
Under review as a conference paper at ICLR 2024

RLLTE: LONG-TERM EVOLUTION PROJECT OF REIN-
FORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We present RLLTE: a long-term evolution, extremely modular, and open-source
framework for reinforcement learning (RL) research and application. Beyond de-
livering top-notch algorithm implementations, RLLTE also serves as a toolkit for
developing algorithms. More specifically, RLLTE decouples the RL algorithms
completely from the exploitation-exploration perspective, providing a large num-
ber of components to accelerate algorithm development and evolution. In particu-
lar, RLLTE is the first RL framework to build a complete and luxuriant ecosystem,
which includes model training, evaluation, deployment, benchmark hub, and large
language model (LLM)-empowered copilot. RLLTE is expected to set standards
for RL engineering practice and be highly stimulative for industry and academia.

1 INTRODUCTION

Reinforcement learning (RL) has emerged as a highly significant research topic, garnering con-
siderable attention due to its remarkable achievements in diverse fields, including smart manu-
facturing and autonomous driving (Mnih et al., 2015; Duan et al., 2016; Schulman et al., 2017;
Haarnoja et al., 2018; Yarats et al., 2021). However, the efficient and reliable engineering imple-
mentation of RL algorithms remains a long-standing challenge. These algorithms often possess
sophisticated structures, where minor code variations can substantially influence their practical per-
formance. Academia requires a stable baseline for algorithm comparison, while the industry seeks
convenient interfaces for swift application development (Raffin et al., 2021). However, the design
and maintenance of an RL library prove costly, involving substantial computing resources, making
it prohibitive for most research teams.

To tackle this problem, several open-source projects were proposed to offer reference implementa-
tions of popular RL algorithms (Liang et al., 2018; D’Eramo et al., 2021; Fujita et al., 2021; Raffin
et al., 2021; Huang et al., 2022). For instance, Raffin et al. (2021) developed a stable-baselines3
(SB3) framework, which encompasses seven model-free deep RL algorithms, including proximal
policy optimization (PPO) (Schulman et al., 2017) and asynchronous actor-critic (A2C) (Mnih et al.,
2016). SB3 prioritizes stability and reliability, and rigorous code testing has been conducted to mini-
mize implementation errors and ensure the reproducibility of results. Weng et al. (2022a) introduced
Tianshou, a highly modularized library emphasizing flexibility and training process standardization.
Tianshou also provides a unified interface for various algorithms, such as offline and imitation learn-
ing. In contrast, Huang et al. (2022) introduced CleanRL, which focuses on single-file implemen-
tations to facilitate algorithm comprehension, new features prototyping, experiment analysis, and
scalability.

Despite their achievements, most of the existing benchmarks have not established a long-term evo-
lution plan and have proven to be short-lived. Firstly, the consistent complexity of RL algorithms
naturally results in distinct coding styles, posing significant obstacles to open-source collaborations.
Complete algorithm decoupling and modularization have yet to be well achieved, making mainte-
nance challenging and limiting extensibility. Secondly, these projects are deficient in establishing a
comprehensive application ecosystem. They primarily concentrate on model training, disregarding
vital aspects like model evaluation and deployment. Furthermore, they frequently lack exhaustive
benchmark testing data, including essential elements like learning curves and trained models. This
deficiency makes replicating algorithms demanding in terms of computational resources.

1

Under review as a conference paper at ICLR 2024

Core

App.

Prototypes

Common

Auxiliaries

...

Encoder

Xploit

Policy

Storage

Distribution

Xplore

Augmentation

Reward

Tool
Env Wrappers

Env

Game APIs

...

Pe#ormance

Evaluation

Comparison

Visualization

Datasets

Hub

Models

...

Deployment Pre-training Agent Copilot

Figure 1: Overview of the architecture of RLLTE.

Inspired by the discussions above, we propose RLLTE, a long-term evolution, extremely modular,
and open-source framework of RL. We summarize the highlighted features of RLLTE as follows:

• Module-oriented. RLLTE decouples RL algorithms from the exploitation-exploration per-
spective and breaks them down into minimal primitives, such as encoder for feature extrac-
tion and storage for archiving and sampling experiences. RLLTE offers a rich selection
of modules for each primitive, enabling developers to utilize them as building blocks for
constructing algorithms. As a result, the focus of RLLTE shifts from specific algorithms
to providing more handy modules like PyTorch. In particular, each module in RLLTE is
customizable and plug-and-play, empowering users to develop their own modules. This
decoupling process also contributes to advancements in interpretability research, allowing
for a more in-depth exploration of RL algorithms.

• Long-term evolution. RLLTE is a long-term evolution project, continually involving ad-
vanced algorithms and tools in RL. RLLTE will be updated based on the following tenet:
(i) generality; (ii) improvements in generalization ability and sample efficiency; (iii) ex-
cellent performance on recognized benchmarks; (iv) promising tools for RL. Therefore,
this project can uphold the right volume and high quality resources, thereby inspiring more
subsequent projects.

• Data augmentation. Recent approaches have introduced data augmentation techniques
at the observation and reward levels to improve the sample efficiency and generalization
ability of RL agents, which are cost-effective and highly efficient. In line with this trend,
RLLTE incorporates built-in support for data augmentation operations and offers a wide
range of observation augmentation modules and intrinsic reward modules.

• Abundant ecosystem. RLLTE considers the needs of both academia and industry and de-
velops an abundant project ecosystem. For instance, RLLTE designed an evaluation toolkit
to provide statistical and reliable metrics for assessing RL algorithms. Additionally, the
deployment toolkit enables the seamless execution of models on various inference devices.
In particular, RLLTE attempts to introduce the large language model (LLM) to build an
intelligent copilot for RL research and applications.

• Comprehensive benchmark data. Existing RL projects typically conduct testing on a lim-
ited number of benchmarks and often lack comprehensive training data, including learning

2

Under review as a conference paper at ICLR 2024

curves and test scores. While this limitation is understandable, given the resource-intensive
nature of RL training, it hampers the advancement of subsequent research. To address
this issue, RLLTE has established a data hub utilizing the Hugging Face platform. This
data hub provides extensive testing data for the included algorithms on widely recognized
benchmarks. By offering complete and accessible testing data, RLLTE will facilitate and
accelerate future research endeavors in RL.

• Multi-hardware support. RLLTE has been thoughtfully designed to accommodate di-
verse computing hardware configurations, including graphic processing units (GPUs) and
neural network processing units (NPUs), in response to the escalating global demand for
computing power. This flexibility enables RLLTE to support various computing resources,
ensuring optimal trade-off of performance and scalability for RL applications.

2 ARCHITECTURE

Figure 1 illustrates the overall architecture of RLLTE, which contains the core layer, application
layer, and tool layer. The following sections will detail the design concepts and usage of the three
layers.

2.1 CORE LAYER

In the core layer, we decouple an RL algorithm from the exploitation-exploration perspective and
break them down into minimal primitives. Figure 2 illustrates a typical forward and update workflow
of RL training. At each time step, an encoder first processes the observation to extract features.
Then, the features are passed to a policy module to generate actions. Finally, the transition will be
inserted into the storage, and the agent will sample from the storage to perform the policy update. In
particular, we can use data augmentation techniques such as observation augmentation and intrinsic
reward shaping to improve the sample efficiency and generalization ability.

Architecture (Decoupling)

Encoder FeaturesObservation

ActionPolicy

Dist.

UpdateStorage Samples

Int. Reward

Obs. Aug.

(a) Forward workflow

(b) Update workflow

Figure 2: Forward and update workflow of an RL algorithm. Aug.: Augmentation. Dist.: Distribu-
tion for sampling actions. Int.: Intrinsic. Obs.: Observation.

We categorize these fundamental components into two parts: xploit and xplore, and Table 1 illus-
trates their architectures. The modules within the xploit component primarily focus on exploiting
the current collected experiences. For instance, the storage module defines the methods for stor-
ing and sampling experiences, while the policy module is updated based on the sampled data. In
contrast, modules in xplore focus on exploring unknown domains. When policy is stochastic,
distribution specifies the methods for sampling actions from the action space. In the case of
a deterministic policy, the distribution module introduces noise to the current action to en-
hance the exploration of the action space. The augmentation and reward modules contribute to
exploring the state and action space by augmenting observations and providing additional intrinsic
rewards, respectively. Each submodule in Table 1 is accompanied by many pre-defined components,
which are listed in Appendix A.

3

Under review as a conference paper at ICLR 2024

Table 1: Six primitives in RLLTE. Note that the action noise is implemented via a distribution
manner to keep unification in RLLTE.

Module Submodule Remark

rllte.xploit
policy Policies for interaction and learning.
encoder Encoders for feature extraction.
storage Storages for collected experiences.

rllte.xplore
distribution Distributions for sampling actions.
augmentation Observation augmentation modules.
reward Intrinsic reward modules.

2.2 APPLICATION LAYER

Equipped with modules of the core layer, we can efficiently develop RL algorithms and applica-
tions with simple steps, and Table 2 illustrates the architecture of the application layer. See all the
corresponding code examples in Appendix C.

Table 2: Architecture of the application layer in RLLTE.

Module Remark

rllte.agent

Top-notch implementations of highly-recognized RL algorithms, in
which convenient interfaces are designed to realize fast application
construction. In particular, the module-oriented design allows devel-
opers to replace settled modules of implemented algorithms to make
performance comparisons and algorithm improvements.

Pre-training

Since RLLTE is designed to support intrinsic reward modules na-
tively, developers can conveniently realize pre-training. The pre-
trained weights will be saved automatically after training, and it suf-
fices to perform fine-tuning by loading the weights in the .train()
function.

Deployment

A toolkit that helps developers run their RL models on inference de-
vices, which consistently have lower computational power. RLLTE
currently supports two inference frameworks: NVIDIA TensorRT and
HUAWEI CANN. RLLTE provides a fast API for model transforma-
tion and inference, and developers can invoke it directly with their
models.

Copilot

A promising attempt to introduce the LLM into an RL framework.
The copilot can help users reduce the time required for learning
frameworks and assist in the design and development of RL appli-
cations. We are developing more advanced features to it, including
RL-oriented code completion and training control.

2.2.1 FAST ALGORITHM CONSTRUCTION

Developers only need three steps to implement an RL algorithm with RLLTE: (i) select an algorithm
prototype; (ii) select desired modules; (iii) define an update function. Currently, RLLTE provides
three algorithm prototypes: OnPolicyAgent, OffPolicyAgent, and DistributedAgent. Fig-
ure 3 demonstrates how to write an A2C agent for discrete control tasks with RLLTE:

As shown in this example, developers can effortlessly choose the desired modules and create an
.update() function to implement a new algorithm. At present, the framework includes a collec-
tion of 13 algorithms, such as data-regularized actor-critic (DrAC) (Raileanu et al., 2021) and data
regularized Q-v2 (DrQ-v2), and the detailed introduction can be found in Appendix B.

4

Under review as a conference paper at ICLR 2024

from rllte.common.prototype import OnPolicyAgent
from rllte.xploit.encoder import MnihCnnEncoder
from rllte.xploit.policy import OnPolicySharedActorCritic
from rllte.xploit.storage import VanillaRolloutStorage
from rllte.xplore.distribution import Categorical

class A2C(OnPolicyAgent):
def __init__(self, ...) -> None:

super().__init__(...)
create essential modules
encoder = MnihCnnEncoder(...)
policy = OnPolicySharedActorCritic(...)
storage = VanillaRolloutStorage(...)
dist = Categorical()
set all the modules
self.set(encoder=encoder, policy=policy,

storage=storage, distribution=dist)

def update(self) -> Dict[str, float]:
batch = self.storage.sample()
A2C update rule
...

import `env` and `agent`
from rllte.env import make_dmc_env
from rllte.agent import DrQv2

if __name__ == "__main__":
device = "cuda:0"
create env, `eval_env` is optional
env = make_dmc_env(env_id="cartpole_balance",

device=device)
eval_env = make_dmc_env(env_id="cartpole_balance",

device=device)
create agent
agent = DrQv2(env=env,

eval_env=eval_env,
device=device,
tag="drqv2_dmc_pixel")

start training
agent.train(num_train_steps=500000,

log_interval=1000)

Figure 3: Left: Implement A2C algorithm with dozens of lines of code, and the complete code
example can be found in Appendix C.1. Right: Simple interface to invoke implemented RL algo-
rithms.

2.2.2 MODULE REPLACEMENT

For an implemented algorithm, developers can replace its settled modules using the .set() method
to realize performance comparisons and algorithm improvements. Moreover, developers can utilize
custom modules as long as they inherit from the base class, as demonstrated in the code example
in Appendix C.2. By decoupling these elements, RLLTE also empowers developers to construct
prototypes and perform quantitative analysis of algorithm performance swiftly.

2.2.3 COPILOT

Figure 4: Left: The workflow of the copilot. Right: A conversation example of training an PPO
agent using RLLTE.

Copilot is the first attempt to integrate an LLM into an RL framework, which aims to help devel-
opers reduce the learning cost and facilitate application construction. We follow the design of (Toro,
2023) that interacts privately with documents using the power of GPT, and Figure 4 illustrates its ar-
chitecture. The source documents are first ingested by an instructor embedding tool to create a local
vector database. After that, a local LLM is used to understand questions and create answers based
on the database. In practice, we utilize Vicuna-7B (Chiang et al., 2023) as the base model and build
the database using various corpora, including API documentation, tutorials, and RL references. The
powerful understanding ability of the LLM model enables the copilot to accurately answer questions
about the use of the framework and any other questions of RL. Moreover, no additional training is
required, and users are free to replace the base model according to their computing power. In fu-
ture work, we will further enrich the corpus and add the code completion function to build a more
intelligent copilot for RL.

2.3 TOOL LAYER

The tool layer provides practical toolkits for task design, model evaluation, and benchmark data.
rllte.env allows users to design task environments following the natural Gymnasium pattern with-

5

Under review as a conference paper at ICLR 2024

Table 3: Architecture of the tool layer in RLLTE. Code example for each toolkit can be found in
Appendix D.

Toolkit Remark

rllte.env

Provides a large number of packaged environments (e.g., Atari games)
for fast invocation. RLLTE is designed to natively support Gymna-
sium (Towers et al., 2023), which is a maintained fork of the Gym
library of OpenAI (Brockman et al., 2016). Moreover, developers are
allowed to use their custom environments with built-in wrappers in
RLLTE.

rllte.evaluation

Provides reasonable and reliable metrics for algorithm evaluation fol-
lowing (Agarwal et al., 2021). Performance module for evaluating a
single algorithm. Comparison module for comparing multiple algo-
rithms. Visualization for visualizing computed metrics.

rllte.hub

Provides a large number of reusable datasets (.datasets) and trained
models (.models) of supported RL algorithms. Developers can also
reproduce the training process via the pre-defined RL applications
(.applications).

1.00 1.25 1.50 1.75
ppg

mixreg
ppo

idaac
plr

ucb-drac
MEAN

1.05 1.20 1.35

MEDIAN

1.05 1.20 1.35

IQM

0.02 0.04 0.06

OG

PPO-Normalized Score

(a) Aggregate metrics with 95% confidence intervals (CIs). IQM: Interquartile mean. OG: Optimality gap.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
P(X > Y)

idaac
idaac
idaac

ppg
ucb-drac

plr
ucb-drac

mixreg
Algorithm X

ppg
ucb-drac
ppo
ppo
plr
mixreg
mixreg
ppo

Algorithm Y

0 50 100 150 200
Number of Frames (in millions)

0.0

0.5

1.0

1.5

2.0

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

(b) Left: Each row shows the probability of improvement, with 95% bootstrap CIs, that the algorithm X on the
left outperforms algorithm Y on the right. Right: Sample-efficiency of agents as a function of number of frames
measured via IQM human-normalized scores.

Figure 5: Performance metrics computed and visualized by rllte.evaluation, and the code ex-
ample can be found in Appendix D.2.

out additional effort. All the environments in RLLTE are set to be vectorized to guarantee sample
efficiency, and many different observation and action spaces (e.g., box, discrete, multi-binary, etc.)
are supported. In particular, users can also use EnvPool (Weng et al., 2022b) to realize ultra-fast
operational acceleration. See code example in Appendix D.1.

Beyond providing efficient task design and training interfaces, RLLTE further investigates the model
evaluation problem in RL and develops a simple evaluation toolkit. RLLTE reconstructs and im-
proves the code of (Agarwal et al., 2021) to realize a more convenient and efficient interface. Fig-
ure 5 illustrates several metrics computed and visualized by the toolkit.

6

Under review as a conference paper at ICLR 2024

Finally, rllte.hub can accelerate academic research by providing practically available benchmark
data, including training data and trained models. This toolkit will save much time and computational
resources for researchers, and the code example can be found in Appendix D.3. RLLTE is the
first open-source RL project that aims to build a complete ecosystem. Developers can perform task
design, model training, model evaluation, and model deployment within one framework. As a result,
RLLTE is highly stimulative for both industry and academia.

3 PROJECT EVOLUTION

As a long-term evolution project, RLLTE is expected to consistently provide high-quality and timely
engineering standards and development components for RL. To that end, RLLTE sets the following
tenet for updating new features:

• Generality is the most important;
• Improvements in sample efficiency or generalization ability;
• Excellent performance on recognized benchmarks;
• Promising tools for RL.

Firstly, RLLTE only accepts general algorithms that can be applied in many distinct scenarios and
tasks. For example, PPO is a general RL algorithm that can solve tasks with arbitrary action spaces,
and random network distillation (RND) (Burda et al., 2019) is a general intrinsic reward module
that can be combined with arbitrary RL agents. This rule can effectively control the volume of the
project while ensuring its adaptability to a wide range of requirements. Moreover, generality ex-
emplifies the potential for future enhancements (e.g., the various variants of PPO), which can also
reduce the difficulty of open-source collaboration and maintain community vitality. Furthermore,
the algorithm is expected to improve sample efficiency or generalization ability (e.g., better intrinsic
reward shaping approaches), two long-standing and critical problems in RL. Accordingly, the algo-
rithm must be evaluated on multiple recognized benchmarks like Atari (Bellemare et al., 2013) and
Procgen games (Cobbe et al., 2020) to guarantee practical performance across tasks. In particular,
RLLTE also accepts various promising tools (e.g., operational efficiency optimization, model eval-
uation, and deployment) to maintain a comprehensive ecosystem. In summary, RLLTE will keep
evolving to adapt to changing needs and produce a positive impact on the RL community.

Table 4: Architecture comparison with existing projects. Modularized: The project adopts a modu-
lar design with reusable components. Parallel: The project supports parallel learning. Decoupling:
The project supports algorithm decoupling and module replacement. Backend: Which machine
learning framework to use? License: Which open-source protocol to use? Note that the short line
represents partial support.

Framework Modularized Parallel Decoupling Backend License

Baselines ✓ ✗ - TensorFlow MIT
SB3 ✓ ✗ - PyTorch MIT

CleanRL - ✗ ✗ PyTorch MIT
Ray/rllib ✓ ✓ - TF/PyTorch Apache-2.0

rlpyt ✓ ✓ ✗ PyTorch MIT
Tianshou ✓ ✓ - PyTorch MIT

ElegantRL ✓ ✓ - PyTorch Apache-2.0
SpinningUp ✗ ✗ ✗ PyTorch MIT

ACME ✗ ✓ ✗ TF/JAX Apache-2.0
RLLTE ✓ ✓ ✓ PyTorch MIT

4 RELATED WORK

We compare RLLTE with eleven representative open-source RL projects, namely Baselines (Dhari-
wal et al., 2017), SB3 (Raffin et al., 2021), CleanRL (Huang et al., 2022), Ray/rllib (Liang et al.,

7

Under review as a conference paper at ICLR 2024

2018), and rlpyt (Stooke & Abbeel, 2019), Tianshou (Weng et al., 2022a), ElegantRL (Liu et al.,
2021), SpinningUp (Achiam, 2018), and ACME (Hoffman et al., 2020), respectively. The following
comparison is conducted from three aspects: architecture, functionality, and engineering quality.
This project references some other open-source projects and adheres to their open-source protocols.

Table 5: Functionality comparison with existing projects. Custom Env.: Support custom environ-
ments? Since Gym (Brockman et al., 2016) is no longer maintained, it is critical to make the project
adapt to Gymnasium (Towers et al., 2023). Custom Module: Support custom modules? Data Aug.:
Support data augmentation techniques like intrinsic reward shaping and observation augmentation?
Data Hub: Have a data hub to store benchmark data? Deploy.: Support model deployment? Eval.:
Support model evaluation? Multi-Device: Support hardware acceleration of different computing
devices (e.g., GPU and NPU)? Note that the short line represents partial support.

Framework Number
of Algo.

Custom
Env.

Custom
Module

Data
Aug.

Data
Hub Deploy. Eval. Multi-

Device

Baselines 9 ✓(gym) - ✗ - ✗ ✗ ✗
SB3 7 ✓(gymnasium) - - ✓ ✗ ✗ ✗

CleanRL 9 ✗ ✓ - ✓ ✗ ✗ ✗
Ray/rllib 16 ✓(gym) - - - ✗ ✗ ✗

rlpyt 11 ✗ - ✗ - ✗ ✗ ✗
Tianshou 20 ✓(gymnasium) ✗ - - ✗ ✗ ✗

ElegantRL 9 ✓(gym) ✗ ✗ - ✗ ✗ ✗
SpinningUp 6 ✓(gym) ✗ ✗ - ✗ ✗ ✗

ACME 14 ✓(dm env) ✗ ✗ - ✗ ✗ ✗
RLLTE 13↗ ✓(gymnasium) ✓ ✓ ✓ ✓ ✓ ✓

Table 6: Engineering quality comparison with existing projects. Note that the short line represents
unknown.

Framework Documentation Code Coverage Type Hints Last Update Used by

Baselines ✗ ✗ ✗ 01/2020 508
SB3 ✓ 96% ✓ 09/2023 3.3k

CleanRL ✓ - ✗ 09/2023 27
Ray/rllib ✓ - ✗ 09/2023 -

rlpyt ✓ 15% ✗ 09/2020 -
Tianshou ✓ 91% ✓ 09/2023 169

ElegantRL ✓ - ✓ 07/2023 256
SpinningUp ✓ ✗ ✗ 02/2020 -

ACME ✓ - ✗ 07/2023 149
RLLTE ✓ 97% ✓ 09/2023 2↗

5 DISCUSSION

In this paper, we introduced a novel RL framework entitled RLLTE, which is a long-term evolution,
extremely modular, and open-source project for advancing RL research and applications. With a
rich and comprehensive ecosystem, RLLTE enables developers to accomplish task design, model
training, evaluation, and deployment within one framework seamlessly, which is highly stimulative
for both academia and industry. Moreover, RLLTE is an ultra-open framework where developers
can freely use and try many built-in or custom modules, contributing to the research of decoupling
and interpretability of RL. As a long-term evolution project, RLLTE will keep tracking the latest
research progress and provide high-quality implementations to inspire more subsequent research.

In particular, there are some remaining issues that we intend to work on in the future. Firstly, RLLTE
plans to add more algorithm prototypes to meet the task requirements of different scenarios, includ-
ing multi-agent RL, inverse RL, imitation learning, and offline RL. Secondly, RLLTE will enhance

8

Under review as a conference paper at ICLR 2024

the functionality of the pre-training module, which includes more prosperous training methods and
more efficient training processes, as well as providing downloadable model parameters. Thirdly,
RLLTE will further explore the combination of RL and LLM, including using LLM to control the
construction of RL applications and improving the performance of existing algorithms (e.g., reward
function design and data generation). Finally, RLLTE will optimize the operational efficiency of
modules at the hardware level to reduce the computational power threshold, promoting the goal of
RL for everyone.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Joshua Achiam. Spinning Up in Deep Reinforcement Learning. https://github.com/
openai/spinningup, 2018.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in neural informa-
tion processing systems, 34:29304–29320, 2021.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andrew Bolt, and Charles
Blundell. Never give up: Learning directed exploration strategies. In Proceedings of the Interna-
tional Conference on Learning Representations, 2020.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI gym. arXiv preprint arXiv:1606.01540, 2016.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. Proceedings of the 7th International Conference on Learning Representations, pp.
1–17, 2019.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Petros Christodoulou. Soft actor-critic for discrete action settings. arXiv preprint arXiv:1910.07207,
2019.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to
benchmark reinforcement learning. In International conference on machine learning, pp. 2048–
2056. PMLR, 2020.

Karl W Cobbe, Jacob Hilton, Oleg Klimov, and John Schulman. Phasic policy gradient. In Interna-
tional Conference on Machine Learning, pp. 2020–2027. PMLR, 2021.

Carlo D’Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, and Jan Peters. Mushroomrl:
Simplifying reinforcement learning research. The Journal of Machine Learning Research, 22(1):
5867–5871, 2021.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines. https:
//github.com/openai/baselines, 2017.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In International conference on machine learning,
pp. 1329–1338. PMLR, 2016.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In International conference on machine learning,
pp. 1407–1416. PMLR, 2018.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

10

https://github.com/openai/spinningup
https://github.com/openai/spinningup
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://github.com/openai/baselines
https://github.com/openai/baselines

Under review as a conference paper at ICLR 2024

Yasuhiro Fujita, Prabhat Nagarajan, Toshiki Kataoka, and Takahiro Ishikawa. Chainerrl: A deep
reinforcement learning library. The Journal of Machine Learning Research, 22(1):3557–3570,
2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Matthew W. Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Nikola Momchev,
Danila Sinopalnikov, Piotr Stańczyk, Sabela Ramos, Anton Raichuk, Damien Vincent, Léonard
Hussenot, Robert Dadashi, Gabriel Dulac-Arnold, Manu Orsini, Alexis Jacq, Johan Ferret, Nino
Vieillard, Seyed Kamyar Seyed Ghasemipour, Sertan Girgin, Olivier Pietquin, Feryal Behbahani,
Tamara Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, Sarah Henderson,
Abe Friesen, Ruba Haroun, Alex Novikov, Sergio Gómez Colmenarejo, Serkan Cabi, Caglar
Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Andrew Cowie, Ziyu Wang, Bilal Piot, and Nando
de Freitas. Acme: A research framework for distributed reinforcement learning. arXiv preprint
arXiv:2006.00979, 2020. URL https://arxiv.org/abs/2006.00979.

Shengyi Huang, Rousslan Fernand JulienDossa Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty,
Kinal Mehta, and João GM Araújo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. The Journal of Machine Learning Research, 23(1):12585–
12602, 2022.

Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Rein-
forcement learning with augmented data. Advances in neural information processing systems, 33:
19884–19895, 2020.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph Gon-
zalez, Michael Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement learning.
In International conference on machine learning, pp. 3053–3062. PMLR, 2018.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In ICLR
(Poster), 2016. URL http://arxiv.org/abs/1509.02971.

Xiao-Yang Liu, Zechu Li, Ming Zhu, Zhaoran Wang, and Jiahao Zheng. ElegantRL: Massively
parallel framework for cloud-native deep reinforcement learning. https://github.com/
AI4Finance-Foundation/ElegantRL, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PMLR, 2016.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pp. 16–17, 2017.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementations. The Journal of Ma-
chine Learning Research, 22(1):12348–12355, 2021.

Roberta Raileanu and Rob Fergus. Decoupling value and policy for generalization in reinforcement
learning. In International Conference on Machine Learning, pp. 8787–8798. PMLR, 2021.

11

https://arxiv.org/abs/2006.00979
http://arxiv.org/abs/1509.02971
https://github.com/AI4Finance-Foundation/ElegantRL
https://github.com/AI4Finance-Foundation/ElegantRL

Under review as a conference paper at ICLR 2024

Roberta Raileanu, Tim Rocktäschel, and Roberta Raileanu. Ride: Rewarding impact-driven ex-
ploration for procedurally-generated environments. In Proceedings of the International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
rkg-TJBFPB.

Roberta Raileanu, Maxwell Goldstein, Denis Yarats, Ilya Kostrikov, and Rob Fergus. Automatic
data augmentation for generalization in reinforcement learning. Advances in Neural Information
Processing Systems, 34:5402–5415, 2021.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In
ICLR (Poster), 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Younggyo Seo, Lili Chen, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. State en-
tropy maximization with random encoders for efficient exploration. In Proceedings of the 38th
International Conference on Machine Learning, pp. 9443–9454, 2021.

Adam Stooke and Pieter Abbeel. rlpyt: A research code base for deep reinforcement learning in
pytorch. arXiv preprint arXiv:1909.01500, 2019.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Iván Martı́nez Toro. privategpt: Interact privately with your documents using the power of gpt.
https://github.com/imartinez/privateGPT, 2023.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, An-
drea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymna-
sium, March 2023. URL https://zenodo.org/record/8127025.

Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Yi Su, Hang
Su, and Jun Zhu. Tianshou: A highly modularized deep reinforcement learning library. The
Journal of Machine Learning Research, 23(1):12275–12280, 2022a.

Jiayi Weng, Min Lin, Shengyi Huang, Bo Liu, Denys Makoviichuk, Viktor Makoviychuk, Zichen
Liu, Yufan Song, Ting Luo, Yukun Jiang, et al. Envpool: A highly parallel reinforcement learning
environment execution engine. Advances in Neural Information Processing Systems, 35:22409–
22421, 2022b.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous con-
trol: Improved data-augmented reinforcement learning. In International Conference on Learning
Representations, 2021.

Xingrui Yu, Yueming Lyu, and Ivor Tsang. Intrinsic reward driven imitation learning via generative
model. In Proceedings of the International Conference on Machine Learning, pp. 10925–10935,
2020.

Mingqi Yuan, Bo Li, Xin Jin, and Wenjun Zeng. Rewarding episodic visitation discrepancy for
exploration in reinforcement learning. In Deep RL Workshop NeurIPS 2022, 2022a.

Mingqi Yuan, Man-On Pun, and Dong Wang. Rényi state entropy maximization for exploration
acceleration in reinforcement learning. IEEE Transactions on Artificial Intelligence, 2022b.

12

https://openreview.net/forum?id=rkg-TJBFPB
https://openreview.net/forum?id=rkg-TJBFPB
https://github.com/imartinez/privateGPT
https://zenodo.org/record/8127025

Under review as a conference paper at ICLR 2024

A FUNCTION LIST

A.1 XPLOIT: MODULES THAT FOCUS ON EXPLOITATION IN RL.

Table 7: rllte.xploit.policy: Policies for interaction and learning.
Module Type Remark

OnPolicySharedActorCritic On-policy Actor-Critic networks
with a shared encoder.

OnPolicyDecoupledActorCritic On-policy Actor-Critic networks
with two separate encoders.

OffPolicyDoubleQNetwork Off-policy Double Q-network.

OffPolicyDetActorDoubleCritic Off-policy Deterministic actor network
and double-critic network.

OffPolicyDoubleActorDoubleCritic Off-policy Double-actor network
and double-critic network.

OffPolicyStochActorDoubleCritic Off-policy Stochastic actor network
and double-critic network.

DistributedActorLearner Distributed Memory-shared actor and
learner networks.

Table 8: rllte.xploit.encoder: Neural nework-based encoders for processing observations.
Naming Rule: Surname of the first author + Backbone + Encoder. Target Task: The testing tasks
reported in their paper or potential tasks.

Module Input Target Task

EspeholtResidualEncoder (Espeholt et al., 2018) Images Atari or Procgen games
MnihCnnEncoder (Mnih et al., 2013) Images Atari games
TassaCnnEncoder (Tassa et al., 2018) Images DMC Suite: pixel
PathakCnnEncoder (Pathak et al., 2017) Images Atari or MiniGrid games
IdentityEncoder States DMC Suite: state
VanillaMlpEncoder States DMC Suite: state
RaffinCombinedEncoder (Raffin et al., 2021) Dict Highway

Table 9: rllte.xploit.storage: Experience storage and sampling.
Module Type

VanillaRolloutStorage On-policy
DictRolloutStorage On-policy
VanillaReplayStorage Off-policy
DictReplayStorage Off-policy
NStepReplayStorage (Sutton & Barto, 2018) Off-policy
PrioritizedReplayStorage (Schaul et al., 2016) Off-policy
HerReplayStorage (Andrychowicz et al., 2017) Off-policy
VanillaDistributedStorage Distributed

A.2 XPLORE: MODULES THAT FOCUS ON EXPLORATION IN RL.

13

Under review as a conference paper at ICLR 2024

Table 10: rllte.xploit.augmentation: PyTorch.nn-like modules for observation augmentation.
Module Input

GaussianNoise (Laskin et al., 2020) States
RandomAmplitudeScaling (Laskin et al., 2020) States
GrayScale (Laskin et al., 2020) Images
RandomColorJitter (Laskin et al., 2020) Images
RandomConvolution (Laskin et al., 2020) Images
RandomCrop (Laskin et al., 2020) Images
RandomCutout (Laskin et al., 2020) Images
RandomCutoutColor (Laskin et al., 2020) Images
RandomFlip (Laskin et al., 2020) Images
RandomRotate (Laskin et al., 2020) Images
RandomShift (Yarats et al., 2021) Images
RandomTranslate (Laskin et al., 2020) Images

Table 11: rllte.xploit.distribution: Distributions for sampling actions. In RLLTE, the ac-
tion noise is implemented via a distribution manner to realize unification.

Module Type

NormalNoise Noise
OrnsteinUhlenbeckNoise Noise
TruncatedNormalNoise Noise
Bernoulli Distribution
Categorical Distribution
MultiCategorical Distribution
DiagonalGaussian Distribution
SquashedNormal Distribution

Table 12: rllte.xploit.reward: Intrinsic reward modules for enhancing exploration.
Type Modules

Count-based PseudoCounts (Badia et al., 2020), RND (Burda et al., 2019)

Curiosity-driven ICM (Pathak et al., 2017) (Pathak et al., 2017),
GIRM (Yu et al., 2020), RIDE (Raileanu et al., 2020)

Memory-based NGU (Badia et al., 2020)

Information theory-based RE3 (Seo et al., 2021), RISE (Yuan et al., 2022b),
REVD (Yuan et al., 2022a)

14

Under review as a conference paper at ICLR 2024

B IMPLEMENTED RL ALGORITHMS

Table 13: Implemented RL algorithms using RLLTE modules. Dis., M.B., and M.D.: Discrete,
multi-binary, and multi-discrete action space. M.P.: Multi processing. I.R.: Support intrinsic reward
shaping. O.A.: Support observation augmentation.

Type Algo. Box Dis. M.B. M.D. M.P. NPU I.R. O.A.

On-Policy A2C ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗
On-Policy PPO ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗
On-Policy DrAC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
On-Policy DAAC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗
On-Policy DrDAAC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
On-Policy PPG ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓
Off-Policy DQN ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗
Off-Policy DDPG ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗
Off-Policy TD3 ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗
Off-Policy SAC ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗
Off-Policy SAC-Discrete ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✗
Off-Policy DrQ-v2 ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓
Distributed IMPALA ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗

Full names and references of all algorithms:

• A2C: Advantage Actor-Critic (Mnih et al., 2016).
• PPO: Proximal Policy Optimization (Schulman et al., 2017).
• DrAC: Data-Regularized Actor-Critic (Raileanu et al., 2021).
• DAAC: Decoupled Advantage Actor-Critic (Raileanu & Fergus, 2021).
• DrDAAC: The combination of DrAC and DAAC.
• PPG: Phasic Policy Gradient (Cobbe et al., 2021).
• DQN: Deep Q-Network (Mnih et al., 2013).
• DDPG: Deep Deterministic Policy Gradient (Lillicrap et al., 2016).
• TD3: Twin Delayed DDPG (Fujimoto et al., 2018).
• SAC: Soft Actor-Critic (Haarnoja et al., 2018).
• SAC-Discrete: Soft Actor-Critic (Discrete) (Christodoulou, 2019).
• DrQ-v2: Data-Regularized Q-v2 (Yarats et al., 2021).
• IMPALA: Importance Weighted Actor-Learner Architecture (Espeholt et al., 2018).

15

Under review as a conference paper at ICLR 2024

C CODE EXAMPLES OF THE APPLICATION LAYER

C.1 FAST ALGORITHM CONSTRUCTION

from rllte.common.prototype import OnPolicyAgent

from rllte.xploit.encoder import MnihCnnEncoder

from rllte.xploit.policy import OnPolicySharedActorCritic

from rllte.xploit.storage import VanillaRolloutStorage

from rllte.xplore.distribution import Categorical

from torch import nn

import torch as th

class A2C(OnPolicyAgent):

 def __init__(self, env, tag, seed, device, num_steps) -> None:

 super().__init__(env=env, tag=tag, seed=seed, device=device, num_steps=num_steps)

 # create modules

 encoder = MnihCnnEncoder(observation_space=env.observation_space, feature_dim=512)

 policy = OnPolicySharedActorCritic(observation_space=env.observation_space,

 action_space=env.action_space,

 feature_dim=512,

 opt_class=th.optim.Adam,

 opt_kwargs=dict(lr=2.5e-4, eps=1e-5),

 init_fn="xavier_uniform"

)

 storage = VanillaRolloutStorage(observation_space=env.observation_space,

 action_space=env.action_space,

 device=device,

 storage_size=self.num_steps,

 num_envs=self.num_envs,

 batch_size=256

)

 dist = Categorical()

 # set all the modules

 self.set(encoder=encoder, policy=policy, storage=storage, distribution=dist)

 def update(self):

 for _ in range(4):

 for batch in self.storage.sample():

 # evaluate the sampled actions

 new_values, new_log_probs, entropy = \

 self.policy.evaluate_actions(obs=batch.observations, actions=batch.actions)

 # policy loss part

 policy_loss = - (batch.adv_targ * new_log_probs).mean()

 # value loss part

 value_loss = 0.5 * (new_values.flatten() - batch.returns).pow(2).mean()

 # update

 self.policy.optimizers['opt'].zero_grad(set_to_none=True)

 (value_loss * 0.5 + policy_loss - entropy * 0.01).backward()

 nn.utils.clip_grad_norm_(self.policy.parameters(), 0.5)

 self.policy.optimizers['opt'].step()

Figure 6: Implement A2C algorithm with dozens of lines of code.

16

Under review as a conference paper at ICLR 2024

C.2 MODULE REPLACEMENT

C.2.1 USE BUILT-IN MODULES

from rllte.agent import PPO
from rllte.env import make_atari_env

if __name__ == "__main__":
env setup
device = "cuda:0"
env = make_atari_env(device=device)
eval_env = make_atari_env(device=device)
create agent
agent = PPO(env=env,

eval_env=eval_env,
device=device,
tag="ppo_atari")

start training
agent.train(num_train_steps=5000)

from rllte.agent import PPO
from rllte.env import make_atari_env
from rllte.xploit.encoder import EspeholtResidualEncoder

if __name__ == "__main__":
env setup
device = "cuda:0"
env = make_atari_env(device=device)
eval_env = make_atari_env(device=device)
create agent
feature_dim = 512
agent = PPO(env=env,

eval_env=eval_env,
device=device,
tag="ppo_atari",
feature_dim=feature_dim)

create a new encoder
encoder = EspeholtResidualEncoder(

observation_space=env.observation_space,
feature_dim=feature_dim)

set the new encoder
agent.set(encoder=encoder)
start training
agent.train(num_train_steps=5000)

Figure 7: Left: Train an PPO agent on the Atari games. Right: Replace the default encoder with
EspeholtResidualEncoder.

C.2.2 USE CUSTOM MODULES

from rllte.agent import PPO

from rllte.env import make_atari_env

from rllte.common.prototype import BaseEncoder

from gymnasium.spaces import Space

from torch import nn

import torch as th

class CustomEncoder(BaseEncoder):

 """Custom encoder.

 Args:

 observation_space (Space): The observation space of environment.

 feature_dim (int): Number of features extracted.

 Returns:

 The new encoder instance.

 """

 def __init__(self, observation_space: Space, feature_dim: int = 0) -> None:

 super().__init__(observation_space, feature_dim)

 obs_shape = observation_space.shape

 assert len(obs_shape) == 3

 self.trunk = nn.Sequential(

 nn.Conv2d(obs_shape[0], 32, 3, stride=2), nn.ReLU(),

 nn.Conv2d(32, 32, 3, stride=2), nn.ReLU(),

 nn.Flatten(),

)

 with th.no_grad():

 sample = th.ones(size=tuple(obs_shape)).float()

 n_flatten = self.trunk(sample.unsqueeze(0)).shape[1]

 self.trunk.extend([nn.Linear(n_flatten, feature_dim), nn.ReLU()])

 def forward(self, obs: th.Tensor) -> th.Tensor:

 h = self.trunk(obs / 255.0)

 return h.view(h.size()[0], -1)

Figure 8: Define a custom CNN-based encoder with RLLTE. This encoder can automatically com-
pute the dimension of the extracted features of observations.

17

Under review as a conference paper at ICLR 2024

D CODE EXAMPLES OF THE TOOL LAYER

D.1 ENVIRONMENT DESIGN

from rllte.agent import DrQv2

from rllte.env.utils import make_rllte_env

import gymnasium as gym

import numpy as np

class CustomEnv(gym.Env):

 def __init__(self, total_length) -> None:

 super().__init__()

 self.observation_space = gym.spaces.Box(shape=(9, 84, 84),

 high=255.0, low=0., dtype=np.uint8)

 self.action_space = gym.spaces.Box(shape=(7,),

 high=1., low=-1., dtype=np.float32)

 self.total_length = total_length

 self.count = 0

 def step(self, action):

 obs = self.observation_space.sample()

 reward = np.random.rand()

 if self.count < self.total_length:

 terminated = truncated = False

 else:

 terminated = truncated = True

 info = {"discount": 0.99}

 self.count += 1

 return obs, reward, terminated, truncated, info

 def reset(self, seed=None, options=None):

 self.count = 0

 return self.observation_space.sample(), {"discount": 0.99}

if __name__ == "__main__":

 # env setup

 device = "cuda:0"

 env = make_rllte_env(env_id=CustomEnv,

 device=device,

 env_kwargs={'total_length': 499} # set env arguments

)

 eval_env = make_rllte_env(env_id=CustomEnv,

 device=device,

 env_kwargs={'total_length': 499} # set env arguments

)

 agent = DrQv2(env=env,

 eval_env=eval_env,

 device=device,

 tag="drqv2_dmc_pixel")

 agent.train(num_train_steps=5000)

Figure 9: Define a custom environment and perform training using DrQ-v2 agent.

18

Under review as a conference paper at ICLR 2024

D.2 MODEL EVALUATION

Firstly, Suppose we want to evaluate algorithm performance on the Procgen (Cobbe et al., 2020)
benchmark. First, download the data from rllte.hub:

load packages

from rllte.evaluation import Performance, Comparison, min_max_normalize

from rllte.hub.datasets import Procgen, Atari

import numpy as np

load scores

procgen = Procgen()

procgen_scores = procgen.load_scores()

print(procgen_scores.keys())

get ppo-normalized scores

ppo_norm_scores = dict()

MIN_SCORES = np.zeros_like(procgen_scores['ppo'])

MAX_SCORES = np.mean(procgen_scores['ppo'], axis=0)

for algo in procgen_scores.keys():

 ppo_norm_scores[algo] = min_max_normalize(procgen_scores[algo],

 min_scores=MIN_SCORES,

 max_scores=MAX_SCORES)

Figure 10: Download benchmark data from rllte.hub.

initialize the performance evaluator

perf = Performance(scores=ppo_norm_scores['ppo'],

 get_ci=True # get confidence intervals

)

computes mean of sample mean scores per task

print(perf.aggregate_mean())

computes median of sample mean scores per task

print(perf.aggregate_median())

computes optimality gap across all runs and tasks

print(perf.aggregate_og())

computes the interquartile mean across runs and tasks

print(perf.aggregate_iqm())

Figure 11: Performance evaluation of single algorithm.

initialize the performance comparer

comp = Comparison(scores_x=ppo_norm_scores['ppg'],

 scores_y=ppo_norm_scores['ppo'],

 get_ci=True)

compute the overall probability of imporvement of algorithm `X` over `Y`.

print(comp.compute_poi())

Figure 12: Performance comparison of multiple algorithms.

19

Under review as a conference paper at ICLR 2024

from rllte.evaluation import (plot_interval_estimates,

 plot_probability_improvement,

 plot_sample_efficiency_curve,

 plot_performance_profile)

1. plot various performance metrics of algorithms with stratified confidence intervals

construct a performance dict

aggregate_performance_dict = {

 "MEAN": {},

 "MEDIAN": {},

 "IQM": {},

 "OG": {}

}

for algo in ppo_norm_scores.keys():

 perf = Performance(scores=ppo_norm_scores[algo], get_ci=True)

 aggregate_performance_dict['MEAN'][algo] = perf.aggregate_mean()

 aggregate_performance_dict['MEDIAN'][algo] = perf.aggregate_median()

 aggregate_performance_dict['IQM'][algo] = perf.aggregate_iqm()

 aggregate_performance_dict['OG'][algo] = perf.aggregate_og()

fig, axes = plot_interval_estimates(aggregate_performance_dict,

 metric_names=['MEAN', 'MEDIAN', 'IQM', 'OG'],

 algorithms=['ppg', 'mixreg', 'ppo', 'idaac', 'plr', 'ucb-drac'],

 xlabel="PPO-Normalized Score")

fig.savefig('./plot_interval_estimates1.png', format='png', bbox_inches='tight')

2. plots probability of improvement with stratified confidence intervals.

construct a comparison dict

pairs = [['idaac', 'ppg'], ['idaac', 'ucb-drac'], ['idaac', 'ppo'],

 ['ppg', 'ppo'], ['ucb-drac', 'plr'],

 ['plr', 'mixreg'], ['ucb-drac', 'mixreg'], ['mixreg', 'ppo']]

probability_of_improvement_dict = {}

for pair in pairs:

 comp = Comparison(scores_x=ppo_norm_scores[pair[0]],

 scores_y=ppo_norm_scores[pair[1]],

 get_ci=True)

 probability_of_improvement_dict['_'.join(pair)] = comp.compute_poi()

fig, ax = plot_probability_improvement(poi_dict=probability_of_improvement_dict)

fig.savefig('./plot_probability_improvement.png', format='png', bbox_inches='tight')

Figure 13: Two examples of the visualization tool of rllte.evaluation.

20

Under review as a conference paper at ICLR 2024

D.3 RLLTE HUB

from rllte.hub.datasets import Procgen

procgen = Procgen()

load final scores

For each algorithm, this will return a `NdArray` of size (10 x 16)

where `scores[n][m]` represent the score on run `n` of task `m`.

procgen_scores = procgen.load_scores()

print(procgen_scores['ppo'].shape)

load learning curves

this will return the learning curves by a Python `Dict` like:

curves = {

"ppo": {

"train": {"bigfish": np.ndarray(shape=(Number of seeds, Number of points)), ...},

"eval": {"bigfish": np.ndarray(shape=(Number of seeds, Number of points)), ...},

},

"daac": {

"train": {"bigfish": np.ndarray(shape=(Number of seeds, Number of points)), ...},

"eval": {"bigfish": np.ndarray(shape=(Number of seeds, Number of points)), ...},

},

...

}

curves = procgen.load_curves()

print(curves['ppo']['train']['bigfish'].shape)

print(curves['ppo']['eval']['bigfish'].shape)

Figure 14: rllte.hub.datasets provides test scores and learning cures of various RL algorithms
on different benchmarks.

21

Under review as a conference paper at ICLR 2024

from rllte.hub.models import Procgen

from rllte.env import make_procgen_env

import torch as th

import numpy as np

if __name__ == "__main__":

 # env setup

 device = "cuda:0"

 env_id = "starpilot"

 seed = 1

 # download the model

 procgen = Procgen()

 agent = procgen.load_models(agent="ppo",

 env_id=env_id,

 seed=seed,

 device=device)

 # create env

 env = make_procgen_env(env_id=env_id, device=device, num_envs=1, seed=seed)

 # evaluate the model

 obs, infos = env.reset(seed=seed)

 # run the model

 episode_rewards, episode_steps = list(), list()

 while len(episode_rewards) < 10:

 # the exported model outputs logits of the action distribution

 action = th.softmax(agent(obs), dim=1).argmax(dim=1)

 obs, rewards, terminateds, truncateds, infos = env.step(action)

 if "episode" in infos:

 indices = np.nonzero(infos["episode"]["l"])

 episode_rewards.extend(infos["episode"]["r"][indices].tolist())

 episode_steps.extend(infos["episode"]["l"][indices].tolist())

 print(f"mean episode reward: {np.mean(episode_rewards)}")

 print(f"mean episode length: {np.mean(episode_steps)}")

output:

mean episode reward: 30.0

mean episode length: 296.1

Figure 15: rllte.hub.models provides trained models of various RL algorithms on different
benchmarks.

22

	Introduction
	Architecture
	Core Layer
	Application Layer
	Fast Algorithm Construction
	Module Replacement
	Copilot

	Tool Layer

	Project Evolution
	Related Work
	Discussion
	Function List
	Xploit: Modules that Focus on Exploitation in RL.
	Xplore: Modules that focus on exploration in RL.

	Implemented RL Algorithms
	Code Examples of the Application Layer
	Fast Algorithm Construction
	Module Replacement
	Use Built-in Modules
	Use Custom Modules

	Code Examples of the Tool Layer
	Environment Design
	Model Evaluation
	RLLTE Hub

