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Abstract—Bayesian learning via Stochastic Gradient Langevin
Dynamics (SGLD) has been suggested for differentially private
learning. While previous research provides differential privacy
bounds for SGLD at the initial steps of the algorithm or when
close to convergence, the question of what differential privacy
guarantees can be made in between remains unanswered. This
interim region is of great importance, especially for Bayesian
neural networks, as it is hard to guarantee convergence to
the posterior. This paper shows that using SGLD might result
in unbounded privacy loss for this interim region, even when
sampling from the posterior is as differentially private as desired.

Index Terms—Differential Privacy, Stochastic Gradient
Langevin Dynamics, Bayesian Inference, Deep Learning

I. INTRODUCTION

Machine learning models, specifically deep neural net-
works, achieve state-of-the-art results in various fields such
as computer vision, natural language processing, and signal
processing (e.g., [1]–[3]). Training these models requires data,
which in some domains, e.g., healthcare and finance, can
include sensitive information that should not be made public.
Unfortunately, information from the training data can, in
some cases, be extracted from the trained model [4], [5].
One common approach to handle this issue is Differential
Privacy (DP). DP framework ensures that the distribution of
the training output would remain approximately the same
when we switch one of the training examples, thus ensuring
we cannot extract information specific to a unique individual.

As privacy is usually obtained by adding random noise, it
is natural to investigate whether Bayesian inference, which
uses a distribution over models, can yield private predictions.
Previous works have shown that sampling from the posterior
is differentially private under certain mild conditions [6]–
[8]. The main disadvantage of this method is that sampling
from the posterior can be challenging. The posterior generally
does not have a closed-form solution, so iterative methods
such as Markov Chain Monte Carlo (MCMC), whose sample
distribution converges to the posterior, are commonly used.
While theoretical bounds on the convergence of MCMC meth-
ods for non-convex problems exist [9], they usually require
an infeasible number of steps to guarantee convergence in
practice.

Stochastic Gradient Langevin Dynamics (SGLD) [10] is a
popular MCMC algorithm, as it avoids the accept-reject step.

There are good reasons to believe that this specific sampling
algorithm can provide private predictions. First, SGLD returns
an approximate sample from the posterior, which can be
private. Second, the SGLD process of stochastic gradient
descent with Gaussian noise mirrors the common Gaussian
mechanism in DP.

Previous work [6] gives two separate privacy analyses
related to SGLD: The first is based on the Gaussian mechanism
and the Advanced Composition theorem [11]. Therefore, it
only applies to a limited number of steps and is not connected
to Bayesian sampling.

The second is for approximate sampling from the Bayesian
posterior, which is only relevant when SGLD nearly converges.
Neither of these results is suitable for deep learning and many
other problems: one would limit the model’s accuracy, and the
other is unattainable in a reasonable time. Consequently, the
privacy properties of SGLD in the interim region (between
these two private sections) remain unknown even though they
are of great interest.

Our Contributions:
• We provide a rigorous analysis of a counter-example

based on a Bayesian linear regression problem, showing
that approximate sampling using SGLD might result in
unbounded loss of privacy in the interim region, even if
sampling from the posterior is as private as desired.

• We further empirically show that SGLD can result in
nonprivate models.

These results imply that special care should be given when
using SGLD for private predictions, especially for problems
for which it is infeasible to guarantee convergence.

II. RELATED WORK

Several previous works investigate the connection between
Bayesian inference and differential privacy [6]–[8], [12]–[15].
None of these papers guarantees SGLD differential privacy in
the interim region. However, the closest work to ours is [6],
which specifically investigates stochastic MCMC algorithms
such as SGLD. As mentioned, its analysis only covers the
initial phase and when approximate convergence is achieved.

In [16], the authors study the privacy guarantees of the noisy
projected gradient descent algorithm. They consider a smooth
and strongly convex loss function on a closed convex set with
a finite gradient sensitivity and show an upper bound over



the privacy loss, which converges exponentially fast in these
settings. They also prove a lower bound on the Rényi-DP,
which converges exponentially fast for smooth loss function
on an unconstrained convex set with a finite total gradient
sensitivity.

Several concurrent works study the DP guarantees of noisy
stochastic gradient descent [17] or projected noisy stochastic
gradient descent [18], [19] and show an upper bound over the
privacy, which plateaus after a certain number of iterations.
In [17], the authors show an upper bound over the DP for
a strongly convex, smooth loss function with a gradient that
has bounded ℓ2-sensitivity. In [18], the authors study the
DP guarantees under assumptions of convex, Lipschitz, and
smooth loss function on a convex set with a bounded diameter.
They also show the existence of a family of loss functions for
which the bound is tight up to a constant factor. In [19], the
authors study the DP guarantees under assumptions of convex,
Lipschitz, and smooth loss function on a closed convex set.

When training machine learning models in a differentially
private way via Stochastic Gradient Descent, a common prac-
tice is to apply the Gaussian Mechanism by clipping the
gradients of the loss with respect to the weights and adding a
matching noise (see [20], for example). SGLD learning step
resembles the resulting learning step but does not include gra-
dients clipping. Reference [15] suggests incorporating gradient
clipping in the SGLD step. However, clipping the gradients
changes the algorithm properties, and it is not obvious if it
converges to the posterior. As such, we do not consider it
SGLD. Reference [6] circumvents this issue by assuming the
log-likelihood of the model is Lipschitz continuous.

Another related work on the privacy of SGLD is [21],
although they investigate a weaker type of privacy called
membership privacy.

As many of the Bayesian methods’ privacy bounds require
sampling from the posterior, if SGLD is to be used, it requires
non-asymptotic convergence bounds. Reference [22] provides
non-asymptotic bounds on the approximation error for a
smooth and log-concave target distribution by Langevin Monte
Carlo. Reference [23] studies the non-asymptotic bounds on
the error of approximating a target density p∗ where log p∗ is
smooth and strongly convex.

For the non-convex setting, [24] shows non-asymptotic
bounds on the 2-Wasserstein distance between SGLD and
the invariant distribution solving Itô stochastic differential
equation. However, the 2-Wasserstein metric is ill-suited for
differential privacy - it is easy to create two distributions with
2-Wasserstein distance as small as desired but with disjoint
support.

Total Variation (for details about Total Variation, see [25]) is
a more suitable distance for working with differential privacy.
Reference [9] examines a target distribution p∗, which is
strongly log-concave outside of a region of radius R, and
where − ln p∗ is L-Lipschitz. They provided a bound on
the number of steps needed for the Total Variation distance
between the distribution at the final step and p∗ to be smaller
than ϵ. This bound is proportional to O(e32LR2 d

ϵ2 ), where d is

the model dimension. This result suggests that it is impractical
to run SGLD until convergence is guaranteed in the non-
convex setting.

A conclusion from this work is that basing the differential
privacy of SGLD on the proximity to the posterior is imprac-
tical for non-convex settings.

III. BACKGROUND

A. Differential Privacy

Differential Privacy [11], [26]–[28] is a definition and a
framework that enables performing data analysis on a dataset
while reducing one’s risk posed by disclosing its personal
data to the dataset. In a nutshell, an algorithm is differentially
private if it does not change its output distribution by much
due to a single record change in its dataset. Approximate
Differential Privacy, Definition III.1, is an extension of pure
Differential Privacy, where pure differential privacy is Approx-
imate Differential Privacy with δ = 0.

Definition III.1. Approximate Differential Privacy: A ran-
domized algorithm f : D → Range(f) is (ϵ, δ)-differentially
private if ∀S ⊆ Range(f) and ∀D, D̂ ∈ D : d(D, D̂) ≤ 1 eq.
1 holds, where d is the distance between D and D̂. D, D̂ are
called neighboring datasets, and while the metric can change
per application, Hamming distance is typically used.

p(f(D) ∈ S) ≤ exp(ϵ)p(f(D̂) ∈ S) + δ (1)

Rényi Divergence [29], which generalizes the Kullback-
Leibler divergence, is defined as follows:

Definition III.2. Rényi Divergence: For two probability dis-
tributions Z and Q, the Réyni divergence of order ν > 1 is

Dν(Z||Q)
∆
=

1

ν − 1
logEx∼Q

[(
Z(x)

Q(x)

)ν]
.

Reference [30] suggested a relaxation of differential privacy
based on the Rényi divergence, termed Rényi Differential
Privacy:

Definition III.3. (ν, ϵ)-RDP: A randomized algorithm f :
D → Range(f) is said to have ϵ-Rényi differential privacy
of order ν, or (ν, ϵ)-RDP in short, if for any neighbouring
datasets D, D̂ ∈ D eq. 2 holds, where Dν is Rényi divergence
of order ν.

Dν

(
f(D)||f(D̂)

)
≤ ϵ (2)

In this paper, we utilize the fact that RDP has a closed-form
solution when both f(D) and f(D̂) are Normal distributions
(see [31] and the proof of Lemma A.1 in the appendix for
details).

By Proposition III.4, RDP guarantees can be translated into
approximate differential privacy guarantees.

Proposition III.4. From RDP to (ϵ, δ)-DP [30]: If f is (ν, ϵ)-
RDP, it also satisfies (ϵ+

log 1
δ

ν−1 , δ)-differential privacy for any
0 < δ < 1.



B. Stochastic Gradient Langevin Dynamics

Stochastic Gradient Langevin Dynamics (SGLD) is an
MCMC method commonly used for Bayesian Inference [10].
Given a Bayesian model parameterized by θ, a dataset D =
{xi, yi}ni=1, a prior distribution p(θ), the likelihood function
p(yi|θ, xi), and a batch size b, SGLD can be used for approx-
imate sampling from the posterior p(θ|D). The update step of
SGLD is shown in eq. 3, where θj is the parameter vector at
step j, and ηj is the step size at step j. SGLD can be seen
as a Stochastic Gradient Descent with Gaussian noise, where
the variance of the noise is calibrated to the step size.

θj+1 = θj

+
ηj
2

(
∇θj ln p(θj) +

n

b

b∑
i=1

∇θj ln p(yij |θj , xij )

)
+
√
ηjξj

ij ∼ uniform{1, ..., n}
ξj ∼ N (0, 1)

(3)

A common practice in deep learning is to use cyclic Stochastic
Gradient Descent. This modification to SGD first randomly
shuffles the dataset samples and then cyclically uses the sam-
ples in this order. For optimization, there is empirical evidence
that it works as well or better than SGD with reshuffling, and it
was conjectured that it converges at a faster rate [32]. Cyclic-
SGLD1 is the analog of cyclic-SGD for SGLD, where the
difference is the use of the SGLD step instead of the SGD
step. For simplicity, we will consider cyclic-SGLD in this
work. While this assumption simplifies the proof, we expect
the general behavior to be equivalent.

IV. THEORETICAL RESULTS

Our goal is to prove that even when sampling from the
posterior is as private as desired, approximate sampling using
SGLD can be as nonprivate as desired in the interim region.
This requires analysing the distribution of SGLD in the interim
region, which is hard in the general case. To circumvent this
difficulty, we investigate the Bayesian linear regression prob-
lem, where the distributions are a mixture of Gaussians and
thus have closed-form expressions. Our result is summarized
in Theorem IV.1.

Theorem IV.1. ∀ 0 < δ < 0.5 and ∀ϵ, ϵ′ > 0, there exists a
number T , a domain, and a Bayesian inference problem for
which a single sample from the posterior distribution is (ϵ, δ)
differentially private. However, performing approximate sam-
pling by running SGLD for T steps is not (ϵ′, δ) differentially
private.

The Bayesian inference problem, mentioned in Theorem
IV.1, refers to sampling from the posterior for a dataset and
a model defined by likelihood and prior distributions. The
specific model and dataset we will analyse in our work are
defined in eq. 4 and eq. 5, respectively.

1Cyclic SGLD, which cycles through examples, should be distinguished
from cSGLD [33], which uses a cyclic step size schedule.

An example of the behavior described by the theorem is
depicted in Fig. 1. In this case, given the model defined in eq.
4 and the domain defined in eq. 5, a single sample from the
posterior is (ϵ = 0.5, δ = 0.001) DP; however, approximate
sampling from the posterior by running SGLD for 48 epochs
(T = 48 · dataset size) is not (ϵ′ = 38, δ = 0.001) DP (further
details for the figure are provided below).

As Theorem IV.1 allows ϵ′ to be as big as desired and ϵ to
be as small as desired, a corollary of Theorem IV.1 is that we
could always find a problem for which the posterior is (ϵ, δ)
differentially private, but there will be a step in which SGLD
will result in an unbounded loss of privacy. Therefore, SGLD
alone can not provide any privacy guarantees in the interim
region, even if the posterior is private.

Theorem IV.1 is presented and proved for a fixed and equal
δ for both the posterior and the SGLD privacy analysis. This
is done for simplicity; however, the proof could be augmented
to prove a lower bound on SGLD privacy for all ϵ′ > 0 and
0 < δ′ < 0.25 (i.e., approximately sampling via SGLD is not
(ϵ′, δ′)-DP for all ϵ′ > 0 and 0 < δ′ < 0.25).

To prove our theorem, we consider a Bayesian regression
problem for a 1D linear model with Gaussian noise, as defined
in eq. 4.

y = θx+ ξ

ξ ∼ N (0, β−1)

θ ∼ N (0, α−1)

p(y|x, θ) ∼ N (θx, β−1)

(4)

We assume our input domain is

D(n, γ1, xh, xl, c) =
{
(xi, yi)||

yi
xi
− c| ≤ nγ1 ;

xi, yi, c, γ1 ∈ R>0;

n ∈ Z>0;xl ≤ xi ≤ xh

}n
i=1

(5)

, where x2
hβ > 3 and γ1 < 1

2 . The constants n, c, xl, xh,
and γ1 are parameters of the problem (c, xl, xh, and γ1 are
used, together with the dataset size - n, to bound the dataset
samples to a chosen region). For every ϵ, ϵ′, and δ, we
will show the existence of parameters n, c, xl, xh, γ1 values
that have the privacy properties required to prove Theorem
IV.1. The restrictions on the dataset simplify the proof but
are a bit unnatural as it assumes we approximately know c,
the parameter we are trying to estimate. Later we show in
subsection IV-C that they can be replaced with a Propose-
Test-Release phase.

For simplicity, we will address the problem of sampling
(or approximately sampling via SGLD) from the posterior
for the model described in eq. 4 and a dataset from domain
D(n, γ1, xh, xl, c) as a Bayesian linear regression problem on
domain D(n, γ1, xh, xl, c). This problem has a closed-form
solution for both the posterior distribution and the distribution
at each SGLD step, thus enabling us to get tight bounds on
the differential privacy in each case.

In essence, our proof shows that for a big enough n,
sampling from the posterior is (ϵ, δ) differentially private, with



Fig. 1. A lower bound over the DP of SGLD for the model defined in eq.
4 and a dataset from domain D(n, γ1, xh, xl, c) (defined in eq. 5), given
that δ = 0.001. The domain parameters values are n = 17864389, α =
2, β = 1, γ1 = 0.1, xh = 1.8, xl = 0.9, which ensure (0.5, 0.001)-DP
when sampling from the posterior.

ϵ ∼ O( c2

n3 ). However, for the same problem instance, there
exists an SGLD step in which releasing a sample will not
be (ϵ′, δ) differentially private for ϵ′ = Ω( c2

n2 ). Therefore, for
problem instances where c ∼ O(n 3

2
√
ϵ) and n is big enough,

sampling from the posterior will be (ϵ, δ) differentially private,
while there will be an SGLD step in which releasing a sample
will not be (ϵ′, δ) differentially private for ϵ′ = Ω(nϵ). We
note that the bounds dependend on δ, but since we are using
a fixed and equal δ for both the posterior and SGLD privacy
analysis, we omit it from the bounds for simplicity.

Fig. 1 depicts a lower bound over the DP of SGLD
for the Bayesian Linear Regression Problem on domain
D(n, γ1, xh, xl, c). The values of n, γ1, xh, xl, c ensure
(0.5, 0.001)-DP when sampling from the posterior. However,
we can see that sampling via SGLD in the interim region
causes a significant privacy breach (sampling via SGLD at
epoch 48 is not (38, 0.001)-DP). For the derivation of the
lower bound in Fig. 1, see subsection A-E in the appendix.

A. Posterior Sampling Privacy

To prove Theorem IV.1, we need to show that sampling
from the posterior is private, while there is an SGLD sample
that is not private at some intermediate step. In this section,
we prove the first part - that a single sample from the pos-
terior for the Bayesian linear regression problem on domain
D(n, γ1, xh, xl, c) is differentially private.

We begin by using a well-known result for the closed-
form solution of the posterior distribution for a Bayesian
linear regression problem (see [34] for further details). By
incorporating the parameters of our problem in this result, we
get Lemma IV.2.

Lemma IV.2. The posterior distribution for the model defined

in eq. 4 on dataset D = {(yi, xi)}ni=1 is

p(θ|D) = N (θ;µ, σ2);

µ =

∑n
i=1 xiyiβ

α+
∑n

i=1 x
2
iβ

;σ2 =
1

α+
∑n

i=1 x
2
iβ

.
(6)

As the posterior distribution is a Normal distribution, the
Rényi divergence between every two posterior distributions
has a closed-form solution. For two neighbouring datasets,
D, D̂ ∈ D(n, γ1, xh, xl, c), and matching posterior distribu-
tions p(θ|D) = N (θ;µ, σ2), p(θ|D̂) = N (θ; µ̂, σ̂2), the Rényi
divergence of order ν is

Dν

(
p (θ|D) ||p(θ|D̂)

)
= ln

σ

σ̂
+

1

2
(ν − 1) ln

σ̂2

(σ2)∗ν

+
1

2

ν(µ− µ̂)2

(σ2)∗ν
,

(σ2)∗ν = νσ̂2 + (1− ν)σ2.

By bounding Dν(p(θ|D)||p(θ|D̂)) for every two neighbour-
ing datasets, one can prove RDP. The first and second terms of
Dν(p(θ|D)||p(θ|D̂)) can be bounded by O( 1n ) using Taylor
Theorem and the fact that the natural logarithm is monotoni-
cally increasing. By using direct computation, the third term
can be bounded byO( 1

n1−2γ1
)+O( c+nγ1

n2−γ1
)+O( (c+nγ1 )2

n3 ). This
gives way to Lemma IV.3. For the full proof, see subsection
A-B in the appendix.

Lemma IV.3. For the Bayesian linear regression problem
on domain D(n, γ1, xh, xl, c), such that n > max{1 +

10
x2
h

x2
l

ν
β , 1 + ν

x2
h

x2
l
}, one sample from the posterior is (ν, ϵ1)-

Rényi differentially private, and ϵ1 is

ϵ1 = O
(
1

n

)
+O

(
1

n1−2γ1

)
+O

(
c+ nγ1

n2−γ1

)
+O

(
(c+ nγ1)2

n3

)
.

(7)

We can show that for c >> n1+γ1 , each of the terms in the
right hand side of eq. 7 is bounded by O( c2

n3 ). The first term is
trivially bounded by O( 1n ). For the second term, noticing that
n2γ1−1 = n2(1+γ1)

n3 < c2

n3 , we get that it is bounded by O( c2

n3 ).
As c >> nγ1 , the third term is bounded by O( cn

γ1

n2 ), and
since cnγ1

n2 = cn1+γ1

n3 < c2

n3 , the term is bounded by O( c2

n3 ).
Lastly, since c >> nγ1 the last term is bounded by O( c2

n3 ).
Translating the Rényi differential privacy guarantees of

Lemma IV.3 into approximate differential privacy terms can
be done according to Lemma III.4, which gives Lemma IV.4.

Lemma IV.4. With the conditions of Lemma IV.3, one sample
from the posterior is (ϵ1 +

ln( 1
δ )

ν−1 , δ) differentially private.

By choosing ν such that ln( 1
δ )

ν−1 < ϵ
2 and then choosing n

big enough such that ϵ1 < ϵ
2 , we get that the posterior is (ϵ, δ)

differentially private.



B. Stochastic Gradient Langevin Dynamics Privacy

To complete the proof of Theorem IV.1, we need to show
that given a Bayesian linear regression problem on domain
D(n, γ1, xh, xl, c), even if one sample from the posterior
is (ϵ, δ) differentially private, it does not guarantee SGLD
is private in the interim region. In order to do so, this
section will first consider the loss of privacy when using
SGLD for the Bayesian linear regression problem on domain
D(n, γ1, xh, xl, c) and then, together with the results of section
IV-A, will prove Theorem IV.1.

In order to show that SGLD is not differentially private
after initial steps and before convergence, it is enough to find
two neighbouring datasets for which the loss in privacy is
as big as desired after a certain number of steps. We define
neighbouring datasets D1, D2 ∈ D(n, γ1, xh, xl, c) in eq. 8
and consider the Bayesian linear regression problem on D1

and D2 with a learning rate: η = 2
(α+nx2

hβ)
2 .

D1 = {(xi, yi) : xi = xh, yi = c · xh}ni=1 (8)

D2 = {(xi, yi) : xi = xh, yi = c · xh}n−1
i=1 ∪ {(

xh

2
, c · xh

2
)}

A closed-form solution for the distribution at each step en-
ables us to get a tight lower bound over the differential privacy
loss when approximately sampling via SGLD at each step. For
dataset D1, the solution is a Normal distribution. For dataset
D2, different shuffling of samples produces different Gaussian
distributions, therefore giving a mixture of Gaussians.

We look at cyclic-SGLD with a batch size of 1 and mark
by θj , θ̂j the samples on the j’th SGLD step when using
datasets D1 and D2 accordingly. Since D1 samples are all
equal, the update step of the cyclic-SGLD is the same for
every step (with different noise generated for each step). This
update-step contains only multiplication by a scalar, addition
of a scalar, and addition of Gaussian noise, therefore, together
with a conjugate prior results in Normal distribution for θj :
N (θj ;µj , σ

2
j ), where µj , σj ∈ R.

For D2, there is only one sample different from the rest.
We mark by r the index in which this sample is used in
the cyclic-SGLD and call this order r-order. Note that there
are only n (n is the dataset size, defined in eq. 5) different
values for r and, as such, effectively only n different samples
orders. Since every order of samples is chosen with the same
probability, r is distributed uniformly in {1, .., n}. We mark
by θ̂rj the sample on the j’th SGLD step when using r-
order. Since, for a given order, θ̂rj is formed by a series of
multiplications by a scalar, addition of scalar, and addition of
Gaussian noise, and since the prior is also Gaussian, then θ̂rj is
distributed Normally, N (θ̂rj ; µ̂

r
j , (σ̂

r
j )

2), where µ̂r
j , σ̂

r
j ∈ R. As

r is distributed uniformly, θ̂j distribution mass is distributed
evenly between all θ̂rj , resulting in a mixture of Gaussians.

Intuitively what will happen is that each Gaussian compo-
nent, θ̂j as well as θj , will move towards a similar Gaussian
posterior. However, at each epoch, θ̂j will drag a bit behind
because a single gradient in one of the batches will be smaller.

While this gap can be quite small, for large n, the Gaussians
are very peaked with very small standard deviations; thus, they
are separate enough that we can easily distinguish between the
two distributions.

According to the approximate differential privacy definition
(Definition III.1), it is enough to find one set, S, such that
p(θj ∈ S) > eϵp(θ̂j ∈ S)+ δ, to prove that releasing θj is not
(ϵ, δ) private. We choose S = {s|s > µj} at some step j that
we will define later on.

To show that p(θj ∈ S) > eϵp(θ̂j ∈ S)+δ, we first note that
as the Gaussian θj is symmetric, it is clear that p(θj > µj) =
1/2. Now we turn our focus to upper bounding p(θ̂j > µj).
This can be done using Chernoff bound, as stated in Lemma
IV.5.

Lemma IV.5. p(θ̂j > µj) ≤ 1
n

∑n
r=1 exp(−

(µj−µ̂r
j )

2

2(σ̂r
j )

2 ).

To bound p(θ̂j > µj) using Lemma IV.5, we first need

to lower bound
(µj−µ̂r

j )
2

(σ̂r
j )

2 for a certain step. This is done in
Lemma IV.6.

Lemma IV.6. ∃k ∈ Z>0 such that
(µ(k+1)n−µ̂r

(k+1)n)
2

(σ̂r
(k+1)n

)2 =

Ω( c2

n2 ), for big enough n.

To prove Lemma IV.6, we first find closed-form solutions
for θ̂r(k+1)n, θ(k+1)n distributions (Lemma A.2). Using the
closed-form solutions, we find a lower bound over (µ(k+1)n−
µ̂r
(k+1)n)

2 as a function of k, which applies for all k (Lemma
A.4). To upper bound (σ̂r

(k+1)n)
2, we find an approximation

to the epoch in which the data and prior effect on the variance
is approximately equal, marked k̇. We choose (⌈k̇⌉ + 1)n as
the step in which we will consider the privacy loss and show
that (σ̂r

(⌈k̇⌉+1)n
)2 is upper bounded at this step (Lemma A.6).

Using the lower bound on the difference in means and the
upper bound on the variance, Lemma IV.6 is proved.

By using the lower bound from Lemma IV.6 in Lemma IV.5,
we get Lemma IV.7.

Lemma IV.7. For the Bayesian linear regression problem
over dataset D1 and n big enough, ∃T ∈ Z>0 such that
approximate sampling by running SGLD for T steps will not
be (ϵ, δ) private for ϵ = Ω( c2

n2 ), δ < 0.5.

From Lemma IV.4, we see that sampling from the posterior
is (ϵ, δ) differentially private for ϵ = O( c2

n3 ). From Lemma
IV.7, we see that for SGLD, there exists a step in which
releasing a sample will not be (ϵ′, δ) differentially private
for ϵ′ = Ω( c2

n2 ). Therefore, for problem instances where
c = O(n 3

2
√
ϵ), sampling from the posterior will be (ϵ, δ)

differentially private. However, there will be an SGLD step
in which releasing a sample will not be (ϵ′, δ) differentially
private for ϵ′ = Ω(nϵ). Since we can choose n to be big as
desired, we can make the lower bound over ϵ′ as big as we
desire it to be. This completes the proof of Theorem IV.1.

C. Propose Test Sample
Our analysis of the posterior and SGLD is done on a

restricted domain - D(n, γ1, xh, xl, c). These restrictions over



the dataset simplify the proof but are a bit unnatural as they
assume we approximately know c, the parameter we are trying
to estimate. This section shows that these restrictions could be
replaced with a Propose-Test-Release phase [35] and common
practices in data science.

When training a statistical model, it is common to first
preprocess the data by restricting it to a bounded region
and removing outliers. After the data is cleaned, the training
process is performed. This is especially important in DP, as
outliers can significantly increase the algorithm’s sensitivity to
a single data point and thus hamper privacy.

Informally, Algorithm 1 starts by clipping the input to
the accepted range. It then estimates a weighted average of
the ratio yi

xi
(line 16) and throws away outliers that deviate

too much from it. The actual implementation of this notion
is a bit more complicated because of the requirement to
do so privately. Once the dataset is cleaned, Algorithm 1
privately verifies that the number of samples is big enough, so
the sensitivity of p(θ|W ) (where W is the cleaned dataset)
to a single change in the dataset will be small, therefore
making sampling from p(θ|W ) (ϵ, δ) differentially private.
This method is regarded as Propose-Test-Release, where we
first propose a bound over the sensitivity, then test if the dataset
holds this bound, and finally release the result if so.

In eq. 33 in the appendix, we define nmin as the minimum
size of W for which the algorithm will sample from p(θ|W )
with high probability. We will show later on that this limit
ensures that sampling from p(θ|W ) is (ϵ, δ) differentially
private.

We define p(θ|W ) as the posterior of the 1D linear regres-
sion model defined in eq. 4 over dataset W . From Lemma
IV.2, it follows that p(θ|W ) has the form of

p(θ|W ) = N (θ;µ, σ2);

µ =

∑
(xi,yi)∈W xiyiβ

α+
∑

(xi,yi)∈W x2
iβ

; σ2 =
1

α+
∑

(xi,yi)∈W x2
iβ

.

Claim IV.8. Algorithm 1 is (5ϵ, 2δ) differentially private.

By Claim C.12, lines 8-18 are (3ϵ, δ) differentially private.
By Corollary C.17, lines 19-25 are (2ϵ, δ) differentially private
given m̆ and n2. Therefore by the sequential composition
theorem, the composition is (5ϵ, 2δ) differentially private. The
claim is proved by noticing that if lines 8-25 are private with
respect to the updated dataset (after line 7), then they are also
private for the original dataset.

Claim IV.9. When replacing line 25 with approximate sam-
pling via SGLD with step size η = 1

(α+n1x2
hβ)

2 , there exists
T (n1) : Z>0 → Z>0 such that the updated algorithm is not
(ϵ, δ) differentially private ∀ϵ ∈ R>0, δ < 1

6 if ran for T (n1)
steps.

Proof sketch (See appendix for full proof). We analyze a
run of Algorithm 1 on the neighbouring datasets, D3 and D4,
defined in eq. 9. First, note that when choosing 1 + ρ2 > ρ1,
the sensitivity of m̆ grows slower than the bound over the
distance | yi

xi
− m̆| in n1 for both of the datasets. Therefore,

Algorithm 1 Propose Test Sample
1: Input: D = {xi, yi}n1

i=1

2: Parameters: ϵ, δ < 0.5, xl > 0, xh > xl, α > 0, β ≥
3
x2
h
, ρ1 ∈ (1, 3

2 ), ρ2 ∈ (0, 1
2 ), γ1 ∈ (ρ2,

1
2 ), n1 ∈ Z>0

3: for i = 1, 2, . . . , N do
4: xi ← max{xi, xl}
5: xi ← min{xi, xh}
6: yi ← max{yi, 0}
7: end for
8: l1 ← sample from Laplace(0, 1

ϵ )
9: n̆1 ← n1 − 1

ϵ log
1
2δ + l1

10: V = {xi, yi| yi

xi
≤ n̆ρ1

1 }
11: l2 ← sample from Laplace(0, 1

ϵ )
12: n2 ← |V | − 1

ϵ log
1
2δ + l2

13: if n2 ≤ 1 then
14: return null
15: end if
16: m←

∑
(xi,yi)∈V xiyi∑
(xi,yi)∈V x2

i

17: l3 ← sample from Laplace(0, 1
ϵ n̆

ρ1

1
2(n2−1)x2

hx
2
l +x4

h

n2(n2−1)x4
l

)

18: m̆← m+ l3
19: W ← {(xi, yi) : | yi

xi
− m̆| ≤ nρ2

2 }
20: l4 ← sample from Laplace(0, 1

ϵ )
21: nW ← |W | − 1

ϵ log(
1
2δ ) + l4

22: if nW < nmin then
23: return null
24: end if
25: return sample from p(θ|W )

with high probability, for n1 big enough, W will contain all
the samples that meet the condition yi

xi
= m. Consequently,

with high probability, the algorithm will reach line 25, which,
from our previous analysis over SGLD (see subsection IV-B)
will cause an unbounded loss of privacy.

ρ1 > ρ3 > 1

D3 =
{
(xi, yi) : xi = xh, yi = nρ3

1 · xh

}n1

i=1

D4 =
{
(xi, yi) : xi = xh, yi = nρ3

1 · xh

}n1−1

i=1

∪
{
(
xh

2
, nρ3

1 ·
xh

2
)
} (9)

V. EMPIRICAL EVIDENCE

We augment our theoretical analysis with an empirical study
on privacy loss when training a deep neural network via
SGLD. This study strengthens our claim that one should use
SGLD with great care for private learning.

To empirically estimate SGLD’s privacy, we attack it using
a version of the adversary instantiation method described in
[36], with some modifications to the method’s details. In broad
strokes, we train with SGLD a set of models on each of two
neighbouring datasets, D and D′. Then we try to predict for
each model on which dataset it was trained. If the algorithm
is DP, it will be hard to distinguish which dataset was used
to train the model, and the accuracy will be low. Concretely,
by analyzing the prediction’s false positive and false negative



rates, we can deduce a lower bound over the training DP
parameters - (ϵ, δ).

To create the neighboring dataset D′, we replace one of
the samples from D with a novel data point - (x∗, y∗). To
show SGLD is not private, we need a sample, (x∗, y∗), such
that the models that were not trained on it will misclassify it,
but models trained on it will classify it correctly after a small
number of epochs.

To create x∗, we first train M models, {m}Mi=1, on dataset
D. Then, we search for a sample in D, marked (x0, y0), such
that {m}Mi=1 agree on it’s label: ∀1 ≤ i, j ≤ M : mi(x

0) =
mj(x

0). We then use DeepFool [37] to alter the sample x0

into x∗ such that all the models will misclassify it with regard
to their original prediction: ∀1 ≤ i ≤ M : mi(x

0) ̸= mi(x
∗).

We set y∗ = y0 and D′ = D \ {(x0, y0)} ∪ {(x∗, y∗)}.
Given D and D′, we generate a dataset, A1, of models

trained on D and D′ with equal probability. We represent a
model with parameters θ by four features, p(y = y∗|x∗, θ),
p(y = y0|x∗, θ), p(y = y∗|x0, θ), p(y = y0|x0, θ), and
train a simple linear classifier. Finally, we create a second
independent test set, A2, of models trained on D and D′ with
equal probability and estimate our classifier’s false negative
(FN) and false positive (FP) rates using the examples from
A2.

A. Deducing a lower bound over ϵ

To translate the attack results into DP parameters, we follow
the analysis approach suggested by [38], [39] and extended
by [36]. Without loss of generality, we define false positive as
predicting dataset D′, when dataset D was used for training
a model, and false negative as vice versa. The probability
for FP and FN are marked as PFP and PFN , respectively.
According to [40], if an algorithm is (ϵ, δ)-DP, then the
following inequalities hold:

PFP + eϵPFN ≥ 1− δ

PFN + eϵPFP ≥ 1− δ.
(10)

These inequalities can easily be translated into a lower bound
over ϵ,

ϵlb ≥ max

(
log

1− δ − PFP

PFN
, log

1− δ − PFN

PFP

)
. (11)

Since we can only estimate PFP and PFN empirically, we
use confidence intervals to upper-bound them. The confidence
intervals are calculated using the Clopper-Pearson method [41]
on the attack’s false positive and false negative rates. The
resulting upper bounds, Phigh

FP and Phigh
FN , are then used to

provide an empirical lower bound on ϵ with high probability:

ϵemp
lb ≥ max

(
log

1− δ − Phigh
FP

Phigh
FN

, log
1− δ − Phigh

FN

Phigh
FP

)
.

(12)
It is important to note that this method can only prove that a
model is not private. A low value for ϵemp

lb does not show the
model is private, only that our attack failed to prove a lack of
privacy.

Fig. 2. A lower bound over the Differential Privacy of the LeNet5, SGLD-
based training process over MNIST for a given δ = 10−5, a learning rate of
0.001, and a batch size of 4.

B. Results

We performed our attack on the SGLD-based training
process of a LeNet5 [42], trained on the MNIST dataset [42].
We tested a learning rate of 0.0012 with a batch size of 4.
We trained a different classifier for each epoch to find a lower
bound on the DP at each epoch.

When using Clopper-Pearson [41] confidence intervals, the
resulting upper bounds (Phigh

FP and Phigh
FN ) are limited by the

number of experiments conducted, which limits the maximum
ϵemp
lb . We used 500 models to train the classifier (i.e., |A1| =
500) and evaluated the attack on 500 models (i.e., |A2| = 500),
which limits ϵemp

lb to a maximum of 4.89.
Fig. 2 depicts lower bounds over ϵ given δ = 10−5, with a

confidence value of 90%, i.e., P (ϵ ≥ ϵemp
lb ) ≥ 0.9, as well as

the accuracy of the network, as a function of the number of
epochs.

It should be emphasized that we show a lower bound over
ϵ. As such, even a small value is sufficient to show that the
classifier can reliably infer which of the datasets was used to
train the model. For example, a lower bound of (δ = 10−5, ϵ =
3) allows a classifier to identify on which dataset a model was
trained with an accuracy of 95% (Phigh

FP = Phigh
FN ≃ 0.05).

In appendix E, we show the results for SGLD with clipped
gradients. We see that clipping the gradients protects the
algorithm from our attack. As mentioned, an implementation
that clips the gradients diverges from SGLD and, as such, has
different sampling properties. Indeed, the results show that this
version’s accuracy degrades by 8% compared to SGLD.
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APPENDIX A
SGLD AND POSTERIOR PRIVACY

Appendix A provides proofs for theorem IV.1 and the lemmas in subsections IV-B and IV-A. As such, it uses the notations
defined in section IV and subsections IV-B and IV-A. To ease the proof’s reading, we repeat these notations here.

α, β and θ are parameters of the linear model defined in eq. 13 (originally defined in eq. 4), and p(y|x) is the model
likelihood.

y = θx+ ξ

ξ ∼ N (0, β−1)

θ ∼ N (0, α−1)

p(y|x) ∼ N (θx, β−1)

(13)

xh, xl, c, n, and γ1 are defined as part of domain D(n, γ1, xh, xl, c) definition (originally defined in eq. 5):

D(n, γ1, xh, xl, c) = {(xi, yi)||
yi
xi
− c| ≤ nγ1 ; xi, yi, c, γ1 ∈ R>0;n ∈ Z>0;xl ≤ xi ≤ xh}ni=1 (14)

where x2
hβ > 3 and γ1 < 1

2 . The datasets D1, D2 ∈ D(n, γ1, xh, xl, c) (originally defined in eq. 8) are defined in eq. 15.

D1 = {xi, yi : xi = xh, yi = c · xh}ni=1

D2 = {xi, yi : xi = xh, yi = c · xh}n−1
i=1 ∪ {

xh

2
, c · xh

2
}

(15)

The Bayesian Linear Regression Problem (originally defined in section IV) refers to the problem of sampling (or
approximately sampling via SGLD) from the posterior for the model described in eq. 13.

We look at cyclic-SGLD with a batch size of 1 and mark by θj , θ̂j the samples on the j’th SGLD step when using datasets
D1 and D2 accordingly. µj , σ

2
j ∈ R are the mean and variance of θj . For D2, there is only one sample different from the rest.

We mark by r the index in which this sample is used in the cyclic-SGLD and call this order r-order. We mark by θ̂rj the sample
on the j’th SGLD step when using dataset D2 and r-order. µ̂r

j , (σ̂
r
j )

2 ∈ R are the mean and variance of θ̂rj . η = 2
(α+nx2

hβ)
2 is

the SGLD learning rate. η, θj , θ̂j , µj , µ̂
r
j , σj , σ̂

r
j were originally defined in subsection IV-B.



A. Theorem IV.1 Proof

Proof of Theorem IV.1. We first define several parameters used to configure the Bayesian linear regression problem on domain
D(n, γ1, xh, xl, c).

1

2
> γ1 > 0;

3

2
> γ2 > 1 + γ1; xl =

xh

2

ν1 =
2 ln( 1δ )

ϵ
+ 1

n1 = max

{
1

2αx2
hβ
− 1

x2
hβ

,
α

x2
hβ

,
α

x2
hβ

(e
2

x2
h
β − 2) +

1

2x2β

}
+ 1
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1 +
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h
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l

8
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l
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)
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h
9
10ϵx

2
l

) 1
1−2γ1
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·
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ϵ
·
(
x2
hα+ x4

hβ
)2

9
10x

6
l β

1 +
1(

1 + 10
x2
h

x2
l

ν
β

)γ2−γ1


2

1
3−2γ2 }

n3 = max

{
1 + 10

x2
h

x2
l

ν1
β
, 1 + ν1

x2
h

x2
l

}
+ 1

np = max

n1, n2, n3,

(
2v1
α

(
32x2

hβ

3

)2

(ϵ′ − ln (0.5− δ)) e
2

x2
h
β

) 1
2(γ2−1)


v1 = max

{
6, 1 + 2e

1

x2
h
β

}
cp = nγ2

p .

By looking at the Bayesian linear regression problem on domain D(np, γ1, xh, xl, cp), we next show that sampling from
the posterior is (ϵ, δ) differentially private, although there is an SGLD step for which approximate sampling from the posterior
using SGLD is not (ϵ′, δ) differentially private.

Given dataset D1 ∈ D(np, γ1, xh, xl, cp) (as defined in eq. 15, with n = np and c = cp), as np ≥ n1, the problem
holds the constraints of Lemma A.9. Consequently, there exists an SGLD step that is not (ϵ′′, δ) private for all ϵ′′ ≤
e
− 2

x2
h
β α

2v1
( 3
32x2

hβ
)2(

cp
np

)2+ln(0.5−δ). From eq. 16, the choice of np promises that ϵ′ ≤ e
− 2

x2
h
β α

2v1
( 3
32x2

hβ
)2(

cp
np

)2+ln(0.5−δ).
Therefore, approximate sampling from the posterior using SGLD is not (ϵ′, δ) differentially private.

Since np ≥ n2 and np ≥ n3, the problem holds the constraints of Claim D.28; therefore, one sample from the posterior is
(ϵ, δ) differentially private.

e
− 2

x2
h
β

α

2v1

(
3

32x2
hβ

)2(
cp
np

)2

+ ln (0.5− δ) ≥ ϵ′(
cp
np

)2

≥ (ϵ′ − ln (0.5− δ)) e
2

x2
h
β

(
32x2

hβ

3

)2
2v1
α

n2(γ2−1)
p ≥ (ϵ′ − ln (0.5− δ)) e

2

x2
h
β

(
32x2

hβ

3

)2
2v1
α

np ≥

(
(ϵ′ − ln (0.5− δ)) e

2

x2
h
β

(
32x2

hβ

3

)2
2v1
α

) 1
2(γ2−1)

(16)

B. Posterior Sampling Privacy

This subsection provides proofs for the lemmas provided in subsection IV-A, along with a supporting lemma.



Proof of Lemma IV.2. Eq. 17 is a known result for the Bayesian inference problem for a linear 1D model with Gaussian noise
with a known precision parameter (β) and a conjugate prior (see [34] - 3.49-4.51. for details). By choosing the basis function
to be ϕ(x) = x, working in one dimension, and choosing m0 = 0,S0 = α−1, we get the linear model defined in eq. 4 and
the matching posterior described in Lemma IV.2.

p(θ|D) = N (θ;mN , SN ); mN = SN (S−1
0 m0 + βΦT t); S−1

N = S−1
0 + βΦTΦ (17)

Lemma A.1. For a Bayesian linear regression problem on domain D(n, γ1, xh, xl, c), such that n > max{1+10
x2
h

x2
l

ν
β , 1+ν

x2
h

x2
l
},

one sample from the posterior is (ν, ϵ1)-Rényi differentially private, and ϵ1 is

ϵ1 =
x2
h

2(n− 1)x2
l

+
(ν − 1) νx2

h

2 ((n− 1)x2
l − νx2

h)
+

20νβx4
h

9n1−2γ1x2
l

+
20νx4

h(α+ x2
hβ)

9x4
l

· (c+ nγ1)

n2−γ1
+

5νx4
h(α+ x2

hβ)
2

9x6
l β

· (c+ nγ1)2

n3
.

Proof of Lemma A.1. By Definition III.3, for a single sample from the posterior to be (ν, ϵ′) RDP, the Rényi divergence of order
ν between any adjacent datasets needs to be bounded. Therefore, we consider two adjacent datasets, D, D̂ ∈ D(n, γ1, xh, xl, c),
and w.l.o.g, define that they differ in the last sample (where it is also allowed to be (0, 0) for one of them, which saves us the
need to consider also a neighbouring dataset with a size smaller by 1). To ease the already complex and detailed calculations,
we use definitions in eq. 18.

D = {xi, yi}n−1
i=1 ∪ {xn, yn}, D̂ = {xi, yi}n−1

i=1 ∪ {x̂n, ŷn}

z =

n−1∑
i=1

x2
i , q =

n−1∑
i=1

yixi

(18)

According to Lemma IV.2 and with the definitions of eq. 18, the posterior distributions are

p(θ|D) = N (θ;µ, σ2); µ =
β(q + xnyn)

α+ (z + x2
n)β

; σ2 =
1

α+ (z + xn)β

p(θ|D̂) = N (θ; µ̂, σ̂2); µ̂ =
β(q + x̂nŷn)

α+ (z + x̂2
n)β

; σ̂2 =
1

α+ (z + x̂n)β
.

(19)

Mark by Dν(f1||f2) the Réyni divergence of order ν between f1 and f2 - uni-variate normal distributions with means µ1, µ2

and variances σ1, σ2 accordingly. By [31], Dν(f1||f2) is

Dν (f1||f2) = ln
σ1

σ2
+

1

2
(ν − 1) ln

σ2
2(

σ2
f1,f2

)∗
ν

+
1

2

ν (µ1 − µ2)
2

(σ2)
∗
ν(

σ2
f1,f2

)∗
ν
= νσ2

2 + (1− ν)σ2
1 > 0.

Therefore, for p(θ|D) and p(θ|D̂), the Rényi divergence of order ν is given in eq. 20, where we omit the subscript for
(σ2)∗ν since it is clear from context to which distributions it applies.

Dν

(
p (θ|D) ||p(θ|D̂)

)
= ln

σ

σ̂
+

1

2
(ν − 1) ln

σ̂2

(σ2)
∗
ν

+
1

2

ν (µ− µ̂)
2

(σ2)
∗
ν(

σ2
)∗
ν
= νσ̂2 + (1− ν)σ2

(20)

According to Claim D.23, (σ2)∗ν > 0; therefore, the value Dν(p(θ|D), p(θ|D̂)) exists. In order to prove Rényi differential
privacy, each of the terms of Dν(p(θ|D), p(θ|D̂)) is bounded separately, so their sum will be equal to ϵ1. The bounds for each
of the terms are proved at Claims D.24, D.25, and D.26.

Proof of Lemma IV.3. The Lemma is a direct corollary of Lemma A.1

Proof of Lemma IV.4. By Lemma A.1, sampling from the posterior is (ν, ϵ1)-RDP; therefore, by Lemma III.4, sampling from
the posterior is also (ϵ1 +

ln( 1
δ )

ν−1 , δ) differentially private.



C. Stochastic Gradient Langevin Dynamics Privacy

This subsection provides proofs for the lemmas presented in subsection IV-B. The proofs in this section rely heavily on the
analysis of the SGLD behaviour for the Bayesian Linear Regression Problem on datasets D1, D2. This analysis is provided
in subsection A-D.

Proof of Lemma IV.5.

p(θ̂j > µj |D2) =

n∑
r=1

p(θ̂rj > µj |D2)p(θ̂j = θ̂rj |D2) =

n∑
r=1

p(θ̂j − µ̂r
j > µj − µ̂r

j |D2)p(θ̂j = θ̂rj |D2)

=
1

n

n∑
r=1

p(θ̂j − µ̂r
j > µj − µ̂r

j |D2) ≤
1

n

n∑
r=1

exp

(
−
(µj − µ̂r

j)
2

2(σ̂r
j )

2

)
where the inequality holds due to Chernoff bound (For further details about Chernoff bound, see [43]).

Proof of Lemma IV.6. By Lemma A.7, for n > max{ α
x2
hβ

, α
x2
hβ

(e
2

x2β − 2) + 1
2x2

hβ
, 1
2αx2

hβ
− 1

x2
hβ
} and k̇ ∈ R>0, eq. 21 holds.

We can see that the lower bound described in eq. 21 is dominated by c2

n2 , thus proving Lemma IV.6.

(µ(⌈k̇⌉+1)n − µ̂r
(⌈k̇⌉+1)n

)2

(σ̂r
(⌈k̇⌉+1)n

)2
≥ e

− 2

x2
h
β
α

v1
(

3

32x2
hβ

)2(
c

n
)2

v1 = max{6, 1 + 2e
1

x2
h
β }

(21)

Proof of Lemma IV.7. Define ϵ′ as

ϵ′ = e
− 2

x2
h
β

α

2v1

(
3

32x2
hβ

)2 ( c
n

)2
+ ln (0.5− δ)

v1 = max{6, 1 + 2e
1

x2
h
β }.

By Lemma A.9, for n > max{ α
x2
hβ

, α
x2
hβ

(e
2

x2
h
β − 2) + 1

2x2
hβ

, 1
2αx2

hβ
− 1

x2
hβ
}, there exists T ∈ Z>0 (marked in Lemma A.9

as (⌈k̇⌉ + 1)n) such that running SGLD for the Bayesian linear regression problem over D1 for T steps will not be (ϵ, δ)

differentially private for ϵ < ϵ′. As ϵ′ is dominated by c2

n2 , Lemma IV.7 is proved.



D. Stochastic Gradient Langevin Dynamics Detailed Analysis
This subsection provides an analysis of SGLD behaviour for the Bayesian Linear Regression Problem on datasets D1, D2.

We advise the reader to read the lemmas by order and provide here a summary of the analysis: Lemma A.2 provides an
expression for the sample at the (k + 1)n SGLD step when using datasets D1, D2. Lemmas A.4 and A.5 use this expression
to get a lower bound on the difference in means and an upper bounds on the variance, respectively. In turn, Lemma A.7 uses

these lower and upper bounds to find a lower bound over
(
µ⌈k̇⌉n+n − µ̂r

⌈k̇⌉n+n

)2
/
(
σ̂r
⌈k̇⌉n+n

)2
. This lower bound is used

by Lemma A.8 to upper bound the probability mass of the SGLD process running on dataset D2 in S = {s|s > µj}. The
difference in probability masses in S between the weights of an SGLD running on datasets D1 and D2 leads to a breach of
privacy, as shown in Lemma A.9.

In order to ease the analysis of the SGLD process for the Bayesian linear regression problem on domain D(n, γ1, xh, xl, c),
we use the markings in eq. 22.

λ =
(
1− η

2

(
α+ nx2

hβ
))

, λ̂ =

(
1− η

2

(
α+ n

(xh

2

)2
β

))
, ρ =

η

2
ncx2

hβ, ρ̂ =
η

2
nc
(xh

2

)2
β (22)

Lemma A.2. ∀k ∈ Z>0, θ̂r(k+1)n has the following forms:

θ̂1(k+1)n = θ0λ̂
k+1λ(n−1)(k+1) +

k∑
j=0

(
λ̂λn−1

)j (
ρ̂λn−1 + ρ

n−2∑
i=0

λi +
√
η

n−1∑
i=0

λiξi

)

θ̂r>1
(k+1)n = θ0

(
λ̂λn−1

)k+1

+

r−1∑
i=1

(ρ+
√
ηξ) λ̂λn−i−1 + (ρ̂+

√
ηξ)λn−r +

n∑
j=r+1

(
ρ+

√
ξη
)
λn−j

 k∑
l=0

(
λ̂λn−1

)l
.

Proof of Lemma A.2. We can apply the SGLD update rule, defined in eq. 3, to the Bayesian linear regression problem over
datasets D1 and D2 as follows: First, p(θj) = N(θj ; 0, α−1), and therefore

∇θj ln p(θj) = ∇θj ln

(
1√

2πα−1

)
−∇θj

1

2
θ2jα = −θjα.

In a similar manner,

∇θj ln p(yi|θj) = ∇θj ln

(
1√

2πβ−1

)
−∇θj

1

2
(yi − θjxi)

2β = (yi − θjxi)xiβ.

Inserting these expressions to the SGLD update rule yields

θj+1 = θj +
η

2
(−θjα+ n (yi − θjxj)xiβ) +

√
ηjξi = θj

(
1− η

2

(
α+ nx2

jβ
))

+
η

2
nyixiβ +

√
ηξj

= θj

(
1− η

2

(
α+ nx2

jβ
))

+
η

2
ncx2

iβ +
√
ηξj .

(23)

By using standard tools for solving first-order non-homogeneous recurrence relations with variable coefficients, the value of
θ̂1n can be found:

θ̂1n = λ̂λn−1

(
θ0λ̂+ ρ̂+

√
ηξ

λ̂
+

n∑
i=2

ρ+
√
ηξ

λ̂λi−1

)
= θ0λ̂λ

n−1 + (ρ̂+
√
ηξ)λn−1 + (ρ+

√
ηξ)

n∑
i=2

λn−1−(i−1)

= θ0λ̂λ
n−1 + (ρ̂+

√
ηξ)λn−1 + (ρ+

√
ηξ)

n∑
i=2

λn−1−(i−1) = θ0λ̂λ
n−1 + (ρ̂+

√
ηξ)λn−1 + (ρ+

√
ηξ)

n−2∑
i=0

λi

= θ0λ̂λ
n−1 + ρ̂λn−1 + ρ

n−2∑
i=0

λi +
√
ηξ

n−1∑
i=0

λi.

Thus, we can define a new series, θ̂1(k+1)n = c1θ̂
1
kn + c2 where c1 = λ̂λn−1, c2 = ρ̂λn−1 + ρ

∑n−2
i=0 λi +

√
ηξ
∑n−1

i=0 λi. Using
tools for solving first order non-homogeneous recurrence relations with constant coefficients, the value of θ̂1kn can be found:

θ̂1kn = ck1

(
θ̂1n
c1

+

k∑
i=2

c2
ci1

)
= θ1nc

k−1
1 +

k∑
i=2

c2c
k−i
1 = θ1nc

k−1
1 + c2

k−2∑
i=0

ci1 = (θ0c1 + c2) c
k−1
1 + c2

k−2∑
i=0

ci1

= θ0

(
λ̂λn−1

)k
+

(
ρ̂λn−1 + ρ

n−2∑
i=0

λi +
√
ηξ

n−1∑
i=0

λi

)
k−1∑
j=0

(
λ̂λn−1

)j
.



The proof for θ̂rkn is done in a similar manner:

θ̂r>1
n = λ̂λn−1

θ0 +

r−1∑
i=1

ρ+
√
ηξ

λi
+

ρ̂+
√
ηξ

λr−1λ̂
+

n∑
j=r+1

ρ+
√
ηξ

λj−1λ̂


= λ̂λn−1θ0 +

r−1∑
i=1

(ρ+
√
ηξ) λ̂λn−i−1 + λn−r (ρ̂+

√
ηξ) +

n∑
j=r+1

(ρ+
√
ηξ)λn−j

Thus, we can define a new series, θ̂r>1
(k+1)n = c3θ̂

r>1
kn + c4, where c3 = λ̂λn−1, c4 =

∑r−1
i=1

(
ρ+
√
ηξ
)
λ̂λn−i−1 +

λn−r
(
ρ̂+
√
ηξ
)
+
∑n

j=r+1

(
ρ+
√
ηξ
)
λn−j . Similarly to θ̂1kn derivation, we can use first order non-homogeneous recurrence

relations with constant coefficients to get:

θ̂r>1
kn = θ0

(
λ̂λn−1

)k
+

r−1∑
i=1

(ρ+
√
ηξ) λ̂λn−i−1 + (ρ̂+

√
ηξ)λn−r +

n∑
j=r+1

(
ρ+

√
ξη
)
λn−j

 k−1∑
l=0

(
λ̂λn−1

)l
.

Lemma A.3. ∀k ∈ Z>0, θ(k+1)n has the following form:

θ(k+1)n = θ0λ
(k+1)n +

k∑
j=0

λjn

(
ρλn−1 + ρ

n−2∑
i=0

λi +
√
η

n−1∑
i=0

λiξi

)
Proof of Lemma A.3. First, notice that equation 23 applies for SGLD using dataset D1. By using standard tools for solving
first-order non-homogeneous recurrence relations, an expression for θn can be found:

θn = λn

(
θ0λ+ ρ+

√
ηξ

λ
+

n∑
i=2

ρ+
√
ηξ

λi

)
= θ0λ

n + ρλn−1 + ρ

n−2∑
i=0

λi +
√
ρξ

n−1∑
i=0

λi

By defining a new series θ(k+1)n = c5θkn + c6 and using tools for solving first-order non-homogeneous recurrence relations
with constant coefficients, the value of θkn can be found:

θkn = ck5

(
θn
c5

+

k∑
i=2

c6
c5

)
= θ0λ

nk +

(
ρλn−1 + ρ

n−2∑
i=0

λi +
√
ηξ

n−1∑
i=0

λi

)
k−1∑
j=0

λjn

Lemma A.4. ∀k ∈ Z>0, the value of µkn+n − µ̂r
kn+n can be lower bounded:

µkn+n − µ̂r
kn+n ≥ λn−1 ncx2

hβ

α+ nx2
hβ

λk(n−1)
(
λ̂k+1 − λk+1

)
.

Proof of Lemma A.4. The proof of this lemma is separated into two cases, for r = 1 and for r > 1. For r = 1, using E[θ0] = 0
and E[ξ] = 0, it is easy to derive eq. 24 from Lemmas A.2 and A.3.

µ̂1
(k+1)n = ρ

n−2∑
i=0

λi
k∑

j=0

(
λ̂λ(n−1)

)j
+ ρ̂λn−1

k∑
j=0

(
λ̂λ(n−1)

)j
µkn+n = ρ

n−2∑
i=0

λi
k∑

j=0

λjn + ρλn−1
k∑

r=0

λrn

(24)

We use the sum of a geometric sequence to get

µ̂1
(k+1)n = ρ

n−2∑
i=0

λi
k∑

j=0

(
λ̂λ(n−1)

)j
+ ρ̂λn−1

k∑
j=0

(
λ̂λ(n−1)

)j
=

(
ρ

(
1− λn−1

1− λ

)
+ ρ̂λn−1

) 1−
(
λ̂λn−1

)k+1

1− λ̂λn−1

and

µ(k+1)n = ρ

n−2∑
i=0

λi
k∑

j=0

λnj + ρλn−1
k∑

j=0

λnj =

(
ρ

(
1− λn−1

1− λ

)
+ ρλn−1

)
1− λ(k+1)n

1− λn
.



Therefore the difference between the means can be lower bounded:

µkn+n − µ̂1
kn+n =

1− λ(k+1)n

1− λn

(
ρ

(
1− λn−1

1− λ

)
+ ρλn−1

)
−

1−
(
λ̂λ(n−1)

)k+1

1− λ̂λn−1

(
ρ

(
1− λn−1

1− λ

)
+ ρ̂λn−1

)

=∗ 1− λ(k+1)n

1− λn

ncx2
hβ

α+ nx2
hβ

(1− λn)−
1−

(
λ̂λ(n−1)

)k+1

1− λ̂λn−1

ncx2
hβ

α+ nx2
hβ

(
1− λn−1

(
1

4
λ+

3

4

))

=
(
1− λ(k+1)n

) ncx2
hβ

α+ nx2
hβ
−

1−
(
λ̂λ(n−1)

)k+1

1− λ̂λn−1

ncx2
hβ

α+ nx2
hβ

(
1− λn−1

(
1

4
λ+

3

4

))

=
ncx2

hβ

α+ nx2
hβ

(1− λ(k+1)n
)
−

1−
(
λ̂λ(n−1)

)k+1

1− λ̂λn−1

(
1− λn−1

(
1

4
λ+

3

4

))
=∗∗ ncx2

hβ

α+ nx2
hβ

λn−1 3
4
η
2α
(
1− λ̂k+1λ(k+1)(n−1)

)
+ λ(k+1)(n−1)

(
λ̂k+1 − λk+1

)(
1− λn−1λ̂

)
1− λn−1λ̂


≥ ncx2

hβ

α+ nx2
hβ

λ(k+1)(n−1)
(
λ̂k+1 − λk+1

)(
1− λn−1λ̂

)
1− λn−1λ̂


=

ncx2
hβ

α+ nx2
hβ

λ(k+1)(n−1)
(
λ̂k+1 − λk+1

)
= λn−1 ncx2

hβ

α+ nx2
hβ

λk(n−1)
(
λ̂k+1 − λk+1

)

where equality * holds from Claims D.1, D.2, and D.3, equality ** holds from Claim D.5, and the inequality holds because
λ < λ̂ < 1. This proves Lemma A.4 for r = 1.

For r > 1, from Lemma A.2, it is easy to see that

θ̂r>1
(k+1)n =

(θ0λr−1 + ρ

r−2∑
i=0

λi +
√
η

r−2∑
i=0

λiξi

)
λ̂kλk(n−1) +

k−1∑
j=0

(λ̂λn−1)j

(
ρ̂λn−1 + ρ

n−2∑
i=0

λi +
√
η

n−1∑
i=0

λiξi

) λ̂λn−r

+ ρ̂λn−r + ρ

n−r−1∑
j=0

λj +
√
η

n−r∑
j=0

ξλj .

Therefore,

µ̂r>1
(k+1)n =

(ρ r−2∑
i=0

λi

)
λ̂kλk(n−1) +

k−1∑
j=0

(λ̂λn−1)j

(
ρ̂λn−1 + ρ
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Consequently, the difference between the means, for r > 1, can be lower bounded:
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where equality * holds from Claims D.6 and D.7, equality ** holds from Claim D.10, equality *** holds from Claim D.1,
and inequality **** holds from Claim D.11 and because λ̂ > λ.

Lemma A.5. For all k ∈ Z>0 such that 0 < k ≤ 1
2n logλ(

1
1+ 1

αη (1−λ2)
)−1, and x2

hβ > 3, n > max{ 1
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− 1

x2
hβ

, α
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(e
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h
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2) + 1
2x2

hβ
}, the values of (σ̂r
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2 can be upper bounded as following:
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(σ̂r>1
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1

α
(λ̂λn−1)2k.

(25)



Proof of Lemma A.5. The proof will be separated into two cases: r = 1 and r > 1. Starting from the case of r = 1, since
the noise and the prior have Normal distributions, (σ̂1

kn+n)
2 could be easily computed from Lemma A.2. Eq. 26 yields a first

general upper bound on (σ̂1
kn+n)

2 applicable for all k ∈ Z>0.
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(26)

where the inequality holds because λ < λ̂.
By Claim D.12, this upper bound can be further refined for 0 < k ≤ 1

2n logλ(
1

1+ 1
αη (1−λ2)

)− 1:

(
λ̂λ(n−1)

)2(k+1)
(
1

α
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)
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(
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α
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This proves the lemma for r = 1.
For r > 1, (σ̂r>1

kn+n)
2 can be bounded as follows:

(σ̂r>1
kn+n)

2 =
(
λ̂λn−r

)2
η

(λ̂kλk(n−1)
)2 r−2∑

i=0

λ2i +

k−1∑
j=0

(
λ̂λn−1

)2j n−1∑
i=0

λ2i

+ η

n−r∑
i=0

λ2i +
1

α

(
λ̂λn−1

)2k (
λ̂λn−1

)2

≤∗
(
λ̂λn−r

)2
η

(λ̂kλk(n−1)
)2 r−2∑

i=0

λ2i +

k−1∑
j=0

(
λ̂λn−1

)2j n−1∑
i=0

λ2i

+ η

n−r∑
i=0

λ2i +
1

α

(
λ̂λn−1

)2k (
λ̂λn−r

)2

=
(
λ̂λn−r

)2 1

α

(
λ̂λn−1

)2k
+ η

(
λ̂λn−1

)2k r−2∑
i=0

λ2i + η

k−1∑
j=0

(
λ̂λn−1

)2j n−1∑
i=0

λ2i

+ η

n−r∑
i=0

λ2i

≤∗∗
(
λ̂λn−r

)2 1

α

(
λ̂λn−1

)2k
+ η

(
λ̂λn−1

)2k n−1∑
i=0

λ2i + η

k−1∑
j=0

(
λ̂λn−1

)2j n−1∑
i=0

λ2i

+ η

n−r∑
i=0

λ2i

≤∗∗∗ 2
(
λ̂λn−r

)2 1

α

(
λ̂λn−1

)2k̇
+ η

(
λ̂λn−1

)2k n−1∑
i=0

λ2i + η

k−1∑
j=0

(
λ̂λn−1

)2j n−1∑
i=0

λ2i


(28)

where inequality * is true because λ < 1 and r > 1, inequality ** is true because r ≤ n, and inequality *** is true because
of Claim D.15.

For 0 < k ≤ 1
2n logλ(

1
1+ 1

αη (1−λ2)
)− 1, this bound can be further refined:

2(λ̂λn−r)2
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(
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(
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1

α
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where the inequality is true because of Claims D.12 and D.14, which provide the bound for r > 1.

Lemma A.6. Mark k̇ = 1
2n logλ(

1
1+ 1

αη (1−λ2)
) − 1. For the conditions of Lemma A.5, k̇ > 0 and the values of σ̂r

⌈k̇⌉n+n
can

be upper bounded as following:

(σ̂1
⌈k̇⌉n+n
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h
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.

Proof of Lemma A.6. We prove this lemma by augmenting the proof of Lemma A.5. We begin with r > 1. Lemma A.5 first
proved, in eq. 28, a bound over (σ̂r>1

(k+1)n)
2 applicable for k > 0. As this bound is applicable for all k > 0, it also applies for

⌈k̇⌉. Then, in eq. 29, Lemma A.5 refined the bound for 0 < k ≤ k̇ using Claims D.14, D.12 and, D.15. Therefore, if these
claims also hold for k = ⌈k̇⌉, then the result of Lemma A.5 also applies to k = ⌈k̇⌉. Claims D.14 and D.12 apply to all
k ≤ 1

2n logλ(
1

1+ 1
αη (1−λ2)

). Since ⌈k̇⌉ ≤ k̇ + 1 = 1
2n logλ(

1
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αη (1−λ2)
), the claims also apply to ⌈k̇⌉. Claim D.15 was proved

for all k, thus also applies to ⌈k̇⌉.
For r = 1, the bound found at eq. 26 is applicable for all k, hence
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)
where the last inequality is true because of Claim D.17.

All that is left is to prove that k̇ = 1
2n logλ(

1
1+ 1

αη (1−λ2)
)− 1 > 0, which is done in Claim D.21.

Lemma A.7. For k̇ defined in Lemma A.6, the conditions of Lemma A.5, and n > α
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Proof of Lemma A.7.(
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where first inequality holds from Lemmas A.4 and A.6, and the definition of v1, the second inequality is true because of Claim
D.17 and Claim D.21, fourth inequality holds under the assumption of nx2

hβ > α, and the last inequality holds from Claim
D.18.

Claim A.8. For k̇, defined in Lemma A.6, and the conditions of Lemma A.7:

p
(
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.

Proof of Claim A.8.
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where the first inequality holds due to Lemma IV.5 and second inequality holds due to Lemma A.7.

Lemma A.9. For the Bayesian linear regression problem over D(n, γ1, xh, xl, c), the conditions of Lemma A.7, and k̇ defined
in Lemma A.6, approximate sampling by running SGLD for (⌈k̇⌉+ 1)n steps will not be (ϵ, δ) differentially private for

δ < 0.5, ϵ < e
− 2

x2
h
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h
β }.

Proof of Lemma A.9. According to Definition III.1, if there exists a group, S, such that

p
(
θ(⌈k̇⌉+1)n ∈ S|D1

)
> eϵp

(
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)
+ δ (30)

then releasing θ(⌈k̇⌉+1)n is not (ϵ, δ) differentially private. We will show that eq. 30 is true for S = {s|s > µ(⌈k̇⌉+1)n} and
the conditions of the lemma. First, notice that eq. 30 can be rearranged as

eϵp
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Therefore, if
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+ δ − 0.5 < 0

then eq. 30 is true and the lemma is proved. As shown in eq. 32, this inequality holds under the conditions of Lemma A.9.
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E. Figure 1 derivation

The lower bound depicted in figure 1 is derived by analysing the distributions of SGLD running on datasets D1 and D2

(defined in 8). Given these distributions, and using notations θj , µj , θ̂j , µ̂j , σ̂
r
j (defined in subsection IV-B), the lower bound

over ϵ for a given δ can be deduced as follows:
By definition III.1, for SGLD running on datasets D1, D2 to be (ϵ, δ)-DP, it must hold

p (θj > µj) ≤ exp (ϵ) p(θ̂j > µj) + δ.

This condition can be easily translated to a lower bound over ϵ:

ln (p (θj > µj)− δ)− ln(p(θ̂j > µj)) ≤ ϵ.

By Lemma IV.5,
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As ln is monotonically increasing, this induces a necessary condition for SGLD to be (ϵ, δ)-DP:
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In figure 1 we plot the value
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APPENDIX B
PROPOSE TEST SAMPLE SUPPLEMENTARY

nmin, which is used in Algorithm 1, is defined as follows:
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nmin = max

{
nb1, nb2, n1

ρ2
γ1

}

(33)

where ϵ, δ, xl, xh, α, β, γ1, ρ1, ρ2, n1 are parameters of Algorithm 1.

APPENDIX C
PROPOSE TEST SAMPLE PRIVACY

Appendix C provides auxiliary claims and proof for Claim IV.9, along with auxiliary claims which support the
proof of Claim IV.8. Appendix C uses definitions and notations defined in subsection IV-C, specifically: D3, D4 (de-
fined in eq. 9), ϵ, δ, xl, xh, α, β, γ1, ρ1, ρ2 - parameters of algorithm 1, D input dataset to algorithm 1 of size n1,
V, n2,m, m̆, nW ,W, p(θ|W ), l1, l2, l3, l4 (defined in algorithm 1), and nmin (defined in eq. 33).

Proof of Claim IV.9. We analyze Algorithm 1, running on datasets D3 and D4 defined in eq. 9, with parameters values:

ρ3 = 1.15; ρ2 = 0.45; ρ1 = 1.25, γ1 = 0.49;

β = 3;xh = 1;xl = 0.5;α = 1

n1 > max

{
4

ϵ
log

1

2δ
, 210ρ1 , 29+10ρ2

}
.

(34)

Note that we only define a lower bound over n1, which will be updated later on.
Mark the return value of the algorithm as r, the event of the algorithm running on dataset D3 and W = D3 as AD3

, the
event of the algorithm running on dataset D4 and W = D4 as AD4 , and S = {s|s > µi}, where µi is the mean of the sample
distribution at the SGLD i’th step given dataset D3 (similarly to the definition of S in subsection IV-B). We will show that
∀ϵ ∈ R>0, δ < 1

6 there exists n1 such that

p(r ∈ S|D3) > eϵp(r ∈ S|D4) + δ. (35)

We first show that

p(r ∈ S ∧Ac
D3
|D3) = 0

p(r ∈ S ∧Ac
D4
|D4) = 0.

(36)

Notice that r ∈ S only if the algorithm reached line 25. Consider an event where the algorithm reached line 25 and Ac
D3

. Because
Ac

D3
, ∃(xi, yi) ∈ D3 such that | yi

xi
−m̆| ≥ nρ2

2 . However, since ∀(xi, yi) ∈ D3 : yi

xi
= nρ3

1 then ∀(xi, yi) ∈ D3 : | yi

xi
−m̆| > nρ2

2

and therefore |W | = 0. Under the assumption that a sample from p(θ|{}) returns null, the algorithm, in this case, also returns
null and therefore P (r ∈ S ∧Ac

D3
|D3) = 0. Same arguments hold for D4.

Because we showed eq. 36 is true, then to prove eq. 35, it is enough to show that eq. 37 is true.

p(r ∈ S|D3, AD3
)p(AD3

|D3) ≥∗ p(r ∈ S|D3, AD3
)− 5δ >∗∗ eϵp(r ∈ S|D4, AD4

) + δ

≥ eϵp(r ∈ S|D4, AD4
)p(AD4

|D4) + δ = eϵp(r ∈ S ∧AD4
|D4) + δ

(37)

From Claim C.1, ∃nbound1
such that ∀n1 > nbound1

inequality * holds. From Lemma IV.7, for n1 big enough, ∃T ∈ Z>0

such that eq. 38 hold (Where 6δ < 0.5 according to the claim’s conditions). Therefore, ∃k, nbound2 ∈ R>0 such that ∀n1 >



nbound2
: ϵ′ > kn

2(1−ρ3)
1 and eq. 38 hold. As ρ3 > 1, by choosing n1 > max{nbound2, (

ϵ
k )

1
2(ρ3−1) } we get that ϵ′ > ϵ.

Consequently, by choosing n1 > max{nbound1 , nbound2 , (
ϵ
k )

1
2(ρ3−1) }, inequalities * and ** hold, and the claim is proved.

ϵ′ = Ω(n
2(ρ3−1)
1 )

p(r ∈ S|D3, AD3) > eϵ
′
p(r ∈ S|D4, AD4) + 6δ

(38)

Claim C.1. Given a run of Algorithm 1 on dataset D3, mark by A the event of the algorithm reaching line 25 with W = D3;
the following holds:

∃nbound1 ∈ Z>0 s.t. ∀n1 > nbound1 : p(A) ≥ 1− 5δ.

Proof. For abbreviation, mark the event of nW > nmin ∧ m̆ ∈ [m− nρ2

2 ,m+ nρ2

2 ]∧ n1+ρ2−0.1
2 > n̆ρ1

1 ∧ n̆1 ≤ n1 ∧ V = D as
B. Since P (A|D3, B) = 1, then P (A|D3) ≥ P (A ∧ B|D3) = P (A|B,D3)P (B|D3) = P (B|D3). Therefore, we can prove
the claim by showing the existence of nlb such that ∀n1 > nlb : P (B|D3) ≥ 1− 5δ. We do so in eq. 39:

p(B|D3) = p(m̆ ∈ [m− nρ2

2 ,m+ nρ2

2 ] ∧ nW > nmin|D3, V = D,n1+ρ2−0.1
2 > n̆ρ1

1 , n̆1 ≤ n1)

· p(n1+ρ2−0.1
2 > n̆ρ1

1 |V = D, n̆1 ≤ n1, D3)P (V = D, n̆1 ≤ n1|D3)

≥ p(m̆ ∈ [m− nρ2

2 ,m+ nρ2

2 ] ∧ nW > nmin|D3, V = D,n1+ρ2−0.1
2 > n̆ρ1

1 , n̆1 ≤ n1)− 3δ

= p(nW > nmin|D3, V = D,n1+ρ2−0.1
2 > n̆ρ1

1 , n̆1 ≤ n1, m̆ ∈ [m− nρ2

2 ,m+ nρ2

2 ])

· p(m̆ ∈ [m− nρ2

2 ,m+ nρ2

2 ]|D3, V = D,n1+ρ2−0.1
2 > n̆ρ1

1 , n̆1 ≤ n1)− 3δ

≥ p(nW > nmin|D3, V = D,n1+ρ2−0.1
2 > n̆ρ1

1 , n̆1 ≤ n1, m̆ ∈ [m− nρ2

2 ,m+ nρ2

2 ])− 4δ

≥ 1− 5δ

(39)

where by Corollary C.3 and Claim C.4, for n1 big enough, first inequality holds. By Claim C.5, for n1 big enough, second
inequality holds. Lastly, by Claim C.6, for n1 big enough, third inequality holds.

Claim C.2. For n1 > max{210ρ1 , 4
ϵ log

1
2δ}:

p(n̆ρ1

1 ≥ nρ3

1 ∧ n̆1 ≤ n1|D3) ≥ 1− 2δ.

Proof of Claim C.2.

p(n̆ρ1

1 ≥ nρ3

1 ∧ n̆1 ≤ n1|D3) = p((n1 + l1 −
1

ϵ
log

1

2δ
)ρ1 ≥ nρ3

1 ∧ n1 + l1 −
1

ϵ
log

1

2δ
≤ n1|D3)

= p((n1 + l1 −
1

ϵ
log

1

2δ
)ρ1 ≥ nρ3

1 ∧ l1 ≤
1

ϵ
log

1

2δ
|D3)

= p((n1 + l1 −
1

ϵ
log

1

2δ
)ρ1 ≥ nρ3

1 ∧ |l1| ≤
1

ϵ
log

1

2δ
|D3)

+ p((n1 + l1 −
1

ϵ
log

1

2δ
)ρ1 ≥ nρ3

1 ∧ l1 ≤ −
1

ϵ
log

1

2δ
|D3)

≥ p((n1 + l1 −
1

ϵ
log

1

2δ
)ρ1 ≥ nρ3

1 ∧ |l1| ≤
1

ϵ
log

1

2δ
|D3)

= p((n1 + l1 −
1

ϵ
log

1

2δ
)ρ1 ≥ nρ3

1 ||l1| ≤
1

ϵ
log

1

2δ
,D3)p(|l1| ≤

1

ϵ
log

1

2δ
|D3)

(40)

As

p(|l1| ≤
1

ϵ
log

1

2δ
) = 1− 2p(l1 ≤ −

1

ϵ
log

1

2δ
) = 1− exp(−

1
ϵ log

1
2δ

1
ϵ

) = 1− 2δ,

we can further develop eq. 40:

p((n1 + l1 −
1

ϵ
log

1

2δ
)ρ1 ≥ nρ3

1 ||l1| ≤
1

ϵ
log

1

2δ
,D3)p(|l1| ≤

1

ϵ
log

1

2δ
|D3) ≥ p((n1 − 2

1

ϵ
log

1

2δ
)ρ1 ≥ nρ3

1 |D3)− 2δ

Finally, because n1 > 210ρ1 , then n−0.1
1 < ( 12 )

ρ1 . Therefore, (n1 − 2 1
ϵ log

1
2δ )

ρ1 > ( 12n1)
ρ1 > nρ1−0.1

1 = nρ3

1 . Which leads to

p((n1 − 2
1

ϵ
log

1

2δ
)ρ1 ≥ nρ3

1 |D3)− 2δ = 1− 2δ



Noticing that the conditions of corollary C.3 includes the conditions of Claim C.2, and that given that the algorithm runs
on dataset D3 and n̆ρ1

1 ≥ nρ3

1 then V = D3, we get that Corollary C.3 is a direct result of Claim C.2.

Corollary C.3. ∀n1 > max{210ρ1 , 4 1
ϵ log

1
2δ}, when running Algorithm 1 on dataset D3, the following inequality holds:

P (V = D3 ∧ n̆1 ≤ n1) ≥ 1− 2δ.

Claim C.4. ∀n1 > max{ 12
−(9+10ρ2), 4 1

ϵ log
1
2δ}, when running Algorithm 1 on dataset D3 the following inequality holds:

p(n1+ρ2−0.1
2 > n̆ρ1

1 |D3, V = D3, n̆1 ≤ n1) ≥ 1− δ.

Proof of Claim C.4.

p(n0.9+ρ2

2 > n̆ρ1

1 |D3, V = D3, n̆1 ≤ n1) ≥ p(n0.9+ρ2

2 > nρ1

1 |D3, V = D3)

≥ p((n1 − 2
1

ϵ
log

1

2δ
)0.9+ρ2 > nρ1

1 |D3)p(n2 ≥ |V | − 2
1

ϵ
log

1

2δ
)

≥ p((n1 − 2
1

ϵ
log

1

2δ
)0.9+ρ2 > nρ1

1 |D3)− δ = 1− δ

where the third inequality holds since p(Lap( 1ϵ ) < − 1
ϵ log

1
2δ ) < δ, and last equality holds since (n1 − 2 1

ϵ log
1
2δ )

0.9+ρ2 >

( 12n1)
0.9+ρ2 > n1+ρ2−0.2

1 = nρ1

1

Claim C.5. ∃nlb1 ∈ Z>0 such that ∀n1 > nlb1 , when running Algorithm 1 on dataset D3, the following inequality holds:

p(m̆ ∈ [m− nρ2

2 ,m+ nρ2

2 ]|D3, n
0.9+ρ2

2 > n̆ρ1

1 ) ≥ 1− δ.

Proof of Claim C.5.

p(m̆ ∈ [m− nρ2

2 ,m+ nρ2

2 ]|D3, n
0.9+ρ2

2 > n̆ρ1

1 ) = p(l3 ∈ [−nρ2

2 , nρ2

2 ]|D3, n
0.9+ρ2

2 > n̆ρ1

1 )

≥ 1− 2(
1

2
exp(−nρ2

2

1

1
ϵ n̆

ρ1

1
2(n2−1)x2

hx
2
l +x4

h

n2(n2−1)x4
l

)

= 1− exp(− n1+ρ2

2 ϵ(n2 − 1)x4
l

n̆ρ1

1 (2(n2 − 1)x2
hx

2
l + x4

h)
)

Because n0.9+ρ2

2 > n̆ρ1

1 , then n̆ρ1

1 = o(n1+ρ2

2 ), and therefore for n1 big enough, the exponent is smaller than δ.

Claim C.6. ∃nlb2 ∈ Z>0 such that ∀n1 > nlb2 , when running Algorithm 1 on dataset D3, the following inequality holds:

p(nW > nmin||V | = D3 ∧ n0.9+ρ2

2 > n̆ρ1

1 ∧ m̆ ∈ [m− nρ2

2 ,m+ nρ2

2 ], D3) ≥ 1− δ.

Proof of Claim C.6. For abbreviation, mark event B as when the following apply |V | = D3 ∧ n0.9+ρ2

2 > n̆ρ1

1 ∧ m̆ ∈ [m −
nρ2

2 ,m+ nρ2

2 ].

p(nW > nmin|B,D3) = p(n1 −
1

ϵ
log

1

2δ
+ l4 > nmin|B,D3)

> p(n1 −
1

ϵ
log

1

2δ
− 1

ϵ
log

1

δ
> nmin|B,D3)p(l4 > −1

ϵ
log

1

δ
)

+ p(n1 −
1

ϵ
log

1

2δ
+ l4 > nmin ∧ l4 < −1

ϵ
log

1

δ
|B,D3)

> p(n1 −
2

ϵ
log

1

2δ
− 1

ϵ
log

1

δ
> nmin|B,D3)(1−

δ

2
)

> p(n1 −
2

ϵ
log

1

2δ
− 1

ϵ
log

1

δ
> nmin|B,D3)−

δ

2

= p(n1 −
2

ϵ
log

1

2δ
− 1

ϵ
log

1

δ
> nmin|l2 <

1

ϵ
log

1

δ
,B,D3)p(l2 <

1

ϵ
log

1

δ
|B,D3)

+ p(n1 −
2

ϵ
log

1

2δ
− 1

ϵ
log

1

δ
> nmin ∧ l2 ≥

1

ϵ
log

1

δ
|B,D3)−

δ

2

≥ p(n1 −
2

ϵ
log

1

2δ
− 1

ϵ
log

1

δ
> nmin|l2 <

1

ϵ
log

1

δ
,B,D3)p(l2 <

1

ϵ
log

1

δ
|B,D3)−

δ

2

≥ p(n1 −
2

ϵ
log

1

2δ
− 1

ϵ
log

1

δ
> nmin|l2 <

1

ϵ
log

1

δ
,B,D3)− δ



From B, |m− m̆| < nρ2

2 , and therefore m̆ < m+ nρ2

2 , and for the case of l2 < 1
ϵ log

1
δ it holds that

n2 < n1 −
1

ϵ
log

1

2δ
+

1

ϵ
log

1

δ
< n1 +

1

ϵ
log

1

δ
.

Therefore m̆ ≤ m+ (n1 +
1
ϵ log

1
δ )

ρ2 . As nmin = O(max{m̆ 2
3 , n

ρ2
γ1
1 }) then for the case of l2 < 1

ϵ log
1
δ and B, it holds that

nmin = O(max{(m+nρ2

1 )
2
3 , n

ρ2
γ1
1 }) = O(max{n

2ρ3
3

1 , n
ρ2
γ1
1 }) < o(n1); therefore ∃nlb2 such that ∀n1 > nlb2 : p(n1− 2

ϵ log
1
2δ −

1
ϵ log

1
δ > nmin|l2 < 1

ϵ log
1
δ , B,D3) = 1.

Definition C.7. A randomized function f(X, y) : χn1 ×Rn2 → R, is (ϵ, δ)-differentially private with respect to X if ∀S ⊆ R,
and ∀X, X̂ ∈ χn : ∥X − X̂∥ ≤ 1, eq. 41 holds.

p(f(X, y) ∈ S) ≤ exp(ϵ)p(f(X̂, y) ∈ S) + δ (41)

Definition C.8 (l1-sensitivity, [11]). The l1-sensitivity of a function f : N|χ| → Rk is:

∆f = max
x,y∈N|χ|,∥x−y∥1=1

∥f(x)− f(y)∥1

Claim C.9. For Algorithm 1, calculating n̆1, n2 is (2ϵ, 0) differentially private.

Proof of Claim C.9. n1 l1-sensitivity is 1; therefore, calculating n̆ is (ϵ, 0) DP by the Laplace mechanism’s privacy guarantees.
For a given n̆1 value, the l1-sensitivity of |V | is 1. Therefore, given n̆1, calculating n2 is (ϵ, 0) DP by the Laplace mechanism’s
privacy guarantees. Consequently, by the sequential composition theorem, the composition is (2ϵ, 0) differentially private.

Claim C.10. For Algorithm 1, p(n2 ≤ |V ||D, n̆1) = 1− δ.

Proof of Claim C.10.

p(n2 ≤ |V ||D, n̆1) = p(|V | − 1

ϵ
log

1

2δ
+ l2 ≤ |V ||D, n̆1) = p(l2 ≤

1

ϵ
log

1

2δ
|D, n̆1) = 1− 1

2
exp(−

1
ϵ log

1
2δ

1
ϵ

) = 1− δ

Claim C.11. Given n̆1, n2 and n2 < |V |, calculating m̆ in Algorithm 1 is (ϵ, 0) differentially private with respect to D.

Proof of Claim C.11. Given two neighbouring datasets, D5 and D̂5, mark by V5 and V̂5 the realizations of V (calculated
at line 10) when Algorithm 1 runs on each of the datasets, respectively. If V5 = V̂5 then the claim follows trivially. In
case they differ, assume w.l.o.g that |V5| ≥ |V̂5|, and that if |V5| = |V̂5| then they differ in their last sample. Define q =∑

(xi,yi)∈V5/{x|V5|,y|V5|} xiyi, z =
∑

(xi,yi)∈V5/{x|V5|,y|V5|} x
2
i .

|
q + x|V5|y|V5|

z + x2
|V5|

−
q + x̂|V5|ŷ|V5|

z + x̂2
|V5|

| = |
qx̂2

|V5| + x|V5|y|V5|x̂
2
|V5| + x|V5|y|V5|z − qx2

|V5| − x̂|V5|ŷ|V5|x
2
|V5| − x̂|V5|ŷ|V5|z

(z + x2
|V5|)(z + x̂2

|V5|)
|

≤ qx2
h + n̆ρ1

1 x2
hz + n̆ρ1

1 x4
h

(z + x2
l )z

≤ n̆ρ1

1

2zx2
h + x4

h

(z + x2
l )z

= n̆ρ1

1 (
2x2

h

z + xl
+

x4
h

(z + x2
l )z

)

≤ n̆ρ1

1 (
2x2

h

|V5|x2
l

+
x4
h

|V5|(|V5| − 1)x4
l

) ≤ n̆ρ1

1 (
2x2

h

n2x2
l

+
x4
h

n2(n2 − 1)x4
l

)

= n̆ρ1

1

2(n2 − 1)x2
hx

2
l + x4

h

n2(n2 − 1)x4
l

Therefore, by the Laplace mechanism’s privacy guarantees, calculating m̆ is (ϵ, 0) differentially private.

Claim C.12. Lines 8-18 of Algorithm 1 are (3ϵ, δ) differentially private.



Proof of Claim C.12. Define D̂ as a neighbouring dataset to D.

p(m̆ ∈ S|D) =

∫
r1,r2∈R>0×R>0

p(m̆ ∈ S|D, n̆1 = r1, n2 = r2)p(n̆1 = r1, n2 = r2|D)dr1dr2

=

∫
r1,r2∈R>0×[1,|V |]

p(m̆ ∈ S|D, n̆1 = r1, n2 = r2)p(n̆1 = r1, n2 = r2|D)dr1dr2

+

∫
r1,r2∈R>0×(|V |,∞]

p(m̆ ∈ S|D, n̆1 = r1, n2 = r2)p(n̆1 = r1, n2 = r2|D)dr1dr2

≤∗
∫
r1,r2∈R>0×[1,|V |]

p(m̆ ∈ S|D, n̆1 = r1, n2 = r2)p(n̆1 = r1, n2 = r2|D)dr1dr2 + δ

≤∗∗
∫
r1,r2∈R>0×[1,|V |]

e2ϵp(m̆ ∈ S|D̂, n̆1 = r1, n2 = r2)p(n̆1 = r1, n2 = r2|D̂)dr1dr2 + δ

≤
∫
r1,r2∈R>0×R>0

e2ϵp(m̆ ∈ S|D̂, n̆1 = r1, n2 = r2)p(n̆1 = r1, n2 = r2|D̂)dr1dr2 + δ

= e2ϵp(m̆ ∈ S|D̂) + δ

where inequality * follows Claim C.10 and inequality ** follows Claims C.11 and C.9.

Claim C.13. Given n2, m̆ and |W | < nmin, lines 19-25 of Algorithm 1 are (ϵ, δ) differentially private with respect to D.

Proof of Claim C.13. Mark l ∼ Lap( 1ϵ ), and D̂ as a neighbouring dataset to D. Eq. 42 proves the claim.

p(S|D, |W | < nmin, m̆, n2) = p(S ∩ {null}|D, |W | < nmin, m̆, n2) + p(S ∩ {null}c|D, |W | < nmin, m̆, n2)

≤ eϵp(S ∩ {null}|D̂, |W | < nmin, m̆, n2) + δ ≤ eϵp(S|D̂, |W | < d, m̆, n2) + δ
(42)

where the first inequality is true from eq. 43 and the Laplace mechanism’s privacy guarantees for nW .

p(null|D, |W | < nmin, m̆, n2) = p(nW < nmin +
1

ϵ
log(

1

2δ
)|D, |W | < nmin, m̆, n2) ≥ p(l <

1

ϵ
log(

1

2δ
)) ≥ 1− δ (43)

Claim C.14. Line 25 of Algorithm 1 is (ϵ, δ) differentially private with respect to D for |W | ≥ nmin and given n2, m̆.

Proof of Claim C.14. For a given n2 and m̆ the group W can change by up to one sample for a neighbouring dataset. Mark

n = |W | and c = m̆. As n ≥ n
ρ2
γ1
2 , then n

1
2 > nγ1 ≥ nρ2

2 , and therefore W ∈ D(n, γ1, xh, xl, c), as defined in eq. 5.
Because W ∈ D(n, γ1, xh, xl, c), n ≥ nb1, and n ≥ nb2, the problem of sampling from p(θ|W ) for |W | ≥ nmin holds the

constraints of Claim D.27. Therefore one sample from p(θ|W ) is (ϵ, δ) differentially private.

Claim C.15. Lines 19-24 of Algorithm 1 are (ϵ, 0) differentially private with respect to D for |W | ≥ nmin and given m̆, n2.

Proof of Claim C.15. The only data released in lines 19-24 is nW . Since the l1-sensitivity of |W | given m̆, n2 is 1, then the
Laplace mechanism ensures (ϵ, 0) differential privacy.

Corollary C.16. Lines 19-25 of Algorithm 1 are (2ϵ, δ) differentially private with respect to D for |W | ≥ nmin and given
m̆, n2.

Corollary C.16 follows directly from Claims C.15 and C.14.

Corollary C.17. Lines 19-25 of Algorithm 1 are (2ϵ, δ) differentially private with respect to D given m̆, n2.

Corollary C.17 follows directly from Claims C.16 and C.13.



APPENDIX D
AUXILIARY CLAIMS

Appendix D contains claims used to simplify the otherwise complex proofs throughout the paper.

A. Stochastic Gradient Langevin Dynamics Privacy

This subsection provides auxiliary claims for SGLD privacy analysis performed in subsection A-D. It uses the notations
defined in section IV, subsection IV-B, and subection A-D, specifically: α, β, θ, p(y|x, θ) (defined in eq. 4), D(n, γ1, xh, xl, c)
(defined in eq. 5), D1, D2 (defined in eq. 8), η, θj , θ̂j , µj , µ̂

r
j , σj , σ̂

r
j (defined in subsection IV-B), and λ, λ̂, ρ, ρ̂ (defined in eq.

22).

Claim D.1. ρ 1
1−λ =

ncx2
hβ

α+nx2
hβ

.

Proof of Claim D.1.

ρ
1

1− λ
=

η

2
ncx2

hβ
1

1−
(
1− η

2

(
α+ n

(
xh

2

)2
β
)) = ncx2

hβ
1

α+ nx2
hβ

=
ncx2

hβ

α+ nx2
hβ

.

Claim D.2. ρ 1−λn−1

1−λ + ρλn−1 =
ncx2

hβ

α+nx2
hβ

(1− λn).

Proof of Claim D.2.

ρ
1− λn−1

1− λ
+ ρλn−1 = ρ

(
1− λn−1 + λn−1 − λn

1− λ

)
= ρ

(
1− λn

1− λ

)
=

ncx2
hβ

α+ nx2
hβ

(1− λn)

where the last equality holds from Claim D.1.

Claim D.3. ρ
(

1−λn−1

1−λ

)
+ ρ̂λn−1 =

ncx2
hβ

α+nx2
hβ

(
1− λn

(
3
4λ

−1 + 1
4

))
.

Proof of Claim D.3.

ρ

(
1− λn−1

1− λ

)
+ ρ̂λn−1 = ρ

(
1− λn−1

1− λ

)
+ ρ

1

4
λn−1 = ρ

(
1− 3

4λ
n−1 − 1

4λ
n

1− λ

)
= ρ

(
1− λn

(
3
4λ

−1 + 1
4

)
1− λ

)
=

ncx2
hβ

α+ nx2
hβ

(
1− λn

(
3

4
λ−1 +

1

4

))
where the last equality holds from Claim D.1.

Claim D.4. 1
4λ+ 3

4 − λ̂ = 3
4
η
2α.

Proof of Claim D.4.

1

4
λ+

3

4
− λ̂ =

1

4

(
1− η

2

(
α+ nx2β

))
+

3

4
−
(
1− η

2

(
α+

1

4
nx2β

))
=

η

2

(
α+

1

4
nx2β − 1

4

(
α+ nx2β

))
=

3

4

η

2
α.

Claim D.5. ∀k ∈ Z>0 :

(
1− λkn

) (
1− λ̂λn−1

)
−
(
1−

(
λ̂λ(n−1)

))k (
1− λn−1

(
1

4
λ+

3

4

))
= λn−1 3

4

η

2
α
(
1− λ̂kλk(n−1)

)
+ λk(n−1)

(
λ̂k − λk

)(
1− λn−1λ̂

)
.



Proof of Claim D.5.(
1− λkn

) (
1− λ̂λn−1

)
−
(
1−

(
λ̂λ(n−1)

))k (
1− λn−1

(
1

4
λ+

3

4

))
= λn−1

(
1

4
λ+

3

4
− λ̂

)
+ λkn

(
λ̂λn−1 − 1

)
+
(
λ̂λn−1

)k (
1− λn−1

(
1

4
λ+

3

4

))
= λn−1

(
1

4
λ+

3

4
− λ̂

)
+ λk(n−1)

(
λk
(
λ̂λn−1 − 1

)
+ λ̂k

(
1− λn−1

(
1

4
λ+

3

4

)))
= λn−1

(
1

4
λ+

3

4
− λ̂

)
+ λk(n−1)

(
λ̂k

(
1− λn−1

(
1

4
λ+

3

4

))
− λk

(
1− λ̂λn−1

))
= λn−1

(
1

4
λ+

3

4
− λ̂

)
+ λk(n−1)

(
λ̂k

(
1− λn−1

(
1

4
λ+

3

4

))
− λk

(
1− λn−1λ̂

))
=∗ λn−1 η

2

3

4
α+ λk(n−1)

(
λ̂k

(
1− λn−1

(
1

4
λ+

3

4

))
− λk

(
1− λn−1λ̂

))
=∗ λn−1 η

2

3

4
α+ λk(n−1)

(
λ̂k

(
1− λn−1

(
λ̂+

3

4

η

2
α

))
− λk

(
1− λn−1λ̂

))
= λn−1 η

2

3

4
α− λ̂kλn−1λk(n−1) 3

4

η

2
α+ λk(n−1)

(
λ̂k
(
1− λn−1λ̂

)
− λk

(
1− λn−1λ̂

))
= λn−1 3

4

η

2
α
(
1− λ̂kλk(n−1)

)
+ λk(n−1)

(
λ̂k − λk

)(
1− λn−1λ̂

)
.

where equality signs marked by * hold from Claim D.4.

Claim D.6. ∀k ∈ Z>0 : λ
∑k−1

j=0 λ
(n−1)jλj

(
λn−1ρ+ ρ

∑n−2
i=0 λi

)
= λ

(
1− λkn

) ncx2
hβ

α+nx2
hβ

.

Proof of Claim D.6.

λ

k−1∑
j=0

λ(n−1)jλj

(
λn−1ρ+ ρ

n−2∑
i=0

λi

)
= ρλ

kn−1∑
i=0

λi = ρλ
1− λkn

1− λ
=∗ λ

ncx2
hβ

α+ nx2
hβ

(
1− λkn

)
where equality * follows from Claim D.1.

Claim D.7. ∀k ∈ Z>0 : λ̂
∑k−1

j=0 λ
(n−1)j λ̂j

(
λn−1ρ̂+ ρ

∑n−2
i=0 λi

)
= λ̂

1−(λn−1λ̂)
k

1−λn−1λ̂

ncx2
hβ

α+nx2
hβ

(
1− λn

(
3
4λ

−1 + 1
4

))
.

Proof of Claim D.7.

λ̂

k−1∑
j=0

λ(n−1)j λ̂j

(
λn−1ρ̂+ ρ

n−2∑
i=0

λi

)
= λ̂

1−
(
λn−1λ̂

)k
1− λn−1λ̂

(
λn−1ρ̂+ ρ

1− λn−1

1− λ

)

=∗ λ̂
1−

(
λn−1λ̂

)k
1− λn−1λ̂

ncx2
hβ

α+ nx2
hβ

(
1− λn

(
3

4
λ−1 +

1

4

))
where equality * follows from Claims D.1 and D.3.

Claim D.8. ∀k ∈ R>0 : λλk − λkλnλ̂− λ̂λ̂k + λ̂λ̂kλn
(
3
4λ

−1 + 1
4

)
=
(
1− λ̂λn−1

)(
λk+1 − λ̂k+1

)
+ λ̂k+1λn−1

(
3
4
η
2α
)
.

Proof of Claim D.8.

λλk − λkλnλ̂− λ̂λ̂k + λ̂λ̂kλn

(
3

4
λ−1 +

1

4

)
= λk+1

(
1− λ̂λn−1

)
− λ̂k+1

(
1− λn−1

(
1

4
λ+

3

4

))
=∗ λk+1

(
1− λ̂λn−1

)
− λ̂k+1

(
1− λn−1

(
λ̂+

3

4

η

2
α

))
=
(
1− λ̂λn−1

)(
λk+1 − λ̂k+1

)
+ λ̂k+1λn−1

(
3

4

η

2
α

)
where equality * holds from Claim D.4.



Claim D.9. ∀k ∈ Z>0 :

λ
(
1− λkn

) (
1− λn−1λ̂

)
− λ̂

(
1−

(
λn−1λ̂

)k)(
1− λn

(
3

4
λ−1 +

1

4

))
=
(
λ− λ̂

)(
1− λ̂λn−1

)
+ λn−1λ̂

(
3

4

η

2
α
(
1− λ̂kλk(n−1)

))
+ λk(n−1)

((
1− λ̂λn−1

)(
λ̂k+1 − λk+1

))
.

Proof of Claim D.9.

λ
(
1− λkn

) (
1− λn−1λ̂

)
− λ̂

(
1−

(
λn−1λ̂

)k)(
1− λn

(
3

4
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1

4
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= λ− λ̂− λnλ̂

(
1−

(
3

4
λ−1 +

1

4

))
− λk(n−1)

(
λλk − λkλnλ̂− λ̂λ̂k + λ̂λ̂kλn

(
3

4
λ−1 +

1

4

))
=∗ λ− λ̂− λnλ̂

(
1−

(
3

4
λ−1 +

1

4

))
− λk(n−1)

((
1− λ̂λn−1

)(
λk+1 − λ̂k+1

)
+ λ̂k+1λn−1

(
3

4

η

2
α

))
= λ− λ̂− λn−1λ̂

(
λ−

(
3

4
+

1

4
λ

))
− λk(n−1)

((
1− λ̂λn−1

)(
λk+1 − λ̂k+1

)
+ λ̂k+1λn−1

(
3

4

η

2
α

))
=∗∗ λ− λ̂− λn−1λ̂

(
λ−

(
λ̂+

3

4

η

2
α

))
− λk(n−1)

((
1− λ̂λn−1

)(
λk+1 − λ̂k+1

)
+ λ̂k+1λn−1

(
3

4

η

2
α

))
=
(
λ− λ̂

)(
1− λ̂λn−1

)
+ λn−1λ̂

(
3

4

η

2
α
(
1− λ̂kλk(n−1)

))
+ λk(n−1)

((
1− λ̂λn−1

)(
λ̂k+1 − λk+1

))
where equality * follows from Claim D.8 and equality ** follows from Claim D.4.

Claim D.10. ∀k ∈ Z>0 :

λ
(
1− λkn

)
− λ̂

1−
(
λn−1λ̂

)k
1− λn−1λ̂

(
1− λn

(
3

4
λ−1 +

1

4

))

=
(
λ− λ̂

)
+

λn−1
(

3
4
η
2α
(
1− λ̂kλk(n−1)

))
1− λ̂λn−1

+ λk(n−1)
(
λ̂k+1 − λk+1

)
.

Proof of Claim D.10.

λ
(
1− λkn

)
− λ̂

1−
(
λn−1λ̂

)k
1− λn−1λ̂

(
1− λn

(
3

4
λ−1 +

1

4

))

=

(
λ− λ̂

)(
1− λ̂λn−1

)
+ λn−1λ̂

(
3
4
η
2α
(
1− λ̂kλk(n−1)

))
+ λk(n−1)

((
1− λ̂λn−1

)(
λ̂k+1 − λk+1

))
(
1− λ̂λn−1

)
=
(
λ− λ̂

)
+

λn−1
(

3
4
η
2α
(
1− λ̂kλk(n−1)

))
1− λ̂λn−1

+ λk(n−1)
(
λ̂k+1 − λk+1

)
where first equality is true from Claim D.9.

Claim D.11. ∀k ∈ Z>0 :
ncx2

hβ

α+nx2
hβ

(
λ− λ̂+

λn−1( 3
4

η
2α(1−λ̂kλk(n−1)))
1−λ̂λn−1

)
+ (ρ− ρ̂) > 0.



Proof of Claim D.11.

ncx2
hβ

α+ nx2
hβ

λ− λ̂+
λn−1

(
3
4
η
2α
(
1− λ̂kλk(n−1)

))
1− λ̂λn−1

+ (ρ− ρ̂)

=
ncx2

hβ

α+ nx2
hβ

λ− λ̂+
λn−1

(
3
4
η
2α
(
1− λ̂kλk(n−1)

))
1− λ̂λn−1

+
η

2
ncx2

hβ

(
1− 1

4

)

=
ncx2

hβ

α+ nx2
hβ

(1− η

2

(
α+ nx2β

)
−
(
1− η

2

(
α+

1

4
nx2β

))

+
λn−1

(
3
4
η
2α
(
1− λ̂kλk(n−1)

))
1− λ̂λn−1

) +
3

4

η

2
ncx2

hβ

=
ncx2

hβ

α+ nx2
hβ

−3

4

η

2

(
nx2β

)
+

λn−1
(

3
4
η
2α
(
1− λ̂kλk(n−1)

))
1− λ̂λn−1

+
3

4

η

2
ncx2

hβ

=
ncx2

hβ

α+ nx2
hβ

λn−1
(

3
4
η
2α
(
1− λ̂kλk(n−1)

))
1− λ̂λn−1

+ ncx2
hβ

(
3

4

η

2
− 3

4

η

2

nx2β

α+ nx2β

)

=
ncx2

hβ

α+ nx2
hβ

λn−1
(

3
4
η
2α(1− λ̂kλk(n−1))

)
1− λ̂λn−1

+ ncx2
hβ

3

4

η

2

(
1− nx2β

α+ nx2β

)
> 0

where the last inequality holds because λ, λ̂ < 1 and α > 0.

Claim D.12. 1
α > λ−2η 1−λ−2(k+1)n

1−λ−2 is true for all k such that 0 ≤ k ≤ 1
2n logλ

(
1

1+ 1
αη (1−λ2)

)
− 1

Proof of Claim D.12.

1

α
≥ λ−2η

1− λ−2kn

1− λ−2
⇐⇒

λ2 1

α

1

η

(
1− λ−2

)
≤ 1− λ−2kn ⇐⇒

λ2 1

α

1

η

(
λ−2 − 1

)
≥ λ−2kn − 1 ⇐⇒

1 + λ2 1

α

1

η

(
λ−2 − 1

)
≥ λ−2kn ⇐⇒

− k ≥ 1

2n
logλ

(
1 +

1

αη

(
1− λ2

))
⇐⇒

k ≤ 1

2n
logλ

(
1

1 + 1
αη (1− λ2)

)

Claim D.13. 1
α

(
λ̂λ(n−1)

)2k
> η

∑n−1
i=0 λ2i

∑k−1
j=0

(
λ̂2λ2(n−1)

)j
is true for all k ∈ Z>0 : k ≤ 1

2n logλ

(
1

1+ 1
αη (1−λ2)

)
.

Proof of Claim D.13. First, note that the inequality can also be written as

1

α
> η

n−1∑
i=0

λ2i
k−1∑
j=0

(
λ̂λ(n−1)

)2(j−k)

.

Second, the right-hand term of the inequality could be upper bound as in eq. 44. Therefore, for the claim’s inequality to hold,
it is enough that 1

α ≥ ηλ−2 1−λ−2nk

1−λ−2 , which is proved by Claim D.12 to be true for 0 < k ≤ 1
2n logλ

(
1

1+ 1
αη (1−λ2)

)
.



η

n−1∑
i=0

λ2i
k−1∑
j=0

(
λ̂λ(n−1)

)2(j−k)

= η

n−1∑
i=0

λ2i
k−1∑
j=0

1(
λ̂λ(n−1)

)2(k−j)

<k>j η

n−1∑
i=0

λ2i
k−1∑
j=0

1(
λλ(n−1)

)2(k−j)
= η

n−1∑
i=0

λ2i
k−1∑
j=0

1

λ2n(k−j)

= η

n−1∑
i=0

k−1∑
j=0

1

λ2(nk−nj−i)
=r=nj+i η

nk−1∑
r=0

1

λ2(nk−r)
=r′=nk−r,1<r′<nk η

nk∑
r′=1

1

λ2(r′)

= η

nk∑
i=1

λ−2i = η
λ−2 − λ−2(nk+1)

1− λ−2
= ηλ−2 1− λ−2nk

1− λ−2

(44)

Claim D.14. 1
α

(
λ̂λn−1

)2k
≥ η

(
λ̂λn−1

)2k∑n−1
i=0 λ2i is true for all k ∈ Z>0 : k ≤ 1

2n logλ

(
1

1+ 1
αη (1−λ2)

)
.

Proof of Claim D.14. Eq. 45 holds because λ, λ̂ < 1. By multiplying both sides with
∑n−1

i=0 λ2i, we get eq. 46. Then, noticing
that the right term equals to the right term of Claim D.13 inequality, and hence smaller than the left term of Claim D.13
inequality, Claim D.14 is proved.

(
λ̂λn−1

)2k
< 1 <

k−1∑
i=0

(
λ̂λn−1

)2j
(45)

η
(
λ̂λn−1

)2k̇ n−1∑
i=0

λ2i < η

k̇−1∑
j=0

(
λ̂λn−1

)2j n−1∑
i=0

λ2i (46)

Claim D.15. The inequality

(
λ̂λn−r

)2 1

α

(
λ̂λn−1

)2k
+ η

k−1∑
j=0

(
λ̂λn−1

)2j n−1∑
i=0

λ2i

 > η

n−r∑
i=0

λ2i

holds for all k ∈ Z>0 and x2
hβ > 3, n > 1

2αx2
hβ
− 1

x2
hβ

.

Proof of Claim D.15. We start with eq. 47, where the first inequality holds because λ < 1 and r > 1, and the second inequality
holds because λ < λ̂. Using eq. 47, we can lower-bound the left-hand side of the claim’s inequality. We continue with eq. 48,
where the inequality holds because λ < λ̂ and r > 1. This allows us to upper-bound the right side of the claim’s inequality.
Given these lower and upper bounds, it’s enough to show that λ2n( 1

αλ
2kn + η 1−λ2kn

1−λ2 ) > η 1−λ2n

1−λ2 , which according to eq. 49
is equivalent to showing that (2nx2

hβ − 1) 1
αλ

2(k+1)n + 2(2λ2n − 1) > 0. Since n > 1
2αx2

hβ
− 1

x2
hβ

, Claim D.18 applies, and

therefore λ2n ≥ e
− 2

x2
h
β . Consequently, it’s enough to show that (2nx2

hβ − 1) 1
αλ

2(k+1)n + 2(2e
− 2

x2
h
β − 1) > 0, which is true

for x2
hβ > 3 by Claim D.16.

(
λ̂λn−r

)2 1

α

(
λ̂λn−1

)2k
+ η

k−1∑
j=0

(
λ̂λn−1

)2j n−1∑
i=0

λ2i

 >
(
λ̂λn−1

)2 1

α

(
λ̂λn−1

)2k
+ η

k−1∑
j=0

(
λ̂λn−1

)2j n−1∑
i=0

λ2i


> λ2n

 1

α
λ2kn + η

k−1∑
j=0

λ2jn
n−1∑
i=0

λ2i

 = λ2n

(
1

α
λ2kn + η

1− λ2kn

1− λ2

) (47)

η

n−r∑
i=0

λ2i < η

n−1∑
i=0

λ2i = η
1− λ2n

1− λ2
(48)



λ2n

(
1

α
λ2kn + η

1− λ2kn

1− λ2

)
> η

1− λ2n

1− λ2

λ2n
(
1− λ2

) 1
α
λ2kn + ηλ2n

(
1− λ2kn

)
> η

(
1− λ2n

)
(
1− λ2

) 1
α
λ2(k+1)n + η

(
2λ2n − λ2(k+1)n − 1

)
> 0(

α+ nx2
hβ
)2 (

1− λ2
) 1
α
λ2(k+1)n + 2

(
2λ2n − λ2(k+1)n − 1

)
> 0

(
α+ nx2

hβ
)2(

1−
(
1− 1

α+ nx2
hβ

)2
)

1

α
λ2(k+1)n + 2

(
2λ2n − λ2(k+1)n − 1

)
> 0

(
2
(
α+ nx2

hβ
)
− 1
) 1
α
λ2(k+1)n + 2

(
2λ2n − λ2(k+1)n − 1

)
> 0

2λ2(k+1)n +
(
2nx2β − 1

) 1
α
λ2(k+1)n + 2

(
2λ2n − λ2(k+1)n − 1

)
> 0(

2nx2
hβ − 1

) 1
α
λ2(k+1)n + 2

(
2λ2n − 1

)
> 0

(49)

Claim D.16. For x2β > 3, the inequality (2e
− 2

x2β − 1) > 0 holds.

Proof of Claim D.16. It’s easy to see that the inequality holds only if x2β ≥ −2
ln 1

2

. Since −2
ln 1

2

< 3, the claim is proved.

Claim D.17. For k̇ as defined in Lemma A.6, and the conditions of Claim D.18:

1

α

e
2

x2
h
β + α

(
e

2

x2
h
β − 1

)
(α+ nx2

hβ) +
1
8

 > λ−2η
1− λ−2(⌈k̇⌉+1)n

1− λ−2
.

Proof of Claim D.17.

η
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λ2 − 1
≤ η
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1− λ2
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λ
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(
1
2n logλ

(
1
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αη (1−λ2)

)
−1+2

)
n
− 1

1− λ2

= η
λ
− logλ

(
1
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)
λ−2n − 1

1− λ2
= η

(
1 + 1

αη

(
1− λ2

))
λ−2n − 1

1− λ2

= η

(
1− λ2

)
λ−2n 1

αη

1− λ2
+ η

λ−2n − 1

1− λ2
=

1

α
λ−2n +

(
λ−2n − 1

)
(α+ nx2

hβ) +
1
8

≤ e
2

x2
h
β
1

α
+

1

α
α

(
e

2

x2
h
β − 1

)
(α+ nx2

hβ) +
1
8

=
1

α

e
2

x2
h
β + α

(
e

2

x2
h
β − 1

)
(α+ nx2

hβ) +
1
8


where the fourth equality holds from eq. 50 and the second inequality holds from D.18.

η

λ2 − 1
= η

1(
1− η

2 (α+ nx2
hβ)
)2 − 1

= η
1

η (α+ nx2
hβ) +

(
η
2 (α+ nx2

hβ)
)2

=
1

(α+ nx2
hβ) +

η
4 (α+ nx2

hβ)
2 =

1

(α+ nx2
hβ) +

1
8

(50)



Claim D.18. For the conditions of claim D.20:

(1− 1

α+ nx2β
)2n ≥ e

− 2
x2β .

Proof of Claim D.18. The proof is easily deduced from Claims D.19 and D.20

Claim D.19.

lim
n→∞

(1− 1

α+ nx2β
)2n = e

− 2
x2β .

Proof of Claim D.19. From eq. 51, it is enough to find limn→∞
ln(1− 1

α+nx2β
)

1
2n

. Since limn→∞
ln(1− 1

α+nx2β
)

1
2n

= 0
0 , and both

the numerator and denominator are differentiable around ∞, the use of L’Hôpital’s rule is possible as shown in eq. 52, with
the result proving the claim.

(
1− 1

α+ nx2β

)2n

= e
ln
(
1− 1

α+nx2β

)2n

= e
2n ln

(
1− 1

α+nx2β

)
= e

ln

(
1− 1

α+nx2β

)
1
2n (51)

lim
n→∞

d
dn ln

(
1− 1

α+nx2β

)
d
dn

1
2n

= lim

x2β
(α+nx2β−1)(α+nx2β)

− 1
2n2

= − lim
2n2x2β

(nx2β)
2 = − 2

x2β
(52)

Claim D.20.

∀n >
1

2αx2β
− 1

x2β
:

d

dn
(1− 1

α+ nx2β
)2n < 0.

Proof of Claim D.20. First, we find a simplified term for the derivative:

d

dn

(
1− 1

α+ nx2β

)2n

=
d

dn
e
2n ln

(
1− 1

α+nx2β

)

=

(
1− 1

α+ nx2β

)2n
(
2 ln

(
1− 1

α+ nx2β

)
+ 2n

1

1− 1
α+nx2β

· x2β

(α+ nx2β)
2

)

=

(
1− 1

α+ nx2β

)2n(
2 ln

(
1− 1

α+ nx2β

)
+

2nx2β

(α+ nx2β − 1) (α+ nx2β)

)
.

(53)

A lower bound for the ln term can be found using Taylor’s theorem as shown in eq. 54, where 0 ≤ ξ ≤ 1
α+nx2β .

ln

(
1− 1

α+ nx2β

)
= − 1

α+ nx2β
− 1

2

1

(1− ξ)
2

(
1

α+ nx2β

)2

≤ − 1

α+ nx2β
− 1

2

(
1

α+ nx2β

)2

(54)

From eq. 53 and 54, it is enough to find the conditions for which nx2β
(α+nx2β−1)(α+nx2β) < 1

α+nx2β + 1
2

1
(α+nx2β)2 . A

simplified version of this inequality is found at eq. 55, and it can be easily seen that for α > 1
2 (

1
nx2β + 1), and therefore also

for n > 1
2αx2β −

1
x2β , this inequality holds.

nx2β

(α+ nx2β − 1)(α+ nx2β)
<

1

α+ nx2β
+

1

2

1

(α+ nx2β)2

0 < 2α2 + 2nx2βα− 2α− 2nx2β + α+ nx2β − 1

0 < nx2β(2α− 1) + α(2α− 1)− 1

(55)

Claim D.21. For n > α
x2
hβ

(e
2

x2
h
β − 2) + 1

2x2
hβ

and the conditions of Claim D.18, k̇ defined in Lemma A.6 is positive.



Proof of Claim D.21. The claim’s inequality is simplified at eq. 56:

k̇ > 0

1

2n
logλ

(
1

1 + 1
αη (1− λ2)

)
− 1 > 0 ⇐⇒

logλ

(
1

1 + 1
αη (1− λ2)

)
> 2n ⇐⇒

ln
(

1
1+ 1

αη (1−λ2)

)
lnλ

> 2n ⇐⇒

ln

(
1

1 + 1
αη (1− λ2)

)
< 2n lnλ ⇐⇒

ln

(
1

1 + 1
αη (1− λ2)

)
< lnλ2n ⇐⇒

1

1 + 1
αη (1− λ2)

< λ2n ⇐⇒

λ−2n < 1 +
1

αη

(
1− λ2

)
⇐⇒

λ−2n − 1 <
1

αη

(
1− λ2

)
.

(56)

By Claim D.18, λ−2n − 1 < e
2

x2
h
β − 1; therefore it is enough to find conditions for e

2

x2
h
β − 1 < 1

αη (1− λ2), which is done at
eq. 57. As this condition matches the claim conditions, the claim is proved.

e
2

x2
h
β − 1 <

1

αη

(
1− λ2

)
⇐⇒

αη

(
e

2

x2
h
β − 1

)
<
(
1− λ2

)
⇐⇒

αη

(
e

2

x2
h
β − 1

)
< 1−

(
1− η

2

(
α+ nx2

hβ
))2

⇐⇒

α

(
e

2

x2
h
β − 1

)
<
(
α+ nx2

hβ
)
− η

4

(
α+ nx2β

)2 ⇐⇒
α

(
e

2

x2
h
β − 1

)
<
(
α+ nx2

hβ
)
− 1

2
⇐⇒

α

(
e

2

x2
h
β − 2

)
+

1

2
< nx2

hβ ⇐⇒

α

x2
hβ

(
e

2

x2
h
β − 2

)
+

1

2x2
hβ

< n

(57)

B. Posterior Sampling Privacy

This subsection provides auxiliary claims for the posterior sampling privacy analysis performed in subsection IV-A.
It uses the notations defined in section IV, subsection IV-A, and subection A-B, specifically: α, β, θ, p(y|x, θ) (de-
fined in eq. 4), D(n, γ1, xh, xl, c) (defined in eq. 5), p(θ|D), p(θ|D̂), θ, µ, σ, µ̂, σ̂, (σ2)∗ν , ν (defined in subsection IV-A),
D, D̂, xn, yn, x̂n, ŷn, z, q (defined in eq. 18).

Claim D.22. For n > 1 + 10
x2
h

x2
l

ν
β , the inequality 1

10 (α+ (z + x2
n)β) > ν(x̂2

n − x2
n) holds.

Proof Claim D.22. Notice that 1
10 (α + (z + x2

n)β) >
1
10zβ > 1

10 (n − 1)x2
l β and νx2

h > ν(x̂2
n − x2

n). Therefore a sufficient
condition will be that 1

10 (n− 1)x2
l β > νx2

h, which is equivalent to n > 1 +
x2
h

x2
l

10ν
β .



Claim D.23. (σ2)∗ν is positive.

Proof Claim D.23.(
σ2
)∗
ν
= νσ2 + (1− ν) σ̂2 =

ν

α+ (z + x2
n)β

+
1− ν

α+ (z + x̂2
n)β

=
ν
(
α+

(
z + x̂2

n

)
β
)
+ (1− ν)

(
α+

(
z + x2

n

)
β
)

(α+ (z + x2
n)β) (α+ (z + x̂2

n)β)
=

α+
(
z + x2

n

)
β + ν

(
x2
n − x̂2

n

)
(α+ (z + x2

n)β) (α+ (z + x̂2
n)β)

(58)

therefore, a sufficient condition is that α + (z + x2
n)β + ν(x2

n − x̂2
n) > 0. Since the condition of Lemma A.1 dictates that

n > 1 + 10
x2
h

x2
l

ν
β , then Claim D.22 holds, and therefore the condition is satisfied.

Claim D.24. The value ln σ
σ̂ can be bounded as following:

ln
σ

σ̂
≤ x2

h

2(n− 1)x2
l

.

Proof of Claim D.24. For x̂n ≤ xn, the term ln σ
σ̂ is negative and the claim trivially holds. For x̂n > xn, consider c1 =

x2
h

(n−1)x2
l

:

c1 =
x2
h

(n− 1)x2
l

>
x̂2
n − x2

n

z + x2
n

>
x̂2
nβ − x2

nβ

α+ (z + x2
n)β

=
α+ (z + x̂2

n)β

α+ (z + x2
n)β
− 1. (59)

From eq. 59, by Taylor theorem:

ec1 = 1 + c1 +
eζ

2
(c1)

2 > 1 + c1 >
α+ (z + x̂2

n)β

α+ (z + x2
n)β

where 0 ≤ ζ ≤ c1. Consequently, because the natural logarithm is monotonically increasing, the following equation also holds:

1

2
c1 >

1

2
ln

α+ (z + x̂n)β

α+ (z + xn)β
= ln

σ

σ̂
.

Therefore ln σ
σ̂ < 1

2
x2
h

(n−1)x2
l

.

Claim D.25. For the conditions of Lemma A.1, the value of 1
2 (ν − 1) ln σ̂2

(σ2)∗ν
can be upper bounded as following:

1

2
(ν − 1) ln

σ̂2

(σ2)
∗
ν

≤ 1

2
(ν − 1)

νx2
h

2 ((n− 1)x2
l − νx2

h)
.

Proof of Claim D.25. Consider c1 =
νx2

h

((n−1)x2
l −νx2

h)
:

c1 =
νx2

h

(n− 1)x2
l − νx2

h

≥∗ νβx2
h

α+ (n− 1)x2
l β − νβx2

h

≥∗ νβx̂2
n

α+ (z + x2
n)β − νβx2

n

≥
νβ
(
x̂2
n − x2

n

)
α+ (z + x2

n)β − νβ (x2
n − x̂2

n)
=

α+
(
z + x2

n

)
β

α+ (z + x2
n)β + νβ (x2

n − x̂2
n)
− 1

=
1

α+ (z + x̂2
n)β

·
(
α+

(
z + x2

n

)
β
) (

α+
(
z + x̂2

n

)
β
)

α+ (z + x2
n)β + νβ (x2

n − x̂2
n)

− 1 =
σ̂2

(σ2)
∗
ν

− 1

where inequalities * holds under the assumption that n > 1 + ν
x2
h

x2
l

, and last equality holds from eq. 58. Therefore, by using
Taylor theorem:

ec1 = 1 + c1 +
eζ

2
(c1)

2 > 1 + c1 ≥
σ̂2

(σ2)∗ν
.

where 0 ≤ ζ ≤ c1. From this inequality, and because the natural logarithm is monotonically increasing, it is true that
ln σ̂2

(σ2)∗ν
≤ c1. Therefore

1

2
(ν − 1) ln

σ̂2

(σ2)∗ν
≤ 1

2
(ν − 1)c1 =

1

2
(ν − 1)

νx2
h

((n− 1)x2
l − νx2

h)
.



Claim D.26. For the conditions of Lemma A.1, the value ν
2
(µ−µ̂)2

(σ2)∗ν
is bounded by

2νβ · x4
h

9
10n

1−2γ1x2
l

+ 2ν ·
x4
h

(
α+ x2

hβ
)

9
10x

4
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n2−γ1
+

ν

2
·
x4
h

(
α+ x2

hβ
)2

9
10x

6
l β

· (c+ nγ1)
2

n3
.

Proof of Claim D.26. First, we bound |µ− µ̂|:

|µ− µ̂| = β| q + xnyn
α+ (z + x2

n)β
− q + x̂nŷn

α+ (z + x̂2
n)β
|

= |
(q + xnyn)

(
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z + x̂2
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)
β
)
− (q + x̂nŷn)
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n
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β
)
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= β|qx̂
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2
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q
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ŷn
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q
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Therefore,
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=
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n)β) (α+ (z + x2

n)β)

=
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(
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(
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9
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)
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2
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)
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+
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9
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2
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+
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2

9
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2
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3

)

= 2νβ

(
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h

9
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+ 2νβ

((
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) (
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)

9
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2
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+
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9
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)
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where inequality * is true because the conditions of Lemma A.1 dictates that n > 1 +
x2
h

x2
l

10ν
β , and according to Claim D.22

this guarantee that 1
10 (α+ (z + x2

n)β) > ν(x̂2
n − x2

n). Inequality ** follows from n >> 1⇒ (n− 1)xl ≈ nxl.

Claim D.27. For the conditions and definitions of Lemma IV.4, one sample from the posterior is (ϵ, δ) differentially private
for the following conditions on n and ν:

ν = 1 +
2 ln( 1δ )

ϵ

n ≥ max
{
1 +

x2
h

x2
l

8

ϵ
, 1 + ν

x2
h

x2
l

(
1 + 8

(ν − 1)

ϵ

)
,

(
16νβx4
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10ϵx
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) 1
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,(
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ϵ
·
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h
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)
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ϵ
·
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10x
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) 1
3
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3

}
.

Proof of Claim D.27. By Lemma A.1, one sample from the posterior is (ϵ1 +
ln( 1

δ )

ν−1 , δ) differentially private. For each of the

six terms of ϵ1 +
ln( 1

δ )

ν−1 , the lower bounds on n and ν, found at equations 60, 61, 62, 63, 64, and 65, guarantee that the sum
of terms is upper bounded by ϵ. These bounds match the claim’s guarantee over n and ν, thus proving the claim.



For ln( 1
δ )

ν−1 :

ln( 1δ )

ν − 1
=

ϵ

2
2 ln( 1δ )

ϵ
+ 1 = ν.

(60)

For x2
h

(n−1)x2
l

:
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8
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(61)
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≤ ϵ
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For term 5νx4
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Claim D.28. For c = nγ2 , γ1 < γ2 < 3
2 , and the conditions and definitions of Lemma IV.4, one sample from the posterior is

(ϵ, δ) differentially private for following terms on n and ν:
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Proof of Claim D.28. Claim D.27 provides lower bounds on n such that one sample from the posterior will be (ϵ, δ) differential
privacy. When c = nγ2 , γ2 > γ1, these bounds can be refined.
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APPENDIX E
CLIPPED GRADIENTS

Previous work [15] suggested training machine learning models using an SGLD-inspired learning step with clipped gradients
to get differentially private models. Given the definitions in section III-B and a gradient clipping threshold C ∈ R>0, the SGLD-
inspired learning step with clipped gradient is

θj+1 = θj +
ηj
2

(
∇θj ln p(θj) +

n

b

b∑
i=1

∇θj ln p(yij |θj , xij )/max(1,
∥∇θj ln p(yij |θj , xij )∥2

C
)

)
+
√
ηjξj

ij ∼ uniform{1, ..., n}
ξj ∼ N (0, 1).

(66)

We repeated the attack described in subsection V with models that were trained with the learning step described in eq. 66.
The models were trained with clipping threshold C = 0.2, a learning rate of 0.0013, and a batch size of 4. We created a
novel sample, (x∗, y∗), and used 200 models to train the classifier and another 200 models on which we used the classifier to
estimate the DP lower bound. Lastly, we used the ”Opacus” framework [44] to run the experiment.

Figure 3 depicts the model’s accuracy as well as lower (ϵemp
lb ) and upper (ϵub) bounds over ϵ, given δ = 10−5. The lower

bound has a confidence value of 90%, i.e., P (ϵ ≥ ϵemp
lb ) ≥ 0.9025, while the upper bound is computed using the ”Opacus”

framework [44] in Rényi-DP terms (See definition III.3) and converted to (ϵ, δ)-DP terms using Lemma III.4.
From figure 3, we see that the attack did not succeed in showing a privacy breach. However, we also see that the maximum

accuracy is 90.6% (which is 8% lower than the accuracy for models trained with SGLD, as shown in figure 2).

Fig. 3. Lower (ϵemp
lb ) and upper (ϵub) bounds over the differential privacy of the LeNet5, SGLD based, training process with clipped gradients over MNIST

for a given δ, for learning rate 0.001, a batch size of 4, and clipping value of 0.2. Upper bound was calculated in Rényi-DP terms (See definition III.3) using
[44] and converted to (ϵ, δ) -DP terms using III.4.

3Effective learning rate after multiplication by SGLD’s normalization factor, i.e. η n
2b

. See learning step in eq. 66 for details.


