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Abstract

Transformers generalize exceptionally well on
tasks with a fixed context length. However,
this capability rapidly diminishes when test se-
quences are far longer than any sequence seen
during training. Unfortunately, simply train-
ing on longer sequences is computationally in-
feasible due to the quadratic cost of attention.
Randomized positional encodings were shown
to alleviate this issue on algorithmic reason-
ing tasks, where position is of high importance,
but it is unclear if their benefits also transfer
to “real-world” tasks such as image classifica-
tion or natural language processing, which may
have different inductive biases. Therefore, in
this work, we analyze these randomized encod-
ings on such tasks. Moreover, we show that
fine-tuning pretrained models with randomized
positional encodings improves length general-
ization. Finally, we demonstrate that evaluating
length generalization on natural language can
be misleading due to its short-range dependen-
cies, whereas algorithmic reasoning and vision
reveal the limits of prior work and the effective-
ness of randomized positional encodings.

1 Introduction

Transformers (Vaswani et al., 2017) perform excep-
tionally well on sequence modeling tasks across
various domains, including natural language pro-
cessing (NLP) (Devlin et al., 2019), reinforcement
learning (Reed et al., 2022), and image recogni-
tion (Dosovitskiy et al., 2021). Accordingly, there
is a growing demand to employ Transformers on
longer sequences, e.g., increasing image resolution.
However, it is infeasible to simply increase the
length of training sequences due to the quadratic
time and space complexity of the Transformer’s
attention mechanism. Unfortunately, Transform-
ers also generalize less well to longer sequences
than other architectures such as RNNs (Delétang
et al., 2023). Consequently, boosting Transform-
ers’ length generalization capabilities is a rapidly
growing research area (Ruoss et al., 2023).

Positional embeddings are one of Transform-
ers’ principal failure modes for length general-
ization (Shaw et al., 2018). Since attention is
permutation-invariant, Transformers rely on posi-
tional embeddings to inject positional information
into their computation, which is crucially important
for tasks such as language modeling or algorithmic
reasoning. However, traditional positional encod-
ings are out-of-distribution at test time since the
model never observed the larger test positions.

Current solutions to this problem typically rely
on one of two approaches: (i) using relative in-
stead of absolute positional information, and (ii)
additionally randomizing the relative information
during training (and test) time. However, while
improving performance on language datasets, de-
terministic relative encodings simply discount far-
away information, which cannot induce generic
length generalization. In contrast, probabilistic en-
codings (Ruoss et al., 2023; Likhomanenko et al.,
2021) force Transformers to operate solely on or-
der information by decoupling a token’s positional
information from its position in the sequence. For
example, Ruoss et al. (2023) subsample a set of
ordered positions from a range that is much longer
than the maximum test sequence length, thus reduc-
ing train-test distribution shift since test positions
will have been observed during training.

We extend the analysis of Ruoss et al. (2023)
from algorithmic reasoning to the real-world do-
mains of natural language and vision. We show
that natural language is characterized by different
inductive biases than image classification or algo-
rithmic reasoning and thus not suited for evaluating
length generalization. Concretely, we demonstrate
that relative encodings exploit the recency bias of
language, but fail to generalize on image classifica-
tion, unlike randomized encodings. Moreover, we
investigate whether pretrained models trained with
classical positional encodings can be fine-tuned to
longer sequence lengths via randomized encodings.



Contributions Our main contributions are:

* We conduct an empirical evaluation of ran-
domized positional encodings across two real-
world data modalities: NLP and vision.

* We show that pretrained models can be fine-
tuned with other (randomized) encodings.

2 Related Work

The Transformer architecture (Vaswani et al., 2017)
famously replaced all recurrent computation in pre-
vious machine translation models with multi-head
attention. However, while scalable and performant,
dot-product attention itself is permutation invariant,
which is why Vaswani et al. (2017) augmented the
Transformer’s token embeddings by adding scaled
sinusoids to inject positional information.

The subsequent success of Transformers conse-
quently sparked a flurry of attempts to improve
these positional encodings: Gehring et al. (2017)
added learned positional embeddings to the token
embeddings. Dai et al. (2019) proposed to compute
the attention at every layer with the relative dis-
tances between queries and keys to improve long-
term (inter-context) dependency modeling. Su et al.
(2021) suggested treating the token embeddings
as a collection of 2D vectors and rotating them
in every layer to encode positional information.
Press et al. (2022) introduced ALiBi encodings to
improve length generalization on NLP tasks by
adding constant biases, inversely proportional to
the key-query distance (known as ALiBi slopes),
to the attention score. Chi et al. (2022) presented
KERPLE embeddings, which replace ALiBi’s con-
stant slopes with learnable parameters. Chi et al.
(2023) developed Sandwich encodings which drops
the cross-terms between semantic and positional
information in the attention, creating a parameter-
free relative positional embedding.

While most of the above approaches aimed at
improving Transformers’ performance for a fixed-
length setting in a deterministic manner, a differ-
ent line of work tried to boost their length gener-
alization performance via probabilistic positional
encodings. Ruoss et al. (2023) developed the ran-
domized positional encoding (RPE) scheme, which
is compatible with all the above approaches, and
randomizes the position associated with each to-
ken while maintaining the relative order between
tokens. Concurrently, Li and McClelland (2022)
introduced a special case of RPEs (for learned po-

sitional encodings). However, both works only
investigated length generalization on algorithmic
reasoning tasks. In contrast, Kiyono et al. (2021)
presented SHAPE encodings, which only random-
ize the offset of the sequence’s start position in-
stead of randomizing the distances betweeen to-
kens, and showed improved BLEU performance
on NLP tasks. In a similar vein, Likhomanenko
et al. (2021) proposed CAPE encodings, which first
scale the positions into the range [—1, 1] and then
apply a set of randomization stages similar to RPEs,
and demonstrated that they boost generalization on
machine translation, image and speech recognition.
Finally, Kazemnejad et al. (2023) showed that posi-
tional encodings are unnecessary for length gener-
alization of decoder-only Transformers since their
causal attention masking is sufficient to represent
absolute and relative positional embeddings.

3 Methods

We investigate the length generalization perfor-
mance of randomized positional encodings on nat-
ural language processing and image classification.

3.1 Randomized Positional Encodings

The motivation for randomized positional encod-
ings (Ruoss et al., 2023) stems from the observation
that the distribution over token positions is differ-
ent at training and test time in the context of length
generalization, leading to a distribution shift that
current Transformer architectures cannot handle.
Concretely, consider the case where the length of
the longest sequence in the training set is /N. The
goal of length generalization is to achieve good per-
formance on sequences of length M > N. To that
end, the randomized positional encodings for token
1 < j < N are given by RPE(j, ) := PE(i;, ),
where ¢; is a randomly sampled index from a much
larger range {1, ..., L} for a configurable hyper-
parameter L such that M < L. Note that PFE refers
to an arbitrary positional encoding scheme (such
as sin / cos) and - refers to the model dimension.
To sample the indices, consider the discrete uni-
form distribution /(S) over some set S and let
Py :={S C{1,...,L}||S| = k}. At each train-
ing step, for a sequence of length n € {1,..., N},
randomized positional encodings sample a random
set of indices I € U(P,) and then sort [ in as-
cending order such that I = {iy,i9,...,i,} for
11 < 13 < --- < i,. Note that, by construction of
the set of sets P, the indices forming [ are distinct.



3.2 Natural Language Processing

While evaluating positional encodings on algorith-
mic tasks can provide us with interesting insights,
they cannot be substitutes for assessment on “real-
world” tasks. NLP is the primary use case of
Transformers and thus a task of paramount im-
portance when assessing their length generaliza-
tion capabilities. To that end, we consider the en-
wik8 dataset, which is a byte (i.e., character)-level
dataset formed from the first 100 million bytes of
an English Wikipedia XML dump (Hutter, 2006).

We train decoder-only Transformer models with
8 blocks of 8 heads each (dpyodel = 256) on text
sequences of length 256 and evaluate on length
1024. We consider 10 different positional encoding
schemes (Vaswani et al., 2017; Press et al., 2022;
Dai et al., 2019; Su et al., 2021; Gehring et al.,
2017; Chi et al., 2022, 2023) and their randomized
variants (Ruoss et al., 2023), yielding 18 differ-
ent models. We train each model for 1 000 000
steps with a batch size of 64 using the Adam
optimizer (Kingma and Ba, 2015) with gradient
clipping (to an L2 norm of 1), a learning rate of
1 x 1074, and 3 parameter initialization seeds.

Fine-tuning As pretrained foundation models are
becoming increasingly available (Touvron et al.,
2023a,b), a key question is whether they can be
efficiently fine-tuned to longer sequences lengths
without a performance drop. Unfortunately, the
straightforward approach of fine-tuning on longer
sequences only yields limited success (Anil et al.,
2022; Jelassi et al., 2023). Instead, we investigate
whether pretrained models, trained with classical
positional encodings, can be fine-tuned on short se-
quences via randomized positional encodings. To
that end, we fine-tune a pretrained (via the same
setup as above) decoder-only Transformer that uses
rotary embeddings (Su et al., 2021), which are
commonly employed in foundation models (Tou-
vron et al., 2023a,b). We fine-tune with rotary,
ALiBi (Press et al., 2022) and randomized rotary
encodings (Ruoss et al., 2023) on sequences of
length 256 for 1 000 000 steps and evaluate length
generalization on sequences of length 1024.

3.3 Image Classification

Natural language is characterized by a strong re-
cency bias — faraway words rarely tend to have a
big impact on predicting the next token (Khandel-
wal et al., 2018). Therefore, we also consider a
real-world dataset that requires the effective use of

Table 1: The minimum cross-entropy loss on enwik8 (3
random seeds) for a decoder-only Transformer with dif-
ferent positional encodings. We trained on sequences of
length 256 and evaluated on length 1024. Randomized
positional encodings significantly degrade the perfor-
mance due to the inductive bias of this natural language
dataset where queries only need to attend to nearby keys.

Length 256 Length 1024
Positional Encoding Det. Rand. Det. Rand.
None 2328 NA 4194.0 NA
sin / cos 2225 2259 3641.5 33263
ALiBi 218.1 228.1 859.6 1603.4
Relative 2162  219.1 8544 1379.9
Rotary 2188 2224 4259.9 18839
Learned 2238 2307 3160.0 5234.1
Power KERPLE 216.8 221.8 8453 1151.0
Log KERPLE 217.0 2210 850.8 1559.0
Sandwich 220.0 2253 1337.7 1715.2
SHAPE 2254 NA 5844.8 NA

distant context for correct output. To that end, we
investigate image classification in a sequence-to-
sequence setting (i.e., with flattened images). Ac-
curate classification requires aggregating the pixel
information surrounding each pixel, which will be
located in remote places for a flattened image.

We consider the ImageNet dataset (Russakovsky
et al., 2015). We preprocess the images by convert-
ing them to grayscale and resizing them to 22 x 23
(yielding a flattened sequence length of 506) for
training and 45 x 45 (i.e., length 2025) for evalua-
tion. However, since flattening the image removes
the information of where a row begins, we append
arow delimiter (i.e., a black pixel) to the end of ev-
ery row (leading to a considerable improvement on
training sequences). We train an encoder-decoder
Transformer by feeding the flattened images to the
encoder and a beginning-of-sequence token to the
decoder to predict the correct class (out of 1000).
We use the same architectures as in Section 3.2 and
train them for 1 000 000 steps with a batch size of
32. We use the Adam optimizer (Kingma and Ba,
2015) with gradient clipping and a learning rate of
1 x 1075 and 3 parameter initialization seeds.

4 Results

We now present our extensive experimental evalua-
tion on natural language and vision datasets.
4.1 Natural Language

Table 1 shows our evaluation of the decoder-only
Transformer on enwik8 with different positional en-



Table 2: The minimum cross-entropy loss on enwik8 (3
random seeds) when fine-tuning a decoder-only Trans-
former that is pretrained with rotary positional encod-
ings. We pretrained and fine-tuned on sequences of
length 256 and evaluate on length 1024. ALiBi achieves
the best length generalization performance.

Fine-tuned
Length Pretrained Rotary Rand. Rotary ALiBi
256 218.8 215.2 219.6 2174
1024 4259.9 4653.7 1847.5  955.0

coding schemes. We observe that non-randomized
relative positional embeddings (i.e., KERPLE, rel-
ative, and ALiBi) achieve the best length general-
ization performance. This is expected due to the
dataset’s character-level nature: Given the string
“...appl”, a model can correctly predict the charac-
ter ‘e’ without needing to consider the long-range
context the word lies in. Therefore, the windowed
inductive bias of relative encodings (queries simply
attend to nearby keys) leads to favorable results.
Note that randomized positional encodings do
help to improve the performance of absolute em-
beddings (sin / cos and rotary). This confirms the
hypothesis from Ruoss et al. (2023), which states
that randomization allows the model to train on po-
sitions that would otherwise be out-of-distribution
at evaluation time. We visualize the change in at-
tention patterns after randomization in Fig. B.1.

Fine-Tuning Table 2 shows the results of fine-
tuning pretrained models trained with rotary em-
beddings on enwik8. Fine-tuning with randomized
encodings considerably reduces the length gener-
alization loss compared to the pretrained model or
fine-tuning with the same (i.e., rotary) embeddings.
However, fine-tuning with ALiBi decreases the loss
even further, particularly for length generalization.
Thus, fine-tuning pretrained models with a differ-
ent positional encoding scheme appears to be a
viable strategy. However, we recall that this natural
language dataset is characterized by short-range
dependencies (as evidenced by ALiBi’s superior
performance), with positive results not necessarily
indicative of true length generalization.

4.2 Image Classification

In Table 3 we present our evaluation of the encoder-
decoder Transformer on ImageNet with different
positional encodings. This task uncovers the lim-
its of relative encodings (and, by extension, win-

Table 3: The minimum cross-entropy loss on ImageNet
(3 random seeds) for an encoder-decoder Transformer
with different positional encodings. We converted the
images to grayscale and flattened them using delimiters
to distinguish between rows. We trained on sequences
of length 506 (images of size 22 x 23) and evaluated
on length 2025 (images of size 45 x 45). Randomized
encodings substantially improve the length generaliza-
tion performance since the classification task requires
attending to faraway information (i.e., across rows).

Length 506 Length 2025
Positional Encoding Det. Rand. Det. Rand.
None 5.741 N/A 6.115 N/A
sin / cos 5.257 5.371 7.369  6.133
ALiBi 4949 5.017 7.120 5.373
Relative 4397 4921 7.934 5.141
Rotary 4325 5.117 7.946 5.341
Learned 5262 5.754 7.194  6.140
Power KERPLE 4929 5.252 6.221  5.427
Log KERPLE 5.152  5.283 5.526 5.876
Sandwich 5.161 5.443 5497 7.011
SHAPE 5.563 N/A 6.332 N/A

dowed attention) in terms of length generalization
since they perform worse than a bag-of-pixels (i.e.,
no positional encodings) approach. In contrast,
randomized positional encodings significantly im-
prove length generalization across the board (ex-
cept for Sandwich). Finally, note that SHAPE per-
forms rather poorly, showing that randomizing only
the absolute sequence offset is insufficient.

5 Conclusion

We conducted an extensive empirical investigation
of the length generalization capabilities of random-
ized positional encodings on natural language pro-
cessing and image recognition. We showed that
relative positional embeddings triumph on enwik8
but fail to generalize on ImageNet classification,
unlike randomized encodings. Thus, our results
indicate that the absence of true length generaliza-
tion is often hidden by the use of language bench-
marks but becomes apparent when evaluating tasks
with long-range dependencies, e.g., vision or al-
gorithmic reasoning. Moreover, we showed that
offset randomization alone is insufficient to gener-
alize to longer sequences (SHAPE’s performance is
mediocre on ImageNet). Finally, we demonstrated
that models pretrained with classical embeddings
can be fine-tuned with a different (randomized) en-
coding scheme to boost their length generalization.



Limitations

Our work provides a comprehensive comparison
of the length generalization capabilities of differ-
ent positional encoding schemes on the enwik8
language modeling task and ImageNet image clas-
sification (phrased as a sequence-to-sequence mod-
eling task). Nevertheless, some limitations have
to be considered. First, these two datasets do not
capture the full diversity and complexity of either
domain, and further domains need to be evaluated
for a more complete analysis of the strengths and
shortcomings of randomized positional encodings
on real-world data. Second, the quadratic cost of
attention induces a memory bottleneck and it is
unclear whether and how our results would extend
to longer sequence lengths. This is less of a prob-
lem when evaluating algorithmic reasoning tasks,
which share the same structure across all sequence
lengths (i.e., their complexity is independent of the
sequence length). In contrast, for real-world data,
complexity is often more related to sequence length
(e.g., evaluating 45 x 45 = 2025 pixel grayscale
images is far from the current state-of-the-art in
image recognition). Finally, it has been shown
that certain capabilities of LLMs only emerge with
scale (Wei et al., 2022), and thus our empirical eval-
uation would have to be repeated with models of
increasingly larger size to investigate how model
scale impacts the length generalization capabilities
of randomized positional encodings. Overall, we
believe that our study’s limitation open up several
interesting avenues for future research.
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A Experimental Details

We run every task-encoding-hyperparameter
triplet on a single NVIDIA V100 GPU from
our internal cluster. As a result we used
18 (positional encodings) - 3 (seeds) = 54
GPU-units for the results in Tables 1 and 3,
3 (positional encodings) - 3 (seeds) = 9
GPU-units for Table 2, and 15 (tasks)
7 (positional encodings) - 3 (learning rates) -
3 (seeds) = 945 GPU-units for Table B.1.

B Algorithmic Reasoning Tasks

Randomized positional encodings (Ruoss et al.,
2023) were originally only evaluated on the algo-
rithmic reasoning benchmark proposed by Delé-
tang et al. (2023). However, the evaluation con-
ducted by Ruoss et al. (2023) did not include a
comparison with the more recent positional encod-
ing schemes SHAPE (Kiyono et al., 2021), KER-
PLE (Chi et al., 2022), and Sandwich (Chi et al.,
2023). Thus, we complement the results of Ruoss
et al. (2023) with an evaluation of these positional
encodings on the same algorithmic reasoning tasks.

Experimental Setup We consider the same
experimental setup as proposed by Delétang et al.
(2023) and used by Ruoss et al. (2023). The
benchmark consists of 15 algorithmic reasoning
tasks spanning the Chomsky hierarchy (Chomsky,
1956), the details of which are irrelevant for the
purposes of this study. The benchmark is publicly
available at https://github.com/deepmind/
neural_networks_chomsky_hierarchy

under the Apache 2.0 License. The tasks are
not composed of fixed-sized datasets but are
sampled from data-generating distributions. We
considered encoder-only Transformers (Vaswani
et al., 2017) with 5 blocks of 8 heads each with
dmodel = 64. We train all models for 2000 000
steps with a batch size of 128, corresponding
to 256 000 000 (potentially non-unique) training
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Table B.1: Accuracy (in percentage) averaged over all test lengths and maximized over 3 random seeds and 3
learning rates. The random accuracy is 50% except for MODULAR ARITHMETIC (SIMPLE), CYCLE NAVIGATION,
BUCKET SORT, and MODULAR ARITHMETIC, where it is 20%. As reported by Ruoss et al. (2023), randomized
positional encodings increase the test accuracy (by 7.4% on average). t denotes permutation-invariant tasks, which
can be solved without positional information. SHAPE is a probabilistic positional encoding (it samples the position
offset) and thus cannot be randomized further via the randomized positional encoding scheme of Ruoss et al. (2023).
For ease of comparison, we report the highest accuracy per task from Ruoss et al. (2023) in the right-most column
(marked with *). This column thus represents the highest accuracy achieved across the (randomized) versions of

sin / cos, relative, ALiBi, RoPE, and learned encodings, as well as not using a positional encoding at all.

Randomized
Level Task Power KERPLE Log KERPLE Sandwich SHAPE Power KERPLE Log KERPLE Sandwich Ruoss et al. (2023)*
EVEN PAIRS 69.3 100.0 93.0 81.3 99.9 75.5 61.4 100.0
R MODULAR ARITHMETIC (SIMPLE) 27.6 30.5 29.0 314 29.4 33.6 26.3 28.1
PARITY CHECK' 56.1 55.6 55.6 559 55.0 56.6 54.6 52.6
CYCLE NAVIGATION' 422 60.1 41.6 48.5 60.3 71.8 36.3 73.6
STACK MANIPULATION 59.9 61.5 62.2 54.7 72.3 75.7 62.9 719
DCF REVERSE STRING 66.3 63.9 78.7 57.3 719 81.5 61.9 95.1
MODULAR ARITHMETIC 382 37.0 38.7 37.5 385 38.7 36.8 349
SOLVE EQUATION 29.3 30.9 30.3 28.1 30.3 29.9 28.9 28.1
DUPLICATE STRING 56.5 59.6 585 56.1 73.4 74.1 584 75.1
MISSING DUPLICATE 58.1 61.8 68.9 55.1 91.3 855 68.1 100.0
ODDS FIRST 56.0 59.5 56.8 56.0 69.9 68.6 57.5 69.3
CS BINARY ADDITION 553 57.1 58.7 555 61.8 63.0 56.5 64.5
BINARY MULTIPLICATION 55.6 55.5 55.8 54.5 553 553 533 52.1
COMPUTE SQRT 56.0 57.0 55.5 55.4 55.7 54.9 535 533
BUCKET SoRrT! 49.0 94.9 98.1 38.8 99.8 99.9 93.5 100.0

examples. We sample the length of every training
sequence uniformly from the range {1,...,40}.
We evaluate the length generalization on a single
batch of 500 testing examples for all sequence
lengths in {41,...,500}. We used the Adam
optimized (Kingma and Ba, 2015) with gradient
clipping (to an L2 norm of 1) and sweeped over
three learning rates (1 x 1074, 3 x 1074, 5 x 107%)
using 3 different parameter initialization seeds.

Results Table B.1 shows the accuracy of the dif-
ferent encodings across all different tasks. We ob-
serve that the randomized variants increase the test
accuracy by 7.4% on average. Interestingly, Sand-
wich are the only encodings that do not seem to ben-
efit from randomization. Finally, note that SHAPE
fails to perform significantly better than random
all tasks apart from EVEN PAIRS. This failure
shows that only randomizing the positional offset
of the sequence during training (and not also the
distances between tokens) is insufficient to achieve
good length generalization.
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(a) sin / cos with a sequence length of 256 (in-distribution).
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(b) sin / cos with a sequence length of 1024 (out-of-distribution)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

N NN

(c) Randomized sin / cos with a sequence length of 256 (in-distribution).
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(d) Randomized sin / cos with a sequence length of 1024 (out-of-distribution)

Figure B.1: Analysis of the attention matrices for the sin / cos and randomized sin / cos positional encodings on
enwik8 using sequences of length 256 (training length) and 1024 (evaluation length). We visualize the maximum
over the 8 heads per layer (following Csord4s et al. 2022) and observe a clear diagonal pattern, which corresponds
to the short-range dependencies observed in natural language (Khandelwal et al., 2018). The randomized positional
encodings maintain the pattern on longer sequences, while it breaks down for the standard positional encoding.
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