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ABSTRACT

Recent work has shown that different large language models (LLMs) converge to
similar and accurate input embedding representations for numbers. These findings
conflict with the documented propensity of LLMs to produce erroneous outputs
when dealing with numeric information. In this work, we aim to explain this
conflict by exploring how language models manipulate numbers and quantify the
lower bounds of accuracy of these mechanisms. We find that despite surfacing er-
rors, different language models learn interchangeable representations of numbers
that are systematic, highly accurate and universal across their hidden states and the
types of input contexts. This allows us to create universal probes for each LLM
and to trace information — including the causes of output errors — to specific
layers. Our results lay a fundamental understanding of how pre-trained LLMs
manipulate numbers and outline the practical potential of more accurate probing
techniques in addressed refinements of LLMs’ architectures.

1 INTRODUCTION

One major limitation of large language models (LLMs) is their inability to guarantee factually pre-
cise and correct outputs. This is a fundamental trait due to the probabilistic nature of transformer
models, and thus not a solvable problem, as has recently been emphasized by (Kalai et al., 2025).
However, knowing the extent of the problem (and whether it can be mitigated) is a feasible task; one
that is important given the recent ubiquity of LLMs in research and broader society.

Mathematical problems provide an ideal playground in which to assess the current ability of LLMs
to manipulate precise information. Because it operates through a set of formal rules and produces
computationally verifiable outputs, mathematics provides the opportunity to rate not only the ten-
dency of a model to output incoherent information (Sun et al., 2024), but also to examine in detail
the coherence of the reasoning steps outputted by a given LLM. While this research direction is rife
with challenges, ranging from manipulating implicitly visual data in geometry problems (Ahn et al.,
2024) to mapping plain language onto specific types of problems (Duchnowski et al., 2025), it has
also been met by genuine successes, e.g., as an aid to solve mathematical problems (Li et al., 2025).

A large body of work has highlighted limitations of LLMs when it comes to arithmetic tasks (Xu
et al., 2025; Kvinge et al., 2025; Satpute et al., 2024; Lee et al., 2025; Bertolazzi et al., 2025;
Nikankin et al., 2025), as well as proposed means to alleviate these limitations centered on re-
designing numeric representations to be principled and precise (e.g., Charton, 2022; Feng et al.,
2024; Golkar et al., 2023). More recent developments have suggested that the issues models en-
counter with arithmetic need not be tied to the quality of their representations of numbers. Several
works have attempted to characterize the types of representations models rely on to perform arith-
metic computations (Wennberg & Henter, 2024; Zhou et al., 2024; Zhu et al., 2025; Kadlčı́k et al.,
2025). This research direction has proposed that number representations stand out in terms of their
structure, with Zhou et al. (2024) and Kadlčı́k et al. (2025) arguing that models rely on sinusoidal
structures, whereas Zhu et al. (2025) suggest that representations are better described using a linear
model than a multi-layer perceptron. These results have also been combined with observations as to
how models process and succeed at arithmetic tasks.

In this paper, we provide evidence that LLMs converge to systematic and accurate sinusoidal rep-
resentations that are maintained throughout the model in different forms. These representations are
largely equivalent across LLMs of different sizes and families. Building upon this, we find that
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numeric information from LLMs can be accurately extracted using universal probes and show that
more accurate numeric probes allow us to attribute up to 94% of model errors in arithmetical rea-
soning to particular layers, overriding the existing, correct results.1

2 RELATED WORK

Math capabilities of LLMs The seminal remarks of Brown et al. (2020) that LLMs that are large
enough develop arithmetic capabilities have ushered in a large body of work aimed at evaluating the
mathematical capabilities of LLMs (Hendrycks et al., 2021; Cobbe et al., 2021; Sun et al., 2024;
Yu et al., 2024) or lack thereof (Nikankin et al., 2025). This in turn has encouraged a focus on
how to bolster the capabilities of LLMs or interpret how LLMs perform computations (Zhang et al.,
2024; Stolfo et al., 2023). Most relevant to ours, some of the previous work especially focuses on
how numbers should be represented in principle. For instance, Charton (2022) assess an impact on
models performance in linear algebra problems when employing different encoding schemes based
on scientific notation on linear algebra problems. Golkar et al. (2023) propose to encode numeric
values by incorporating a scaled, learned control token <NUM>. Feng et al. (2024) remark that the
precision of the numeric representation type impacts performance on arithmetic tasks, and argue to
use the logarithmic-precision architecture of Feng et al. (2023).

Numeric representations in LLMs The increased focus on evaluating LLM performance in veri-
fiable domains such as math problems has also led to increased interest in the mechanisms by which
LLMs compute arithmetic functions. Nanda et al. (2023) demonstrate how a model trained from
scratch on modular addition relies on trigonometric operation: it maps inputs onto a unit circle,
corresponding to a specific rotation, and then learns to combine the two rotations to derive a valid
solution. Kantamneni & Tegmark (2025) apply circuit analysis to highlight how general pretrained
models perform addition, and highlight that representations are mapped onto a helix that can be
manipulated using trigonometric operations. Zhou et al. (2024) refines these observations in terms
of Fourier components (since Fourier transformations map arbitrary functions unto combinations of
periodic trigonometric functions), and highlight the distinct role of attention and feedforward sub-
layers. Focusing more narrowly on representations rather than processing, Zhu et al. (2025) argue
that non-linear probes do not provide a better fit than linear probes. Levy & Geva (2025) remark that
it is possible to retrieve the digit (value mod 10) of numeric inputs with high accuracy. Kadlčı́k et al.
(2025) propose a linear probe architecture that factors in the sinusoidal nature of the embeddings of
numbers, and show that they can retrieve numeric precision with high accuracy.

In summary, there is a growing body of evidence stating that models rely on trigonometric represen-
tations for numbers. Here, we build upon Kadlčı́k et al. (2025) specifically, as the high accuracy of
their proposed probe provides new opportunities and novel research directions — as we find, also in
tracking and verifying the accuracy of a model’s inner representations throughout its computations,
robust across contexts, model types and operations.

3 UNIVERSALITY OF SINUSOIDAL REPRESENTATIONS OF NUMBERS

3.1 MODELS LEARN EQUIVALENT REPRESENTATIONS OF NUMBERS

The first point we address is the distinctiveness of LLMs’ representations of numbers. Results from
Kadlčı́k et al. (2025) and Zhu et al. (2025) suggest that different models converge to the same type
of number representations, but they do not provide a direct assessment of how closely the represen-
tations match across models – which could evidence that a shared representation is a causal conse-
quence of architectural bias and optimization process rather than a coincidental artifact. Following
Kadlčı́k et al., we focus on the input embeddings from eight LLMs of diverse sizes and families with
open-sourced, pre-trained checkpoints: OLMo 2 (OLMo et al., 2025), Llama 3 (Grattafiori et al.,
2024) and Phi 4 (Abdin et al., 2024).

To quantify whether models converge to similar embeddings, we start by conducting a simple Rep-
resentational Similarity Analysis (RSA; Kriegeskorte et al., 2008) across the input embeddings for

1We make all our methods and analyses available to any use at the project repository: https://github.
com/prompteus/numllama
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(a) Cosine-based RSA for number tokens (b) Cosine-based RSA for random tokens

Figure 1: Representational similarity analysis (RSA) scores

number word-pieces in paired models.2 As a baseline, we compute RSA scores for a random sam-
ple of 1000 pieces present in the vocabularies of all the models under consideration. Results of the
analysis are displayed in Figure 1. Across all pairs of models, we find that number embeddings
systematically yield higher RSA scores than a random sample of word pieces. While some mod-
els (especially in the Phi family) are not as well aligned with other models, we do observe high
scores both within and across families, demonstrating that models converge to embedding spaces
with equivalent similarity structure.

(a) Contributions of Fourier base
frequencies (Llama-3 1B, pro-
vided as an example)

(b) IoU for number pieces (c) IoU for random pieces

Figure 2: Intersection-over-union of top k = 63 Fourier base frequencies

Another approach to quantifying the similarity of frequential representations characteristic for num-
bers Kadlčı́k et al. (2025); Zhou et al. (2024) is by inspecting their base frequencies through Fourier
decompositions. Applying a PCA transformation followed by a Fourier transform allows us to quan-
tify the magnitude of individual frequencies (Figure 2a). Subsequently, we determine whether two
models agree as to how they rank frequencies by computing a simple intersection-over-union (IoU)
of the top k frequencies. We repeat this process for every pair of models, using the input embed-
dings of number pieces (Figure 2b) as well as that of random pieces as previously (Figure 2c). When
considering the top k = 63 frequencies,3 we find perfect agreement across all models in terms of
number pieces.

2RSA is a second-order similarity measurement. Let A = {a1, . . .an} and B = {b1, . . .bn} be two
sets of matching representations, in our case the input embeddings for number word-pieces in two models
θA and θB . We can assess the extent to which A and B encode the same type of similarity structures by
simply computing the (Spearman) correlation ρsA,sB , where sA = (cos(a1,a2) . . . cos(an−1,an)) and sB =
(cos(b1,b2) . . . cos(bn−1,bn)) are two vectors tracking all pairwise similarities within A and B respectively.

3See Section A.1 for details how this value of k is found.
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In summary, our analyses show that the LLMs from different families learn to represent numbers in
a similar topology and trigonometric features using the same dominant frequencies. This is specific
to numbers – we do not reproduce these observations with other word pieces shared across models.

3.2 NUMBER REPRESENTATIONS ARE ALWAYS SINUSOIDAL

In subsection 3.1, we presented evidence that the input embeddings of numbers across different
LLMs are highly consistent. In this section, we aim to find whether such representations are also
maintained and employed throughout the models.

For qualitative assessment, we visualize the PCA and its Fourier transform of internal activations of
numerical tokens in Section A.3. Besides the apparent wave-like pattern, the representations have
a sparse Fourier transform, confirming the sinusoidal character. For quantitative analysis, we look
at the model’s internal representations through the lens of the sinusoidal probe proposed by Kadlčı́k
et al. (2025). This probe was designed to map input embeddings of LLMs into an integer, thus
classifying embeddings into predefined range of numeric values. The sinusoidal probe is defined as:

fsin(x) = (WoutS)
T (Winx) (1)

Sij =

{
sin(iej1000/h) if j ≡ 0 mod 2

cos(iej+11000/h) if j ≡ 1 mod 2

where Win : h× d and Wout : h× d are learned parameters, and S : h× 1000 injects an inductive
bias in the classifier towards sinusoidal representations. Unless otherwise stated, we use d = 100, h
corresponds to the inner dimensionality of the LLM at hand. We build upon an assumption verified
by Kadlčı́k et al. (2025) stating that sinusoidal probes indeed adapt and employ a sinusoidal repre-
sentation from inductive bias, if a sinusoidal representation is also present in the input embeddings.

We first assess whether sinusoidal probes are the most suitable, i.e., an accurate choice for decoding
the internal representations of the model. To contextualize the accuracy in terms of sinusoidal
quality of the representation, we also evaluate other types of probes used to decode numbers in
previous work Feng et al. (2023); Zhu et al. (2025); Kadlčı́k et al. (2025) as baselines. we train the
sinusoidal probe on hidden representations of each layer of Llama 3.2 1B model when processing
addition prompts of the form ‘x1 + x2’, where x1 and x2 are integers. We specifically evaluate
whether the value of x2 can be retrieved from the model’s hidden representation on each layer. To
assess generalization rather than memorization capacity, we split the prompts and corresponding
representations into training, validation and test sets containing distinct extracted numbers (x2).

Figure 3a shows the accuracy of different probes extracting the value of input numbers from rep-
resentations of each model’s layer, evaluated across six different models. The superior accuracy of
sinusoidal probe provides an indicator of both (i) the sinusoidal character, and (ii) accuracy of input
number representation across layers.
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(b) across different language models; natural contexts

Figure 3: Accuracy of decoding numeric input token from internal activations of language models

Thus far, an important caveat of ours, as well as a methodology of previous work probing represen-
tations of numbers in previous work (Section 2) is that we focus on a very specific type of input,
namely additions, without any sort of natural language to contextualize them. As such, it is reason-
able to assume that the results presented in Figure 3 may not carry to a more natural context: there
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is little guarantee that the behavior of a model on arithmetic problems is indicative of its behavior a
broad range of applications requiring manipulations of numbers in natural language contexts.

To evaluate the impact of natural language context on accuracy and regularity of numeric repre-
sentations, we curate a dataset covering four domains involving intensive numeric manipulations:
arithmetic (mathematical word problems), temporal (date extraction), medical (ICD-10 diagnostic
codes) and culinary (recipe ingredients/quantities). The complete dataset specifications are detailed
in Table 1 in Section B. To maximize the quality of learned probes and thus, representativeness of
our findings, we also tackle the natural-language class imbalance; as not every number has equal
probability to occur in a date or in a recipe, we replace original numbers with integers uniformly
sampled from the model vocabulary. We then fit separate probes for activations from every layer,
again holding out a set of 100 randomly selected numbers for evaluating generalization.

Figure 3b displays the accuracies of input value extraction from model’s hidden states within natural-
language contexts across six LLMs of different sizes and three different families. As we can see,
the sinusoidal probes reach over 70% of accuracy in all but three cases and over 90% of accuracy
for a majority of probing scenarios. Taking into an account that the learned sinusoidal probe also
induce a certain error. Therefore, these accuracies present a lower-bound of accuracy of models’
representation of input numbers in natural contexts in a sinusoidal representation — showing that
the accurate, sinusoidal representation is indeed characteristic and employed by a wide range of
recent language models.

A vast majority of cases performing lower than 80% occurs in probing the models’ first and a last
layer — we analyze these cases in detail later in Section 3.3.
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Nat. lang  Math

Math  Nat. lang
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Figure 4: Generalization of probes fitted on natural-language occurrences of numeric tokens (solid
line), and synthetic, mathematical contexts (dashed line).

A comparison of probes’ performance in math an natural-language contexts (Figure 3) may suggest
that a type of context does not influence the results of probing accuracy. However, in Figure 4, we
show that probes fitted with natural-language contexts are much more robust in application across
both math and natural-language contexts; While both the math and natural-language probes gener-
alize well within their training context type, the natural-language probes are applicable comparably
even under a substantial context distribution shift, suggesting that a wider variety of contexts serves
as an effective regularization strategy. This observation draws two important implications: First,
it informs future work tracing models’ internal computations to favor probes trained in natural-
language settings. Second, it restrains future work in interpretability from drawing broad conclu-
sions on models’ mechanics from fully-synthetic settings, evidencing that such conclusions may not
generalize to real-world applications.

In short, our results underscore that the same type of sinusoidal representation of numbers holds
in general across different model types. Numbers are represented in a similar, systematic fashion,
regardless of which layer or type of contexts we consider.

3.3 DIFFERENT LAYERS USE INTERCHANGEABLE NUMERIC REPRESENTATIONS

Having found the remarkable degree to which the embeddings for numbers align across different
models and the noteworthy universality of sinusoidal representations in varied contexts, we turn to
further analyses assessing the extent to which these structures are utilized by the models. First, we
address whether the same sinusoidal structure is conserved across a model’s computations.
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To that end, we employ the probes we developed in Section 3.2 trained separately for each model
layer, Li, and measure the accuracy of each probe on representations derived for every other layer
Lj ̸= Li. This approach, while informative, comes with the caveat that probes trained for a given
layer Li might pick up on idiosyncrasies inherent to a specific layer — i.e., the probes might not
disentangle what is specific to numbers as opposed to what is specific to a layer. To address this
point, we also fit probes using all but one layer (L1, L2, . . . Li−1, Li+1, . . . Ln), and evaluate the
performance on representations from the held out layer Li. As previously, we hold out a subset of
100 numbers for assessing generalization in validation and test conditions.

(a) accuracy of probes trained
for Llama 1B on a chosen layer
(rows) evaluated on all other layers
(columns)

Held-out layer position
0

25

50

75

100
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ra
cy Llama 3.2 (3B)

Phi 4 (15B)
Olmo (13B)

(b) probes trained on all-but-one layer, evaluated on the held-out layer

Figure 5: Probes accuracy on activations from unseen layers.

Results of probes’ cross-layer generalization for Llama 1B are displayed in Figure 5, with largely
consistent results for other models in Appendix A.2. We observe that probes fitted on a concrete
layer’s representations (Figure 5a) generalize outstandingly well to close-by layers, with the ex-
ception of the first and the last layer. This trend reveals that language models operate mostly in
a consistent representation of numbers that is universal across their computations, undergoing
only minor shifts across layers. This trend is also corroborated by multi-layer probes evaluated in
heldout-layer fashion, reaching an accuracy between 95 and 100% across all intermediate layers and
three models of diverse sizes and families. This result has practical implications for future work
in numeric interpretability — showing that we can train universal, yet highly accurate probes for
intermediate layers of a broad set of language models4.

Cross-layer evaluation indicates that models’ internal representations tend to differ from the in-
put/output embeddings. We find a notable discrepancy in the sparsity of their representation;
Whereas the input/output embeddings represent numbers in a more distributed fashion, hidden lay-
ers use a small number of consistently-ordered sin features.

Pr
op

or
tio

n 
of

 w
ei

gh
ts
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> 0.1
> 0.01

> 0.001

Llama 3.2 (1B) OLMo (7B) Phi 4 (15B)

Figure 6: Difference in probe weights distribution (of Win) across layers shows that the initial
and last layers represent numbers in a systematically sparser fashion.

This is visualized in Figure 6, showing that intermediate layers in Llama 1B lead to probes with very
few weights with values > 10−5.

4We will release our training scripts, together with reproducibility guidelines for training universal probes,
in a final version of this paper
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We hypothesize that this discrepancy can be caused by the models’ computational and optimization
mechanics. As cross-entropy loss is minimized by confident one-hot predictions, models can benefit
from using more features to create higher dissimilarity (separability) of tokens. In contrast, internal
representations are not subject to direct optimization pressure and might benefit from fewer but more
informative features.

Nevertheless, we note that this trend is pertinent across different models to a different extent: OLMo
7B and Phi 15B learn more distributed features also across the intermediate layers — which, in turn,
also leads to a better generalization of universal probes (Figure 5b), but still causing an outstanding
drop in held-out accuracy compared to other layers. Finally, we note that the models’ sparsity profile
does not relate to reported performances on arithmetic tasks Kadlčı́k et al. (2025) and it also does not
necessarily determine the accuracy of probes trained specifically for particular layer(s) (Figure 3).
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Figure 7: Accuracy of previous tokens’
recovery for different probes trained on
embeddings.
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Layer

Input
Query

Key
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Q+K+V
Attn output
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86 98 98 100 99 99 99 99 99 99 99 99 99 99 99 99
15 68 60 44 62 44 43 32 44 34 45 54 49 61 50 50
4 69 50 22 55 24 34 12 42 18 22 30 46 43 36 52
13 52 22 36 51 25 16 13 12 25 70 71 63 59 67 59
20 98 96 90 89 85 62 66 65 79 100 99 99 99 99 99
1 42 2 4 12 0 1 0 0 1 77 0 8 1 12 96
58 51 42 51 40 34 29 40 53 51 56 47 38 38 29 17
98 98 100 99 99 99 99 99 99 99 99 99 99 99 99 44

Figure 8: Accuracy of extracting input numbers from
each component of the Transformer block using the
sinusoidal probe.

Finally, we explore the origin of the high consistency of representations across layers within the in-
ternal mechanism that each transformer layer implements. In Figure 8, we visualize the accuracy of
probing input representations from each of the components present in transformer layers (Llama 3.2
1B for brevity). We find the accurate numeric representation is scattered across different components
in the attention mechanism, with the attention output projection largely violating the sinusoidal rep-
resentation, which is then, to a large extent, reconstructed in the subsequent fully-connected block.
Nevertheless, the consistency of layers’ output representation is primarily maintained by residual
streams across layers.

To summarize, we find that the same probe can recover the numeric information for representations
pooled from different layers of the models we study. Added to our previous observations in Sec-
tions 3.1 and 3.2, we can therefore stress that models learn input embeddings for numbers that are
strikingly similar, regardless of which model they come from. These embeddings are processed
into sinusoidal representations that are systematic and consistent regardless of context or hidden
layer, with the source of this consistency originating primarily in the residual stream across layers.

4 MECHANISMS OF NUMBER MANIPULATION

We have established that models converge to sinusoidal number representations universally. This
naturally begs the question of how those sinusoidal representations are used.5

4.1 MULTI-TOKEN NUMBERS

Our first point of order concerns digits beyond the range of what can be represented in recent LLMs
with a single token. To see whether LMs are able to represent even the values of multi-token numbers
systematically and accurately, we probe the values of all parts of multi-token numbers from a single

5In what follows, we focus exclusively on sinusoidal probes for the sake of providing a clearer exposition.
Most alternative probe designs suggested by Kadlčı́k et al. (2025) fail to achieve meaningful performances. For
reference, the best performance we observe are from the binary probes in previous-token recovery, achieving
1.2% of accuracy on -1-th recovered token (Figure 7).
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representation corresponding to the last numeric token. The accuracy of this experiment uncovers the
extent to which the models implement a systematic algorithm of superposing multi-token numbers
in a single representation.

For this experiment, we adapt the methodology utilizing natural-language contexts, with a substitu-
tion of original numeric values with values spanning two to six numeric tokens, i.e. in a numeric
range between 103 − 1018. We use a subset of BBC data that was published after the knowledge
cutoff or release date of all the models under consideration (Li et al., 2024).6

To be able to contextualize the magnitude of superposition and thus, disentangle a general model
mechanism from the mechanism specific for numbers, we also probe representations of natural-
language tokens using TunedLens (Belrose et al., 2025). TunedLens is an early-exit interpretability
method which aims to explain the contents of intermediate representations by learning to translate
them into logits. In practice, for each layer Li, TunedLens involves distilling the computations done
in the subsequent layers Li+1, . . . Ln into a simple affine transformation Wi, such that applying
this transformation Wi to a hidden state at Li followed by the unembedding matrix closely matches
the logits that the LLM would eventually produce. Here, to maximize comparability and align the
number and distribution of target categories, we narrow down the space of probed tokens to 1000
tokens (matching the number probes) ranked as 2000–3000thmost-common tokens in our dataset.

Results for Llama 1B and different probing methods are presented in Figure 7. Results of sin probes
show that multi-token numbers are indeed systematically and highly accurately superposed in
the latest numeric representation – reaching an accuracy of 99% for the immediately-preceding
number piece (offset -1). However, the accuracy and/or systematicity of the superposition mecha-
nism quickly drops for numbers longer than three tokens (i.e. ≥ 109), reaching close to zero for the
5th preceding token.

The results of natural-language token probing using TunedLens reveal that superpositioning repre-
sentations of previous tokens is not a mechanism specific only to numbers – albeit this mechanism
seems more prevalent and accurate for numeric tokens. Aiming to maximise comparability, we
also report a comparison of the previous-token recovery using TunedLens for numeric tokens —
in exactly the same configuration as for the natural-language tokens. This comparison shows that
TunedLens is highly inefficient for recovering numeric tokens compared to sinusoidal probes.

4.2 ERROR TRACKING

Establishing that LLMs use universal, systematic and interchangeable representations of numbers,
we aim to explore whether we can build upon this knowledge in tracing the origins of models’ out-
puts in arithmetic reasoning. First, we assess the predictive power of models’ internal representations
towards true results in prompts requiring addition, subtraction, multiplication and division.
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Figure 9: Probing accuracy in predicting models’ outputs for different prompted operations, for
cases where the model predicts a correct (blue) and incorrect response (red).

Results of predicting the Llama 3.2 3B’s expected outputs for different operations are displayed
in Figure 9. We can see a large distinction between the cases where the model predicts a correct
and incorrect response – suggesting that the extent to which the model maintains the sinusoidal

6Retrieved from RealTimeData/bbc news alltime
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representation may determine the accuracy of the output. We observe that for addition and
subtraction, probes can, with close to 100% accuracy, identify the retrieved result already from
the model internals. Based on qualitative assessments of output embeddings (subsection B.1), we
hypothesize that lower reliability in other operations (multiplication and division) may be caused by
the models’ divergence from sinusoidal representation employed by the input/output embeddings,
accompanied also by lower accuracy of models overall (Table 2).
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Figure 10: Absolute error per layer: Absolute error of numeric values probed from different layers.

The results in Figure 10 show that across all operations, models tend to incrementally reduce the
error towards the true answer value, gradually refining across layers. These results also suggest that
there are particular layers responsible for an increase of errors in the model’s internal computation.
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Figure 11: Error aggregation per layer: Relative ratio of cases where each of the layers in Llama
3.2 3B breaks the correct result from the previous layer. We find that removing the three layers with
the highest error aggregation in division (layers 5, 9 and 11) leads to 27–64% error reduction.

Figure 11 corroborates this hypothesis — showing that particular layers break the correct result
probed from the previous layer in large proportions of all predictions. For instance, in division, the
5th layer is responsible for breaking the correct result recoverable from the previous layer in over
10% of all cases. Our further analyses, overviewed in Table 2, show that according to the probed
representations, the models often achieve a correct result internally, even though it does not surface:
this is the case of 56.8% of all surfaced (prediction) errors in subtraction, 26.3% in multiplication,
and as much as 94.4% of all errors in division.

Layers ablation We further support the claimed responsibility of specific layers on the resulting
accuracy by simply removing the suspected layers from the model. Such a naive alternation becomes
viable with the uncovered universality of representations across layers (subsection 3.3). Specifically,
we try to remove one of the three layers with the highest error aggregation, separately in multipli-
cation and in division (having a potential for improvement of accuracy). We find that this brings
performance benefit in four out of six cases – in one case (layer 4) in multiplication, causing a 26%
error reduction (from 90.38% to 92.91% and in all cases in division, with error reduction between
27–64%. However, we must note that the absolute number of correct predictions probed in the lower
layers is negligible, which hinders the general applicability of this methodology.

Steering towards sinusoidality Taken together, these results underline a hypothesis that the si-
nusoidal representation is also universal for models’ output generation. We can show this more
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directly by steering activations towards the expected sinusoidal representations. Concretely, we (i)
fit sinusoidal probes at each layer to predict the output of a given arithmetic operation; (ii) optimize
a set of 1000 randomly-initialized embeddings ey to maximize their fit to an optimal representations
to a vocabulary of numeric tokens according to these sinusoidal probes; and (iii) steer activations
towards the corresponding embedding optimized with respect to the probe whenever the model is
not producing the expected output. Steering is achieved by interpolating between the activation hi

at layer Li and the optimized embedding ey for the intended target scalar result y, αhi+(1−α)ey .
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Figure 12: Error reduction after steering activations in incorrectly processed cases of multiplication
and division in Llama 3B using interpolation factors of α = 0.375 for division, and α = 0.3 for
multiplication.

Figure 12 displays the absolute difference in performance caused by the steering on previously erro-
neous cases in multiplication and division. We target probes on upper layers which reach accuracy
scores ≥ 10%. In short, Figure 12 shows that depending on the layer, we can correct up to 19.23%
of errors for division, and up to 17.03% for multiplication.

In summary, factoring in the knowledge of the sinusoidal nature of number representations allowed
us to understand and assess the lower bounds of accuracy of multi-token number representations.
On a case study of Llama 3.2 3B, we further showed how more accurate probes allow pinpointing
and eliminating the sources of errors via (i) addressed ablations in the model architecture and (ii) by
steering the activations on error cases towards sinusoidality.

5 CONCLUSIONS

This paper builds a fundamental understanding of how LLMs internally represent and manip-
ulate numeric values. We provide evidence that diverse LLMs learn and employ mutually-
interchangeable, consistent sinusoidal representations across their internal layers, maintained largely
by residual streams, but distinct in the embedding representation and internal activations in terms of
sparsity. We show how probing techniques respecting representational properties of numbers open
up new possibilities for tracking the causes of errors in models’ internal computation, attributing
large portions of errors to numeric interventions of concrete layers. Towards the fast-growing field
of interpretability research, our work contributes by evidencing the importance of natural-language
probes in training better-generalizing probes or the superior quality of specialized probes compared
to widely-used methods such as linear or TunedLens probes. We hope that our work clearly out-
lines the potential of more accurate probes in robustness and faithfulness assessments of existing
and future reasoning models.
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Marek Kadlčı́k, Michal Štefánik, Timothee Mickus, Michal Spiegel, and Josef Kuchař. Pre-trained
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A SUPPLEMENTARY RESULTS

A.1 SELECTING THE OPTIMAL NUMBER OF FOURIER COMPONENTS FOR COMPARISON

Figure 13: Minimum IoU across number of frequencies considered

In Section 3.1, we discuss selecting the optimal number of Fourier components. As can be assessed
from 2a, from a certain frequency rank, Fourier decompositions resort to noise. Thus, our objective
is to find the “cutoff” rank (k) that disentangles oscillating information from the non-oscillating,
presumably non-numeric information. This means finding an optimal, yet non-trivial (e.g. ≥ 10)
cutoff for a number of components. In practice, we evaluate for each value of k what the minimum
IoU agreement score across all models amounts to for numbers and random overlapping word-
pieces. As displayed in Figure 13, we find such an optimal cutoff at k = 63 as the highest value of
k that leads to perfect agreement across models.

A more thorough assessment of Figure 13 suggests a few interesting trends. Random word pieces
also tend to favor a handful of Fourier basis components; which we conjecture is due to the sampling
mechanism. By selecting overlapping pieces, our pieces must be frequent enough to be present in
multiple distinct tokenizers, which in turns shapes the type of linguistic units represented in this
random sample. Secondly, we also observe a ‘cross-over’ point around k ≈ 250, after which we
find greater agreement in random pieces than numbers. Yet, we note that (i) a significant proportion
of the mass is concentrated in a few frequency components for numbers, whereas random pieces
lead to much more uniform distributions across frequency components (see Figure 14); and (ii) the
results in Figure 13 still allow us to establish that the Fourier profile of number pieces is clearly
distinct from what we observe for any other overlapping set of word pieces.
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Figure 14: Contributions of Fourier base frequencies for non-number pieces (Llama-3 1B, provided
as an example)

A.2 GENERALIZATION OF PROBES TO UNSEEN LAYERS

Figure 15 shows how probes fitted on each layer generalize to all other layers in a model. Strong
cross-layer generalization indicates a high consistency of representations throughout the model.

A.3 VISUALIZATIONS OF INTERNAL ACTIVATIONS

We visualize the internal activations for a string template “x1 + x2 =” on the second numeric token
(x2). Values for x2 are selected as a range 0-999 (all values present by the vocab), and values for x1
are sampled randomly from the same range. Then, we project the activations of the model’s middle
layer to 64 dimensions with PCA and compute the Fourier transform.

We visualize the first 16 PCA dimensions in Figure 16 and the maximal magnitudes of the frequen-
cies in the Fourier transform in Figure 17. We visualize across model sizes and families.

B NATURAL LANGUAGE DATASET DESCRIPTION

Table 1: Dataset specifications for numerical embedding analysis across natural language contexts.

Domain Dataset Source Numerical Context Size

Culinary Recipe NLG Lite m3hrdadfi/recipe nlg lite Quantities, measurements 6118
FoodRecipe-ImageCaptioning samsatp/FoodRecipe-ImageCaptioning Ingredient amounts 719

Temporal TimeLineExtraction irlabamsterdam/TimeLineExtraction...CASE Legal document dates 50

Arithmetic
MetaMathQA meta-math/MetaMathQA Mathematical reasoning 395K
DROP ucinlp/drop Discrete reasoning 77.4K
AQuA-RAT deepmind/aqua rat Algebraic word problems 97.4K

Medical ICD-10 Codes atta00/icd10-codes Diagnostic codes 25.7K
ICD-10-CM Gokul-waterlabs/ICD-10-CM Medical classifications 74K

Add Sub Mul Div

Accuracy 100% 99.8% 90.4% 5.9%
P(Extracted | Incorrect) - 56.8% 26.3% 94.4%
P(Not extracted | Correct) 1.4% 0.03% 26.1% 5.9%

Table 2: Probe accuracy in extracting the predicted result: Ratio of cases where the sin probe
of some layer (top) retrieves a correct result when the model’s prediction is incorrect, and (bottom)
can not retrieve a correct result when the model’s prediction is correct.
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B.1 QUALITATIVE ASSESSMENT OF OUTPUT EMBEDDINGS

We visualize output representations of Llama 3 1B on addition and multiplication operations. For
each expected result value y in the range 0-999, we sample a random pair (x1, x2) from the same
range, such that x1 + x2 = y (or x1 × x2 = y, respectively). We then predict the next token for
prompts “x1 plus x2 is ” and “x1 multiplied by x2 is ” and collect the final output representations
of the model before decoding. We then reduce the representations with PCA to 16 dimensions and
visualize the result in Figure 18.

C EXPERIMENTAL DETAILS

We refer the reader to the companion code-base, which tracks exact hyperparameters for all experi-
ments; the overview provided here is mainly designed for general informative purposes rather than
precise replication.

In most experiments, we use an Adam optimizer with a learning rate of 10−3, and train probes up to
50,000 steps, with an L1 regularization of 10−3.

In multi-token decoding (Figure 7), we use a learning rate of 5 · 10−4, 10,000 training steps, and
early-stop training.

When fitting probes on natural language contexts (Figure 4, ‘Nat. lang. → Nat. lang.’) and for
cross-layer transfer (Figure 15), we use a learning rate of 10−4.

When dealing with natural language contexts, as well as division and multiplication Section 4.2, we
use a learning rate scheduler decreasing the learning rate by a factor of 100 over the first 30,000
steps. Experiments are performed on the probe that maximizes accuracy on a heldout validation set.

In our steering experiments (Figure 12), we optimize embeddings with respect to the probe using an
SGD optimizer with a learning rate of 0.1, optimize the embeddings for 200,000 steps, and decrease
the learning rate by a factor of 100 over the first 100,000 steps.
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(a) Llama 3 1B (b) Llama 3 3B

(c) Llama 3 8B (d) Olmo 2 1B

(e) Olmo 2 7B (f) Olmo 2 13B

(g) Phi 4 15B

Figure 15: Probe fitted on one layer evaluated on all layers. Olmo 2 1B shows the weakest cross-
layer generalization among all models. Llama models display a strong separation between in-
put/output embedding representations and the hidden representations.
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(a) Llama 3 1B (layer 8/17)

(b) Olmo 2 7B (layer 16/31)

(c) Phi 4 15B (layer 20/41)

Figure 16: PCA of models’ internal representations
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(a) Llama 3 1B (layer 8/17)

(b) Olmo 2 7B (layer 16/31)

(c) Phi 4 15B (layer 20/41)

Figure 17: Maximal magnitudes of frequencies in Fourier transform of PCA of models’ internal
representations
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(a) addition

(b) multiplication

Figure 18: PCA of Llama 3 1B output representations for the operations of addition (recoverable
with close-to 100% accuracy) and multiplication (recoverable with appx. 50% of accuracy)
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