

000 001 002 003 004 005 006 007 008 009 010 UNRAVELLING THE MECHANISMS OF MANIPULATING 002 NUMBERS IN LANGUAGE MODELS

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 Recent work has shown that different large language models (LLMs) converge to
 012 similar and accurate input embedding representations for numbers. These findings
 013 conflict with the documented propensity of LLMs to produce erroneous outputs
 014 when dealing with numeric information. In this work, we aim to explain this
 015 conflict by exploring how language models *manipulate* numbers and quantify the
 016 lower bounds of accuracy of these mechanisms. We find that despite surfacing er-
 017 rors, different language models learn interchangeable representations of numbers
 018 that are systematic, highly accurate and universal across their hidden states and the
 019 types of input contexts. This allows us to create universal probes for each LLM
 020 and to trace information — including the causes of output errors — to specific
 021 layers. Our results lay a fundamental understanding of how pre-trained LLMs
 022 manipulate numbers and outline the practical potential of more accurate probing
 023 techniques in addressed refinements of LLMs' architectures.

024 1 INTRODUCTION

025 One major limitation of large language models (LLMs) is their inability to guarantee factually pre-
 026 cise and correct outputs. This is a fundamental trait due to the probabilistic nature of transformer
 027 models, and thus not a solvable problem, as has recently been emphasized by (Kalai et al., 2025).
 028 However, knowing the extent of the problem (and whether it can be mitigated) is a feasible task; one
 029 that is important given the recent ubiquity of LLMs in research and broader society.

030 Mathematical problems provide an ideal playground in which to assess the current ability of LLMs
 031 to manipulate precise information. Because it operates through a set of formal rules and produces
 032 computationally verifiable outputs, mathematics provides the opportunity to rate not only the ten-
 033 dency of a model to output incoherent information (Sun et al., 2024), but also to examine in detail
 034 the coherence of the reasoning steps outputted by a given LLM. While this research direction is rife
 035 with challenges, ranging from manipulating implicitly visual data in geometry problems (Ahn et al.,
 036 2024) to mapping plain language onto specific types of problems (Duchnowski et al., 2025), it has
 037 also been met by genuine successes, e.g., as an aid to solve mathematical problems (Li et al., 2025).

038 A large body of work has highlighted limitations of LLMs when it comes to arithmetic tasks (Xu
 039 et al., 2025; Kvinge et al., 2025; Satpute et al., 2024; Lee et al., 2025; Bertolazzi et al., 2025;
 040 Nikankin et al., 2025), as well as proposed means to alleviate these limitations centered on re-
 041 designing numeric representations to be principled and precise (e.g., Charton, 2022; Feng et al.,
 042 2024; Golkar et al., 2023). More recent developments have suggested that the issues models en-
 043 counter with arithmetic need not be tied to the quality of their representations of numbers. Several
 044 works have attempted to characterize the types of representations models rely on to perform arith-
 045 metic computations (Wennberg & Henter, 2024; Zhou et al., 2024; Zhu et al., 2025; Kadlčík et al.,
 046 2025). This research direction has proposed that number representations stand out in terms of their
 047 structure, with Zhou et al. (2024) and Kadlčík et al. (2025) arguing that models rely on sinusoidal
 048 structures, whereas Zhu et al. (2025) suggest that representations are better described using a linear
 049 model than a multi-layer perceptron. These results have also been combined with observations as to
 050 how models process and succeed at arithmetic tasks.

051 In this paper, we provide evidence that LLMs converge to systematic and accurate *sinusoidal* rep-
 052 resentations that are maintained throughout the model in different forms. These representations are
 053 largely equivalent across LLMs of different sizes and families. Building upon this, we find that

054 numeric information from LLMs can be accurately extracted using universal probes and show that
 055 more accurate numeric probes allow us to attribute up to 94% of model errors in arithmetical rea-
 056 soning to particular layers, overriding the existing, correct results.¹
 057

058 2 RELATED WORK 059

060 **Math capabilities of LLMs** The seminal remarks of Brown et al. (2020) that LLMs that are large
 061 enough develop arithmetic capabilities have ushered in a large body of work aimed at evaluating the
 062 mathematical capabilities of LLMs (Hendrycks et al., 2021; Cobbe et al., 2021; Sun et al., 2024;
 063 Yu et al., 2024) or lack thereof (Nikankin et al., 2025). This in turn has encouraged a focus on
 064 how to bolster the capabilities of LLMs or interpret how LLMs perform computations (Zhang et al.,
 065 2024; Stolfo et al., 2023). Most relevant to ours, some of the previous work especially focuses on
 066 how numbers should be represented in principle. For instance, Charton (2022) assess an impact on
 067 models performance in linear algebra problems when employing different encoding schemes based
 068 on scientific notation on linear algebra problems. Golkar et al. (2023) propose to encode numeric
 069 values by incorporating a scaled, learned control token <NUM>. Feng et al. (2024) remark that the
 070 precision of the numeric representation type impacts performance on arithmetic tasks, and argue to
 071 use the logarithmic-precision architecture of Feng et al. (2023).
 072

073 **Numeric representations in LLMs** The increased focus on evaluating LLM performance in veri-
 074 fiable domains such as math problems has also led to increased interest in the mechanisms by which
 075 LLMs compute arithmetic functions. Nanda et al. (2023) demonstrate how a model trained from
 076 scratch on modular addition relies on trigonometric operation: it maps inputs onto a unit circle,
 077 corresponding to a specific rotation, and then learns to combine the two rotations to derive a valid
 078 solution. Kantamneni & Tegmark (2025) apply circuit analysis to highlight how general pretrained
 079 models perform addition, and highlight that representations are mapped onto a helix that can be
 080 manipulated using trigonometric operations. Zhou et al. (2024) refines these observations in terms
 081 of Fourier components (since Fourier transformations map arbitrary functions unto combinations of
 082 periodic trigonometric functions), and highlight the distinct role of attention and feedforward sub-
 083 layers. Focusing more narrowly on representations rather than processing, Zhu et al. (2025) argue
 084 that non-linear probes do not provide a better fit than linear probes. Levy & Geva (2025) remark that
 085 it is possible to retrieve the digit (value mod 10) of numeric inputs with high accuracy. Kadlčík et al.
 086 (2025) propose a linear probe architecture that factors in the sinusoidal nature of the embeddings of
 087 numbers, and show that they can retrieve numeric precision with high accuracy.
 088

089 In summary, there is a growing body of evidence stating that models rely on trigonometric repres-
 090 entations for numbers. Here, we build upon Kadlčík et al. (2025) specifically, as the high accuracy of
 091 their proposed probe provides new opportunities and novel research directions — as we find, also in
 092 tracking and verifying the accuracy of a model’s *inner* representations throughout its computations,
 093 robust across contexts, model types and operations.

094 3 UNIVERSALITY OF SINUSOIDAL REPRESENTATIONS OF NUMBERS 095

096 3.1 MODELS LEARN EQUIVALENT REPRESENTATIONS OF NUMBERS

097 The first point we address is the distinctiveness of LLMs’ representations of numbers. Results from
 098 Kadlčík et al. (2025) and Zhu et al. (2025) suggest that different models converge to the same *type*
 099 of number representations, but they do not provide a direct assessment of how *closely* the repres-
 100 entations match across models — which could evidence that a shared representation is a causal conse-
 101 quence of architectural bias and optimization process rather than a coincidental artifact. Following
 102 Kadlčík et al., we focus on the input embeddings from eight LLMs of diverse sizes and families with
 103 open-sourced, pre-trained checkpoints: OLMo 2 (OLMo et al., 2025), Llama 3 (Grattafiori et al.,
 104 2024) and Phi 4 (Abdin et al., 2024).

105 To quantify whether models converge to similar embeddings, we start by conducting a simple Rep-
 106 resentational Similarity Analysis (RSA; Kriegeskorte et al., 2008) across the input embeddings for

107 ¹We make all our methods and analyses available to any use at the project repository: <https://github.com/prometheus/numllama>

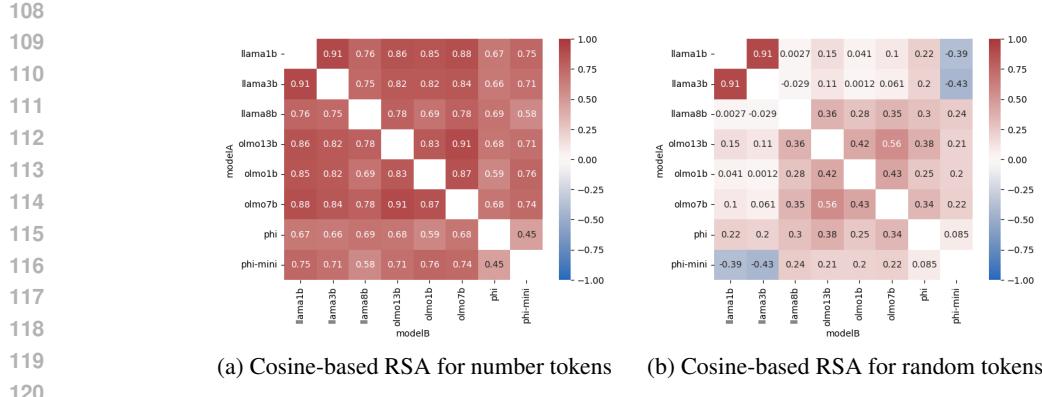
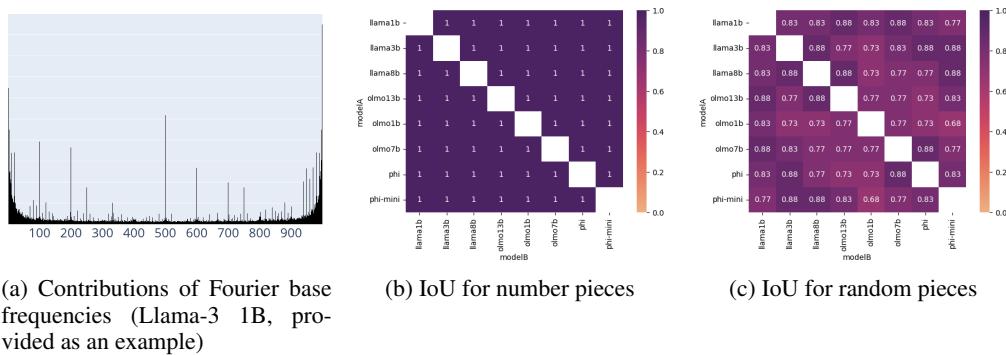


Figure 1: Representative similarity analysis (RSA) scores

number word-pieces in paired models.² As a baseline, we compute RSA scores for a random sample of 1000 pieces present in the vocabularies of all the models under consideration. Results of the analysis are displayed in Figure 1. Across all pairs of models, we find that number embeddings systematically yield higher RSA scores than a random sample of word pieces. While some models (especially in the Phi family) are not as well aligned with other models, we do observe high scores both within and across families, demonstrating that models converge to embedding spaces with equivalent similarity structure.

Figure 2: Intersection-over-union of top $k = 63$ Fourier base frequencies

Another approach to quantifying the similarity of frequential representations characteristic for numbers Kadlčík et al. (2025); Zhou et al. (2024) is by inspecting their base frequencies through Fourier decompositions. Applying a PCA transformation followed by a Fourier transform allows us to quantify the *magnitude* of individual frequencies (Figure 2a). Subsequently, we determine whether two models agree as to how they rank frequencies by computing a simple intersection-over-union (IoU) of the top k frequencies. We repeat this process for every pair of models, using the input embeddings of number pieces (Figure 2b) as well as that of random pieces as previously (Figure 2c). When considering the top $k = 63$ frequencies,³ we find **perfect agreement across all models** in terms of number pieces.

²RSA is a second-order similarity measurement. Let $A = \{a_1, \dots, a_n\}$ and $B = \{b_1, \dots, b_n\}$ be two sets of matching representations, in our case the input embeddings for number word-pieces in two models θ_A and θ_B . We can assess the extent to which A and B encode the same type of similarity structures by simply computing the (Spearman) correlation ρ_{s_A, s_B} , where $s_A = (\cos(a_1, a_2) \dots \cos(a_{n-1}, a_n))$ and $s_B = (\cos(b_1, b_2) \dots \cos(b_{n-1}, b_n))$ are two vectors tracking all pairwise similarities within A and B respectively.

³See Section A.1 for details how this value of k is found.

162 In summary, our analyses show that the LLMs from different families learn to represent numbers in
 163 a similar topology and trigonometric features using the same dominant frequencies. This is specific
 164 to numbers – we do not reproduce these observations with other word pieces shared across models.
 165

166 3.2 NUMBER REPRESENTATIONS ARE ALWAYS SINUSOIDAL

168 In subsection 3.1, we presented evidence that the input embeddings of numbers across different
 169 LLMs are highly consistent. In this section, we aim to find whether such representations are also
 170 maintained and employed throughout the models.

171 For qualitative assessment, we visualize the PCA and its Fourier transform of internal activations of
 172 numerical tokens in Section A.3. Besides the apparent wave-like pattern, the representations have
 173 a sparse Fourier transform, confirming the sinusoidal character. For quantitative analysis, we look
 174 at the model’s internal representations through the lens of the sinusoidal probe proposed by Kadlčík
 175 et al. (2025). This probe was designed to map input embeddings of LLMs into an integer, thus
 176 classifying embeddings into predefined range of numeric values. The sinusoidal probe is defined as:

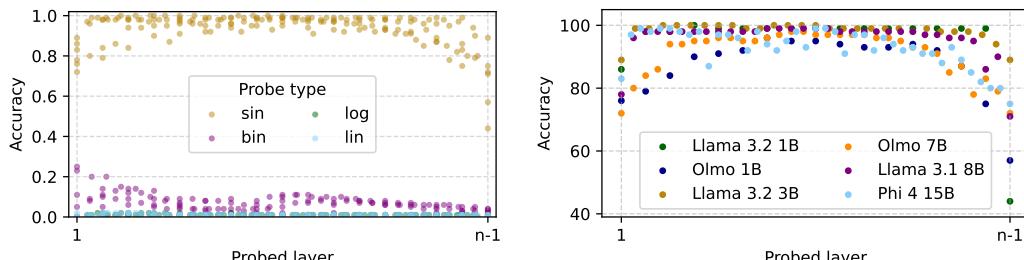
$$f_{\sin}(\mathbf{x}) = (\mathbf{W}_{\text{out}} \mathbf{S})^T (\mathbf{W}_{\text{in}} \mathbf{x}) \quad (1)$$

$$\mathbf{S}_{ij} = \begin{cases} \sin(ie^j 1000/h) & \text{if } j \equiv 0 \pmod{2} \\ \cos(ie^{j+1} 1000/h) & \text{if } j \equiv 1 \pmod{2} \end{cases}$$

181 where $\mathbf{W}_{\text{in}} : h \times d$ and $\mathbf{W}_{\text{out}} : h \times d$ are learned parameters, and $\mathbf{S} : h \times 1000$ injects an inductive
 182 bias in the classifier towards sinusoidal representations. Unless otherwise stated, we use $d = 100$, h
 183 corresponds to the inner dimensionality of the LLM at hand. We build upon an assumption verified
 184 by Kadlčík et al. (2025) stating that sinusoidal probes indeed adapt and employ a sinusoidal repre-
 185 sentation from inductive bias, if a sinusoidal representation is also present in the input embeddings.

186 We first assess whether sinusoidal probes are the most suitable, i.e., an accurate choice for decoding
 187 the *internal* representations of the model. To contextualize the accuracy in terms of sinusoidal
 188 quality of the representation, we also evaluate other types of probes used to decode numbers in
 189 previous work Feng et al. (2023); Zhu et al. (2025); Kadlčík et al. (2025) as baselines. we train the
 190 sinusoidal probe on hidden representations of each layer of Llama 3.2 1B model when processing
 191 addition prompts of the form ‘ $x_1 + x_2$ ’, where x_1 and x_2 are integers. We specifically evaluate
 192 whether the value of x_2 can be retrieved from the model’s hidden representation on each layer. To
 193 assess generalization rather than memorization capacity, we *split* the prompts and corresponding
 194 representations into training, validation and test sets containing *distinct* extracted numbers (x_2).

195 Figure 3a shows the accuracy of different probes extracting the value of input numbers from rep-
 196 resentations of each model’s layer, evaluated across six different models. The superior accuracy of
 197 sinusoidal probe provides an indicator of both (i) the sinusoidal character, and (ii) accuracy of input
 198 number representation across layers.



209 (a) using probes with different bases; math contexts (b) across different language models; natural contexts

211 Figure 3: Accuracy of decoding numeric input token from internal activations of language models

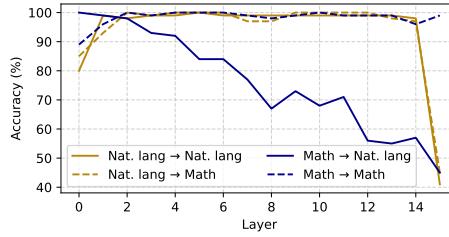
213 Thus far, an important caveat of ours, as well as a methodology of previous work probing repres-
 214 tations of numbers in previous work (Section 2) is that we focus on a very specific type of input,
 215 namely additions, without any sort of natural language to contextualize them. As such, it is reason-
 able to assume that the results presented in Figure 3 may not carry to a more natural context: there

216 is little guarantee that the behavior of a model on arithmetic problems is indicative of its behavior a
 217 broad range of applications requiring manipulations of numbers in natural language contexts.
 218

219 To evaluate the impact of natural language context on accuracy and regularity of numeric repre-
 220 sentations, we curate a dataset covering four domains involving intensive numeric manipulations:
 221 arithmetic (mathematical word problems), temporal (date extraction), medical (ICD-10 diagnostic
 222 codes) and culinary (recipe ingredients/quantities). The complete dataset specifications are detailed
 223 in Table 1 in Section B. To maximize the quality of learned probes and thus, representativeness of
 224 our findings, we also tackle the natural-language class imbalance; as not every number has equal
 225 probability to occur in a date or in a recipe, we replace original numbers with integers uniformly
 226 sampled from the model vocabulary. We then fit separate probes for activations from every layer,
 227 again holding out a set of 100 randomly selected numbers for evaluating generalization.

228 Figure 3b displays the accuracies of input value extraction from model’s hidden states within natural-
 229 language contexts across six LLMs of different sizes and three different families. As we can see,
 230 the sinusoidal probes reach over 70% of accuracy in all but three cases and over 90% of accuracy
 231 for a majority of probing scenarios. Taking into an account that the learned sinusoidal probe also
 232 induce a certain error. Therefore, these accuracies present a lower-bound of accuracy of models’
 233 representation of input numbers in natural contexts in a sinusoidal representation — showing that
 234 the accurate, sinusoidal representation is indeed characteristic and employed by a wide range of
 235 recent language models.

236 A vast majority of cases performing lower than 80% occurs in probing the models’ first and a last
 237 layer — we analyze these cases in detail later in Section 3.3.



238
 239 Figure 4: **Generalization of probes** fitted on natural-language occurrences of numeric tokens (solid
 240 line), and synthetic, mathematical contexts (dashed line).
 241
 242
 243
 244
 245
 246

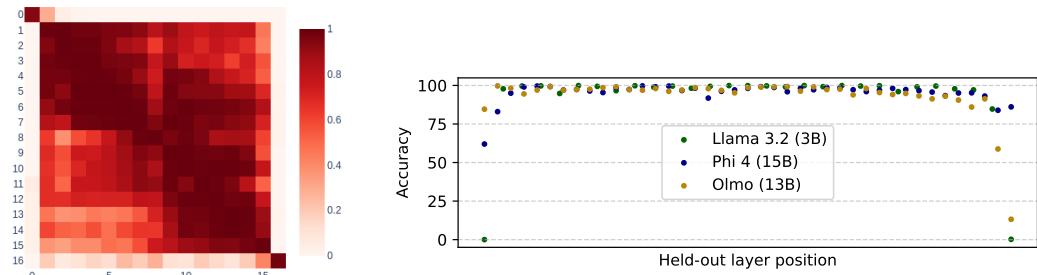
247 A comparison of probes’ performance in math an natural-language contexts (Figure 3) may suggest
 248 that a type of context does not influence the results of probing accuracy. However, in Figure 4, we
 249 show that probes fitted with natural-language contexts are much more *robust* in application across
 250 *both* math and natural-language contexts; While both the math and natural-language probes gener-
 251 alize well within their training context type, the natural-language probes are applicable comparably
 252 even under a substantial context distribution shift, suggesting that a wider variety of contexts serves
 253 as an effective regularization strategy. This observation draws two important implications: First,
 254 it informs future work tracing models’ internal computations to favor probes trained in natural-
 255 language settings. Second, it restrains future work in interpretability from drawing broad conclu-
 256 sions on models’ mechanics from fully-synthetic settings, evidencing that such conclusions may not
 257 generalize to real-world applications.

258 In short, our results underscore that the same type of sinusoidal representation of numbers holds
 259 in general across different model types. Numbers are represented in a similar, systematic fashion,
 260 regardless of which layer or type of contexts we consider.

261 3.3 DIFFERENT LAYERS USE INTERCHANGEABLE NUMERIC REPRESENTATIONS

262 Having found the remarkable degree to which the embeddings for numbers align across different
 263 models and the noteworthy universality of sinusoidal representations in varied contexts, we turn to
 264 further analyses assessing the extent to which these structures are utilized by the models. First, we
 265 address whether the same sinusoidal structure is conserved across a model’s computations.

To that end, we employ the probes we developed in Section 3.2 trained separately for each model layer, L_i , and measure the accuracy of each probe on representations derived for every *other* layer $L_j \neq L_i$. This approach, while informative, comes with the caveat that probes trained for a given layer L_i might pick up on idiosyncrasies inherent to a specific layer — i.e., the probes might not disentangle what is specific to numbers as opposed to what is specific to a layer. To address this point, we also fit probes using *all but one* layer ($L_1, L_2, \dots, L_{i-1}, L_{i+1}, \dots, L_n$), and evaluate the performance on representations from the held out layer L_i . As previously, we hold out a subset of 100 numbers for assessing generalization in validation and test conditions.



(a) accuracy of probes trained for Llama 1B on a chosen layer (rows) evaluated on all other layers (columns) (b) probes trained on all-but-one layer, evaluated on the held-out layer

Figure 5: Probes accuracy on activations from unseen *layers*.

Results of probes’ cross-layer generalization for Llama 1B are displayed in Figure 5, with largely consistent results for other models in Appendix A.2. We observe that probes fitted on a concrete layer’s representations (Figure 5a) generalize outstandingly well to close-by layers, with the exception of the first and the last layer. This trend reveals that language models **operate mostly in a consistent representation** of numbers that is **universal across their computations**, undergoing only minor shifts across layers. This trend is also corroborated by multi-layer probes evaluated in heldout-layer fashion, reaching an accuracy between 95 and 100% across all intermediate layers and three models of diverse sizes and families. This result has practical implications for future work in numeric interpretability — showing that we can train universal, yet highly *accurate* probes for intermediate layers of a broad set of language models⁴.

Cross-layer evaluation indicates that models’ internal representations tend to differ from the input/output embeddings. We find a notable discrepancy in the *sparsity* of their representation; Whereas the input/output embeddings represent numbers in a more *distributed* fashion, hidden layers use a small number of consistently-ordered sin features.

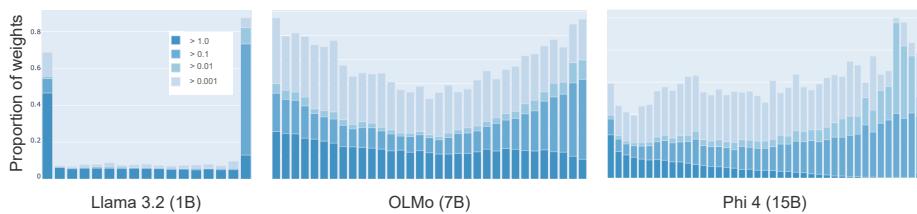


Figure 6: **Difference in probe weights distribution (of W_{in}) across layers** shows that the initial and last layers represent numbers in a systematically sparser fashion.

This is visualized in Figure 6, showing that intermediate layers in Llama 1B lead to probes with very few weights with values $> 10^{-5}$.

⁴We will release our training scripts, together with reproducibility guidelines for training universal probes, in a final version of this paper

We hypothesize that this discrepancy can be caused by the models’ computational and optimization mechanics. As cross-entropy loss is minimized by confident one-hot predictions, models can benefit from using more features to create higher dissimilarity (separability) of tokens. In contrast, internal representations are not subject to direct optimization pressure and might benefit from fewer but more informative features.

Nevertheless, we note that this trend is pertinent across different models to a different extent: OLMo 7B and Phi 15B learn more distributed features also across the intermediate layers — which, in turn, also leads to a better generalization of universal probes (Figure 5b), but still causing an outstanding drop in held-out accuracy compared to other layers. Finally, we note that the models’ sparsity profile does not relate to reported performances on arithmetic tasks Kadlčík et al. (2025) and it also does not necessarily determine the accuracy of probes trained specifically for particular layer(s) (Figure 3).

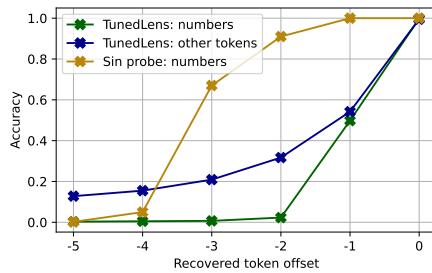


Figure 7: **Accuracy of previous tokens’ recovery** for different probes trained on embeddings.

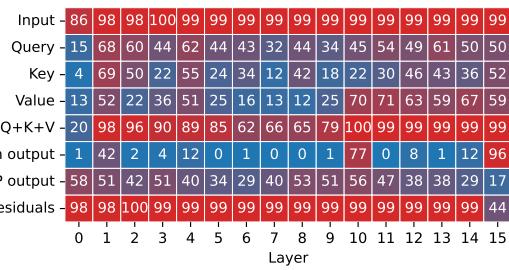


Figure 8: Accuracy of extracting input numbers from each component of the Transformer block using the sinusoidal probe.

Finally, we explore the origin of the high consistency of representations across layers within the internal mechanism that each transformer layer implements. In Figure 8, we visualize the accuracy of probing input representations from each of the components present in transformer layers (Llama 3.2 1B for brevity). We find the accurate numeric representation is scattered across different components in the attention mechanism, with the attention output projection largely violating the sinusoidal representation, which is then, to a large extent, reconstructed in the subsequent fully-connected block. Nevertheless, the consistency of layers’ output representation is primarily maintained by residual streams across layers.

To summarize, we find that the same probe can recover the numeric information for representations pooled from different layers of the models we study. Added to our previous observations in Sections 3.1 and 3.2, we can therefore stress that models learn input embeddings for numbers that are **strikingly similar**, regardless of which model they come from. These embeddings are processed into sinusoidal representations that are systematic and consistent regardless of context or hidden layer, with the source of this consistency originating primarily in the residual stream across layers.

4 MECHANISMS OF NUMBER MANIPULATION

We have established that models converge to sinusoidal number representations universally. This naturally begs the question of how those sinusoidal representations are used.⁵

4.1 MULTI-TOKEN NUMBERS

Our first point of order concerns digits beyond the range of what can be represented in recent LLMs with a single token. To see whether LMs are able to represent even the values of multi-token numbers systematically and accurately, we probe the values of all parts of multi-token numbers from a single

⁵In what follows, we focus exclusively on sinusoidal probes for the sake of providing a clearer exposition. Most alternative probe designs suggested by Kadlčík et al. (2025) fail to achieve meaningful performances. For reference, the best performance we observe are from the binary probes in previous-token recovery, achieving 1.2% of accuracy on -1-th recovered token (Figure 7).

378 representation corresponding to the last numeric token. The accuracy of this experiment uncovers the
 379 extent to which the models implement a systematic algorithm of superposing multi-token numbers
 380 in a single representation.

381 For this experiment, we adapt the methodology utilizing natural-language contexts, with a substitution
 382 of original numeric values with values spanning two to six numeric tokens, i.e. in a numeric
 383 range between $10^3 - 10^{18}$. We use a subset of BBC data that was published after the knowledge
 384 cutoff or release date of all the models under consideration (Li et al., 2024).⁶

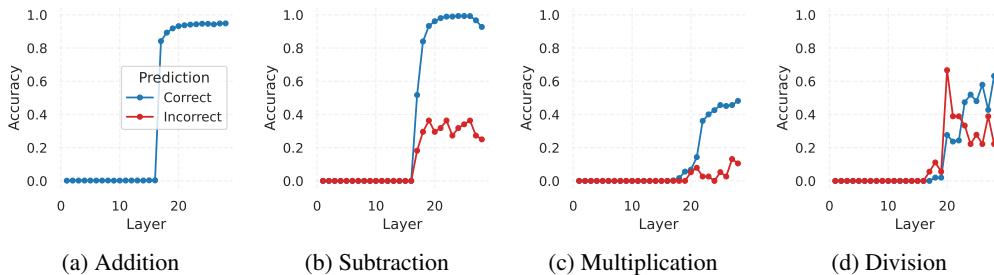
385 To be able to contextualize the magnitude of superposition and thus, disentangle a general model
 386 mechanism from the mechanism specific for numbers, we also probe representations of natural-
 387 language tokens using TunedLens (Belrose et al., 2025). TunedLens is an early-exit interpretability
 388 method which aims to explain the contents of intermediate representations by learning to translate
 389 them into logits. In practice, for each layer L_i , TunedLens involves distilling the computations done
 390 in the subsequent layers L_{i+1}, \dots, L_n into a simple affine transformation \mathbf{W}_i , such that applying
 391 this transformation \mathbf{W}_i to a hidden state at L_i followed by the unembedding matrix closely matches
 392 the logits that the LLM would eventually produce. Here, to maximize comparability and align the
 393 number and distribution of target categories, we narrow down the space of probed tokens to 1000
 394 tokens (matching the number probes) ranked as 2000–3000th most-common tokens in our dataset.

395 Results for Llama 1B and different probing methods are presented in Figure 7. Results of sin probes
 396 show that **multi-token numbers are indeed systematically and highly accurately superposed in**
 397 **the latest numeric representation** – reaching an accuracy of 99% for the immediately-preceding
 398 number piece (offset -1). However, the accuracy and/or systematicity of the superposition mecha-
 399 nism quickly drops for numbers longer than three tokens (i.e. $\geq 10^9$), reaching close to zero for the
 400 5th preceding token.

401 The results of natural-language token probing using TunedLens reveal that superpositioning repre-
 402 sentations of previous tokens is *not* a mechanism specific only to numbers – albeit this mechanism
 403 seems more prevalent and accurate for numeric tokens. Aiming to maximise comparability, we
 404 also report a comparison of the previous-token recovery using TunedLens for *numeric* tokens —
 405 in exactly the same configuration as for the natural-language tokens. This comparison shows that
 406 TunedLens is highly inefficient for recovering numeric tokens compared to sinusoidal probes.

4.2 ERROR TRACKING

410 Establishing that LLMs use universal, systematic and interchangeable representations of numbers,
 411 we aim to explore whether we can build upon this knowledge in tracing the origins of models’ out-
 412 puts in arithmetic reasoning. First, we assess the predictive power of models’ internal representations
 413 towards true results in prompts requiring addition, subtraction, multiplication and division.

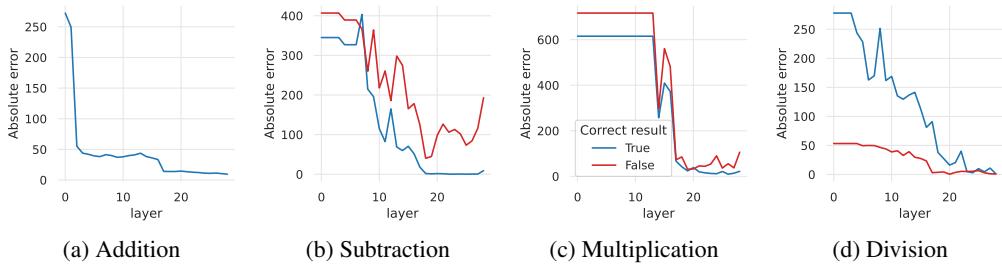


425 Figure 9: Probing accuracy in predicting models’ outputs for different prompted operations, for
 426 cases where the model predicts a correct (blue) and incorrect response (red).

427 Results of predicting the Llama 3.2 3B’s expected outputs for different operations are displayed
 428 in Figure 9. We can see a large distinction between the cases where the model predicts a correct
 429 and incorrect response – suggesting that the **extent to which the model maintains the sinusoidal**

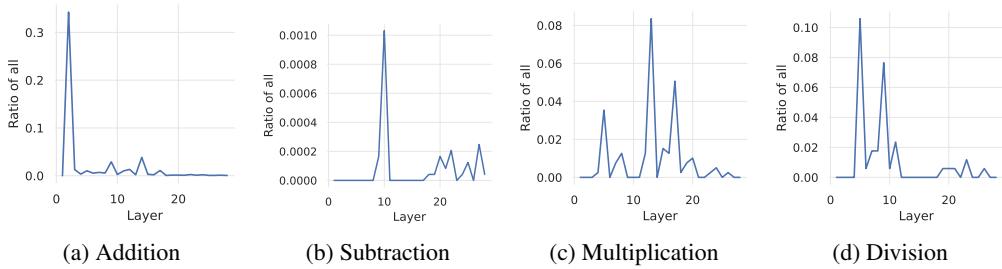
431 ⁶Retrieved from RealTimeData/bbc_news_alltime

432 **representation may determine the accuracy of the output.** We observe that for addition and
 433 subtraction, probes can, with close to 100% accuracy, identify the retrieved result already from
 434 the model internals. Based on qualitative assessments of output embeddings (subsection B.1), we
 435 hypothesize that lower reliability in other operations (multiplication and division) may be caused by
 436 the models’ divergence from sinusoidal representation employed by the input/output embeddings,
 437 accompanied also by lower accuracy of models overall (Table 2).



448 **Figure 10: Absolute error per layer:** Absolute error of numeric values probed from different layers.
 449

450 The results in Figure 10 show that across all operations, models tend to incrementally reduce the
 451 error towards the true answer value, *gradually* refining across layers. These results also suggest that
 452 there are particular layers responsible for an increase of errors in the model’s internal computation.
 453



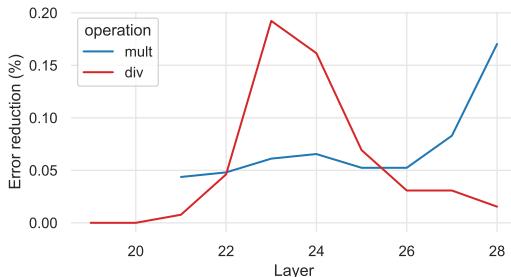
464 **Figure 11: Error aggregation per layer:** Relative ratio of cases where each of the layers in Llama
 465 3.2 3B *breaks* the correct result from the previous layer. We find that removing the three layers with
 466 the highest error aggregation in division (layers 5, 9 and 11) leads to 27–64% error reduction.
 467

468 Figure 11 corroborates this hypothesis — showing that particular layers break the correct result
 469 probed from the previous layer in large proportions of all predictions. For instance, in division, the
 470 5th layer is responsible for breaking the correct result recoverable from the previous layer in over
 471 10% of all cases. Our further analyses, overviewed in Table 2, show that according to the probed
 472 representations, the models often achieve a correct result *internally*, even though it does *not* surface:
 473 this is the case of 56.8% of all surfaced (prediction) errors in subtraction, 26.3% in multiplication,
 474 and as much as 94.4% of all errors in division.

475 **Layers ablation** We further support the claimed responsibility of specific layers on the resulting
 476 accuracy by simply removing the suspected layers from the model. Such a naive alteration becomes
 477 viable with the uncovered universality of representations across layers (subsection 3.3). Specifically,
 478 we try to remove one of the three layers with the highest error aggregation, separately in multipli-
 479 cation and in division (having a potential for improvement of accuracy). We find that this brings
 480 performance benefit in four out of six cases – in one case (layer 4) in multiplication, causing a 26%
 481 error reduction (from 90.38% to 92.91% and in *all* cases in division, with error reduction between
 482 27–64%. However, we must note that the absolute number of correct predictions probed in the lower
 483 layers is negligible, which hinders the general applicability of this methodology.

484 **Steering towards sinusoidality** Taken together, these results underline a hypothesis that the si-
 485 nusoidal representation is also universal for models’ output generation. We can show this more

486 directly by *steering activations* towards the expected sinusoidal representations. Concretely, we (i)
 487 fit sinusoidal probes at each layer to predict the output of a given arithmetic operation; (ii) optimize
 488 a set of 1000 randomly-initialized embeddings e_y to maximize their fit to an optimal representations
 489 to a vocabulary of numeric tokens according to these sinusoidal probes; and (iii) steer activations
 490 towards the corresponding embedding optimized with respect to the probe whenever the model is
 491 not producing the expected output. Steering is achieved by interpolating between the activation h_i
 492 at layer L_i and the optimized embedding e_y for the intended target scalar result y , $\alpha h_i + (1 - \alpha) e_y$.
 493



504 Figure 12: Error reduction after steering activations in incorrectly processed cases of multiplication
 505 and division in Llama 3B using interpolation factors of $\alpha = 0.375$ for division, and $\alpha = 0.3$ for
 506 multiplication.

507 Figure 12 displays the absolute difference in performance caused by the steering on previously erro-
 508 neous cases in multiplication and division. We target probes on upper layers which reach accuracy
 509 scores $\geq 10\%$. In short, Figure 12 shows that depending on the layer, we can correct up to 19.23%
 510 of errors for division, and up to 17.03% for multiplication.

511 In summary, factoring in the knowledge of the sinusoidal nature of number representations allowed
 512 us to understand and assess the lower bounds of accuracy of multi-token number representations.
 513 On a case study of Llama 3.2 3B, we further showed how more accurate probes allow pinpointing
 514 and *eliminating* the sources of errors via (i) addressed ablations in the model architecture and (ii) by
 515 steering the activations on error cases towards sinusoidality.

5 CONCLUSIONS

520 This paper builds a fundamental understanding of how LLMs internally represent and manip-
 521 ulate numeric values. We provide evidence that diverse LLMs learn and employ mutually-
 522 interchangeable, consistent sinusoidal representations across their internal layers, maintained largely
 523 by residual streams, but distinct in the embedding representation and internal activations in terms of
 524 sparsity. We show how probing techniques respecting representational properties of numbers open
 525 up new possibilities for tracking the causes of errors in models’ internal computation, attributing
 526 large portions of errors to numeric interventions of concrete layers. Towards the fast-growing field
 527 of interpretability research, our work contributes by evidencing the importance of natural-language
 528 probes in training better-generalizing probes or the superior quality of specialized probes compared
 529 to widely-used methods such as linear or TunedLens probes. We hope that our work clearly out-
 530 lines the potential of more accurate probes in robustness and faithfulness assessments of existing
 531 and future reasoning models.

REFERENCES

535 Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
 536 Michael Harrison, Russell J. Hewett, Mojan Javaheripi, Piero Kauffmann, James R. Lee, Yin Tat
 537 Lee, Yuanzhi Li, Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric Price, Gustavo de Rosa,
 538 Olli Saarikivi, Adil Salim, Shital Shah, Xin Wang, Rachel Ward, Yue Wu, Dingli Yu, Cyril
 539 Zhang, and Yi Zhang. Phi-4 technical report, 2024. URL <https://arxiv.org/abs/2412.08905>.

540 Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
 541 for mathematical reasoning: Progresses and challenges. In Neele Falk, Sara Papi, and Mike
 542 Zhang (eds.), *Proceedings of the 18th Conference of the European Chapter of the Association
 543 for Computational Linguistics: Student Research Workshop*, pp. 225–237, St. Julian’s, Malta,
 544 March 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.eacl-srw.17.
 545 URL <https://aclanthology.org/2024.eacl-srw.17/>.

546 Nora Belrose, Igor Ostrovsky, Lev McKinney, Zach Furman, Logan Smith, Danny Halawi, Stella
 547 Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the tuned
 548 lens, 2025. URL <https://arxiv.org/abs/2303.08112>.

549 Leonardo Bertolazzi, Philipp Mendorf, Barbara Plank, and Raffaella Bernardi. The validation gap:
 550 A mechanistic analysis of how language models compute arithmetic but fail to validate it. In *The
 551 2025 Conference on Empirical Methods in Natural Language Processing*, 2025.

552 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
 553 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
 554 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
 555 Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
 556 Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
 557 Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
 558 <https://arxiv.org/abs/2005.14165>.

559 Francois Charton. Linear algebra with transformers. *Transactions on Machine Learning Research*,
 560 2022. ISSN 2835-8856. URL <https://openreview.net/forum?id=Hp4g7FAXXG>.

561 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 562 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 563 Schulman. Training verifiers to solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>.

564 Alex Duchnowski, Ellie Pavlick, and Alexander Koller. Ehop: A dataset of everyday np-hard opti-
 565 mization problems, 2025. URL <https://arxiv.org/abs/2502.13776>.

566 Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
 567 the mystery behind chain of thought: A theoretical perspective. In *Thirty-seventh Conference on
 568 Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=qHrADgAdYu>.

569 Guhao Feng, Kai Yang, Yuntian Gu, Xinyue Ai, Shengjie Luo, Jiacheng Sun, Di He, Zhenguo Li,
 570 and Liwei Wang. How numerical precision affects mathematical reasoning capabilities of llms,
 571 2024. URL <https://arxiv.org/abs/2410.13857>.

572 Siavash Golkar, Mariel Pettee, Michael Eickenberg, Alberto Bietti, Miles Cranmer, Geraud
 573 Krawezik, Francois Lanusse, Michael McCabe, Ruben Ohana, Liam Parker, Bruno Régaldo-
 574 Saint Blancard, Tiberiu Tesileanu, Kyunghyun Cho, and Shirley Ho. xval: A continuous number
 575 encoding for large language models. In *NeurIPS 2023 AI for Science Workshop*, 2023. URL
 576 <https://openreview.net/forum?id=KHDMZtoF4i>.

577 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 578 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
 579 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
 580 rennev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
 581 Spataru, Baptiste Roziere, Bethany Biron, Bin Tang, Bobbie Chern, Charlotte Caucheteux,
 582 Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
 583 Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
 584 Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
 585 Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
 586 AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
 587 Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
 588 tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
 589 vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
 590

594 Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
 595 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
 596 Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
 597 so Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasudevan Alwala,
 598 Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
 599 El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
 600 Rantala-Yearly, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
 601 Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
 602 Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
 603 Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
 604 mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
 605 chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
 606 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
 607 Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
 608 mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
 609 hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
 610 Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
 611 Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparth, Sheng
 612 Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
 613 Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
 614 Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
 615 haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
 616 Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei
 617 Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
 618 Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuwei Wang, Yaelle Gold-
 619 schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
 620 Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
 621 Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
 622 Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
 623 Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
 624 drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
 625 nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
 626 Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
 627 hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
 628 Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
 629 talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
 630 Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
 631 Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
 632 Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
 633 Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 634 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smo-
 635 thers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
 636 Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
 637 Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
 638 Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
 639 son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
 640 Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
 641 Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
 642 nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
 643 Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
 644 jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
 645 Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
 646 Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
 647 Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
 Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
 Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
 Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
 Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
 Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan

648 Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
 649 Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
 650 Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
 651 Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
 652 driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
 653 Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
 654 Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
 655 Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
 656 maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
 657 Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
 658 Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
 659 field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
 660 Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
 661 Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
 662 Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
 663 mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
 664 Wei Li, Wencheng Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
 665 jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
 666 Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
 667 Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
 668 duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
 669 <https://arxiv.org/abs/2407.21783>.

670 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
 671 Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
 672 In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks*
 673 *Track (Round 2)*, 2021. URL <https://openreview.net/forum?id=7Bywt2mQsCe>.

674 Marek Kadlčík, Michal Štefánik, Timothee Mickus, Michal Spiegel, and Josef Kuchař. Pre-trained
 675 language models learn remarkably accurate representations of numbers, 2025. URL <https://arxiv.org/abs/2506.08966>.

676 Adam Tauman Kalai, Ofir Nachum, Santosh S. Vempala, and Edwin Zhang. Why Language Models
 677 Hallucinate, September 2025.

678 Subhash Kantamneni and Max Tegmark. Language models use trigonometry to do addition, 2025.
 679 URL <https://arxiv.org/abs/2502.00873>.

680 Nikolaus Kriegeskorte, Marieke Mur, and Peter Bandettini. Representational similarity analysis -
 681 connecting the branches of systems neuroscience. *Front. Syst. Neurosci.*, 2:4, November 2008.

682 Henry Kvinge, Elizabeth Coda, Eric Yeats, Davis Brown, John Buckheit, Sarah McGuire Scullen,
 683 Brendan Kennedy, Loc Truong, William Kay, Cliff Joslyn, Tegan Emerson, Michael J. Henry,
 684 and John Anthony Emanuello. Probing the limits of mathematical world models in LLMs. In
 685 *ICML 2025 Workshop on Assessing World Models*, 2025. URL <https://openreview.net/forum?id=aMaSHy8IgK>.

686 Unggi Lee, Youngin Kim, Sangyun Lee, Jaehyeon Park, Jin Mun, Eunseo Lee, Hyeoncheol Kim,
 687 Cheolil Lim, and Yun Joo Yoo. Can we use gpt-4 as a mathematics evaluator in education?
 688 exploring the efficacy and limitation of llm-based automatic assessment system for open-ended
 689 mathematics question. *International Journal of Artificial Intelligence in Education*, 35(3):1560-
 690 1596, Sep 2025. ISSN 1560-4306. doi: 10.1007/s40593-024-00448-4. URL <https://doi.org/10.1007/s40593-024-00448-4>.

691 Amit Arnold Levy and Mor Geva. Language models encode numbers using digit representations in
 692 base 10. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Conference*
 693 *of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human*
 694 *Language Technologies (Volume 2: Short Papers)*, pp. 385–395, Albuquerque, New Mexico, April
 695 2025. Association for Computational Linguistics. ISBN 979-8-89176-190-2. doi: 10.18653/v1/2025.nacl-short.33. URL <https://aclanthology.org/2025.nacl-short.33/>.

702 Yucheng Li, Frank Guerin, and Chenghua Lin. Latesteval: Addressing data contamination in
 703 language model evaluation through dynamic and time-sensitive test construction. *Proceedings*
 704 *of the AAAI Conference on Artificial Intelligence*, 38(17):18600–18607, Mar. 2024. doi: 10.
 705 1609/aaai.v38i17.29822. URL <https://ojs.aaai.org/index.php/AAAI/article/view/29822>.

706

707 Zenan Li, Zhaoyu Li, Wen Tang, Xian Zhang, Yuan Yao, Xujie Si, Fan Yang, Kaiyu Yang, and
 708 Xiaoxing Ma. Proving olympiad inequalities by synergizing llms and symbolic reasoning, 2025.
 709 URL <https://arxiv.org/abs/2502.13834>.

710

711 Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
 712 for grokking via mechanistic interpretability. In *The Eleventh International Conference on Learn-*
 713 *ing Representations*, 2023. URL <https://openreview.net/forum?id=9XFSbDPmdW>.

714

715 Yaniv Nikankin, Anja Reusch, Aaron Mueller, and Yonatan Belinkov. Arithmetic without algo-
 716 rithms: Language models solve math with a bag of heuristics, 2025. URL <https://arxiv.org/abs/2410.21272>.

717

718 Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bha-
 719 gia, Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord,
 720 Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha
 721 Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William
 722 Merrill, Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Py-
 723 atkin, Aman Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm,
 724 Michael Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2
 725 olmo 2 furious, 2025. URL <https://arxiv.org/abs/2501.00656>.

726

727 Ankit Satpute, Noah Gießing, André Greiner-Petter, Moritz Schubotz, Olaf Teschke, Akiko Aizawa,
 728 and Bela Gipp. Can llms master math? investigating large language models on math stack ex-
 729 change. In *Proceedings of the 47th International ACM SIGIR Conference on Research and De-*
 730 *velopment in Information Retrieval*, SIGIR '24, pp. 2316–2320, New York, NY, USA, 2024.
 731 Association for Computing Machinery. ISBN 9798400704314. doi: 10.1145/3626772.3657945.
 732 URL <https://doi.org/10.1145/3626772.3657945>.

733

734 Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya Sachan. A mechanistic interpretation of
 735 arithmetic reasoning in language models using causal mediation analysis. In Houda Bouamor,
 736 Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Meth-*
 737 *ods in Natural Language Processing*, pp. 7035–7052, Singapore, December 2023. Associa-
 738 tion for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.435. URL <https://aclanthology.org/2023.emnlp-main.435>.

739

740 YuHong Sun, Zhangyue Yin, Qipeng Guo, Jiawen Wu, Xipeng Qiu, and Hui Zhao. Benchmarking
 741 hallucination in large language models based on unanswerable math word problem. In Nicoletta
 742 Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue
 743 (eds.), *Proceedings of the 2024 Joint International Conference on Computational Linguistics,*
 744 *Language Resources and Evaluation (LREC-COLING 2024)*, pp. 2178–2188, Torino, Italia, May
 745 2024. ELRA and ICCL. URL <https://aclanthology.org/2024.lrec-main.196>.

746

747 Ulme Wennberg and Gustav Eje Henter. Exploring internal numeracy in language models: A case
 748 study on ALBERT. In Marco Valentino, Deborah Ferreira, Mokanarangan Thayaparan, and Andre
 749 Freitas (eds.), *Proceedings of the 2nd Workshop on Mathematical Natural Language Processing*
 750 @ LREC-COLING 2024, pp. 35–40, Torino, Italia, May 2024. ELRA and ICCL. URL <https://aclanthology.org/2024.mathnlp-1.5>.

751

752 Xin Xu, Tong Xiao, Zitong Chao, Zhenya Huang, Can Yang, and Yang Wang. Can LLMs solve
 753 longer math word problems better? In *The Thirteenth International Conference on Learning*
 754 *Representations*, 2025. URL <https://openreview.net/forum?id=C9ju8QQSCv>.

755

756 Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok, Zhen-
 757 guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
 758 for large language models. In *The Twelfth International Conference on Learning Representations*,
 759 2024. URL <https://openreview.net/forum?id=N8N0hgNDrt>.

Wei Zhang, Chaoqun Wan, Yonggang Zhang, Yiu ming Cheung, Xinmei Tian, Xu Shen, and Jieping Ye. Interpreting and improving large language models in arithmetic calculation, 2024. URL <https://arxiv.org/abs/2409.01659>.

Tianyi Zhou, Deqing Fu, Vatsal Sharan, and Robin Jia. Pre-trained large language models use fourier features to compute addition. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing Systems*, volume 37, pp. 25120–25151. Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/2cc8dc30e52798b27d37b795cc153310-Paper-Conference.pdf.

Fangwei Zhu, Damai Dai, and Zhifang Sui. Language models encode the value of numbers linearly. In Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert (eds.), *Proceedings of the 31st International Conference on Computational Linguistics*, pp. 693–709, Abu Dhabi, UAE, January 2025. Association for Computational Linguistics. URL <https://aclanthology.org/2025.coling-main.47/>.

A SUPPLEMENTARY RESULTS

A.1 SELECTING THE OPTIMAL NUMBER OF FOURIER COMPONENTS FOR COMPARISON

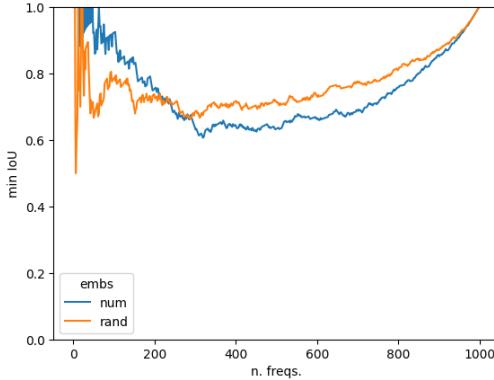


Figure 13: Minimum IoU across number of frequencies considered

In Section 3.1, we discuss selecting the optimal number of Fourier components. As can be assessed from 2a, from a certain frequency rank, Fourier decompositions resort to noise. Thus, our objective is to find the “cutoff” rank (k) that disentangles oscillating information from the non-oscillating, presumably non-numeric information. This means finding an *optimal*, yet non-trivial (e.g. ≥ 10) cutoff for a number of components. In practice, we evaluate for each value of k what the minimum IoU agreement score across all models amounts to for numbers and random overlapping word-pieces. As displayed in Figure 13, we find such an optimal cutoff at $k = 63$ as the highest value of k that leads to perfect agreement across models.

A more thorough assessment of Figure 13 suggests a few interesting trends. Random word pieces also tend to favor a handful of Fourier basis components; which we conjecture is due to the sampling mechanism. By selecting overlapping pieces, our pieces must be frequent enough to be present in multiple distinct tokenizers, which in turns shapes the type of linguistic units represented in this random sample. Secondly, we also observe a ‘cross-over’ point around $k \approx 250$, after which we find greater agreement in random pieces than numbers. Yet, we note that (i) a significant proportion of the mass is concentrated in a few frequency components for numbers, whereas random pieces lead to much more uniform distributions across frequency components (see Figure 14); and (ii) the results in Figure 13 still allow us to establish that the Fourier profile of number pieces is clearly distinct from what we observe for any other overlapping set of word pieces.

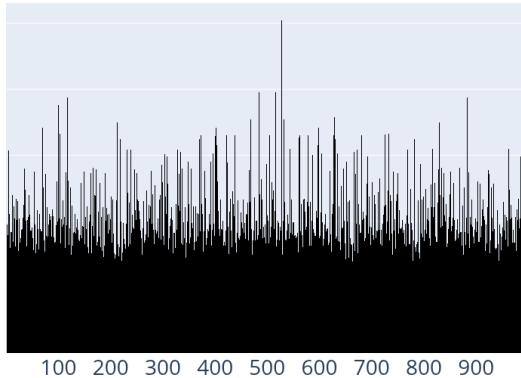


Figure 14: Contributions of Fourier base frequencies for non-number pieces (Llama-3 1B, provided as an example)

A.2 GENERALIZATION OF PROBES TO UNSEEN LAYERS

Figure 15 shows how probes fitted on each layer generalize to all other layers in a model. Strong cross-layer generalization indicates a high consistency of representations throughout the model.

A.3 VISUALIZATIONS OF INTERNAL ACTIVATIONS

We visualize the internal activations for a string template “ $x_1 + x_2 =$ ” on the second numeric token (x_2). Values for x_2 are selected as a range 0-999 (all values present by the vocab), and values for x_1 are sampled randomly from the same range. Then, we project the activations of the model’s middle layer to 64 dimensions with PCA and compute the Fourier transform.

We visualize the first 16 PCA dimensions in Figure 16 and the maximal magnitudes of the frequencies in the Fourier transform in Figure 17. We visualize across model sizes and families.

B NATURAL LANGUAGE DATASET DESCRIPTION

Table 1: Dataset specifications for numerical embedding analysis across natural language contexts.

Domain	Dataset	Source	Numerical Context	Size
Culinary	Recipe NLG Lite	m3hrdadfi/recipe_nlg_lite	Quantities, measurements	6118
	FoodRecipe-ImageCaptioning	samsatp/FoodRecipe-ImageCaptioning	Ingredient amounts	719
Temporal	TimeLineExtraction	irlabamsterdam/TimeLineExtraction...CASE	Legal document dates	50
Arithmetic	MetaMathQA	meta-math/MetaMathQA	Mathematical reasoning	395K
	DROP	ucinlp/drop	Discrete reasoning	77.4K
	AQuA-RAT	deepmind/aqua_rat	Algebraic word problems	97.4K
Medical	ICD-10 Codes	atta00/icd10-codes	Diagnostic codes	25.7K
	ICD-10-CM	Gokul-waterlabs/ICD-10-CM	Medical classifications	74K

	Add	Sub	Mul	Div
Accuracy	100%	99.8%	90.4%	5.9%
P(Extracted Incorrect)	-	56.8%	26.3%	94.4%
P(Not extracted Correct)	1.4%	0.03%	26.1%	5.9%

Table 2: **Probe accuracy in extracting the predicted result:** Ratio of cases where the sin probe of some layer (top) retrieves a correct result when the model’s prediction is *incorrect*, and (bottom) can *not* retrieve a correct result when the model’s prediction is *correct*.

864
865

B.1 QUALITATIVE ASSESSMENT OF OUTPUT EMBEDDINGS

866
867
868
869
870
871

We visualize output representations of Llama 3 1B on addition and multiplication operations. For each expected result value y in the range 0-999, we sample a random pair (x_1, x_2) from the same range, such that $x_1 + x_2 = y$ (or $x_1 \times x_2 = y$, respectively). We then predict the next token for prompts “ x_1 plus x_2 is” and “ x_1 multiplied by x_2 is” and collect the final output representations of the model before decoding. We then reduce the representations with PCA to 16 dimensions and visualize the result in Figure 18.

872
873
874

C EXPERIMENTAL DETAILS

875

We refer the reader to the companion code-base, which tracks exact hyperparameters for all experiments; the overview provided here is mainly designed for general informative purposes rather than precise replication.

876
877
878
879

In most experiments, we use an Adam optimizer with a learning rate of 10^{-3} , and train probes up to 50,000 steps, with an L1 regularization of 10^{-3} .

880
881
882

In multi-token decoding (Figure 7), we use a learning rate of $5 \cdot 10^{-4}$, 10,000 training steps, and early-stop training.

883
884

When fitting probes on natural language contexts (Figure 4, ‘Nat. lang. \rightarrow Nat. lang.’) and for cross-layer transfer (Figure 15), we use a learning rate of 10^{-4} .

885
886
887

When dealing with natural language contexts, as well as division and multiplication Section 4.2, we use a learning rate scheduler decreasing the learning rate by a factor of 100 over the first 30,000 steps. Experiments are performed on the probe that maximizes accuracy on a heldout validation set.

888
889
890
891

In our steering experiments (Figure 12), we optimize embeddings with respect to the probe using an SGD optimizer with a learning rate of 0.1, optimize the embeddings for 200,000 steps, and decrease the learning rate by a factor of 100 over the first 100,000 steps.

892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

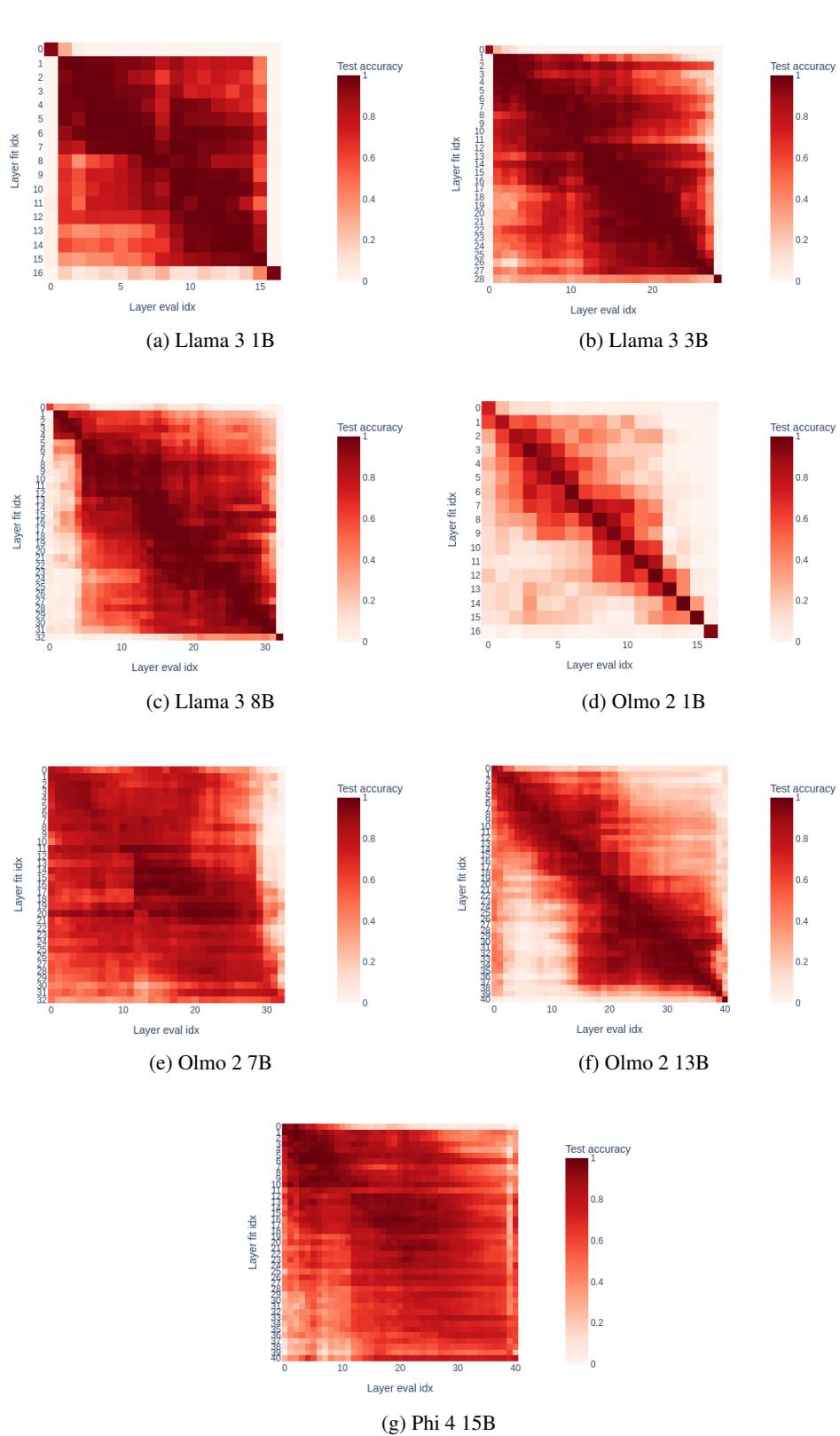


Figure 15: Probe fitted on one layer evaluated on all layers. Olmo 2B shows the weakest cross-layer generalization among all models. Llama models display a strong separation between input/output embedding representations and the hidden representations.

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

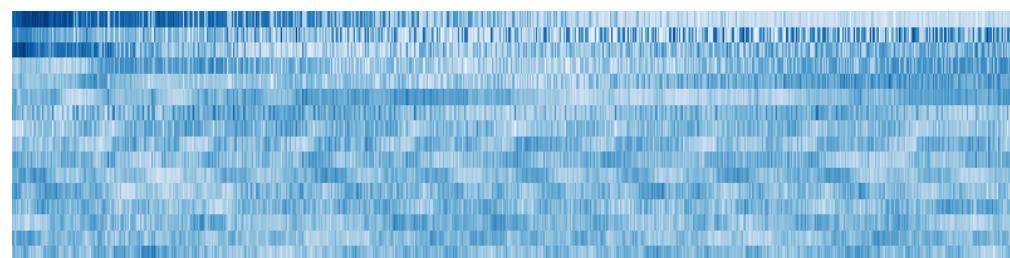
987

988

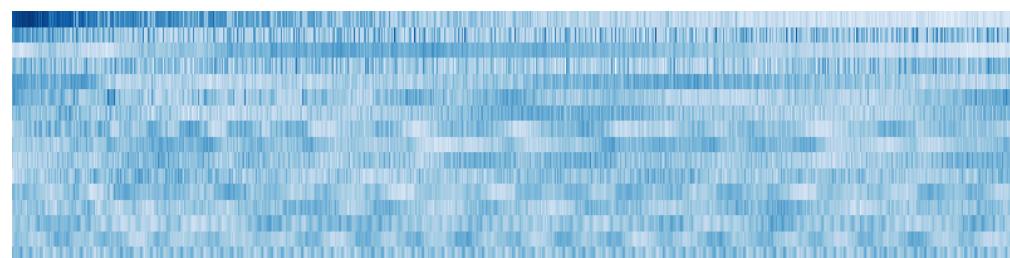
989

990

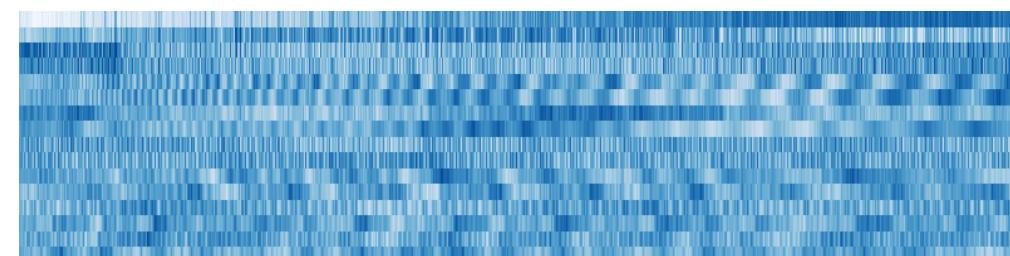
991



(a) Llama 3 1B (layer 8/17)



(b) Olmo 2 7B (layer 16/31)



(c) Phi 4 15B (layer 20/41)

Figure 16: PCA of models' internal representations

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

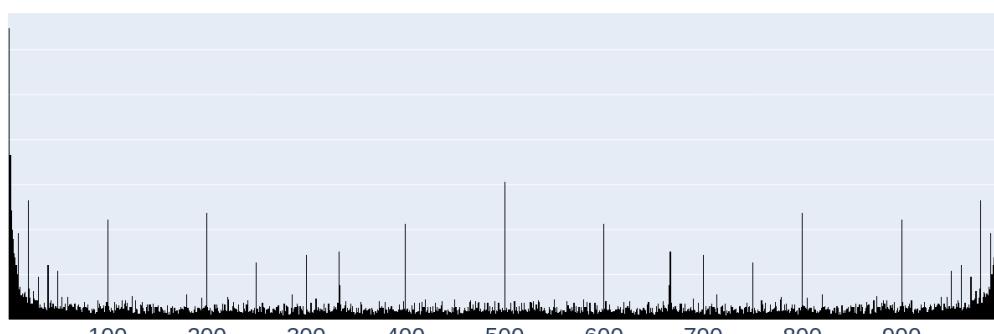
1042

1043

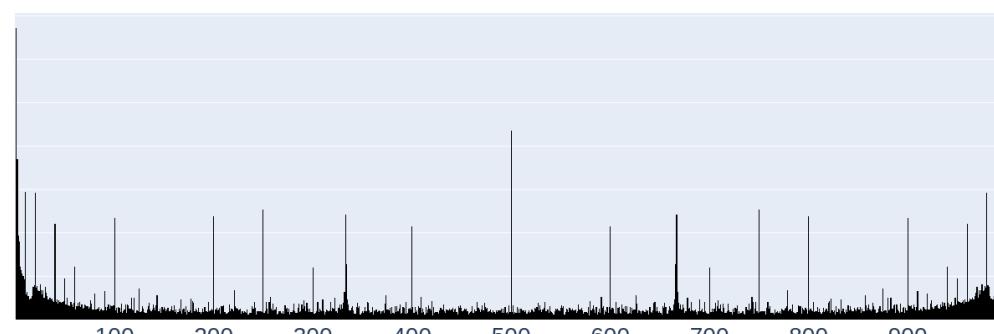
1044

1045

(a) Llama 3 1B (layer 8/17)



(b) Olmo 2 7B (layer 16/31)



(c) Phi 4 15B (layer 20/41)

Figure 17: Maximal magnitudes of frequencies in Fourier transform of PCA of models' internal representations

1073

1074

1075

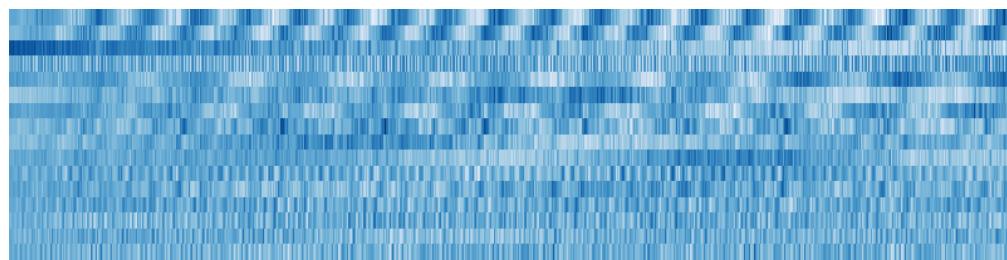
1076

1077

1078

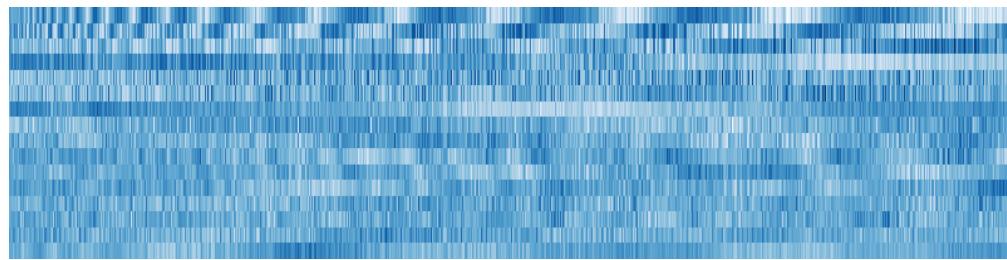
1079

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104



(a) addition

1105
1106
1107
1108
1109
1110
1111
1112
1113
1114



(b) multiplication

1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133