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Abstract: Applying reinforcement learning (RL) algorithms to real-world contin-
uos control problems faces many challenges in terms of sample efficiency, stability
and exploration. Off-policy RL algorithms show great sample efficiency but can
be unstable to train and require effective exploration techniques for sparse reward
environments. A simple yet effective approach to address these challenges is to
train a population of policies and ensemble them in certain ways. In this work,
a novel population-based evolutionary training framework inspired by evolution
strategies (ES) called Behavior-aware Evolutionary Learning (BEL) is proposed.
The main idea is to train a population of behaviorally diverse policies in parallel
and conduct selection with simple linear recombination. BEL consists of two
mechanisms called behavior-regularized perturbation (BRP) and behavior-targeted
training (BTT) to accomplish stable and fine control of the population behavior
divergence. Experimental studies have shown that BEL not only has superior
sample efficiency and stability compared to existing methods but can also produce
diverse agents in sparse reward environments. Due to the parallel implementation,
BEL also exhibits relatively good computation efficiency, making it a practical and
competitive method to train policies for real-world robots.
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1 Introduction

Recent advances in reinforcement learning (RL) have proven that off-policy deep reinforcement
learning (DRL) algorithms possess great potential in solving continuous control problems, especially
in terms of sample efficiency [1] [2] [3]. However, off-policy algorithms are also known to be unstable
or brittle [4] [5], which to some extent hinders the application of these algorithms to real-world robots.
On the other hand, environments with sparse rewards that are common in real-world scenarios also
present challenges in terms of exploration.

Along with DRL algorithms, another line of direct policy search methods called evolutionary algo-
rithms (EA) also showed significant success as a result of the improved computational efficiency
of modern hardware and clever implementations [6] [7] [8]. Different from DRL algorithms that
exploit the sequential structure of the Markov Decision Process (MDP), EA algorithms treat policy
search as a black-box optimization problem and utilize a population of randomly perturbed policies
to search for better policies. While being less sample efficient, EA methods tend to enjoy properties
such as improved stability, efficient parallelization and better diversity due to the utilization of the EA
population and EA operations.

Naturally, combining those two paradigms to obtain the best of both worlds has attracted much
efforts over the years [9] [10] [11] [12] [13]. The motivation behind these works is to inject the
gradient-trained DRL agents into the population and drive the population with policy gradient signals
while enjoying the benefits of the EA population. Another perspective is that EA mutation can serve
as parameter space noise and improve the exploration ability of RL agents [14]. Such a combination
turned out to be very successful, and the resulting hybrid algorithms can beat both of their EA and
DRL components.
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One of the key factors resulting in the success of the hybrid algorithms is that the EA population
provides a way to maintain the behavioral diversity of the policies [15]. Behavioral diversity,
which is usually called phenotypic diversity in Evolutionary Robotics (ER) [16] [17], refers to the
differences between outputs of the policies within the population here. Intuitively, diversity is helpful
for environments with sparse or deceptive reward signals, providing a higher chance of exploring
potentially good states [18]. The improved exploration ability also helps the off-policy learning
procedure by filling the replay buffer with more diverse transitions [14]. In addition, in a multi-
objective scenario, higher behavioral diversity may result in better coverage of different modalities,
e.g., training a cheetah robot to run both forward and backward [15].

However, we identified two important problems that remain unsolved by previous EARL methods:

• The first problem is how can the policy be randomly perturbed in a meaningful and controlled
manner? A perturbation that is too small would result in no significant changes, while a
perturbation that is too large could lead to divergent training.

• The second problem is that although perturbed networks result in different policies, once
policies undergo the same RL training process and sample from the sample replay buffer,
they may end up being similar and reduce the overall diversity. Ideally, we would like to
have a population that is not only diverse after random perturbation but also diverse after RL
training.

With the output actions of a policy under different states treated as its behavior, we aim to measure
the population’s diversity as the mean behavior divergence (action space distance) between each
individual policy and the center policy. The main idea of BEL is to maintain the population diversity
by solving the above two problems. To solve the first problem, inspired by previous works [19] [12],
Behavior-Regularized Perturbation (BRP) is proposed, which can randomly perturb a policy network
within a specified behavior divergence range in an online fashion. To solve the second problem,
Behavior-Targeted Training (BTT) is proposed to assign a randomly sampled target behavior diver-
gence and inject it into the actor training process, which shares certain similarities with goal-directed
exploration [20]. The final proposed training framework is called Behavior-aware Evolutionary
Learning (BEL). In BEL, training is conducted in a generational fashion that closely resembles the
traditional evolution strategies (ES). In each generation, first, policies are randomly generated by
applying BRP to a central mean policy. Then, those offspring policies are trained in parallel with
BTT. Finally, all trained policies undergo a weighted linear combination [21] and form the new center
policy for the next generation.

2 Related works

Model-free off-policy RL algorithms are a class of sample efficient algorithms for continuous control
tasks with relatively high dimensional action spaces [1] [22]. Built upon the actor-critic (AC)
paradigm, where a pair of actor networks and critic networks are trained simultaneously, the Twin
Delayed Deep Deterministic (TD3) algorithm [2] and the Soft Actor-Critic (SAC) algorithm [3]
showed great success, and quickly became the go-to algorithms for sample efficient RL training.

Evolutionary algorithms have also gained attention due to the fact that they prove to be competitive
alternatives to MDP-based methods [6] [7]. In [6], the authors developed a simplified natural
evolution strategies (NES) [23]. The resulting OpenAI ES offers massive scalability while matching
the performance of MDP-based methods. In [7], it was shown that the genetic algorithm (GA)
was able to evolve networks with four million parameters and achieved competitive performance
compared to gradient-based methods.

Combining evolutionary methods and policy gradient-based methods in order to benefit from the best
of two worlds soon attracted much attention when [9] first proposed to evolve a population of agents
with GA and periodically inject gradient information into the population. Their resulting algorithm
ERL outperformed both GA and Deep Deterministic Policy Gradient (DDPG). In [11], the authors
managed to use a variant of ES called the cross entropy method (CEM) to evolve the population half
of which was composed of EA agents, and the other half was composed of TD3 agents. Their hybrid
algorithm CEM-RL turned out to be very competitive and served as a strong baseline for derivative
works. Later, [12] pointed out that traditional crossover and mutation operators widely used in GA
can be detrimental in the sense that they could destroy learned behaviors. As a remedy, [12] proposed
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to conduct crossover with network distillation and mutation with SM-G-SUM [19] which proved to
be able to retain learned network behaviors.

3 Background

3.1 Evolution Strategies (ES)

Evolution strategies (ES) belongs to the gradient-free black-box optimization algorithm family. It
was first proposed by Rechenberg [24], and later developed by Schwefel [25]. Mimicking the natural
evolution process, ES randomly generates a population of solution vectors (usually with a Gaussian
distribution) whose fitness value will be evaluated in a problem-specific manner (for example episodic
reward). In its canonical form, ES can be classified into two major versions: the (µ, λ)− ES, where
µ parents of the next generation are selected from the current λ offspring, and the (µ + λ) − ES,
where the selection pool contains both the current parents and offspring. The selection operation is
usually a simple weighted linear recombination of the population vectors according to their fitness
ranks. In this work, we adopt the simplest (1, λ) − ES scheme, and model the population with a
uniform distribution in terms of behavior divergence.

3.2 Twin Delayed Deep Deterministic Policy Gradient (TD3)

As an RL algorithm, TD3 is built upon the Markov Decision Process (MDP) which is described by
< S,A, P,R, γ >. In this formulation, S is the state space, A is the action space, P is the transition
function, R is the reward function and γ is a discount factor [4]. The goal is to learn an optimal policy
function π to maximize the expected return J(θ) = Es∼pπ,a∼π [R0]. TD3 solves this problem by
adopting the actor-critic deterministic policy gradient [26] [1] [2], where a Q-function Qφ is learned
through the Bellman equation:

Qπ(s, a) = r + γEs′,a′ [Qπ (s′, a′)] , a′ ∼ π (s′) (1)

Then the policy function πθ is optimized by the deterministic policy gradient:

∇θJ(θ) = Es∼pπ
[
∇aQπ(s, a)|a=π(s)∇θπθ(s)

]
(2)

For implementation, both Qφ and πθ are optimized with Monte-Carlo estimation with the help of a
replay buffer D, the loss function of Qφ and πθ are defined as follows:

LTD3
Qφ

= E
(s,a,r,s′)∼D

[(
Qφ(s, a)−

(
r + γmax

a′
Qφ (s′, a′)

))2
]

(3)

LTD3
πθ

= − E
s∼D

[
E

a∼πθ
Qφ (s, a)

]
(4)

In TD3, three tricks are used to make the above learning process more stable and alleviate the
overestimation bias. The first trick is to learn two Q functions and uses the smaller Q-value to form
the target Q in eq. (3). The second trick is to delay the target networks updates with regard to Q
network updates. The third trick is to add noise to target actions to smooth out Q along changes in
action [2].

4 Behavior-aware Evolutionary Learning (BEL)

4.1 BEL framework

The overall structure of BEL is outlined in fig. 1. In BEL, we maintain a center actor as the population
center, and λ actors as offspring. In each generation, first, all offspring actors will be initialized
around the center actor with Behavior-Regularized Perturbation smoothing (BRP), which will be
introduced in detail in section 4.2. Then each offspring actor will undergo Behavior-Targeted Training
(BTT) as will be described in section 4.3. After these two processes, all offspring actors will interact
with the environment and save their experiences to the replay buffer. Finally, the population selection
is conducted with a weighted linear recombination of network parameters according to episodic
rewards of the trained offspring actors to form the center actor for next generation. This process is
repeated until termination criterion is met.
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Figure 1: An illustration of the BEL framework.

4.2 Behavior-Regularized Perturbation (BRP)

Similar to the SM-G-SUM mutation operator used in [12] and [19], BRP relies on the calculation of
the so-called parameter sensitivity with regard to network outputs. Given an actor network πθ and a
batch of transitions i , BRP approximately measures how the overall output will vary with regard to
small changes of the neural network’s weights θ through the aggregation of backward gradients of
each output node k on data batch i. For each parameter in πθ, its sensitivity sens is calculated by:

sens =

√√√√∑
k

(∑
i

|∇θπθ (si)k |

)2

(5)

A large value of sens indicates that the corresponding parameter will lead to a large change of the
action output and vice versa. Denoting the overall sensitivity for all parameters as Sens, it is then
used as the coefficient of the following linear transformation:

Vec(π̃θ) = Vec(πθ) +
δ

Sens
(6)

In eq. (6), Vec(πθ) means network parameters represented as a one-dimensional vector. π̃θ is the
perturbed policy network and δ is a random vector that determines the perturbation magnitude and
direction.

Unlike previous methods [27] [12] where δ is randomly sampled from a constant-scaled Gaussian
distribution, the BRP instead tries to adaptively search for a proper δ within a certain magnitude that
can bound the behavior divergence of the perturbed network. This idea is similar to the parameter
noise adaptation method in [14].

To measure the behavior divergence in a continuous action space, BRP adopts the simple and widely
adopted Euclidean norm as the distance metric [28] [29] [14]:

d(πθ(s), π̃θ(s)) =

√√√√ 1

N

N∑
k=1

Es
[
(πθ(s)− π̃θ(s))2

]
(7)

Intuitively, this metric is sensitive to large deviations and can tolerate small displacements, which is
suitable for common cases. When the action output is not deterministic, such as in SAC, the relative
entropy measure is also applicable [30] [16].
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Algorithm 1 Behavior-Regularized Perturbation
1: Input: Population center policy πθ, population size λ, error bound ε, initial magnitude scalar
δinit, a batch of states s, and β ∈ [0, 1]

2: Calculate Sens for πθ according to eq. (5)
3: for i = 1 to λ do
4: Sample a target divergence ∆i ∼ U[0,∆BRP

max ], sample a random direction from δ ∼ N(0, 1)
5: Get initial perturbed network π̃i with Sens according to eq. (6)
6: while |d(πθ(s), π̃i(s))−∆i| > ε do
7: if d(πθ(s), π̃i(s)) < ∆i then
8: δ = 1

β δ

9: else
10: δ = δβ
11: end if
12: Get perturbed network π̃i with Sens and δ
13: end while
14: end for
15: Output: Perturbed policies {π̃i|i = 1, ..., λ}

Given a behavior divergence upper bound ∆BRP
max , to generate one perturbed network π̃i, BRP first

randomly samples a divergence ∆i, and then conducts a simple iterative line search to find a proper
δ, detailed procedure is summarized in algorithm 1. The final output is a set of randomly perturbed
policy networks following a uniform distribution in the behavior divergence space. Note that unlike
previous implementations which only approximately calculated Sens, our implementation precisely
calculated Sens with the help of Pytorch hooks. Generating five perturbed networks can be done
within 0.2 seconds.

4.3 Behavior-Targeted Training (BTT)

BRP generates policy networks through random local perturbation, BTT on the other hand generates
trained policies that are within a behavior divergence range to the center policy. Consider one
offspring policy π̃i generated by BRP, we would like its behavior divergence after training ∆trained

i to
lie in the range defined by an upper bound: ∆trained

i ∈
[
0,∆BTT

max

]
.
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Figure 2: An illustration of the Behavior-targeted training (BTT).

To achieve this goal, we gained inspiration from imitation learning. In each generation of policy
gradient training, the actor network aims to optimize two objectives. The first objective is the
traditional RL objective as in eq. (4). For the second objective, consider a batch of states s sampled
from the replay buffer, the actions of both of the center policy πθ and the offspring policy π̃i in those
states are calculated as aθ = πθ(s) and ai = π̃i(s). Then as depicted in fig. 2, we construct a behavior
potential well with a one dimensional Gaussian distribution to force the negative log-likelihood of
the Euclidean distance between aθ and ai to stay close to the bottom of the Gaussian whose mean
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is defined by a sampled and fixed ∆target
i , standard deviation is defined by a predefined σBTT. This

process results in the following training objective for BTT:

LBTT
π̃i = LTD3

π̃i − α ln

 1

σBTT
√

2π
e
− [d(πθ(s),π̃θ(s))−∆

target
i ]

2

2σ2
BTT

 (8)

Following eq. (8), the policy network will try to simultaneously follow the policy gradient and stay
inside the behavior potential well to roughly keep a ∆target

i divergence to the center policy. α is a
hyper-parameter balancing the two objectives. To determine ∆target

i , we simply sample from a uniform
distribution as BRP: ∆target

i ∼ U[0,∆BTT
max ]

. As σBTT directly controls the steepness of the Gaussian
distribution, a larger σBTT means less restriction over the policy’s divergence and vice versa.

Appendix 0.1 gives more details with regard to weighted linear recombination.

5 Experiments

5.1 Exploratory studies

As previous studies have shown [11] [14], perturbing Tanh-activated networks is easier than perturbing
ReLU-activated networks. As perturbing networks with BRP is straight forward and network
architecture agnostic, we conducted a comparative study to see how those two-types of networks
respond to BRP. To be specific, we randomly sampled directions and recorded behavior divergence
changes along those directions. As in Appendix Figure 1(a), where the x-axis is the percentage of the
positive sign in one direction, the y-axis is the magnitude along that direction and the color-scale
measures the behavior divergence (the brighter the larger), it is clear that randomly perturbing Tanh-
activated networks has a larger chance of inducing significant behavior changes, which explains why
Tanh-activated networks are generally favored in perturbation-based methods.

To verify that actors trained by BTT are uniformly distributed as ∆target
BTT is sampled from a uniform

distribution, we trained two BEL instances with α = 0.0 (without BTT) and α = 1.0 (with BTT).
From Appendix Figure 1(b), it is obvious that without BTT, the trained policy are quite concentrated.
When BTT is applied, the behavior divergences of the population constantly follows the uniform
distribution. To further verify that BTT can lead to diverse behaviors, we plotted the state visitation
map on the DelayedHalfCheetah-v3 environment to visualize how the offspring policies explore
different states. As is shown in Appendix Figure 1(c), the BTT-trained actors (top row) showed
relative different state visitation patterns compared with naively-trained actors (bottom row), which
suggests that BTT could boost the diversity of the population.

5.2 Ablative studies

To verify the effectiveness of BRP, we tested different ∆BRP
max settings on the Walker2d-v3 environment.

From Figure 3(a), it is noticeable that BRP not only significantly accelerates the learning process,
but also helps avoiding local optimums. As a matter of fact, we find that when BRP is applied,
critic networks tend to constantly induce larger training loss throughout training. This phenomenon
indicates that BRP indeed brings another level of behavior uncertainty, which forces critics to make
better predictions.

An ablation study on the DelayedHalfCheetah-v3 environment is conducted to show that BTT is
indeed helpful for exploration .DelayedHalfCheetah-v3 is a modified HalfCheetah-v3 environment
where the reward is manually delayed for 20 time steps, making it a difficult sparse reward environ-
ment. The proportion of the log-likelihood objective is tuned with α. We can observe from Figure
3(b) that when α is set to zero, which means no BTT in the training objective, BEL can’t effectively
explore. However, on the other hand, when α is too large, actors may also lose performance since
their behaviors are over constrained.

As [12] [19] pointed out, many operators in EA are designed for black-box optimization, and can be
potentially harmful for neural networks. An experiment comparing weighted linear recombination
and distillation-based recombination was designed on the DelayedHalfCheetah-V3 environment,
where all parts of BEL are kept the same except for the recombination phase. In this phase, offspring
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Figure 3: (a) BRP ablation. ∆BRP
max = 0 (max delta in plot) corresponds to no BRP (b) BTT ablation.

α = 0 (alpha in plot) corresponds to no BTT, larger α means more constrained behavior. (c)
Recombination ablation.
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Figure 4: Learning curves on 6 MuJoCo environments in one million time steps.

actors are ranked according to their latest episodic rewards, and then, λ offspring actors are treated as
teacher networks. Their actions on N sampled observations are recorded as demonstrations. Then,
the center actor is treated as the student network to imitate offspring actors. To give different actors
different importance, the same set of weights from weighted linear recombination is used:

L(πθ) =

N∑
k=1

λ∑
i=1

ωi||πθ(sk)− π̃i(sk)||2 (9)

Much to our surprise, although the distillation-based method seems to learn slightly faster in the early
phase, it quickly fell into the local optimum and could hardly make its way out. This experiment
showed that though naive linear recombination may break the behavior of the output network to some
extent, this kind of behavior uncertainty may result in extra exploration which is beneficial.

5.3 Comparison to state-of-the-art RL and EA-RL methods

In this section, the performance of the proposed BEL1 is compared against pure RL methods including
TD3 [2], SAC [3] and TD3-Ensemble as well as other EA-RL methods including [11] and an improved
version of ERL which is called PDERL [12]. For TD3, CEM-RL, and PDERL, we used the code

1Source code for BEL: https://github.com/raymond-myc/BEL
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published by the original authors. For SAC, the stable baselines3 library is used. Every algorithm is
run on the same machine, and the results we obtained were close to what authors had claimed in the
original papers. Five tasks from MuJoCo continuous control benchmark are selected. Swimmer-v3 is
excluded since it was found that tuning the reward discount factor to 0.9999 could make all algorithms
perform more or less the same, reaching approximately 350 reward. Another DelayedHalfCheetah-
v3 environment is constructed by delaying the reward signal for 20 time steps, making it a hard
exploration task. Following the convention from other literatures, for all algorithms, their learning
curves are aggregated over 10 repeated runs across one million time steps. And the evaluated policies
are tested for 10 times. For BEL, the population center policy is used for testing. Note that though
BEL trains the population in a parallel fashion, for fair comparison, the total time steps are aggregated
for every policy interacting with the environment.

The learning curves are shown in Figure 4, and more detailed results organized in a table with
statistical tests are shown in Appendix Table 1.

Sample efficiency It can be seen from Figure 4 that BEL turns out to be very competitive against
comparing methods in terms of sample efficiency. On the one hand, it can pick up signals faster than
other methods, indicating its high sample efficiency. On the other hand, its final best performance
outperforms other methods except on Humanoid-v3.

BEL versus TD3-Ensemble Since we trained multiple actor-critic pairs in BEL, it is natural to
question if the good performance of BEL comes from the ensemble nature. To answer this question,
we tested the performance of TD3-ensemble where equal numbers of actor-critic pairs are trained,
and all hyper parameters are kept as close as possible. From Figure 4, it is clear that BEL outperforms
TD3-ensemble on all tasks.

Stability As can be seen from Figure 4 and Appendix Table 1, BEL also generally has smaller
standard deviations across runs, even compared to other population based evolutionary methods
whose population sizes are larger, this means BEL is very stable. Another phenomenon that suggests
BEL’s robustness is in the Humanoid-v3 environment, where the naive TD3-Ensemble shared the
same learning rate (which is larger than single instance TD3) as BEl, but failed to stably learn.

Computation efficiency Since all experiments are conducted on the same machine and all on CPUs,
we also recorded the median wall-clock running time of all algorithms. TD3 is the fastest algorithm
as it is also the most lightweight algorithm. PDERL ranks the second because not all policies in its
population are trained, a great portion of its population are directly evaluated after perturbation. BEL
ranks the third among all algorithms, and is generally faster than SAC and CEM-RL. We think BEL
reaches a good balance between sample-efficiency and computation overhead.

Limitations Though generally good performance can be expected from BEL, it still has the following
limitations. First, as multiple networks are trained in parallel, a computation node with a multi-core
CPU and relatively large RAM is required. Second, as can be seen from the Humanoid-v3 where
BEL does not outperform SAC, it may indicate BRP and BTT do not scale very well as action space
dimension grows. Further studies regarding the scalability of BEL need to be conducted.

6 Conclusion

In this work, a novel population-based evolutionary training framework for off-policy RL algorithms
called BEL is proposed. Exploratory and ablative studies show the effectiveness of BRP and BTT.
Benchmark comparisons against other methods show BEL outperforms state-of-the-art RL and
EA-RL methods in terms of sample efficiency. The training pipeline is conceptually simple and we
offer efficient parallel implementation. Along with the improved stability and exploration ability, we
believe BEL can serve as a competitive training method for real-world robot learning with off-policy
RL algorithms.

8



References
[1] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.

Continuous control with deep reinforcement learning. URL http://arxiv.org/abs/1509.
02971.

[2] S. Fujimoto, H. Hoof, and D. Meger. Addressing Function Approximation Error in Actor-Critic
Methods. In Proceedings of the 35th International Conference on Machine Learning, pages
1587–1596. PMLR. URL https://proceedings.mlr.press/v80/fujimoto18a.html.

[3] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft Actor-Critic: Off-Policy Maximum
Entropy Deep Reinforcement Learning with a Stochastic Actor. In Proceedings of the 35th
International Conference on Machine Learning, pages 1861–1870. PMLR. URL https:
//proceedings.mlr.press/v80/haarnoja18b.html.

[4] R. S. Sutton and A. Barto. Reinforcement Learning: An Introduction. Adaptive Computation
and Machine Learning. The MIT Press, second edition edition. ISBN 978-0-262-03924-6.

[5] H. van Hasselt, Y. Doron, F. Strub, M. Hessel, N. Sonnerat, and J. Modayil. Deep Reinforcement
Learning and the Deadly Triad. URL http://arxiv.org/abs/1812.02648.

[6] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. Evolution Strategies as a Scalable
Alternative to Reinforcement Learning. URL https://arxiv.org/abs/1703.03864v2.

[7] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune. Deep Neuroevolution:
Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for
Reinforcement Learning. URL http://arxiv.org/abs/1712.06567.

[8] H. Mania, A. Guy, and B. Recht. Simple random search provides a competitive approach to
reinforcement learning. URL http://arxiv.org/abs/1803.07055.

[9] S. Khadka and K. Tumer. Evolution-Guided Policy Gradient in Reinforcement
Learning. In Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc. URL https://proceedings.neurips.cc/paper/2018/hash/
85fc37b18c57097425b52fc7afbb6969-Abstract.html.

[10] S. Khadka, S. Majumdar, T. Nassar, Z. Dwiel, E. Tumer, S. Miret, Y. Liu, and K. Tumer.
Collaborative Evolutionary Reinforcement Learning. In Proceedings of the 36th International
Conference on Machine Learning, pages 3341–3350. PMLR. URL https://proceedings.
mlr.press/v97/khadka19a.html.

[11] A. Pourchot, N. Perrin, and O. Sigaud. Importance mixing: Improving sample reuse in
evolutionary policy search methods. URL http://arxiv.org/abs/1808.05832.
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