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Abstract

Natural language is systematic: utterances are composed of individually meaningful
parts which are typically concatenated together. I argue that natural-language-like
systematicity arises in codes when they are constrained by excess entropy, the
mutual information between the past and the future of a stochastic process. In three
examples, I show that codes with natural-language-like systematicity have lower
excess entropy than matched alternatives.

1 Introduction

A key property of human language is that it is systematic, which means that that parts of form
correspond regularly to components of meaning.1 For example, in the English sentences I saw the
cat, the cat meowed, a cat ate food, etc., the substring cat systematically refers to a particular aspect
of meaning: that these sentences all have to do with domestic felines. These substrings which make a
regular contribution to meaning are called morphemes—roughly corresponding to words.

Natural language utterances, such as the examples given, typically consist of a concatenation of
morphemes. When morphemes are combined by other means,2 the resulting string still usually
has subsequences that regularly correspond to aspects of meaning, and these parts remain fairly
contiguous or close to each other. I will call this property of natural language locality.

Systematicity is not a property of efficient codes as studied in coding theory, which raises the question
of why human language has it. I propose that systematicity in human language can be explained
by positing that human language operates under a constraint on excess entropy [22], a measure of
complexity, which corresponds to a general constraint on control and information processing in
incremental production and comprehension of language.

I consider a language to be any mapping L : M → Σ∗ from meanings M to forms (strings) drawn
from a vocabulary Σ. Suppose that a meaning can be represented in terms of features: that is, a
meaning m ∈ M can be written as a product of two features as m = m1×m2. Then I say a language
is systematic if the form associated with that meaning can be decomposed in the same way:

L(m1 ×m2) = L(m1) · L(m2) (1)

for a string combining function ·, such as concatenation. A language is holistic otherwise [33, 25].

The definition of systematicity is crucially relative to a chosen decomposition of the meanings and a
chosen string combining function. There are many ways meanings can be decomposed into features.
If we are free to choose any such decomposition, then any function L can be made systematic

1From the perspective of semantics, this property is related to the more general concept of compositionality
[9, 20, 12].

2For example, in Semitic nonconcatenative morphology, or Celtic consonant mutations.
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[34, 32, 28]. Likewise, the string combining function · needs to be constrained, or else systematicity
can be achieved trivially.

In existing accounts, the emergence of systematicity in language is often motivated by learners’
need to generalize in order to produce forms for never-before-seen meanings [14, 24, 26, 15]. Such
accounts successfully motivate systematicity in the abstract sense of Eq. 1, but they (explicitly or
implicitly) require independent specification of the meaning decomposition and string combination
function, via kernels on meanings and/or strings, or via implicit inductive biases built into learners
[21, 1, 31, 8, 28].

In contrast, our goal is not only to explain why natural language has systematicity in the abstract sense,
but also to give a theory based on maximally general principles that accounts for the particular proper-
ties of the meaning decomposition and the string combining function · in natural language. Regarding
the latter, a good theory should predict that morphemes are usually combined by concatenation, and
when not, something that maintains locality.

2 Excess Entropy

For a stationary stochastic process generating symbols X1, X2, . . . , the excess entropy E [22, Def.
13] is defined as the mutual information between the past of the process (all the symbols up to an
arbitrary time index, say t) and the future of the process (all the symbols at or after some time index):

E = I[X≥t : X<t]. (2)

Intuitively, it measures (a lower bound on) the amount of information about the past of a process that
must be stored in order to reproduce the future of the process accurately.

In order to apply this concept to languages as defined in Section 1, it is necessary to construct an
appropriate stochastic process from the outputs of a language L. This can be done by sampling
meanings m ∈ M iid from a source M , translating them to strings x = L(m), and then concatenating
the strings x with a delimiter between them (a construction also used in [10]).

Calculation of Excess Entropy Let ht represent the t’th-order Markov entropy rate of a process,
that is, the conditional entropy of symbols given t− 1 previous symbols:

ht = H[Xt | X1, . . . , Xt−1]. (3)

For a stationary process, the entropy rate h is the limit ht as t goes to infinity, h = limt→∞ ht [23].
Then the excess entropy can be read off of the curve of ht for growing t [3, 4, 6, 5, 18]:3

E =

∞∑
t=1

(ht − h) . (4)

Cognitive motivation I motivate the idea that excess entropy is constrained in natural language
based on three facts about how humans produce and comprehend language: (1) natural language
utterances consist, to a first approximation, of one-dimensional sequences of symbols (phonemes),
(2) (spoken) production and comprehension are highly incremental [16, 30, 7, 27], and (3) humans
have limited incremental memory resources [19, 10, 11]. If the excess entropy of a language exceeds
humans’ memory capacities, then humans cannot produce and comprehend it accurately.

3 Examples

Here I consider a number of languages which are unambiguous and have the same entropy rate, but
which differ in their systematicity and locality. I show that the systematic and local languages have
lower excess entropy and give reasons for this.

3The (Relaxed) Hilberg Conjecture implies that E for natural language texts does not converge [13, 2, 6].
Our results are also consistent with a constraint that ht decay quickly, even if Eq. 4 does not converge, or with a
constraint on the predictive information bottleneck curve [29, 17, 10]. Furthermore, our results are for isolated
utterances of language, not texts of unbounded length.
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Probability Features Form (Syst.) Form (Nonsyst.)

2/3 × 1/2 00 00 00
2/3 × 1/4 01 010 110
2/3 × 1/8 02 0110 0100
2/3 × 1/8 03 0111 0101
1/3 × 1/2 10 10 10
1/3 × 1/4 11 110 111
1/3 × 1/8 12 1110 0111
1/3 × 1/8 13 1111 0110

Table 1: Two Huffman codes for the given
source.

1 2 3 4
Markov order t

0.970

0.975

0.980

0.985

0.990

M
ar

ko
v 

en
tro

py
 ra

te
 h

_t
 (b

its
)

nonsystematicnonsystematicnonsystematicnonsystematicnonsystematicnonsystematicnonsystematicnonsystematicnonsystematicnonsystematicnonsystematicnonsystematic
E=0.039 bitsE=0.039 bitsE=0.039 bitsE=0.039 bitsE=0.039 bitsE=0.039 bitsE=0.039 bitsE=0.039 bitsE=0.039 bitsE=0.039 bitsE=0.039 bitsE=0.039 bits

systematicsystematicsystematicsystematicsystematicsystematicsystematicsystematicsystematicsystematicsystematicsystematic
E=0.019 bitsE=0.019 bitsE=0.019 bitsE=0.019 bitsE=0.019 bitsE=0.019 bitsE=0.019 bitsE=0.019 bitsE=0.019 bitsE=0.019 bitsE=0.019 bitsE=0.019 bits

Figure 1: Excess entropies and Markov entropy
rates ht as a function of t.

Features L1 · L2 · L3 L1 · L23 L12 · L3

000 ace ace ace
001 acf acf acf
010 ade adf ade
011 adf ade adf
100 bce bce bde
101 bcf bcf bdf
110 bde bdf bce
111 bdf bde bcf

Table 2: Three languages for expressing
meanings that are decomposed into three
binary features.
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Figure 2: Excess entropies and Markov entropy
rates for the three languages. The source induces
mutual information between features 2 and 3.

3.1 Systematic vs. nonsystematic Huffman codes

The first example shows that minimizing code length does not produce systematicity. I consider two
Huffman (minimal-length) codes for the source in Table 1, with a decomposition of the meanings
into two features. Only the first Huffman code is systematic with respect to this decomposition—the
first bit corresponds to the first meaning component, and the remaining bits to the second. Figure 1
shows entropy rate curves and excess entropies. The systematic code has lower excess entropy.

3.2 Systematicity for low-MI features, holistic expression for high-MI features

I consider languages expressing meanings with three binary features shown in Table 2. The first
language, notated as L1 · L2 · L3, is fully systematic in the three features: I have

L(m1) =

{
a m1 = 0

b m1 = 1
, L(m2) =

{
c m2 = 0

d m2 = 1
, L(m3) =

{
e m3 = 0

f m3 = 1
. (5)

The second language L1 · L23 expresses features 2 and 3 holistically, and the third language L12 · L3

expresses features 1 and 2 holistically. I calculate excess entropy for these languages using a source
that yields an MI of 0.5 bits between features 2 and 3 and 0 bits between all other features, with
H[M1] = H[M2] = H[M3] = 1 bit.

Results are shown in Figure 2. The lowest-excess-entropy language is the one that expresses high-
MI features holistically, followed by the fully systematic language, followed by the language that
expresses low-MI features holistically.
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Figure 3: Excess entropy of permuted systematic languages. Left, ordered by excess entropy:
permutations that maintain contiguity of morphemes in red. Right, by number of discontiguities
(number of transitions from one morpheme to another within a string, minus one).

To see how systematicity of low-MI features lowers the excess entropy, I compare the fully systematic
language L1 · L2 · L3 against the partially-systematic L12 · L3. Consider the conditional entropy
of the third character X3. In the systematic code, this is H[X3 | X2] = H[M3 | M2], because the
each character Xi encodes the meaning component Mi. But in the nonsystematic code, we have
H[X3 | X2] = H[M3] ≥ H[M3 | M2], because the character X2 is not informative on its own about
the value of M2. The conditional entropy of X3 cannot be reduced without taking more context into
account, increasing the 2nd-order Markov entropy rate and thus the excess entropy.

The finding that low-MI features tend to be expressed systematically gives us some traction on the
question of how meanings may be decomposed into features in language. In particular, it means that
languages constrained to have low excess entropy will appear to be systematic with respect to a set of
features that are relatively statistically independent of each other.

3.3 Locality

Here I show that, when languages are systematic, minimization of excess entropy pushes them to
maintain locality. I consider a language for a meaning source M over 10 objects {m1, . . . ,m10},
following a Zipfian distribution pM (mi) ∝ i−1. Each of these meanings is decomposed into two
parts as m = m1 ×m2, with each utterance decomposing into two morphemes as L(m1 ×m2) =
L(m1) ·L(m2), where L(mk) is a mapping from a feature to a morpheme, a random string in {0, 1}4.
Now I consider the excess entropy of every possible language Lf (m) = f(L(m)), where f is a
deterministic permutation function applied to the characters of the string of L(m). Most of these
languages interleave the two morphemes in various ways; a few leave the morphemes contiguous.

Figure 3 shows the excess entropy for all permutations. The languages with the lowest excess entropy
are the contiguous ones. This happens because the coding procedure above creates redundancy among
characters within a morpheme. When these redundant characters are separated from each other by a
large distance—such as when characters from another morpheme intervene—then the language has
long-range mutual information, which is penalized by excess entropy.

4 Conclusion

I have demonstrated through some case studies that codes which have minimal excess entropy seem
to have natural-language-like systematicity, in the sense that they consist of morphemes that regularly
correspond to features of meaning which are concatenated together. Notably, our approach does
not assume that string concatenation is a privileged operation, nor does it assume or require any
pre-existing decomposition of meaning into features, nor indeed any structure to the meanings. It
appears that languages constrained by excess entropy will tend to factorize meanings into features
that are relatively statistically independent, which are then combined together systematically.
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