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Abstract
Transformers generalize exceptionally well on001
tasks with a fixed context length. However,002
this capability rapidly diminishes when test se-003
quences are far longer than any sequence seen004
during training. Unfortunately, simply train-005
ing on longer sequences is computationally in-006
feasible due to the quadratic cost of attention.007
Randomized positional encodings were shown008
to alleviate this issue on algorithmic reason-009
ing tasks, where position is of high importance,010
but it is unclear if their benefits also transfer011
to “real-world” tasks such as image classifica-012
tion or natural language processing, which may013
have different inductive biases. Therefore, in014
this work, we analyze these randomized encod-015
ings on such tasks. Moreover, we show that016
fine-tuning pretrained models with randomized017
positional encodings improves length general-018
ization. Finally, we demonstrate that evaluating019
length generalization on natural language can020
be misleading due to its short-range dependen-021
cies, whereas algorithmic reasoning and vision022
reveal the limits of prior work and the effective-023
ness of randomized positional encodings.024

1 Introduction025

Transformers (Vaswani et al., 2017) perform excep-026

tionally well on sequence modeling tasks across027

various domains, including natural language pro-028

cessing (NLP) (Devlin et al., 2019), reinforcement029

learning (Reed et al., 2022), and image recogni-030

tion (Dosovitskiy et al., 2021). Accordingly, there031

is a growing demand to employ Transformers on032

longer sequences, e.g., increasing image resolution.033

However, it is infeasible to simply increase the034

length of training sequences due to the quadratic035

time and space complexity of the Transformer’s036

attention mechanism. Unfortunately, Transform-037

ers also generalize less well to longer sequences038

than other architectures such as RNNs (Delétang039

et al., 2023). Consequently, boosting Transform-040

ers’ length generalization capabilities is a rapidly041

growing research area (Ruoss et al., 2023).042

Positional embeddings are one of Transform- 043

ers’ principal failure modes for length general- 044

ization (Shaw et al., 2018). Since attention is 045

permutation-invariant, Transformers rely on posi- 046

tional embeddings to inject positional information 047

into their computation, which is crucially important 048

for tasks such as language modeling or algorithmic 049

reasoning. However, traditional positional encod- 050

ings are out-of-distribution at test time since the 051

model never observed the larger test positions. 052

Current solutions to this problem typically rely 053

on one of two approaches: (i) using relative in- 054

stead of absolute positional information, and (ii) 055

additionally randomizing the relative information 056

during training (and test) time. However, while 057

improving performance on language datasets, de- 058

terministic relative encodings simply discount far- 059

away information, which cannot induce generic 060

length generalization. In contrast, probabilistic en- 061

codings (Ruoss et al., 2023; Likhomanenko et al., 062

2021) force Transformers to operate solely on or- 063

der information by decoupling a token’s positional 064

information from its position in the sequence. For 065

example, Ruoss et al. (2023) subsample a set of 066

ordered positions from a range that is much longer 067

than the maximum test sequence length, thus reduc- 068

ing train-test distribution shift since test positions 069

will have been observed during training. 070

We extend the analysis of Ruoss et al. (2023) 071

from algorithmic reasoning to the real-world do- 072

mains of natural language and vision. We show 073

that natural language is characterized by different 074

inductive biases than image classification or algo- 075

rithmic reasoning and thus not suited for evaluating 076

length generalization. Concretely, we demonstrate 077

that relative encodings exploit the recency bias of 078

language, but fail to generalize on image classifica- 079

tion, unlike randomized encodings. Moreover, we 080

investigate whether pretrained models trained with 081

classical positional encodings can be fine-tuned to 082

longer sequence lengths via randomized encodings. 083
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Contributions Our main contributions are:084

• We conduct an empirical evaluation of ran-085

domized positional encodings across two real-086

world data modalities: NLP and vision.087

• We show that pretrained models can be fine-088

tuned with other (randomized) encodings.089

2 Related Work090

The Transformer architecture (Vaswani et al., 2017)091

famously replaced all recurrent computation in pre-092

vious machine translation models with multi-head093

attention. However, while scalable and performant,094

dot-product attention itself is permutation invariant,095

which is why Vaswani et al. (2017) augmented the096

Transformer’s token embeddings by adding scaled097

sinusoids to inject positional information.098

The subsequent success of Transformers conse-099

quently sparked a flurry of attempts to improve100

these positional encodings: Gehring et al. (2017)101

added learned positional embeddings to the token102

embeddings. Dai et al. (2019) proposed to compute103

the attention at every layer with the relative dis-104

tances between queries and keys to improve long-105

term (inter-context) dependency modeling. Su et al.106

(2021) suggested treating the token embeddings107

as a collection of 2D vectors and rotating them108

in every layer to encode positional information.109

Press et al. (2022) introduced ALiBi encodings to110

improve length generalization on NLP tasks by111

adding constant biases, inversely proportional to112

the key-query distance (known as ALiBi slopes),113

to the attention score. Chi et al. (2022) presented114

KERPLE embeddings, which replace ALiBi’s con-115

stant slopes with learnable parameters. Chi et al.116

(2023) developed Sandwich encodings which drops117

the cross-terms between semantic and positional118

information in the attention, creating a parameter-119

free relative positional embedding.120

While most of the above approaches aimed at121

improving Transformers’ performance for a fixed-122

length setting in a deterministic manner, a differ-123

ent line of work tried to boost their length gener-124

alization performance via probabilistic positional125

encodings. Ruoss et al. (2023) developed the ran-126

domized positional encoding (RPE) scheme, which127

is compatible with all the above approaches, and128

randomizes the position associated with each to-129

ken while maintaining the relative order between130

tokens. Concurrently, Li and McClelland (2022)131

introduced a special case of RPEs (for learned po-132

sitional encodings). However, both works only 133

investigated length generalization on algorithmic 134

reasoning tasks. In contrast, Kiyono et al. (2021) 135

presented SHAPE encodings, which only random- 136

ize the offset of the sequence’s start position in- 137

stead of randomizing the distances betweeen to- 138

kens, and showed improved BLEU performance 139

on NLP tasks. In a similar vein, Likhomanenko 140

et al. (2021) proposed CAPE encodings, which first 141

scale the positions into the range [−1, 1] and then 142

apply a set of randomization stages similar to RPEs, 143

and demonstrated that they boost generalization on 144

machine translation, image and speech recognition. 145

Finally, Kazemnejad et al. (2023) showed that posi- 146

tional encodings are unnecessary for length gener- 147

alization of decoder-only Transformers since their 148

causal attention masking is sufficient to represent 149

absolute and relative positional embeddings. 150

3 Methods 151

We investigate the length generalization perfor- 152

mance of randomized positional encodings on nat- 153

ural language processing and image classification. 154

3.1 Randomized Positional Encodings 155

The motivation for randomized positional encod- 156

ings (Ruoss et al., 2023) stems from the observation 157

that the distribution over token positions is differ- 158

ent at training and test time in the context of length 159

generalization, leading to a distribution shift that 160

current Transformer architectures cannot handle. 161

Concretely, consider the case where the length of 162

the longest sequence in the training set is N . The 163

goal of length generalization is to achieve good per- 164

formance on sequences of length M ≫ N . To that 165

end, the randomized positional encodings for token 166

1 ≤ j ≤ N are given by RPE(j, ·) := PE(ij , ·), 167

where ij is a randomly sampled index from a much 168

larger range {1, . . . , L} for a configurable hyper- 169

parameter L such that M ≤ L. Note that PE refers 170

to an arbitrary positional encoding scheme (such 171

as sin / cos) and · refers to the model dimension. 172

To sample the indices, consider the discrete uni- 173

form distribution U(S) over some set S and let 174

Pk := {S ⊆ {1, . . . , L} | |S| = k}. At each train- 175

ing step, for a sequence of length n ∈ {1, . . . , N}, 176

randomized positional encodings sample a random 177

set of indices I ∈ U(Pn) and then sort I in as- 178

cending order such that I = {i1, i2, . . . , in} for 179

i1 < i2 < · · · < in. Note that, by construction of 180

the set of sets Pk, the indices forming I are distinct. 181
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3.2 Natural Language Processing182

While evaluating positional encodings on algorith-183

mic tasks can provide us with interesting insights,184

they cannot be substitutes for assessment on “real-185

world” tasks. NLP is the primary use case of186

Transformers and thus a task of paramount im-187

portance when assessing their length generaliza-188

tion capabilities. To that end, we consider the en-189

wik8 dataset, which is a byte (i.e., character)-level190

dataset formed from the first 100 million bytes of191

an English Wikipedia XML dump (Hutter, 2006).192

We train decoder-only Transformer models with193

8 blocks of 8 heads each (dmodel = 256) on text194

sequences of length 256 and evaluate on length195

1024. We consider 10 different positional encoding196

schemes (Vaswani et al., 2017; Press et al., 2022;197

Dai et al., 2019; Su et al., 2021; Gehring et al.,198

2017; Chi et al., 2022, 2023) and their randomized199

variants (Ruoss et al., 2023), yielding 18 differ-200

ent models. We train each model for 1 000 000201

steps with a batch size of 64 using the Adam202

optimizer (Kingma and Ba, 2015) with gradient203

clipping (to an L2 norm of 1), a learning rate of204

1× 10−4, and 3 parameter initialization seeds.205

Fine-tuning As pretrained foundation models are206

becoming increasingly available (Touvron et al.,207

2023a,b), a key question is whether they can be208

efficiently fine-tuned to longer sequences lengths209

without a performance drop. Unfortunately, the210

straightforward approach of fine-tuning on longer211

sequences only yields limited success (Anil et al.,212

2022; Jelassi et al., 2023). Instead, we investigate213

whether pretrained models, trained with classical214

positional encodings, can be fine-tuned on short se-215

quences via randomized positional encodings. To216

that end, we fine-tune a pretrained (via the same217

setup as above) decoder-only Transformer that uses218

rotary embeddings (Su et al., 2021), which are219

commonly employed in foundation models (Tou-220

vron et al., 2023a,b). We fine-tune with rotary,221

ALiBi (Press et al., 2022) and randomized rotary222

encodings (Ruoss et al., 2023) on sequences of223

length 256 for 1 000 000 steps and evaluate length224

generalization on sequences of length 1024.225

3.3 Image Classification226

Natural language is characterized by a strong re-227

cency bias – faraway words rarely tend to have a228

big impact on predicting the next token (Khandel-229

wal et al., 2018). Therefore, we also consider a230

real-world dataset that requires the effective use of231

Table 1: The minimum cross-entropy loss on enwik8 (3
random seeds) for a decoder-only Transformer with dif-
ferent positional encodings. We trained on sequences of
length 256 and evaluated on length 1024. Randomized
positional encodings significantly degrade the perfor-
mance due to the inductive bias of this natural language
dataset where queries only need to attend to nearby keys.

Length 256 Length 1024

Positional Encoding Det. Rand. Det. Rand.

None 232.8 NA 4194.0 NA
sin / cos 222.5 225.9 3641.5 3326.3
ALiBi 218.1 228.1 859.6 1603.4
Relative 216.2 219.1 854.4 1379.9
Rotary 218.8 222.4 4259.9 1883.9
Learned 223.8 230.7 3160.0 5234.1
Power KERPLE 216.8 221.8 845.3 1151.0
Log KERPLE 217.0 221.0 850.8 1559.0
Sandwich 220.0 225.3 1337.7 1715.2
SHAPE 225.4 NA 5844.8 NA

distant context for correct output. To that end, we 232

investigate image classification in a sequence-to- 233

sequence setting (i.e., with flattened images). Ac- 234

curate classification requires aggregating the pixel 235

information surrounding each pixel, which will be 236

located in remote places for a flattened image. 237

We consider the ImageNet dataset (Russakovsky 238

et al., 2015). We preprocess the images by convert- 239

ing them to grayscale and resizing them to 22× 23 240

(yielding a flattened sequence length of 506) for 241

training and 45× 45 (i.e., length 2025) for evalua- 242

tion. However, since flattening the image removes 243

the information of where a row begins, we append 244

a row delimiter (i.e., a black pixel) to the end of ev- 245

ery row (leading to a considerable improvement on 246

training sequences). We train an encoder-decoder 247

Transformer by feeding the flattened images to the 248

encoder and a beginning-of-sequence token to the 249

decoder to predict the correct class (out of 1000). 250

We use the same architectures as in Section 3.2 and 251

train them for 1 000 000 steps with a batch size of 252

32. We use the Adam optimizer (Kingma and Ba, 253

2015) with gradient clipping and a learning rate of 254

1× 10−5 and 3 parameter initialization seeds. 255

4 Results 256

We now present our extensive experimental evalua- 257

tion on natural language and vision datasets. 258

4.1 Natural Language 259

Table 1 shows our evaluation of the decoder-only 260

Transformer on enwik8 with different positional en- 261
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Table 2: The minimum cross-entropy loss on enwik8 (3
random seeds) when fine-tuning a decoder-only Trans-
former that is pretrained with rotary positional encod-
ings. We pretrained and fine-tuned on sequences of
length 256 and evaluate on length 1024. ALiBi achieves
the best length generalization performance.

Fine-tuned

Length Pretrained Rotary Rand. Rotary ALiBi

256 218.8 215.2 219.6 217.4
1024 4259.9 4653.7 1847.5 955.0

coding schemes. We observe that non-randomized262

relative positional embeddings (i.e., KERPLE, rel-263

ative, and ALiBi) achieve the best length general-264

ization performance. This is expected due to the265

dataset’s character-level nature: Given the string266

“. . . appl”, a model can correctly predict the charac-267

ter ‘e’ without needing to consider the long-range268

context the word lies in. Therefore, the windowed269

inductive bias of relative encodings (queries simply270

attend to nearby keys) leads to favorable results.271

Note that randomized positional encodings do272

help to improve the performance of absolute em-273

beddings (sin / cos and rotary). This confirms the274

hypothesis from Ruoss et al. (2023), which states275

that randomization allows the model to train on po-276

sitions that would otherwise be out-of-distribution277

at evaluation time. We visualize the change in at-278

tention patterns after randomization in Fig. B.1.279

Fine-Tuning Table 2 shows the results of fine-280

tuning pretrained models trained with rotary em-281

beddings on enwik8. Fine-tuning with randomized282

encodings considerably reduces the length gener-283

alization loss compared to the pretrained model or284

fine-tuning with the same (i.e., rotary) embeddings.285

However, fine-tuning with ALiBi decreases the loss286

even further, particularly for length generalization.287

Thus, fine-tuning pretrained models with a differ-288

ent positional encoding scheme appears to be a289

viable strategy. However, we recall that this natural290

language dataset is characterized by short-range291

dependencies (as evidenced by ALiBi’s superior292

performance), with positive results not necessarily293

indicative of true length generalization.294

4.2 Image Classification295

In Table 3 we present our evaluation of the encoder-296

decoder Transformer on ImageNet with different297

positional encodings. This task uncovers the lim-298

its of relative encodings (and, by extension, win-299

Table 3: The minimum cross-entropy loss on ImageNet
(3 random seeds) for an encoder-decoder Transformer
with different positional encodings. We converted the
images to grayscale and flattened them using delimiters
to distinguish between rows. We trained on sequences
of length 506 (images of size 22 × 23) and evaluated
on length 2025 (images of size 45× 45). Randomized
encodings substantially improve the length generaliza-
tion performance since the classification task requires
attending to faraway information (i.e., across rows).

Length 506 Length 2025

Positional Encoding Det. Rand. Det. Rand.

None 5.741 N/A 6.115 N/A
sin / cos 5.257 5.371 7.369 6.133
ALiBi 4.949 5.017 7.120 5.373
Relative 4.397 4.921 7.934 5.141
Rotary 4.325 5.117 7.946 5.341
Learned 5.262 5.754 7.194 6.140
Power KERPLE 4.929 5.252 6.221 5.427
Log KERPLE 5.152 5.283 5.526 5.876
Sandwich 5.161 5.443 5.497 7.011
SHAPE 5.563 N/A 6.332 N/A

dowed attention) in terms of length generalization 300

since they perform worse than a bag-of-pixels (i.e., 301

no positional encodings) approach. In contrast, 302

randomized positional encodings significantly im- 303

prove length generalization across the board (ex- 304

cept for Sandwich). Finally, note that SHAPE per- 305

forms rather poorly, showing that randomizing only 306

the absolute sequence offset is insufficient. 307

5 Conclusion 308

We conducted an extensive empirical investigation 309

of the length generalization capabilities of random- 310

ized positional encodings on natural language pro- 311

cessing and image recognition. We showed that 312

relative positional embeddings triumph on enwik8 313

but fail to generalize on ImageNet classification, 314

unlike randomized encodings. Thus, our results 315

indicate that the absence of true length generaliza- 316

tion is often hidden by the use of language bench- 317

marks but becomes apparent when evaluating tasks 318

with long-range dependencies, e.g., vision or al- 319

gorithmic reasoning. Moreover, we showed that 320

offset randomization alone is insufficient to gener- 321

alize to longer sequences (SHAPE’s performance is 322

mediocre on ImageNet). Finally, we demonstrated 323

that models pretrained with classical embeddings 324

can be fine-tuned with a different (randomized) en- 325

coding scheme to boost their length generalization. 326
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Limitations327

Our work provides a comprehensive comparison328

of the length generalization capabilities of differ-329

ent positional encoding schemes on the enwik8330

language modeling task and ImageNet image clas-331

sification (phrased as a sequence-to-sequence mod-332

eling task). Nevertheless, some limitations have333

to be considered. First, these two datasets do not334

capture the full diversity and complexity of either335

domain, and further domains need to be evaluated336

for a more complete analysis of the strengths and337

shortcomings of randomized positional encodings338

on real-world data. Second, the quadratic cost of339

attention induces a memory bottleneck and it is340

unclear whether and how our results would extend341

to longer sequence lengths. This is less of a prob-342

lem when evaluating algorithmic reasoning tasks,343

which share the same structure across all sequence344

lengths (i.e., their complexity is independent of the345

sequence length). In contrast, for real-world data,346

complexity is often more related to sequence length347

(e.g., evaluating 45 × 45 = 2025 pixel grayscale348

images is far from the current state-of-the-art in349

image recognition). Finally, it has been shown350

that certain capabilities of LLMs only emerge with351

scale (Wei et al., 2022), and thus our empirical eval-352

uation would have to be repeated with models of353

increasingly larger size to investigate how model354

scale impacts the length generalization capabilities355

of randomized positional encodings. Overall, we356

believe that our study’s limitation open up several357

interesting avenues for future research.358
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our internal cluster. As a result we used 501

18 (positional encodings) · 3 (seeds) = 54 502

GPU-units for the results in Tables 1 and 3, 503

3 (positional encodings) · 3 (seeds) = 9 504

GPU-units for Table 2, and 15 (tasks) · 505

7 (positional encodings) · 3 (learning rates) · 506

3 (seeds) = 945 GPU-units for Table B.1. 507

B Algorithmic Reasoning Tasks 508

Randomized positional encodings (Ruoss et al., 509

2023) were originally only evaluated on the algo- 510

rithmic reasoning benchmark proposed by Delé- 511

tang et al. (2023). However, the evaluation con- 512

ducted by Ruoss et al. (2023) did not include a 513

comparison with the more recent positional encod- 514

ing schemes SHAPE (Kiyono et al., 2021), KER- 515

PLE (Chi et al., 2022), and Sandwich (Chi et al., 516

2023). Thus, we complement the results of Ruoss 517

et al. (2023) with an evaluation of these positional 518

encodings on the same algorithmic reasoning tasks. 519

Experimental Setup We consider the same 520

experimental setup as proposed by Delétang et al. 521

(2023) and used by Ruoss et al. (2023). The 522

benchmark consists of 15 algorithmic reasoning 523

tasks spanning the Chomsky hierarchy (Chomsky, 524

1956), the details of which are irrelevant for the 525

purposes of this study. The benchmark is publicly 526

available at https://github.com/deepmind/ 527

neural_networks_chomsky_hierarchy 528

under the Apache 2.0 License. The tasks are 529

not composed of fixed-sized datasets but are 530

sampled from data-generating distributions. We 531

considered encoder-only Transformers (Vaswani 532

et al., 2017) with 5 blocks of 8 heads each with 533

dmodel = 64. We train all models for 2 000 000 534

steps with a batch size of 128, corresponding 535

to 256 000 000 (potentially non-unique) training 536
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Table B.1: Accuracy (in percentage) averaged over all test lengths and maximized over 3 random seeds and 3
learning rates. The random accuracy is 50% except for MODULAR ARITHMETIC (SIMPLE), CYCLE NAVIGATION,
BUCKET SORT, and MODULAR ARITHMETIC, where it is 20%. As reported by Ruoss et al. (2023), randomized
positional encodings increase the test accuracy (by 7.4% on average). † denotes permutation-invariant tasks, which
can be solved without positional information. SHAPE is a probabilistic positional encoding (it samples the position
offset) and thus cannot be randomized further via the randomized positional encoding scheme of Ruoss et al. (2023).
For ease of comparison, we report the highest accuracy per task from Ruoss et al. (2023) in the right-most column
(marked with ⋆). This column thus represents the highest accuracy achieved across the (randomized) versions of
sin / cos, relative, ALiBi, RoPE, and learned encodings, as well as not using a positional encoding at all.

Randomized

Level Task Power KERPLE Log KERPLE Sandwich SHAPE Power KERPLE Log KERPLE Sandwich Ruoss et al. (2023)⋆

R

EVEN PAIRS 69.3 100.0 93.0 81.3 99.9 75.5 61.4 100.0
MODULAR ARITHMETIC (SIMPLE) 27.6 30.5 29.0 31.4 29.4 33.6 26.3 28.1
PARITY CHECK† 56.1 55.6 55.6 55.9 55.0 56.6 54.6 52.6
CYCLE NAVIGATION† 42.2 60.1 41.6 48.5 60.3 71.8 36.3 73.6

DCF

STACK MANIPULATION 59.9 61.5 62.2 54.7 72.3 75.7 62.9 77.9
REVERSE STRING 66.3 63.9 78.7 57.3 77.9 81.5 61.9 95.1
MODULAR ARITHMETIC 38.2 37.0 38.7 37.5 38.5 38.7 36.8 34.9
SOLVE EQUATION 29.3 30.9 30.3 28.1 30.3 29.9 28.9 28.1

CS

DUPLICATE STRING 56.5 59.6 58.5 56.1 73.4 74.1 58.4 75.1
MISSING DUPLICATE 58.1 61.8 68.9 55.1 91.3 85.5 68.1 100.0
ODDS FIRST 56.0 59.5 56.8 56.0 69.9 68.6 57.5 69.3
BINARY ADDITION 55.3 57.1 58.7 55.5 61.8 63.0 56.5 64.5
BINARY MULTIPLICATION 55.6 55.5 55.8 54.5 55.3 55.3 53.3 52.1
COMPUTE SQRT 56.0 57.0 55.5 55.4 55.7 54.9 53.5 53.3
BUCKET SORT† 49.0 94.9 98.1 38.8 99.8 99.9 93.5 100.0

examples. We sample the length of every training537

sequence uniformly from the range {1, . . . , 40}.538

We evaluate the length generalization on a single539

batch of 500 testing examples for all sequence540

lengths in {41, . . . , 500}. We used the Adam541

optimized (Kingma and Ba, 2015) with gradient542

clipping (to an L2 norm of 1) and sweeped over543

three learning rates (1×10−4, 3×10−4, 5×10−4)544

using 3 different parameter initialization seeds.545

Results Table B.1 shows the accuracy of the dif-546

ferent encodings across all different tasks. We ob-547

serve that the randomized variants increase the test548

accuracy by 7.4% on average. Interestingly, Sand-549

wich are the only encodings that do not seem to ben-550

efit from randomization. Finally, note that SHAPE551

fails to perform significantly better than random552

all tasks apart from EVEN PAIRS. This failure553

shows that only randomizing the positional offset554

of the sequence during training (and not also the555

distances between tokens) is insufficient to achieve556

good length generalization.557
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(a) sin / cos with a sequence length of 256 (in-distribution).

(b) sin / cos with a sequence length of 1024 (out-of-distribution)

(c) Randomized sin / cos with a sequence length of 256 (in-distribution).

(d) Randomized sin / cos with a sequence length of 1024 (out-of-distribution)

Figure B.1: Analysis of the attention matrices for the sin / cos and randomized sin / cos positional encodings on
enwik8 using sequences of length 256 (training length) and 1024 (evaluation length). We visualize the maximum
over the 8 heads per layer (following Csordás et al. 2022) and observe a clear diagonal pattern, which corresponds
to the short-range dependencies observed in natural language (Khandelwal et al., 2018). The randomized positional
encodings maintain the pattern on longer sequences, while it breaks down for the standard positional encoding.
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