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Abstract—Deep neural networks (DNNs) are vulnerable to
adversarial examples. And, the adversarial examples have trans-
ferability, which means that an adversarial example for a DNN
model can fool another model with a non-trivial probability. This
gave birth to the transfer-based attack where the adversarial
examples generated by a ate model are used to conduct black-
box attacks. There are some work on generating the adversarial
examples from a given surrogate model with better transfer-
ability. However, training a special surrogate model to generate
adversarial examples with better transferability is relatively
under-explored. This paper proposes a method for training a
surrogate model with dark knowledge to boost the transferability
of the adversarial examples generated by the surrogate model.
This trained surrogate model is named dark surrogate model
(DSM). The proposed method for training a DSM consists of
two key components: a teacher model extracting dark knowledge,
and the mixing augmentation skill enhancing dark knowledge of
training data. We conducted extensive experiments to show that
the proposed method can substantially improve the adversarial
transferability of surrogate models across different architectures
of surrogate models and optimizers for generating adversarial
examples, and it can be applied to other scenarios of transfer-
based attack that contain dark knowledge, like face verification.
Our code is publicly available at https://github.com/ydc123/Dark
Surrogate Model.

Index Terms—Deep learning, Image classification, Black-box
adversarial attack, Transfer-based attack, Dark knowledge

I. INTRODUCTION

Deep neural networks (DNNs) have achieved substantial

success on many computer vision tasks. However, they are

shown to be vulnerable to adversarial examples. Adversarial

examples are carefully crafted data which could fool the

DNNs by adding imperceptible noise on legitimate data.

The generation of adversarial examples have been extensively

researched in recent years. This is primarily due to its potential

for preventing the malicious use of DNNs [1] and serving as a

reliable evaluation criterion for DNN security [2], particularly

in safety-critical scenarios like face verification.

The transferability of adversarial examples has attracted

much attention. It means that, an adversarial example that

fools one DNN model can fool another DNN model with a

non-trivial probability. Thus, an adversary can train a surrogate

model locally (training stage), and then generate adversarial

examples to fool the surrogate model (generating stage).

Finally, the generated adversarial examples can be directly

∗corresponding author.

used to attack an unknown black-box victim model (attacking

stage). This process is called transfer-based adversarial attack.

The technique of adversarial example optimizer has been

proposed for generating highly transferable adversarial exam-

ples [3], [4] (in generating stage). In contrast, we aim to

train a better surrogate model (in training stage) so that it

could yield adversarial examples with better success rates of

transfer-based attacks. In analogy to the commonly used term

“the transferability of adversarial example”, we propose the

concept “the adversarial transferability of surrogate models”

to describe the ability of surrogate models on generating

better adversarial examples for transfer-based attacks, using

a fixed adversarial example optimizer. There are just a few

works trying to train a surrogate model with better adversarial

transferability [5], [6]. Specifically, adversarial training was

used in [6] to improve the transferability, but at a significant

computational cost. In [5], the knowledge distillation [7] was

applied to improve the transferability without incurring exces-

sive time overhead. However, it relies on a scheme of ensemble

attack with multiple surrogate models and a combination of

soft labels and one-hot labels.

Labels and data are two important components in training

DNNs. Although the one-hot label is extensively used in

normal DNN training, we notice that it does not well describe

a data, because an image often contains the features of similar

classes and even multiple objects in addition to the features

of the true class. In contrast to one-hot labels, the soft labels

which are the predicted distributions from a teacher model

contain abundant information of image data, and have been

used in knowledge distillation [7] for compressing neural net-

works. The soft label is also known as “dark knowledge” [7].

In this work, we propose that the dark knowledge is the

key recipe to boost the adversarial transferability of surrogate

models. Therefore, we propose to use the soft label to train the

surrogate model, and enhance the dark knowledge by applying

mixing augmentation skills to training data [8]–[10].

The surrogate model trained with dark knowledge is called

“dark” surrogate model (DSM) in this work. The proposed

method modifies the training stage, which enhances the dark

knowledge by applying mixing augmentation to the training

data and using soft labels extracted from a pretrained teacher

model. We have conducted extensive experiments on attack-

ing image classification models to show that the proposed

method remarkably and consistently improves the adversarial
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transferability of surrogate models. In addition, the proposed

method can be applied to other transfer-based attack scenarios

that contain dark knowledge, such as face verification, image

retrieval, and text classification, to improve the success rate of

the transfer-based attack. As an example, the experiments on

applying DSM to attack face verification models are presented.

The major contributions and results are as follows.

• For improving the success rates of the transfer-based

adversarial attack, we propose to use the dark knowledge

during the training of the surrogate model, so as to

obtain a “dark” surrogate model (DSM). The method

for training the DSM is proposed, which modifies two

key components of DNN training: labels and data, to

make full usage of dark knowledge. Firstly, a pretrained

DNN model, regarded as a teacher model, is employed to

generate soft labels with dark knowledge. Secondly, the

mixing augmentation skills are applied to enhance the

dark knowledge of the training data explicitly.

• Extensive experiments on image classification are con-

ducted to validate the proposed method. At first, the

DSM is trained by using a pretrained model of the

same architecture as the teacher model. Compared to

directly using the pretrained model as the surrogate

model, the proposed method improves the success rates

of the untargeted attack by a TI-DI-MI-TG optimizer [11]

on nine victim models by up to 21.6%, 23.6% and

11.0% for the ResNet18, DenseNet121 and MobileNetv2

based surrogate models, respectively. Then, by using

different teacher models, the maximum increments of

attack success rate can be further improved to 25.7%,

36.8% and 26.3%, respectively. Experimental results also

validate that the proposed method performs better than

the related work based on knowledge distillation [5].

• We have also applied the proposed method to the problem

of attacking face verification models. On the widely-used

ArcFace model [12], the proposed method improves the

success rates of dodging attack by 12.9% and imperson-

ate attack by 16.2%.

II. RELATED WORKS

A DNN model for classification can be considered as a

function f(x; θ) : R
d → R

K , where K is the number of

classes, θ denotes all the parameters, x ∈ R
d is an image,

d denotes the dimensionality of x, and the predicted label is

argmax1≤i≤K f(x; θ)i.
Given an image x and its corresponding label y, an untar-

geted adversarial example (the example which is misclassified)

can be generated to fool a DNN model parameterized by θ
through maximizing a cross-entropy loss function:

x∗=argmaxx′CE(ey, S(f(x
′; θ))) , s.t. ‖x′ − x‖ ≤ ε , (1)

where ey denotes a one-hot vector with true label y, and the

cross-entropy loss function CE(p, q) is defined as CE(p, q) =
−∑

i pi log qi. The softmax function S : R
K → R

K is

used to normalize the outputs of a DNN to a probability

distribution, which means S(z)i = exp(zi)/
∑K

j=1 exp(zj).
The ‖ · ‖ denotes a norm function, and we focus on L∞
norm in this paper. The ε is the maximum allowed magnitude

of perturbation. The generated adversarial example x∗ looks

similarly to x but can fool the DNN model parameterized by

θ (also called victim model).

However, the victim model is often inaccessible in practice.

To attack a black-box victim model, we should first train

a white-box surrogate model θ, and use it to generate the

adversarial example x∗. This adversarial example is then

directly used to attack the victim model. Normally, a surrogate

model θ is trained by solving the following optimization

problem with a stochastic gradient descent optimizer:

θ = argminθ′CE(ey, S(f(x; θ
′))) . (2)

Many optimizers were proposed for generating untargeted

adversarial examples by solving (1), using a surrogate model

θ that was trained by solving (2), such as the one-step method

FGSM [13], the MI-FGSM [3] that utilizes a momentum factor

μ, the diverse inputs method (DIM) [4] that augments the

inputs with a pre-defined probability pt, and the translation-

invariant method (TIM) [14] that convolves the gradient with

a pre-defined kernel W . Recently, a more powerful optimizer

has been proposed that utilizes transformed gradient (TG)

to generate adversarial examples, and its combination with

the above methods leads to a more effective TI-DI-MI-TG

method [11]. These methods can be easily extended for the

targeted attack, i.e. generating an adversarial example x∗

which is misclassified as a pre-defined target label yt. It has

been recently shown that targeted attacks can be boosted by a

logits-based loss and running more iterations [15].

Unlike the rapidly developing adversarial example optimiz-

ers, only a few of works were devoted to training a better

surrogate model for the transfer-based attack. They include

the knowledge-distillation based method [5] and the recent

work [6] showing that a slightly robust model has better

adversarial transferability. Notice that, the method in [6] costs

large computational time for training the slightly robust model.

In the knowledge-distillation based method [5], a surrogate

model is distilled using multiple teacher models. This method

is inspired by previous works on ensemble attack [16], which

show that attacking multiple surrogate models simultaneously

is more effective than attacking a single surrogate model. By

distilling from multiple teacher models, the resulting surrogate

model shares similar characteristics with all the teachers,

thereby mimicking the ensemble attack. Specifically, suppose

there are M teacher models F1, · · · , FM , a surrogate model

θ is trained by solving the following optimization problem:

θ = argminθ′CE(ỹ, S(f(x; θ′))) ,

where ỹ =
βKD

M

M∑

i=1

S(Fi(x)) + (1− βKD)ey .
(3)

The Fi(x) is the output of the i-th teacher for image x, ỹ
is a soft label generated for training the surrogate model, and

βKD is a hyper-parameter.
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There are several studies on data augmentation by mixing

multiple data for image classification, including Cutout [8],

Mixup [9] and CutMix [10]. In Section IV.B, we will show

that after enriching the dark knowledge of the images by these

skills, the adversarial transferability can be further improved

when using a teacher model to extract dark knowledge from

the augmented images. To the best of our knowledge, we are

the first to use conventional data augmentations in the training
stage to boost transfer-based attacks, as opposed prior works

that augment data during the generating stage [4], [11], [14].

III. METHODOLOGY

In this section, we propose the dark surrogate model (DSM)

to yield adversarial examples with better transferability, which

is illustrated in Fig. 1. We first introduce our idea of refining

labels with dark knowledge. Then, we apply mixing augmen-

tations to enhance the dark knowledge of training data. Finally,

we describe the algorithm for training the proposed DSM.

A. Refining Labels Using Dark Knowledge

Given an image x and its label y, the optimization prob-

lem (2) converges a minimum value only if the predicted dis-

tribution S(f(x; θ)) equals the one-hot label ey , which means

f(x; θ)y − maxi �=y f(x; θ)i = ∞, indicating that the trained

surrogate model output an extremely high confidence score for

the true class. However, the fitting target ey does not describe

an image well because an image often contains features of

similar classes. For example, ImageNet [17], the most famous

dataset for image classification, is a hierarchical dataset that

contains many subcategories belonging to the category “dog”,

such as “papillon”, “chihuahua”, “Maltese dog”. An image of

“papillon” will have the features of other “dog” categories.

Moreover, there may even be multiple objects appearing in an

image. An example is illustrated in Fig. 1, where there are

two images in the Raw Dataset labeled as “Persian cat” and

“papillon”, respectively, while they possess features of other

cats, dogs, as well as pillows and cars. Even if the model

achieves high accuracy on classification, the model trained

with one-hot labels can not fully extract the features of an

image for every class. This will be harmful for adversarial

transferability of surrogate model, which directly depends on

the working mechanism of the trained surrogate model, i.e.

how it thinks “an image looks like a dog instead of a goldfish”.

Adversarial 

Example
Normal

Surrogate 

Model

Victim 

Model

DNN

Optimizer

Adversarial 

Example

Optimizer

Raw Dataset

Enhance 
Dark Knowledge

Augmented Dataset

DNN

Optimizer

Dark 

Surrogate 

Model

Adversarial 

Example

Optimizer
Adversarial 

Example

Clean Image

cat?

dog!

cat!

1. Training Stage 2. Generating Stage 3. Attacking Stage

Pretrained

Teacher 

Model
Extracted 

Dark Knowledge

cat?: wrong class with not high probability.

dog!: correct class.

cat!: wrong class with high probability.

One-hot

Label

Soft

Label

Fig. 1. An illustration of previous work and the proposed method for
generating adversarial examples.

To overcome this weakness, we propose to leverage a

pretrained teacher model to extract the dark knowledge from

the training data, which is then utilized to train the surrogate

model. Specifically, the predicted probability distribution of

the teacher model serves as a soft label, which provides more

information compared to the one-hot label, such as “which 2’s

look like 3’s and which look like 7’s” [7]. This information

can help the surrogate model to learn image features better,

and thus yield more transferable adversarial examples. Given

a pretrained teacher model parameterized by θ0, we can train

a dark surrogate model parameterized by θd through solving

the following optimization problem:

θd = argminθ CE(S(f(x; θ0)), S(f(x; θ))) . (4)

The major difference to the normal training (2) is that the

dark knowledge S(f(x; θ0)) produced by the teacher model is

used as the label.

Our work shares a similar process with the previous

work [5], but we are motivated by a different goal and comple-

ment their work. Specifically, the objective in [5] is to make

the surrogate model similar to multiple teacher models, and the

success of [5] is entirely attributed to the ensemble attack [16],

without any discussion on dark knowledge. This makes the

method in [5] incomplete and lack theoretic support for the

case of using a single teacher model. However, experimental

results to be presented in Section IV show that using only

a single teacher model can also improves the adversarial

transferability. This improvement can not be explained by [5],

but we provide a theoretical interpretation for this phenomenon

based on the concept of dark knowledge. Additionally, while

one-hot labels (ey term in (3)) are still employed in [5], our

perspective based on dark knowledge indicates that they are

harmful for adversarial transferability and thus we do not

use them. In Section IV.C, we will conduct a comparison

experiment with [5] to highlight the differences between the

two works.

B. Enhancing Dark Knowledge of Training Data

Although the soft label in (4) involves dark knowledge and

thus is better than the one-hot label, it is still close to the

one-hot label since the teacher model is obtained by training

with the one-hot labels. To illustrate this point, we denote the

confidence of a soft label ỹ as maxKi=1 ỹi. Thus, the confidence

of a one-hot label achieves the maximum value of 1. Then, we

train a ResNet18 teacher model on CIFAR-10 and provide a

visualization of the empirical cumulative distribution function

(CDF) of the confidences of soft labels it generates on the

training images of CIFAR-10, as shown in Fig. 2. Fig. 2

shows that the empirical CDF of confidences on CIFAR-10

(red curve) is similar to the CDF of one-hot labels, namely a

straight line with x = 1, which greatly weakens the effect of

dark knowledge on boosting adversarial transferability.

To overcome this weakness, we propose to enhance the dark

knowledge of training data by leveraging the data augmenta-

tion skills which explicitly mix a pair of images to synthesize

image data containing features of different classes. Given an

628



0 0.2 0.4 0.6 0.8 1

Confidence

0

0.2

0.4

0.6

0.8

1

C
u
m

u
la

ti
v
e 

p
ro

b
ab

il
it

y

CIFAR-10

Augmented CIFAR-10 by CutMix

Fig. 2. The empirical cumulative distribution function (CDF) of confidence
of soft labels generated by an ResNet18 teacher model.

Dog
Raw

Cat
Raw

Dog
Cutout

Dog & Cat
Mixup

Dog & Cat
CutMix

Black
Image

Method Pseudo Label
Cutout Black Image Binary mask
Mixup Another Image
CutMix Another Image Binary mask

Fig. 3. An illustration of different data augmentation skills. The details of
these skills are explained at bottom. δ(x) denotes the one-hot label of x.

original image x, we consider three popular skills of mixing

augmentations in this work:

• Cutout [8], which randomly masks a fixed-size area of x
to zero. The size of mask is set to 112×112 in this work.

• Mixup [9], which randomly samples a reference image x′

and make a combination with x. This generates an image

x̃ = λx + (1 − λ)x′, where λ ∼ U(0, 1) in this work.

For this data x̃, a soft label ỹ = λey + (1− λ)ey′ should

be used during the training, where y and y′ are the true

classes of x and x′, respectively.

• CutMix [10], which randomly copies a rectangle area of

x′ to paste into x. If the area ratio of the rectangle to the

whole image is 1− λ where λ ∼ U(0, 1) in this work, a

soft label ỹ = λey + (1− λ)ey′ is used for training, and

y and y′ are the true classes of x and x′, respectively.

The data generated with the three mixing augmentation

skills can be unified as x̃ = x�M+x′�(1−M), where M is

a tensor of the same shape as x, � is an element-wise product,

and 1 is an all-one tensor. Fig. 3 illustrates these skills.

To demonstrate the effectiveness of mixing augmentation

in mitigating the issue of soft labels being too similar to one-

hot labels, we take CutMix as an example and apply it to the

training images of CIFAR-10 to generate 50000 augmented

images. We then plot the CDF of the confidences of generated

soft labels on these augmented images in the blue curve

of Fig. 2, which exhibit clear deviation from the red curve

over about 40% data points, demonstrating that the mixing

augmentations can construct data with more dark knowledge.

Moreover, Fig. 2 also reveals a huge discrepancy between

the CDF of confidence of soft labels generated by the

ResNet18 teacher model and those for the standard CutMix

skill. Specifically, the soft labels employed in the standard

CutMix is ỹ = λey + (1 − λ)ey′ for an augmented image

obtained by mixing by two images that belong to the category

of y and y′, respectively, where λ ∼ U(0, 1). As a result, the

confidence of the soft label is max(λ, 1−λ) and should obey

a uniform distribution on [0.5, 1], with a CDF of y = 2x− 1,

which is completely different from the trend of the blue curve

depicted in Fig. 2. This difference raises the question of

whether the heuristic labeling strategy employed in CutMix is

a reasonable strategy for improving adversarial transferability.

Although CutMix has been shown to be effective on image

classification, as discussed in Section III.A, higher classi-

fication accuracy does not necessarily correspond to better

adversarial transferability. Notably, the labeling strategy of

CutMix skill has a similar limitation to one-hot labels as it only

considers the features of the categories to which the mixed

images belong, while ignoring those of most other categories.

This limitation is not aligned with the motivation of this work

and can also be observed in other mixing augmentation skills.

Therefore, CutMix and other mixing augmentation skills used

in our method are only to enhance the dark knowledge of

training data. The soft labels are obtained through the method

introduced in Section III.A, specifically, by using the predicted

probability distribution of the teacher model for the augmented

images. This step is also illustrated in Fig. 1 and will be

described as Algorithm 1 in Section III.C.

The experimental results in Section IV.B will show that the

adversarial transferability of DSMs can be further improved by

enhancing the dark knowledge of the training data with these

mixing augmentations. Furthermore, Section IV.B also shows

that the standard mixing augmentation will impair the adver-

sarial transferability of surrogate models. It is noteworthy that

the only difference between training with the standard mixing

augmentation skills and the proposed DSM is the presence

or absence of dark knowledge in the labeling strategy. This

finding further emphasizes the crucial role of dark knowledge

in boosting adversarial transferability.

C. The Proposed Algorithm for Training DSM

Combining the ideas in last two subsections, we propose

the approach of training the DSM to boost the adversarial

transferability of surrogate models, described as Algorithm 1.

At each iteration during the training, we first enhance the dark

knowledge by the mixing augmentation skills (Step 6), then

train the surrogate model with dark knowledge extracted by

the teacher model described with parameters θ0 (Step 7).

Notice that any pretrained model for the same classification

problem can be used as the teacher model. A simple choice

of teacher model is the one with the same architecture as the

DSM θd and trained by solving problem (2). Section IV.B

will show that a teacher model with a different architecture

from the DSM is also useful and sometimes makes the DSM

exhibit better adversarial transferability of surrogate models.

In addition, the proposed approach can be naturally combined

with prior work on improving the adversarial transferability

of surrogate models, through using their released model as a

teacher model, as shown in Section IV.D.
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Algorithm 1 Training the DSM for transfer-based attack

Input: Batch size m, learning rate η, training dataset DT , a

(pretrained) teacher model with parameters θ0, dark

surrogate DNN model parameterized by θd.

Output: the dark surrogate model with parameters θd.

1: Randomly initialize the parameters θd.

2: repeat � solve the optimization problem (8)

3: Read mini-batch {x1, · · · , xm} from DT .

4: L← 0.

5: for i← 1 to m do
6: Apply the mixing augmentation on xi to obtain an

augmented image xmix
i .

7: L← L+CE(S(f(xmix
i ; θ0)), S(f(x

mix
i ; θd)))

8: end for
9: θd ← θd − η∇θdL

10: until parameters θd are converged

Finally, the proposed approach can be applied to other

scenarios of transfer-based attack that contain dark knowledge,

like face verification. Training a face verification model con-

sists of two steps, i.e., training a facial classifier and obtaining

an embedding model based on that classifier. An adversary

can train a facial classifier based on Algorithm 1 to obtain an

embedding model. The obtained embedding model can be used

as a surrogate to attack a black-box face verification model.

We will show that the facial classifier trained by the proposed

approach yields an embedding model with better adversarial

transferability, with the experiments presented in Section IV.E.

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of the

proposed dark surrogate model (DSM) with experiments. We

begin by evaluating the effectiveness of DSM on attacking

image classification models. The ResNet18 (RN18) [18],

DenseNet121 (DN121) [19] and MobileNetv2 (MNv2) [20]

are chosen as the surrogate models. Unless explicitly stated,

the CutMix skill is used for training DSM, and the teacher

model employed is a normal pretrained model (trained with

one-hot labels) with the same architecture as the DSM. The

first three subsections are dedicated to the untargeted attack

of image classifiaction models, including the comparison with

the related work [5]. Then, the results of targeted attack are

presented, which involves the combination of the proposed

DSM and the method of training slightly robust model [6].

Lastly, the results on attacking face verification models are

presented.

Adversarial examples are crafted with a maximum pertur-

bation of ε = 16 unless explicitly stated. We consider three

adversarial example optimizers: FGSM [13], MI-FGSM [3],

and TI-DI-MI-TG [11]. If the optimizer is not explicitly stated,

the strongest TI-DI-MI-TG optimizer is employed. For the

hyper-parameters of adversarial example optimizer, we set

the step size β to 2, the momentum factor μ to 1.0, the

probability of transformation pt to 1.0, the size of kernel W
to 7× 7, the number of iterations N for untargeted attack to

10, following [11]. For targeted attack we set N to 200 and

optimize the logits-based loss following the suggestion in [15].

Two image classification datasets are considered, including

the small CIFAR-10 dataset and the large ImageNet dataset.

In the experiments of CIFAR-10, the models are trained 200

epochs. We set the batch size to 256, the weight decay

to 10−4. The learning rate is set to 0.1 and updated by a

cosine annealing scheduler. In the experiments of ImageNet,

we follow the PyTorch official example1 to train the models.

We randomly sample 1000 images from CIFAR-10 dataset

for generating adversarial examples, while for the experi-

ments of ImageNet, the adversarial examples are generated

on ImageNet-compatible dataset2 since it was widely used in

previous works [3]. This dataset comprises 1000 images and

provides a true label and a target label of each image for

untargeted and targeted attack, respectively.

A. Detailed Results of the Proposed Method

We first preliminarily show the performance of DSM on a

simple dataset, CIFAR-10. Specifically, we train three normal

surrogate models, ResNet18 (RN18), DenseNet121 (DN121)

and MobileNetV2 (MNV2), on CIFAR-10, and then employ

them as the teacher models to train DSMs with the same

architecture. We denote a dark RN18 model trained without

mixing augmentation as DSM(RN18, None), and a dark RN18

model trained with CutMix as DSM(RN18, CutMix). When

there is no ambiguity, DSM(RN18, CutMix) is abbreviated as

DSM(RN18), as CutMix is the default augmentation technique

used in this paper. The naming convention of other models is

done similarly. We employ the FGSM optimizer to efficiently

generate adversarial examples by these normal/dark surrogate

models, and use these normally trained models as victim

models to evaluate the adversarial transferability. We list the

experimental results in Table I, which first show that the dark

surrogate models are only slightly better than or comparable

to normal surrogate models when no mixing augmentation is

used. This is because the dark knowledge extracted by the

teacher models is too similar to the one-hot labels, as shown

in Fig. 2. Then, Table I demonstrates that the attack success

rates are remarkably improved by up to 27.0% when CutMix

is used to enhance the dark knowledge of the training data,

emphasizing the crucial role of mixing augmentation.

Then, we consider a more challenging dataset, ImageNet,

and used nine publicly available models as victim models.

These models have been widely used in previous work [3].

The first three of them are normally trained models, includ-

ing Inception-v3 (Inc-v3) [21], Inception-v4 (Inc-v4), and

Inception-ResNet-v2 (IncRes-v2) [22]. The rest are robust

models: Inc-v3ens3, Inc-v3ens4, and IncRes-v2ens [23], high-

level representation guided denoiser (HGD) [24], input trans-

formation through resizing and padding (R&P) [25], and

the rank-3 submission in NIPS2017 adversarial competition

1https://github.com/pytorch/examples/tree/master/imagenet
2https://www.kaggle.com/google-brain/nips-2017-adversarial-learning-

development-set
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TABLE I
THE SUCCESS RATES (%) OF UNTARGETED ATTACKS ON CIFAR-10

DATASET. − INDICATES THE WHITE-BOX ATTACK.

Surrogate model RN18 DN121 MNv2

Normal RN18 - 73.0 70.0
DSM(RN18,None) - 74.1 68.2

DSM(RN18,CutMix) - 90.7 87.8
Normal DN121 45.2 - 65.1

DSM(DN121,None) 46.2 - 65.5
DSM(DN121,CutMix) 72.2 - 88.4

Normal MNv2 38.2 60.6 -
DSM(MNv2,None) 41.3 59.7 -

DSM(MNv2,CutMix) 64.2 85.7 -

(NIPS-r3)3. To demonstrate the effectiveness of the proposed

DSM across various adversarial example optimizers, we con-

sider three optimizers, namely FGSM, MI-FGSM and TI-

DI-MI-TG. The stronger TI-DI-MI-TG will be used as the

default optimizer in the later section. We list the untargeted

attack results in Table II, which shows that the proposed

DSMs consistently outperform the normal surrogate models

with same architecture. Notice that TI-DI-MI-TG represents

a state-of-the-art method for generating adversarial examples

without training a special surrogate model. Compared with it,

using the three DSMs based on RN18, DN121 and MNV2

can improve the attack success rate by 10.7%-21.6%, 12.8%-

23.6% and 8.5%-11.0%, respectively.

B. Ablation Studies
In this subsection, we first conducted experiments using

teacher models with different architectures to investigate the

effect of the teacher model and report the results in Table III.

Notice that the results for the DSM sharing same architecture

as the teacher model are the same as those in Table II for

TI-DI-MI-TG. From Table III we see that using different

teacher model may further improve the attack success rates.

Comparing the results in Table II, we find out that DSMs can

improve the attack success rates by 25.7%, 36.8% and 26.3%
at most for the situations with RN18, DN121 and MNV2 based

surrogate models, respectively. Although it is still an open

problem that what teacher model is best for the adversarial

transferability of DSM, just using the teacher model with the

same architecture as DSM is a simple yet effective choice.
We proceeded to investigate the impact of different mixing

augmentations on adversarial transferability. Note that some

preliminary results in this aspect were previously shown in

Table I. Here, we additionally consider two commonly used

mixing augmentation skills, namely Cutout and Mixup. The

RN18 is considered as the architecture of the surrogate model.

The results are shown in Fig. 4, which shows that all mixing

augmentation skills can improve the attack success rates. It

is noteworthy that the improvement is smaller for ImageNet-

compatible dataset than for CIFAR-10 (Table I) due to the

greater complexity of ImageNet. Consequently, the output of

the teacher model does not degenerate to one-hot labels as

depicted in Fig. 2. Nevertheless, the use of mixing augmen-

tation consistently improves adversarial transferability in all

cases, with negligible additionally computational overhead.

3https://github.com/anlthms/nips-2017/tree/master/mmd
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Fig. 4. The average success rates (%) of untargeted attack on ImageNet-
compatible dataset against nine victim models when using different mixing
augmentations to train a (dark) RN18.

Since the labeling strategy in DSM is different from the

standard mixing augmentation skills, we also conduct exper-

iments on a RN18 surrogate model trained with standard

Cutout/Mixup/CutMix skills. Note that the only difference

between a normal RN18 trained with standard mixing aug-

mentation skill and a dark RN18 trained with the same mixing

augmentation skill is the labeling strategy. The results of

the RN18 models trained with these skills are presented in

Table IV. Surprisingly, we observed that the normal RN18

achieves better results than the models trained with mixing

augmentation skills, indicating that such skills actually impairs

the adversarial transferability of surrogate model when there

is no teacher model to extract dark knowledge. This finding

highlights the crucial role of extracted dark knowledge in

boosting adversarial transferability.

C. Comparison with the Knowledge Distillation Based
Method [5]

In this subsection, we compare the proposed DSM with

the knowledge-distillation based method [5], since it also

uses knowledge distillation to train the surrogate model. We

refer to the model trained in this way as KDSM (knowledge-

distillation based surrogate model). If the number of teacher

models M = 1, the difference between our DSM and KDSM

is that the latter uses one-hot labels to interpolate with dark

knowledge (see (3)), while the former additionally uses the

mixing augmentations to enhance dark knowledge. Using

normal RN18 as the teacher model to train a surrogate model

in same architecture, the results of KDSM and our DSM are

shown in Fig. 5. When βKD = 0, the KDSM degenerates to

a normally trained model, and when βKD = 1 the KDSM is

equivalent to our DSM without mixing augmentation. Fig. 5

shows that the attack success rate increases as βKD increases,

and it reaches the maximum at βKD = 1. This means the DSM

is better than KDSM, and it is unnecessary and inadvisable

to interpolate with the one-hot labels. Furthermore, as Fig. 4

once demonstrated, the dash line in Fig. 5 shows better results

for DSMs with mixing augmentation. The effectiveness of

mixing augmentation to enhance the dark knowledge is also

observed in other dataset. For example, the results presented

in Table I demonstrate that mixing augmentation improves the

attack success rates by up to 27.0% on CIFAR-10, while there

is almost no improvement without using mixing augmentation.

Additionally, Section IV.E will verify the effectiveness of

mixing augmentation in attacking face verification models.
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TABLE II
THE SUCCESS RATES (%) OF UNTARGETED ATTACKS ON IMAGENET-COMPATIBLE DATASET WITH DIFFERENT OPTIMIZERS.

Optimizer Surrogate model Inc-v3 Inc-v4 IncRes-v2 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens HGD R&D NIPS-r3

FGSM
[13]

normal RN18 47.3 40.7 33.8 33.0 34.6 23.1 26.2 24.9 26.2
DSM(RN18) 56.3 48.4 43.6 40.0 42.1 29.2 34.2 32.2 34.7

normal DN121 44.6 39.3 34.4 31.0 32.2 22.1 24.0 23.8 25.2
DSM(DN121) 54.1 47.9 43.0 40.0 39.9 29.3 33.5 31.1 32.9
normal MNv2 42.4 34.2 28.2 26.8 28.3 17.9 18.4 19.2 22.3
DSM(MNv2) 46.0 40.0 32.7 30.2 30.8 20.9 21.5 22.1 24.7

MI-FGSM
[3]

normal RN18 62.0 54.2 43.7 39.2 39.0 26.2 35.2 28.7 31.7
DSM(RN18) 80.9 71.5 66.3 56.8 56.0 40.2 56.1 43.0 48.3

normal DN121 58.3 52.8 49.2 38.1 38.6 27.1 38.1 29.6 31.2
DSM(DN121) 79.7 77.4 70.4 55.1 51.9 40.7 56.9 41.8 46.3
normal MNv2 49.2 42.5 34.6 30.5 30.3 20.2 25.0 21.4 25.9
DSM(MNv2) 59.2 50.2 42.4 36.4 37.0 24.3 30.6 27.2 30.3

TI-DI-MI-TG
[11]

normal RN18 81.7 75.3 66.4 58.9 58.8 42.8 55.8 49.5 54.4
DSM(RN18) 92.4 89.9 84.0 78.4 76.1 63.0 77.4 69.1 74.1

normal DN121 79.8 75.5 70.2 56.8 54.4 44.1 58.1 48.7 52.1
DSM(DN121) 92.6 92.1 89.6 77.9 75.5 63.0 81.7 69.2 74.4
normal MNv2 72.2 65.3 59.5 49.4 49.6 34.4 43.9 38.7 44.8
DSM(MNv2) 82.4 75.3 70.0 59.7 59.0 43.4 54.9 47.2 54.9

TABLE III
THE SUCCESS RATES (%) OF UNTARGETED ATTACKS USING THE DSMS WITH VARIOUS TEACHER MODELS ON IMAGENET-COMPATIBLE DATASET.

Surrogate model Teacher model Inc-v3 Inc-v4 IncRes-v2 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens HGD R&D NIPS-r3

DSM(RN18)
RN18 92.4 89.9 84.0 78.4 76.1 63.0 77.4 69.1 74.1

DN121 90.5 87.4 80.5 70.3 67.9 55.4 70.3 60.1 64.8
MNv2 95.0 91.3 87.6 83.4 80.2 66.9 81.5 71.3 77.6

DSM(DN121)
RN18 97.8 95.9 94.5 89.7 88.9 80.9 91.0 85.4 87.6

DN121 92.6 92.1 89.6 77.9 75.5 63.0 81.7 69.2 74.4
MNv2 96.4 95.6 92.5 89.1 86.7 75.0 88.0 80.3 85.2

DSM(MNv2)
RN18 89.5 86.7 80.7 71.3 67.9 55.6 70.2 60.6 67.0

DN121 82.3 78.6 68.9 57.9 56.1 41.9 53.1 44.9 52.5
MNv2 82.4 75.3 70.0 59.7 59.0 43.4 54.9 47.2 54.9

TABLE IV
THE SUCCESS RATES (%) OF UNTARGETED ATTACK ON

IMAGENET-COMPATIBLE DATASET WHEN USING DIFFERENT STRATEGIES.

Surrogate model Inc-v3 Inc-v4 IncRes-v2 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens HGD R&D NIPS-r3

Normal RN18 81.7 75.3 66.4 58.9 58.8 42.8 55.8 49.5 54.4
RN18+Cutout 79.5 73.5 65.8 58.4 55.7 41.9 55.0 45.9 50.3
RN18+Mixup 77.8 72.0 62.6 53.7 50.5 36.6 47.5 39.1 42.0
RN18+CutMix 74.0 67.0 57.4 51.7 50.6 37.1 46.5 40.0 43.7
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Fig. 5. The average success rates (%) of untargeted attack on ImageNet-
compatible dataset against nine victim models with the KDSM [5] as the
surrogate model, versus the value of βKD in (3). The dash line indicates the
result of DSM.

D. The Results of Targeted Attack

We have shown that the proposed DSM performs very

well on untargeted attack. While for the much more difficult

task of targeted attack, a state-of-the-art work is the method

with slightly robust surrogate model [6] despite that it costs

large computational time for generating adversarial examples

online. Below, we will show that it can be further improved

with the proposed DSM while almost not inducing extra time

cost. The combination of DSM and the method with slightly

robust surrogate model [6] can make a favorable success rate

of targeted attack. In [6], it is demonstrated that by using a

slightly robust model trained with small-magnitude adversarial

examples as the surrogate model, the state-of-the-art success

rates on targeted attack are achieved. Specifically, using N
rounds of iteration to generate adversarial examples would

make the training time to be N + 1 times that of standard

training, where N is about 10 as suggested by [26]. We use

the slightly robust ResNet18 model (SR-RN18), which was

trained with maximum perturbation of 0.1 (the recommend

valued in [6]), as the teacher model to train a DSM denoted

by DSM(SR-RN18), taking about the same time as standard

training. We conduct experiments of targeted attacks and report

the results in Table V, which shows that the proposed DSM

can be naturally combined with [6] and it again remarkably

improves the success rates of black-box attack by 6.9%-18.1%.

TABLE V
THE SUCCESS RATES (%) OF TARGETED ATTACKS ON

IMAGENET-COMPATIBLE DATASET.

Surrogate model Inc-v3 Inc-v4 IncRes-v2 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens HGD R&D NIPS-r3

SR-RN18 [6] 46.2 41.6 49.0 38.3 40.4 34.2 49.5 39.0 41.0
DSM(SR-RN18) 63.1 59.7 65.5 48.9 49.0 41.1 62.2 48.2 51.7
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TABLE VI
THE SUCCESS RATES (%) OF THE DODGING/IMPERSONATE ATTACKS TO

FACE VERIFICATION MODELS ON LFW DATASET.

Surrogate model Dodging attack Impersonate attack

FaceNet SphereFace CosFace ArcFace FaceNet SphereFace CosFace ArcFace

IR50 79.2 95.6 93.2 77.4 45.4 84.5 76.3 60.6
DSM(IR50,None) 86.2 97.7 96.2 84.2 53.6 88.6 82.0 69.9

DSM(IR50,CutMix) 92.5 99.4 98.8 90.3 63.0 93.8 87.2 76.8

E. Application to Attacking Face Verification Model

DNN models for face verification have been widely de-

ployed in many safety-critical scenarios like mobile unlocking.

To show the versatility of the proposed method, we present the

experimental results on attacking face verification models in

this subsection. A face verification model is used to judge

whether a pair of facial images belong to the same identity.

It is built based on a classifier trained on a dataset of facial

images to separate images of different identities. Given a pair

of facial images, a pair of embedding features are extracted by

the classifier, i.e. the outputs of the penultimate layer of the

model. Then, the cosine similarity between them is calculated

for judging whether they belong to the same identity.

The dodging attack and impersonate attack are two kinds of

attack to face verification model. Given a pair of facial images

x and xr belonging to the same identity, dodging attack aims

to generate an adversarial example xadv which is similar to

x but be recognized as a different identity from xr. On the

contrary, impersonate attack aims to generate an adversarial

example xadv which is similar to x but be recognized as the

same as xr if x and xr do not belong to the same identity.

We conduct experiments on the standard LFW [27] protocol,

which means we select both 3000 pairs of images for dodging

attack and impersonate attack. The IResNet50 (IR50) [28] is

chosen as the surrogate model and four publicly available

face verification models as the victim models are considered,

including FaceNet, SphereFace, CosFace and ArcFace since

they have different architectures and are considered in prior

works on attacking face verification models [29].

We train an IR50 classifier on CASIA-WebFace [30] follow-

ing previous work [29], and use it as a teacher model to train

the dark surrogate model. We conduct dodging/impersonate

attack experiments on them with ε = 8 and list the results

in Table VI, which shows that adversarial transferability can

be remarkably improved through using dark knowledge, and

can be further improved by introducing CutMix. Specifically,

the proposed DSM can improve the success rates of dodging

attack and impersonate attack by 12.9% and 16.2% respec-

tively, when the ArcFace [12] is used as the victim model.

V. CONCLUSIONS

In this paper, we propose a method to train the surrogate

model for transfer-based adversarial attack on image classifi-

cation, which boosts the adversarial transferability of surrogate

models. The trained surrogate model is named dark surrogate

model (DSM). The proposed method includes two key com-

ponents: using a teacher model to generate dark knowledge

(soft label) for training the surrogate model, and using the

mixing augmentation skills to enhance the dark knowledge

of training data. The effectiveness of the proposed method

is validated by extensive experiments and the comparisons

with counterparts. Besides, we show that the proposed method

can be extended to other transfer-based attack scenarios that

contain dark knowledge, like face verification.
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