt−2+, . . . ,+A(k)xt−k + ut (14)
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Table 1: VAR (3), T = 1000, p = 10

MODEL AUROC

sparsity = 0.2 sparsity = 0.3 sparsity = 0.4 sparsity = 0.5

cMLP 1 0.62 0.60 0.58
cLSTM 0.91 0.59 0.57 0.56
TCDF 0.85 0.53 0.51 0.47
GVAR 1 1 0.98 0.95

GC-Mixer 1 1 1 0.99

where (A(1), A(2), . . . , A(k) are regression coefficients matrices and ut is a vector of errors with
Gaussian distribution. We define sparsity as the percentage of non-zero coefficients in A(i), and
different sparsity represent different quantities of Granger causality interaction in the VAR model.
The second dataset is the Lorenz-96, which is a mathematical model used to study the dynamics
of a simplified atmospheric system. For p-dimensional Lorenz-96 model, its ordinary differential
equation is given by:

∂xt,i

∂t
= −xt,i−1 (xt,i−2 − xt,i+1)− xt,i + F (15)

where F represents the forcing term applied to the system. The values of p and F impact the
behavior of the Lorenz-96 model. Increasing F makes the system more chaotic, while changing p
affects the spatial complexity of the system.

4.2 MODEL EVALUATION

We compare the proposed GC-Mixer with cMLP, cLSTM, GVAR, and TCDF. Our goal is to com-
pare the ability of models to maintain stable Granger causality inference accuracy with unchanged
hyperparameters. We search for the best-performing hyperparameters for each model in VAR (3)
with the sparsity of 0.2 and Lorenz-96 with the force term F of 10. Subsequently, with the hyper-
parameters unchanged, the configurations of the VAR and Lorenz-96 datasets are changed under the
following three conditions:

1. To simulate different Granger causality interaction quantities in time series, the sparsity
of the regression coefficient matrix in VAR (3) is increased from 0.2 to 0.3, 0.4, and 0.5
while keeping the dimension p fixed at 10.

2. To test the model’s performances under different channel dimensions, the dimension p of
VAR (3) is modified from 10 to 15, 20, and 25 while maintaining the sparsity = 0.2.

3. To simulate the different strengths of nonlinearity in the causal interactions between the
variables, the forcing term F of Lorenz-96 is adjusted from 10 to 20, 30, and 40 while the
dimension p remains 10.

We use the True Positive Rate (TPR) and False Positive Rate (FPR) according to AUROC (Area
Under the Receiver Operating Characteristic Curve). The AUROC is generated with one λ value
and sweep threshold ϵ. The results on the VAR dataset are presented in Table 1, Table 2. The
performances of four models are close when sparsity = 0.2. As time series have more Granger
causality interactions (sparsity = 0.5), the AUROC scores of cMLP, cLSTM, and TCDF decrease
significantly. In contrast, GC-Mixer and GVAR maintain a stable performance, with AUROC only
reducing from 1 to 0.99 and 1 to 0.95. A similar observation arises when dimension p increases to
25. GC-Mixer maintains a high AUROC of 0.96, and GVAR achieves an AUROC of 0.93, while
cMLP, cLSTM, and TCDF cannot infer Granger causality effectively, with AUROC of 0.47, 0.49,
and 0.48.

The results on the Lorenz-96 dataset are shown in Table 3. In the case of F = 10, GVAR achieves
the highest AUROC of 0.99, and GC-Mixer achieves an AUROC score of 0.94, while the AUROC
of cMLP and cLSTM are 0.96 and 0.94, respectively. However, when F = 30, both GC-Mixer
and GVAR have a significant decrease in AUROC, while cMLP and cLSTM still have a stable
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Table 2: VAR (3), T = 1000, sparsity = 0.2
MODEL AUROC

p = 10 p = 15 p = 20 p = 25

cMLP 1 0.49 0.49 0.47
cLSTM 0.91 0.54 0.49 0.49
TCDF 0.85 0.53 0.51 0.48
GVAR 1 0.99 0.98 0.93

GC-Mixer 1 1 0.99 0.96

Table 3: Lorenz-96, T = 1000, p = 10
MODEL AUROC

F = 10 F = 20 F = 30 F = 40

cMLP 0.96 0.95 0.94 0.95
cLSTM 0.94 0.93 0.92 0.90
TCDF 0.73 0.71 0.69 0.68
GVAR 0.99 0.96 0.85 0.78

GC-Mixer 0.94 0.92 0.80 0.73

performance. When F = 40, the performance of our model still lags behind cMLP cLSTM and
GVAR, which may be attributed to the fact that GC-Mixer has more parameters than cMLP and
cLSTM, leading to more prone to overfit.

4.3 AUTOMATIC LAG SELECTION

We compare GC-Mixer with cMLP on automatic lag selection using the hierarchical group lasso
penalty. It is important to note that we do not consider cLSTM, TCDF models, and Lorenz-96
dataset in this experiment since cLSTM cannot output time lag, TCDF can output only one lag of a
time series, and Lorenz-96 does not have time lag according to Equation 15.

As in the previous section, we conduct experiments on VAR (3) with sparsity = 0.2 and
sparsity = 0.3. The maximum lag order of K is 5. The time lag selection of each model in
10 channels and the corresponding true results are shown in Figure 3 and Figure 4.
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Figure 3: (Top) The true results of ten output series. (Middle) Ten output series results of cMLP
inference. (Bottom) Ten output series results of GC-Mixer inference. The comparison of qualitative
results between GC-Mixer with cMLP in the automatic lag selection. The rows of each image
correspond to the time lag, with k = 1 on the top and k = 5 on the bottom, while the columns
correspond to 10 different input series, with series one on the left and series ten on the right. The
results are computed by the L2 norm of the weights in the neural network. The brighter color means
that the corresponding time lag has a more significant impact on future prediction.
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Figure 4: Automatic lag selection on VAR (3) with the sparsity = 0.3. (Top) The true results of
10 output series. (Middle) Ten output series results of cMLP inference. (Bottom) Ten output series
results of GC-Mixer inference.
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The results show that GC-Mixer performs better, selecting appropriate time lags for most channels
in the time series. In the case of VAR (3) with the sparsity = 0.2, both GC-Mixer and cMLP can
correctly select most of the time lags. GC-Mixer performs even better on the higher lag selection,
especially on channels 2, 7, 8, and 10. In the case of VAR (3) with the sparsity = 0.3, cMLP can
only effectively select time lag in channel 8, while GC-Mixer accurately selects most of the time
lags, though there exist a few false time lag selections in channels 2, 6, 8. These false selections can
primarily be attributed to the choice of hyperparameters of the hierarchical group lasso penalty. If
the hyperparameter is excessively large, it penalizes too high on later time lag orders, resulting in
false lag selection.

4.4 TIME-VARYING GRANGER CAUSALITY INFERENCE

We formulate four scenarios to evaluate the performances of the proposed multi-level fine-tuning
algorithm on time-varying Granger causality inference. Each scenario consists of two time series
with T = 1000, containing two different types of Granger causality:

1. The first scenario contains a preceding VAR (2) time series followed by a VAR (3) time
series, and both of the sparsity = 0.2.

2. The second scenario involves a preceding time series generated by VAR (3) with the
sparsity = 0.2, followed by VAR (3) with a sparsity = 0.3.

3. The third scenario contains a preceding Lorenz-96 time series with F = 10 followed by a
Lorenz-96 time series with F = 20.

4. The fourth scenario includes a preceding VAR (3) time series with the sparsity = 0.5
followed by a Lorenz-96 time series with F = 10.

Existing machine learning-based Granger causality inference models like cMLP and cLSTM do not
achieve time-varying Granger causality inference, resulting in these models not being compared
with GC-Mixer directly. Therefore, for each scenario, we manually split the time series into two
segments and apply cMLP, cLSTM, and GC-Mixer on these segments to achieve a simple time-
varying Granger causality inference. Then, based on the multi-level fine-tuning algorithm, GC-
Mixer automatically splits the whole time series and infers time-varying Granger causality. The
results are illustrated in Figure 5, Table 4, and Figure 8 in Appendix D. The corresponding ROC
curves of each scenario are shown in Figure 6 and Figure 7 in the Appendix C.

Table 4: AUROC of the four scenarios in time-varying Granger causality inference
Model Algorithm Scenario 1 Scenario 2 Scenario 3 Scenario 4

AUROC AUROC AUROC AUROC

cMLP Manual splitting 0.98 0.59 0.69 0.62
cMLP Multi-level fine-tuning (Automatic splitting) 0.99 0.64 0.72 0.55

cLSTM Manual splitting 0.67 0.54 0.99 0.63
cLSTM Multi-level fine-tuning (Automatic splitting) 0.48 0.39 0.92 0.76

GC-Mixer Manual splitting 0.98 0.95 0.89 0.63
GC-Mixer Multi-level fine-tuning (Automatic splitting) 0.99 0.99 0.92 0.65

The results indicate that GC-Mixer performs better than cMLP and cLSTM in scenarios 1, 2, and 4
using the splitting time series manually. Specifically, When the time lags in the time series changes,
the AUROC scores of GC-Mixer and cMLP are 31% higher than cLSTM. When the sparsity of
Granger causality in the time series is changed, the AUROC score of GC-Mixer is higher than those
in cMLP and cLSTM with 36%, 41% increments. When the nonlinear strength of the time series
changes, the performances of GC-Mixer and cLSTM are close, which are 20% and 30% higher than
cMLP, respectively. For scenario 4, the AUROC of GC-Mixer also increases 2% than cMLP.

Moreover, we also conduct our algorithm on GC-Mixer, cMLP, and cLSTM. The proposed algo-
rithm further improves the AUROC score for GC-Mixer with 1%, 4%, 4%, and 2% increments in
four scenarios.For cMLP, the algorithm improves the AUROC score with 1%, 5%, and 3% incre-
ments in scenarios 1, 2, and 3. However, the algorithm only improves the AUROC score of cLSTM
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in scenario 4 with 11% increments. Therefore, our algorithm can effectively extend GC-Mixer for
inferring time-varying Granger causality when the time series contains different time lags, differ-
ent strengths of nonlinearity, different quantities of causal interactions, and the linear-to-nonlinear
transition scenario. For other models, our algorithm can improve performance in specific scenarios.

(a) VAR(2)  (sparsity=0.2) + VAR(3)  (sparsity=0.2)

(b) VAR(3)  (sparsity=0.2) + VAR(3)  (sparsity=0.3)

(c) Lorenz-96  (F=10) + Lorenz-96  (F=20)

(d) VAR(3)  (sparsity=0.5) + Lorenz-96  (F=10) 
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Figure 5: Time-varying Granger causality inference. (Left) The two columns are inferred using the
multi-level fine-tuning algorithm on GC-Mixer. (Right) The two columns are inferred by GC-Mixer
using splitting time series manually. The blue blocks indicate that Granger causality relationship
exists between two time series. The white blocks indicate no Granger causality relationship between
two time series. The blocks surrounded by the red line are the false Granger causality inferences.

5 CONCLUSION

In this paper, we propose the Granger Causality Mixer (GC-Mixer), a novel framework for time-
varying Granger causality inference, which applies an all-MLP architecture without using convolu-
tion and self-attention. The model maintains a stable performance without changing the group lasso
hyperparameter, even if the quantities of Granger causality interaction, channel dimensions, or non-
linearity strengths in time series are changed. Using the hierarchical group lasso penalty, GC-Mixer

9
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automatically selects time lags and achieves more accurate lag selections than existing models. To
attain time-varying Granger causality inference, we propose a multi-level fine-tuning algorithm that
exhibits outstanding performances on various conditions and enhances the capability of the model
for the real-world scenario.
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A REVIEW OF RELATED WORKS

A.1 NEURAL NETWORK-BASED GRANGER CAUSALITY

Neural network-based Granger causality has gained significant attention in the community due to
its ability to infer Granger causality in time series. However, although many neural networks, such
as MLP (Challu et al., 2023; Hamzaçebi et al., 2009), LSTM (Xu et al., 2020; Song et al., 2018),
and Transformer (Zhou et al., 2021; Li et al., 2019), have shown excellent performances in time
series forecasting, they remain black-box, making them difficult to explain the inner structure in
multivariate time series. Thus, compared with the vector autoregressive, the major challenge en-
countered in these models is how to extract Granger causality from the neural network. To solve this
problem, Tank et al. (2021) proposes two component-wise architecture called cMLP and cLSTM,
which extracts Granger causality from the first layer weights of the neural network and imposes
a sparsity-inducing penalty on weights to select time lag automatically. The models experiment
with three types of penalties, among which the hierarchical penalty demonstrates the best perfor-
mance. Fan et al. (2023) proposes MSNGC with a consistency threshold to infer binary Causality.
The model uses different receptive fields to infer Granger causality and fuses them through learned
attention weight for getting better performance. Yin & Barucca (2022) proposes a deep recurrent
neural network incorporating a latent confounding module, which captures the influence of unob-
served variables on the Granger causality between time series. Khanna & Tan (2019) proposes
economy-SRU, which can directly infer Granger causality from the structured sparsity of SRU net-
work parameters. The model sets group-sparse regularization combined with column sparsity on
the weight coefficients. Marcinkevičs & Vogt (2021b) proposes GVAR to infer multivariate Granger
causality from the nonlinear system. The model is based on an extension of self-explaining neural
networks, leading to more interpretable than other neural network-based Granger causality inference
models.

A.2 TIME-VARYING GRANGER CAUSALITY

Recently, time-varying Granger causality has been widely studied. Vector autoregressive, lasso re-
gression are two primary efforts. By introducing time-varying parameters into the VAR model, Li
et al. (2012) proposes a parametric nonlinear Granger causality model and used regularized orthog-
onal least squares to reduce the number of parameters in the model. Sato et al. (2006) captures
the continuous time-varying Granger causality by applying wavelet expansion. However, these
methods infer the Granger causality only in the bivariate system. A practical solution for high-
dimensional systems is applying lasso regression regularization. Gao & Yang (2022) proposes a
kernel-reweighted group lasso to model time-varying Granger causality. Ren et al. (2020) proposes
another group lasso algorithm, the Hilbert-Schmidt independence criterion lasso, to infer nonlinear
Granger causality among multivariate time series. Nevertheless, these methods need to select the
lag manually rather than automatically, which cannot satisfy many practical situations.

A.3 FINE-TUNING IN THE DEEP NEURAL NETWORK.

Fine-tuning is a critical training method in transfer learning that involves pre-training the source
task and specific its performance by further training it on the target task. Carneiro et al. (2015)
proposes a fine-tuning CNN model that replaces the fully-connected layers on the pre-trained model
with a logistic regression layer. Then the dataset is used to fine-tune only the appended layer, with
the other layer of the network unchanged. Different from the many fine-tuning approaches which
contain single level, Wu & Zhao (2022) proposes a Transformer-based multi-level fine-tuned model
including pre-training on datasets to capture overall spatiotemporal features and multi-level fine-
tuning to explore the intra-frame spatial information. Bayer et al. (2022) introduces a four-level fine-
tuning method, where higher levels of fine-tuning result in the model becoming more specialized,
leading to the actual task with less data.

Our motivation to study GC-Mixer arises from the need to infer time-varying Granger causality in
multivariate time series. While similar architectures have been utilized for various scenarios, such
as the well-known MLP Mixer architecture in computer vision (Yu et al., 2022), they have also
been applied to time series forecasting (Chen et al., 2023a), NLP (Fusco et al., 2022), and image
classification (Zhang et al., 2022). To our knowledge, utilizing an MLP Mixer-based architecture
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specifically for inferring Granger causality in time series has not been previously explored in the
existing literatures.

B HYPERPARAMETERS AND CONFIGURATIONS

Table 5 to 8 illustrate the configuration and hyperparameters of the different models used for com-
parison in Section 4. In the experiments, we found that the performances of cMLP and cLSTM are
also strongly affected by the random seed used to generate the time series. By changing the random
seed, the results of cMLP and cLSTM fluctuate wildly. Therefore, we uniformly use the seed = 0
in all experiments, which is provided in the code of Tank et al. (2021).

Table 5: The detailed parameters and configurations of the cMLP model used in this paper.
Parameters Dataset

Var (3)
sparsity = 0.2/0.3/0.4/0.5

VAR (3)
p = 10/15/20/25

Lorenz-96
F = 10/20/30/40

Batch size 1000 1000 1000
Ridge regularization - - 0.001
Group lasso hyperparameter 0.002 0.002 1
Maximum time lag 5 5 -
Training epochs 2000 2000 2000
Learning rates 0.01 0.01 0.01

Table 6: The detailed parameters and configurations of the cLSTM model used in this paper.
Parameters Dataset

Var (3)
sparsity = 0.2/0.3/0.4/0.5

VAR (3)
p = 10/15/20/25

Lorenz-96
F = 10/20/30/40

Batch size 1000 1000 1000
Ridge regularization - - 0.001
Group lasso hyperparameter 0.002 0.002 1
Maximum time lag - - -
Training epochs 2000 2000 2000
Learning rates 0.01 0.01 0.01

Table 7: The detailed parameters and configurations of the TCDF model used in this paper.

Parameters Dataset
Var (3)

sparsity = 0.2/0.3/0.4/0.5
VAR (3)

p = 10/15/20/25
Lorenz-96

F = 10/20/30/40
Kernel size 2 2 4
Batch size 1000 1000 1000
Layers 3 3 2
Dilation 1 1 1
Significance 8 8 0.8
Maximum time lag 5 5 -
Training epochs 2000 2000 2000
Learning rates 0.01 0.01 0.01

Table 8: The detailed parameters and configurations of the GC-Mixer model used in this paper.
Parameters Dataset

Var (3)
sparsity = 0.2/0.3/0.4/0.5

VAR (3)
p = 10/15/20/25

Lorenz-96
F = 10/20/30/40

Batch size 1000 1000 1000
Ridge regularization - - -
Group lasso hyperparameter 5e-07 5e-07 0.025
Maximum time lag 5 5 -
Training epochs 120 120 120
Learning rates 0.01 0.01 0.01

14



Under review as a conference paper at ICLR 2024

C ROC PLOTS

The comparisons of the ROC curve in Section 4.4 are shown in Figure 6, Figure 7.

(a) VAR(2)  (sparsity=0.2) + VAR(3)  (sparsity=0.2)

(b) VAR(3)  (sparsity=0.2) + VAR(3)  (sparsity=0.3)

(c) Lorenz-96  (F=10) + Lorenz-96  (F=20)

(d) VAR(3)  (sparsity=0.5) + Lorenz-96  (F=10) 
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Figure 6: Comparison of ROC curves for four time-varying Granger causality inference scenarios
in Section 4.4. (Left) Multi-level fine-tuning method on GC-Mixer. (Right) Splitting time series
manually on GC-Mixer.
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(a) VAR(2)  (sparsity=0.2) + VAR(3)  (sparsity=0.2)

(b) VAR(3)  (sparsity=0.2) + VAR(3)  (sparsity=0.3)

(c) Lorenz-96  (F=10) + Lorenz-96  (F=20)

(d) VAR(3)  (sparsity=0.5) + Lorenz-96  (F=10) 
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Figure 7: Comparison of ROC curves for four time-varying Granger causality inference scenarios
in Section 4.4. (Left) cMLP. (Right) cLSTM.
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D APPENDIX FIGURE

The time-varying Granger causality inference of cMLP and cLSTM in Section 4.4 are shown in
Figure 8.

(a) VAR(2)  (sparsity=0.2) + VAR(3)  (sparsity=0.2)

(b) VAR(3)  (sparsity=0.2) + VAR(3)  (sparsity=0.3)

(c) Lorenz-96  (F=10) + Lorenz-96  (F=20)

(d) VAR(3)  (sparsity=0.5) + Lorenz-96  (F=10) 
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Figure 8: Time-varying Granger causality inference. (Left) The two columns are inferred by cMLP.
(Right) The two columns are inferred by cLSTM. The blue blocks indicate that Granger causality
relationship exists between two time series. The white blocks indicate no Granger causality relation-
ship between two time series. The blocks surrounded by the red line are the false Granger causality
inferences.
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E ABLATION RESULTS

In the following part, we will carry out ablation results to better understand our model. We changed
the number of Mixer Blocks in our model, and the results are shown in Table 9 and Table 10.

Table 9: GC-Mixer, VAR (3), T = 1000, p = 10, λ = 5e− 07, optimizer: Adam

Number of Block AUROC

sparsity = 0.2 sparsity = 0.3 sparsity = 0.4 sparsity = 0.5

1 1 1 1 0.994
2 1 1 1 0.984
3 1 1 1 0.999
4 1 1 1 0.989
5 1 1 1 0.988

Table 10: GC-Mixer, Lorenz-96, T = 1000, p = 10,λ = 0.025, optimizer: Adam

Number of Block AUROC

F = 10 F = 20 F = 30 F = 40
1 0.943 0.921 0.801 0.731
2 0.687 0.829 0.835 0.735
3 0.765 0.830 0.846 0.817
4 0.643 0.739 0.824 0.801
5 0.705 0.819 0.869 0.863
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