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Abstract

In natural language understanding (NLU) pro-001
duction systems, the end users’ evolving needs002
necessitate the addition of new abilities, in-003
dexed by discrete symbols, requiring addi-004
tional training data and resulting in dynamic,005
ever-growing datasets. Dataset growth intro-006
duces new challenges: we find that when learn-007
ing to map inputs to a new symbol from a fixed008
number of annotations, more data can in fact009
reduce the model’s performance on examples010
that involve this new symbol. We show that011
this trend holds for multiple models on two012
datasets for common NLU tasks: intent recog-013
nition and semantic parsing (see Fig. 1). We014
demonstrate that the performance decrease is015
largely associated with an effect we refer to016
as source signal dilution (cf. Fig. 2), which017
occurs when strong lexical cues in the train-018
ing data become diluted as the dataset grows.019
Selectively dropping training examples to pre-020
vent source signal dilution often reverses the021
performance decrease, suggesting a promising022
direction for addressing this issue.1023

1 Introduction024

Broad-coverage natural language understanding025

(NLU) that simultaneously supports a wide range026

of user requests is critical for developing general-027

purpose natural language interfaces. Such systems028

are currently being deployed and reach millions029

of users worldwide: As of 2021, Amazon Alexa030

contains more than 80,000 different skills (Vail-031

shery, 2021), and Microsoft has deployed a new032

conversational interface for Outlook that uses over033

300 composable functions to represent fine-grained034

semantics in task-oriented user-agent dialogues (Se-035

mantic Machines et al., 2020; Burrage, 2021).036

These broad-coverage NLU systems do not ac-037

quire their full capability on day one: new features038

(e.g., intents or functions) are incrementally added039

over time, along with new supervised training data040

1Our code and data are available at anonymous-link.
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Figure 1: Overall and per-symbol test accuracy for in-
tent recognition and semantic parsing when the num-
ber of training examples for a certain symbol is fixed.
Each line represents fixing a different symbol. As train-
ing data size increases, overall accuracy increases but
accuracy for the fixed symbol often decreases.

for learning the new features. However, there has 041

been little research on the data and learning dynam- 042

ics during such incremental development, which 043

is critical considering the wide deployment and 044

high cost of such systems. This work aims to bring 045

attention to this important problem. We consider 046

two prototypical NLU tasks: intent recognition and 047

semantic parsing. NLU generally consists of map- 048

ping utterances into a space of symbols or symbol 049

sequences (e.g., intent labels for intent recognition 050

and sequences of functions/predicates for semantic 051

parsing; we refer to both cases as “symbols” for 052

ease of discussion). We consider the following in- 053

cremental development process (which is typical in 054

practice): given a set of existing symbols and their 055

training data, we want to learn a new symbol, which 056

entails adding new annotations for the symbol. As 057

the system supports more and more symbols, its 058

training data size continually increases. 059

At first blush, this growth may seem positive, in 060

holding with a common assumption of supervised 061

learning: more data is generally better (Kearns 062

et al., 1994). However, our analyses reveal a trou- 063

bling quirk: as the training data size increases, it 064

becomes increasingly difficult to learn new symbols. 065

To investigate this further, we create datasets of in- 066

creasing size by adding a fixed number of training 067
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examples for a new symbol into increasingly larger068

datasets of examples for other existing symbols,069

simulating learning a new symbol with larger and070

larger datasets. We then train on each setting and071

evaluate on the same test set, measuring test accu-072

racy on the new symbol. We repeat this across an073

intent recognition dataset (Liu et al., 2019) and a074

semantic parsing dataset (Semantic Machines et al.,075

2020), examining 5 symbols per dataset.076

Fig. 1 shows the overall test accuracy of our077

best models (cf. §2) as well as the accuracy on ex-078

amples containing the new symbol. As the size079

of the dataset increases, the average test accuracy080

across all symbols monotonically increases. How-081

ever, the accuracy on the examples for the new082

symbol generally decreases. The decrease in per-083

formance could lead to a vicious cycle, whereby084

an increasing number of training examples would085

need to be collected to achieve adequate accuracy086

for each new symbol, which accelerates the growth087

of the dataset and in turn increases the demand088

for training data for future symbols, and possibly089

also for existing symbols, as they become a smaller090

percentage of the data, even further. Class imbal-091

ance is one obvious candidate explanation for the092

performance decrease: as the dataset grows and093

the number of examples for the new symbol stays094

fixed, the prior probability of the new symbol in the095

training data decreases. If this were true, simply096

upsampling the new symbol’s annotations should097

revert the decrease. With a view to addressing this098

kind of class imbalance, we explore two common099

solutions: group distributionally robust optimiza-100

tion (DRO) (Sagawa et al., 2019, 2020) and upsam-101

pling. The failure of these solutions to attenuate102

the accuracy drop leads us to identify a different103

force associated with the performance decrease,104

source signal dilution, whereby the reliability of105

the signal coming from indicative tokens in the106

user utterances for the new symbol is diminished107

in larger datasets. This force is illustrated in Fig. 2.108

At low data settings, some tokens are highly cor-109

related with the FindManager symbol, but as the110

dataset grows, the correlation with these tokens is111

reduced by competing examples that, often by co-112

incidence, contain the same tokens. We show that113

when confounding examples (shown in red) are re-114

moved, the accuracy decrease largely disappears,115

indicating that our state-of-the-art neural models116

are overly-reliant on simple lexical cues for learn-117

ing the symbol of interest. We later argue that while118

“Make a meeting with my boss”: (Yield	(…	(FindManager…)))

5K train, 100 FindManager

“Who’s Sally’s supervisor?”: (Yield	(…	(FindManager…)))

“Who else reports to my manager”:  (Yield	(…	(FindManager…)))

100K train, 100 FindManager
P̂ (FindManager|t 2 input) = 1.0

<latexit sha1_base64="pwKkOt3XyQItpzEbPa/7jT+8fyA=">AAACH3icbVDLSgMxFM34rPU16tJNsAh1U2ak+FgIRUHcCBXsAzqlZNK0Dc1khuSOWMb5Ezf+ihsXioi7/o3pY6GtBwKHc+7l5hw/ElyD4wythcWl5ZXVzFp2fWNza9ve2a3qMFaUVWgoQlX3iWaCS1YBDoLVI8VI4AtW8/tXI7/2wJTmobyHQcSaAelK3uGUgJFa9onXI5CU07wH7BGSay7bt0SSLlMpfsKAPS7xxOIyiiE9whfYLTgtO+cUnDHwPHGnJIemKLfsb68d0jhgEqggWjdcJ4JmQhRwKlia9WLNIkL75nLDUEkCppvJOF+KD43Sxp1QmScBj9XfGwkJtB4EvpkMCPT0rDcS//MaMXTOmpNkTNLJoU4sMIR4VBZuc8UoiIEhhCpu/oppjyhCwVSaNSW4s5HnSfW44BYL53fFXOlyWkcG7aMDlEcuOkUldIPKqIIoekav6B19WC/Wm/VpfU1GF6zpzh76A2v4AxDBolI=</latexit>

“Add my manager’s wife”: (FenceAttendee)

“Who has Tina as a boss”: (Yield	(…		(FindReports)))

“Make a meeting with my boss”:	(Yield	(…	(FindManager…)))

“Who else reports to my manager”: (Yield	(…	(FindManager)))

“Who’s Mike’s supervisor?”:	(Yield	(…	(FindManager…)))

P̂ (FindManager|t 2 input) = 0.6

<latexit sha1_base64="MU10Domy0RLlmNHCfWLCNXHdnYo=">AAACH3icbVDLSgMxFM3UV62vqks3wSLUTZmRUnUhFAVxI1SwD+iUkknTNjSTGZI7YhnnT9z4K25cKCLu+jemj4W2HggczrmXm3O8UHANtj2yUkvLK6tr6fXMxubW9k52d6+mg0hRVqWBCFTDI5oJLlkVOAjWCBUjvidY3Rtcjf36A1OaB/IehiFr+aQneZdTAkZqZ0tun0BcSfIusEeIr7ns3BJJekwl+AkDdrnEU4vLMILkGF9gu1BqZ3N2wZ4ALxJnRnJohko7++12Ahr5TAIVROumY4fQiokCTgVLMm6kWUjowFxuGiqJz3QrnuRL8JFROrgbKPMk4In6eyMmvtZD3zOTPoG+nvfG4n9eM4LuWWuajEk6PdSNBIYAj8vCHa4YBTE0hFDFzV8x7RNFKJhKM6YEZz7yIqmdFJxi4fyumCtfzupIowN0iPLIQaeojG5QBVURRc/oFb2jD+vFerM+ra/paMqa7eyjP7BGPxhTolc=</latexit>

…

…

Figure 2: Source signal dilution in the training set: as
the data grows, the set of cues t (in bold) associated
with FindManager becomes less predictive of it.

the removal of these examples may cure the symp- 119

toms expressed under increasing dataset sizes, they 120

do not represent an adequate cure. 121

Our main contributions are threefold: 122

• We identify a troubling quirk in developing 123

broad-coverage NLU systems that challenges 124

the common assumption of more data entail- 125

ing better performance. 126

• Based on our observations, we identify plausi- 127

ble forces leading to the decreased accuracy 128

seen in Fig. 1, foremost among them the dilu- 129

tion of the source signal (cf. Fig. 2). A deeper 130

understanding of this force may guide us in de- 131

veloping systematic solutions to this problem 132

in the future. 133

• Finally, we release our code and models, in- 134

cluding a model for the SMCalFlow dataset 135

(Semantic Machines et al., 2020) that achieves 136

state-of-the-art performance. We hope it will 137

serve as a useful baseline for future develop- 138

ment on this challenging dataset. 139

2 Datasets and Models 140

Intent recognition and task-oriented semantic pars- 141

ing share multiple common features. They both 142

translate user utterances to structured objects (or at 143

least to categorical intents) and they are both com- 144

monly used in production NLU systems trained 145

on annotated examples. This makes them ideal 146

testbeds for exploring the dynamics in learning 147

new symbols as the training dataset grows. 148
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2.1 Intent Recognition149

Intent recognition involves classifying utterances150

into a fixed set of “intents,” which are typically151

the symbols of some agent (e.g., a digital personal152

assistant) (Lorenc et al., 2021). Intents often index153

into a set of pre-defined templates (e.g., the intent154

play music might index into a template with slots155

“song name,” “song artist” etc.) and are central to156

many digital assistant technologies. New intents157

may be added to the agent incrementally during the158

development process as needs for new capabilities159

arise. For example, an agent capable of cooking160

tasks may be extended to other household tasks,161

requiring it to understand the associated intents.162

We use the NLU evaluation dataset provided by163

Liu et al. (2019), which contains 25,715 utterances164

for 68 intents across 18 scenarios. 2571 and 5144165

utterances are reserved for validation and testing,166

respectively. We simulate learning a new intent167

under different data regimes by choosing an in-168

tent to learn, and then sampling examples for that169

intent and the rest of the dataset at different ra-170

tios. The number of examples for the new intent is171

fixed at 30, and we vary the size of the dataset172

N ∈ {750, 1500, 3000, 7500, 15,000, 18,000}173

where 18,000 is the max in Fig. 1. Our experiments174

span 5 intents:175

• play radio is primarily triggered when176

users ask for radio stations to be played.177

• email query is for email-related queries.178

• email querycontact is triggered by ques-179

tions about contacts in an address book.180

• general quirky is a catch-all category for181

trivia-style questions and pleasantries.182

• transport traffic is triggered by traffic-183

related questions and commands.184

Some of the intents (e.g., play radio) have a185

set of easily-identified input triggers (e.g., “radio”,186

“fm”) while others (e.g., general quirky) have187

very diverse inputs. Example utterances for each188

intent can be found in Appendix A.1.189

To model this data, we apply a linear classifica-190

tion layer to the [CLS] token of BERT base (Devlin191

et al., 2019), finetuning the whole contextualized192

encoder at training time. This model was trained193

to convergence with the Adam optimizer, using a194

learning rate of 1e−5.195

2.2 Semantic Parsing196

While providing a good environment for exper-197

imentation, the intent recognition task lacks the198

(let	(x0	…	"	James	"))))
(Yield
		(UpdateCommitEventWrapper…	(Event.attendees_?
					&
						(AttendeeListHasRecipient	x0)
						(AttendeeListHasRecipient	(FindManager	x0))))))))

Yield UpdateCommit
EventWrapper

Event.attendees_? &

AttendeeList
HasRecipient

AttendeeList
HasRecipient

FindManager…James

BuildStructOp

ValueOp

CallLikeOp

…

Make a meeting with James and his manager

Figure 3: Example SMCalFlow program; it can be rep-
resented as a Lisp expression or as a DAG.

complexity of a full real-world production environ- 199

ment. We therefore seek to expand our intent recog- 200

nition experiments and analyses to a production- 201

level task and dataset. To that end, we use the SM- 202

CalFlow dataset (Semantic Machines et al., 2020; 203

Burrage, 2021), which offers a task-oriented seman- 204

tic parsing challenge, where a user iteratively cre- 205

ates a dataflow graph in a dialogue with an agent (cf. 206

Fig. 3). The dataset has 41,517 dialogues with 338 207

function types, yielding 121,024 training user turns 208

in the full setting. The input to our parsing model 209

is the previous user utterance, the corresponding 210

agent response, and the current user utterance, all 211

concatenated. The model is tasked with learning 212

to generate a typed Lisp program; see Fig. 3 for an 213

example, with further examples in Appendix A.2. 214

We explore both a sequence-to-sequence 215

(seq2seq) model and a sequence-to-graph 216

(seq2graph) model, using the MISO framework 217

(Zhang et al., 2019b; Stengel-Eskin et al., 2021), 218

which is built on top of AllenNLP (Gardner et al., 219

2018). The former directly predicts the Lisp string, 220

while the latter produces a DAG as seen at the 221

bottom of Fig. 3. Details follow. 222

LSTM seq2seq Our baseline model is an LSTM- 223

based seq2seq model similar to that used by Dong 224

and Lapata (2016) and Semantic Machines et al. 225

(2020). The model consists of a BiLSTM encoder 226

and an LSTM decoder with attention over the en- 227

coder states and a source copy operation to copy 228

entity spans from the source text, with its embed- 229

ding layer initialized from GloVe embeddings (Pen- 230

nington et al., 2014). Additional model details are 231

given in Appendix B.1. 232
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Transformer-based transductive A more com-233

petitive approach follows the transductive parsing234

paradigm (Zhang et al., 2019a) which aims to di-235

rectly produce the underlying DAG instead of the236

surface form, generating graph nodes as well as237

edges. We implement a transformer-based trans-238

ductive model, based on the architecture and code239

from Stengel-Eskin et al. (2021). The model di-240

rectly generates the linearized DAG (cf. Fig. 3)241

underlying the SMCalFlow Lisp expression; the242

nodes of the DAG (functions and arguments) are243

generated in a sequence-to-sequence fashion, with244

graph edges and edge types being assigned during245

decoding via a biaffine parser (Dozat and Manning,246

2017). Following past work, the input features for247

this model are a concatenation of BERT (Devlin248

et al., 2019), GloVe, and character CNN features.249

Additional details on the transductive transformer250

model are given in Appendix B.2.251

Data As SMCalFlow’s test set is not pub-252

licly available, we first split the validation253

data in half to obtain a held-out test set. We254

then construct training splits by selecting 100255

examples for each symbol and varying N ∈256

{5000, 10,000, 20,000, 50,000, 100,000,max},257

where max is the maximum amount of data that258

can be taken from the 121,024 training examples259

while excluding all but 100 examples for the new260

symbol. This number is typically slightly under261

120,000. We describe the symbols examined;262

Appendix A.2 has further examples.263

• FindManager is invoked when a user queries264

for a person’s manager.265

• Tomorrow returns tomorrow’s date.266

• DoNotConfirm is applied when a user wants267

to cancel a proposed action (e.g., confirming268

the creation of an event) by the agent.269

• FenceAttendee is invoked when a user tries270

to make an event with an attendee who is not271

in their contact list.272

• PlaceHasFeature is used when a user asks273

whether a place has certain amenities (e.g.,274

outdoor seating) or offers certain services.275

These vary in compositionality: FindManager276

and PlaceHasFeature take arguments, but277

Tomorrow does not, and FenceAttendee and278

DoNotConfirm are complete programs in them-279

selves. FindManager and Tomorrow have280

strong input cues, but DoNotConfirm and281

FenceAttendee come from very diverse inputs.282

3 Experiments 283

Baseline The first experimental setting is the 284

baseline setting, as presented in Fig. 1. Here, we 285

vary the size of the training data while holding the 286

number of examples for each given symbol fixed. 287

We train each model with three random seeds for 288

all experiments, reporting the average. 289

Upsampling Given the the limited number of ex- 290

amples for the new symbol, upsampling is a natural 291

solution to attempt. After exploring upsampling 292

ratios r ∈ {2, 4, 8, 16, 32, 64}, we selected 32 as 293

the factor by which to upsample the new symbol ex- 294

amples based on validation performance, i.e. each 295

example for the new symbol is copied 32 times 296

in the training set. This setting addresses both the 297

class imbalance (the class corresponding to the new 298

symbol is now 32 times more likely) and to some 299

extent the decreased reliability of source triggers 300

at higher dataset sizes (i.e., source signal dilution), 301

since it upsamples examples with a reliable trigger- 302

to-symbol mapping. 303

Group DRO has been proposed as a method for 304

robust generalization under severe class imbalances 305

(Sagawa et al., 2019). Rather than optimizing by 306

minimizing the average loss across a training batch, 307

group DRO seeks to minimize the loss for the worst- 308

performing group in each batch. More formally, 309

given a set of groups G, a parameter space Θ, a 310

network f(x; θ), a loss l, and a per-group training 311

distribution Pg, the group DRO objective is: 312

θ∗ = arg min
θ∈Θ

(
max
g∈G

E(x,y)∼Pg

[
l(f(x; θ), y)

])
313

We apply this objective to our intent recognition 314

model, treating each intent as a separate group. As 315

long as the worst-performing group is the intent of 316

interest (e.g., play radio), the model will be op- 317

timized solely for that intent. For the SMCalFlow 318

setting, applying group DRO is more challenging, 319

as the output is a program containing multiple func- 320

tions rather than a single class. We apply group 321

DRO to SMCalFlow by defining two groups: pro- 322

grams with the new symbol, and those without it. 323

4 Results and Analysis 324

4.1 Overall Model Performance 325

For intent recognition, the BERT-based classifier, 326

when trained on the full dataset, obtains 90.49% 327

test accuracy, indicating that it is suited to the task. 328
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Figure 4: Per-symbol accuracy on intent recognition and semantic parsing as the size of the training set increases.
Shaded regions represent 95% bootstrap confidence intervals.

Table 1 shows the performance of the semantic329

parsing models on the full validation and test splits330

of SMCalFlow. Here, the test split is the held-out331

split used in the official SMCalFlow leaderboard.332

To further increase the Transformer model’s perfor-333

mance, we follow Stengel-Eskin et al. (2020) and334

unfreeze the top 8 layers of BERT. This model out-335

performs Platanios et al. (2021), and represents the336

current state-of-the-art SMCalFlow parser. For the337

following experiments, we use the model without338

fine-tuning BERT in order to reduce computation.

Model Validation EM Test EM

LSTM (ours) 66.9% 52.4%
Transformer (ours) 79.3% 74.5%
Platanios et al. (2021) – 75.3%
Transformer tuned (ours) 80.3% 75.5%

Table 1: Semantic parsing exact-match (EM) perfor-
mance when trained on the full dataset. The transduc-
tive model with encoder tuning is the state of the art.

339

4.2 More Data Can Hurt Performance340

Intent Recognition Fig. 1 and Fig. 4 show the341

overall and per-symbol accuracy of a model when342

the number of examples for a new intent is fixed343

at 30. As the size of the training set increases, the344

overall accuracy of the model, averaged across all345

intents, improves. However, the accuracy on the346

intents of interest decreases.347

Semantic Parsing When the number of exam-348

ples for a symbol is fixed at 100, and the number349

of other training examples increases, Fig. 1 and350

Fig. 4 show that the accuracy on new symbols is351

highly non-monotonic. Fig. 5 shows that the non-

5k 10k 20k 50k 100k max

20

40

60

80

LSTM, Baseline

5k 10k 20k 50k 100k max

LSTM, No Dilution

FindManager
Tomorrow

DoNotConfirm
PlaceHasFeature

FenceAttendee
total

Figure 5: LSTM performance on symbols of interest
decreases as the total training size increases, but remov-
ing source signal dilution largely fixes it.

352
monotonic accuracy is not just a quirk of transduc- 353

tive parsing but is also seen in a commonly-used 354

LSTM-based seq2seq baseline model. While intent 355

recognition displayed a largely decreasing perfor- 356

mance curve, some curves for SMCalFlow symbols 357

(e.g., FindManager) increase and decrease at dif- 358

ferent settings. This may be attributed to competing 359

forces: additional data may increase the seq2seq or 360

seq2graph model’s fluency in producing syntacti- 361

cally correct outputs, but also increase the source 362

dilution, with different settings having different 363

balances of these forces. 364

4.3 Addressing Class Imbalance 365

As the size of the dataset grows, the ratio of other 366

symbols to the symbol of interest grows, i.e., there 367

is greater class imbalance, with the symbol of 368

interest representing a smaller and smaller mi- 369

nority. If a growing class imbalance is the cul- 370

prit behind the decrease in accuracy observed in 371
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Fig. 1, then we should expect a robust optimiza-372

tion technique that prioritizes minority classes to373

ameliorate the problem. The group DRO curves374

in Fig. 4 show that, while the accuracy on the new375

symbol is often raised above the baseline (e.g.,376

FenceAttendee, email query), it generally still377

decreases as the training set grows. Additionally,378

applying group DRO often results in an accuracy379

lower than the baseline for many training data380

sizes (e.g., PlaceHasFeature, FindManager,381

traffic). Thus, while group DRO may improve382

the results on the new symbol for a given setting, it383

does not alleviate the core problem: a larger dataset384

leads to lower accuracy than what could have been385

obtained with a smaller dataset.386

The upsampling curves in Fig. 4 show a sim-387

ilar trend: upsampling can improve overall ac-388

curacy and can reduce the rate at which the ac-389

curacy decreases, but often fails to remove the390

decrease. In some cases (e.g., email query,391

PlaceHasFeature) upsampling does lead to392

monotonically-improving accuracy; however, these393

improvements are inconsistent across symbols, sug-394

gesting that there may be other forces at play.395

4.4 Addressing Source Signal Dilution396

The failure of group DRO and upsampling to solve397

the problem suggests that it may not be due purely398

to an increased class imbalance between the sym-399

bol of interest and the other symbols. An addi-400

tional contributing factor might be a decrease in401

the reliability of the source signal as additional402

data is added. For many symbols, there is often a403

set of tokens T that can be found in most of the404

utterances for that symbol. For example, for the405

play radio intent, at least one of the tokens in406

T = {radio, fm, play} is found in 78.04% of the407

corresponding utterances in the full training data.408

Thus, the set T is a strong signal for predicting409

play radio. However, as more data is added, ele-410

ments in T will happen to appear in the inputs for411

other intents, reducing their strength as a signal. In412

other words, the high performance on play radio413

at lower data settings may be due to the strong sig-414

nal of the elements in T , which becomes diluted as415

the dataset grows.416

Fig. 6 shows the empirical probability of the417

symbol, given that at least one of its trigger tokens418

appeared in the input, under the dataset. Trigger419

tokens were determined manually, and are given in420

Appendix A.3. Across symbols, as the size of the421

0.75k 1.5k 3k 7.5k 15k max
0.0

0.2

0.4

0.6

0.8

1.0
P( intent | t  input)

radio
email_q
email_qc

quirky
traffic

5k 10k 20k 50k 100k max

P( function | t  input)

FindManager
Tomorrow
DoNotConfirm

PlaceHasFeature
FenceAttendee

Figure 6: As the dataset size increases, the probability
of the symbol given the source triggers t decreases.

dataset increases, this probability decreases, with 422

more examples for other symbols containing the 423

same triggers in their inputs, diluting the signal. 424

Note that the different starting points of these lines 425

indicate that different symbols start with higher 426

or lower source trigger associations. For exam- 427

ple, even at the most concentrated setting (750 to- 428

tal examples to 30 general quirky examples), 429

general quirky has no triggers that are strongly 430

correlated, while play radio has a set of triggers 431

that are perfectly correlated with it. Taken together 432

with Fig. 1, Fig. 6 shows that decreased probability 433

of the symbol given its triggers, i.e. source signal 434

dilution, has a positive correlation with decreased 435

performance on that symbol. 436

Upsampling would present an intuitive solution 437

here, as it boosts the correlations seen in Fig. 6 by 438

increasing the number of times the symbol is seen 439

with the input triggers, but unfortunately, as men- 440

tioned in Section 4.3, the curves in Fig. 4 indicate 441

that upsampling does not deliver on these promises 442

in practice. 443

To further investigate the impact of these dilut- 444

ing examples on the model performance, we exper- 445

iment with removing them from the training data. 446

In the “no dilution” setting of Fig. 4, we add the 447

same number of examples for other symbols as 448

in the base setting where we simply train on each 449

data setting,2 but we ensure that the new examples 450

do not contain source triggers for the symbol of 451

interest. In other words, we change the dataset 452

such that the curves in Fig. 6 remain flat. Here, we 453

see that the decrease is in fact often attenuated at 454

larger training datasets, even increasing for several 455

intents and functions, suggesting that it is in fact 456

the reduced reliability of the source-target mapping, 457

rather than an increase in class imbalance, that is 458

the main factor leading to lower performance at 459

2This holds except for the max setting, where the max
amount of data is reduced since more examples are discarded.
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Figure 7: Test accuracy on examples that contain the
triggers associated with the new intent, but whose label
is some other intent.

higher data settings. This result is also not unique460

to BERT-based models: when we remove the same461

examples for the GloVe-based LSTM SMCalFlow462

parser, we see similar trends (cf. Fig. 5).463

4.5 Impact on Competing Examples464

The increase in performance on the symbol of in-465

terest that results from removing competing source466

examples, as seen in Fig. 4, might come at a cost.467

Specifically, since we are removing examples con-468

taining triggers associated with the symbol of in-469

terest (e.g., examples containing the word “man-470

ager” in the input, but without FindManager in471

the output), we run the risk of losing performance472

on those examples in the test set. Fig. 7 shows473

the intent recognition test set performance on test474

examples that contain triggers in the source utter-475

ance, but are not labeled with the new intent (i.e.,476

examples that would have been excluded from the477

training set), averaged across training steps. The478

accuracy decreases when we remove diluting ex-479

amples, sometimes substantially. In other words,480

the improvement to the new symbol from removing481

diluting examples comes at a cost to exactly the482

type of examples we are removing. While this is483

unsurprising, it is unfortunate, as it indicates that484

the strengthening of the source signal through re-485

moval, while perhaps addressing the symptom of486

the problem seen in Fig. 1, falls short of present-487

ing a satisfactory cure. SMCalFlow does not have488

enough examples with source-side competition for489

other predicates in the test set to perform a similar490

quantitative evaluation,491

5 Discussion492

Firstly, our results show that as datasets grow, per-493

formance on new symbols is highly non-monotonic494

and often decreasing. The longer the life-span of495

a system, the more new symbols will be added to496

it – our results suggest that as a system becomes497

more developed, the annotation cost to the system’s498

developer will continuously increase. Simple so-499

lutions like upsampling and group DRO do not 500

suffice in this case: even with these in place, the 501

performance remains non-monotonic. Our results 502

demonstrate that removing diluting source exam- 503

ples does largely remove the performance decrease. 504

Treating this removal as a solution is, however, 505

unsatisfying in three ways. First, we now face a 506

new challenge as we iterate the addition of new 507

symbols. Perhaps for the first symbol added, we 508

can successfully remove offending examples from 509

the training set; but as we iterate this process, we 510

may find ourselves removing increasing percent- 511

ages of our training data, with increasingly dis- 512

parate subsets of annotations for each symbol. This 513

makes removal an unattractive solution. Secondly, 514

while we can intervene on the training distribu- 515

tion, we cannot control the user distribution. Fig. 7 516

shows that the performance on test examples con- 517

taining trigger tokens but labeled with other intents 518

does decrease after removal. This suggests that 519

the model’s ability to capture the full range of user 520

utterances may be reduced on some axes after re- 521

moval, even if the accuracy on the new symbol is 522

increased. Finally, treating removal of diluting ex- 523

amples as a solution means accepting that our mod- 524

els are largely failing to compositionally analyze 525

the inputs. Despite the fact that our models lever- 526

age the power of recurrence and often use large 527

pre-trained contextualized encoders, their reliance 528

on simple non-contextual lexical cues is reminis- 529

cent of simpler non-contextual models like Naive 530

Bayes classifiers. We would ideally hope that a 531

contextualized representation would be sensitive 532

to the difference between, for example, “Who is 533

my manager?” and “Invite my manager’s wife.” 534

However, it seems that despite their contextualized 535

inputs, the models analyzed here may be overly 536

sensitive to the presence or absence of individual 537

tokens. 538

Despite these unsatisfying observations, the re- 539

moval of source-diluting examples also leads to 540

a more promising conclusion, namely that the 541

models we investigate seem to be able to handle 542

large amounts of class imbalance, provided that 543

the source signal is strong enough for the minor- 544

ity class. In the source removal setting, the class 545

imbalance remains unchanged, with the ratio of 546

examples for the new symbol to the overall training 547

data remaining the same as for the baseline and 548

group DRO settings. This lack of change suggests 549

that the model can cope with large class imbalances 550
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(e.g., 100,000 total examples to 100 symbol exam-551

ples) provided that the lexical cues for the minority552

class in the training data are strong. Both the intent553

classifier and the transductive parser are capable of554

handling extremely large class imbalance ratios if555

the source-target mapping is reliable. This helps556

explain why the model’s performance can improve557

even as the class imbalance increases.558

6 Related Work559

Our learning setting relates closely to work on560

learning with imbalanced data as well as analyses561

of spurious correlations. Sagawa et al. (2020) find562

that over-parameterized networks display a similar563

trend to our trends on the worst-performing group564

as model capacity is increased: minority-group565

performance decreases as overall performance in-566

creases. They conclude that large models tend to567

memorize minority-class data and rely on spurious568

correlations, leading to worsening accuracy. Our569

work examines the accuracy on specific symbols570

as the size of the dataset (rather than of the model)571

grows. Different solutions have been proposed to572

improve generalization on minority data, such as573

distributionally robust optimization (DRO; Oren574

et al., 2019; Sagawa et al., 2019; Zhou et al., 2021)575

as well as other training and re-weighting strategies576

(Liu et al., 2021; Ye et al., 2021). These solutions577

are typically applied to image classification tasks;578

in a space more closely related to NLU, Li and579

Nenkova (2014) explore several upsampling and580

re-weighting strategies for discourse relation clas-581

sification with imbalanced data, and Larson et al.582

(2019) investigate the effect of imbalanced data583

for detecting out-of-scope intents. Gardner et al.584

(2021) argue that simple lexical features, such as585

the ones we highlight, represent spurious corre-586

lations in the data; on this account, the models587

investigated here are prone to over-reliance on such588

spurious correlations, with the removal of diluting589

examples strengthening them. In a similar vein,590

McCoy et al. (2019) present evidence that natural591

language interface models rely upon spuriously-592

correlated features, and present a challenge dataset593

with such correlations mitigated.594

This past work in learning with spurious corre-595

lations and imbalanced data has focused on single-596

label multi-class classification problems; we follow597

this trend in our experiments with intent recogni-598

tion. However, we go beyond the single-label set-599

ting in our semantic parsing experiments, where we600

investigate class imbalance in a highly structured 601

multi-label multi-class output space. 602

The challenging setting we present differs also 603

from never-ending learning (Mitchell et al., 2015) 604

and domain adaptation/continued training in that 605

for each iteration of the dataset, a new model is 606

trained, rather than continued training on a single 607

model. Li et al. (2021a) investigate few-shot learn- 608

ing for semantic parsing via continued training, 609

where a trained model is exposed to a small set of 610

annotations for a new predicate. While we also 611

attempt to learn from relatively few annotations, 612

we do not adapt learned models, instead simulating 613

the common production setting where models are 614

re-trained on datasets as a whole. 615

Previous parsing approaches for SMCalFlow 616

have followed both modeling paradigms used here: 617

Semantic Machines et al. (2020) present a seq2seq 618

baseline for SMCalFlow; this follows previous 619

work in seq2seq semantic parsing (Vinyals et al., 620

2015; Dong and Lapata, 2016; Jia and Liang, 2016). 621

Platanios et al. (2021) outperform that baseline 622

with a transductive seq2graph model using explicit 623

type constraints. Treating semantic parsing as 624

a seq2graph problem has proved to be a strong 625

paradigm for parsing Abstract Meaning Representa- 626

tions (Banarescu et al., 2013; Zhang et al., 2019a,b), 627

Semantic Dependencies (Oepen et al., 2014a,b, 628

2016; Zhang et al., 2019b), Universal Concep- 629

tual Cognitive Annotation (Abend and Rappoport, 630

2013; Zhang et al., 2019b), Universal Decomposi- 631

tional Semantics (White et al., 2020; Stengel-Eskin 632

et al., 2020, 2021), and GQA (Li et al., 2021b). 633

7 Conclusion 634

We examined the effect of a growing dataset on 635

the ease of learning new symbols for NLU, finding 636

that it often becomes harder to learn a new symbol 637

as more data is collected. This trend holds across 638

models and settings, and could pose significant 639

problems as NLU systems increase in lifespan and 640

coverage. We found that the weakening of simple 641

lexical associations as the datasets grow is closely 642

tied to the decrease in performance, indicating that 643

the neural models tested in this study may be overly 644

reliant on simple lexical cues. We end by encourag- 645

ing others to examine these effects in the problems 646

tested here and also in similar problems, where 647

similar effects are likely to be found. 648
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A Data925

A.1 Intent recognition926

Table 2 contains example utterances for each intent.927

A.2 Semantic parsing928

The SMCalFlow data consists of user-agent dia-929

logues, where the agent produces executable Lisp930

programs based on user commands. Variable bind-931

ing can be performed in Lisp to refer to a value932

multiple times in a program in a parsimonious way.933

Underlyingly, the variable binding procedure cor-934

responds to re-entrancy in the DAG encoding the935

program graph. Thus, the SMCalFlow parsing task936

can be tackled either at the level of the Lisp string937

(sequence-to-sequence) or at the level of the DAG938

(sequence-to-graph), with the latter approach de-939

manding a method for handling re-entrant nodes in940

a graph.941

A.3 Trigger Tokens942

Table 3 has the trigger tokens per symbol. These943

were determined manually by examining tokens944

which yielded high P̂ (symbol|t ∈ input) at the945

lowest data setting.946

B Models947

B.1 LSTM948

The LSTM model takes as input the previous user949

utterance, the produced agent utterance (if these950

are available) and the current user utterance, all951

separated by special tokens. These are tokenized952

and embedded using an embedding layer initialized953

with 300-dimensional GloVe embeddings (Penning-954

ton et al., 2014). Note that there is no contextual-955

ized encoder used here. The encoder is a 2 layer956

stacked BiLSTM, with a hidden size of 192 and957

dropout of p = 0.5 between cells. The decoder958

embeddings are initialized randomly and are also959

300-dimensional. The decoder also has 2 layers960

with a hidden size of 384, and recurrent dropout of961

p = 0.5. The source attention is implemented as an962

MLP with hidden size 64. Batches are bucketed by963

length during training, and a patience threshold of964

20 epochs without improvement is set. The LSTM965

models are trained with ADAM using a learn rate966

of 1e− 3 and weight decay of 3e− 9. Note that for967

SMCalFlow this paradigm is fairly weak due to its968

tendency to produce malformed Lisp expressions969

at lower data regimes and the handling of variable970

binding through let expressions.971

B.2 Transformer 972

For the transductive model, the DAG for a pro- 973

gram (cf. Fig. 3) is first transformed into a tree by 974

copying and co-indexing re-entrant nodes. The tree 975

is then linearized into a sequence of nodes, edge 976

heads, edge types, and node indices. At test time, 977

the model produces these sequences, which can 978

be deterministically reconstructed into a DAG by 979

merging co-indexed nodes. The generation com- 980

ponent of the model maintains a dynamic output 981

vocabulary over three operations: generation from 982

a fixed vocabulary, source copying from the input, 983

and target copying from previously generated to- 984

kens. The target copy operation allows the model 985

to handle re-entrant nodes, which appear more than 986

once in the linearized tree. This operation allows 987

us to later recover node indices and thus re-build 988

a DAG by merging copied nodes. The edge heads 989

and labels are parsed by a biaffine parser (Dozat 990

and Manning, 2017). This allows the model to 991

handle functions, arguments, and types separately 992

via typed edges. Each operation type (ValueOp, 993

BuildStructOp, CallLikeOp) corresponds to a 994

different edge type; the edge types for arguments 995

are also indexed to allow for explicit argument or- 996

dering (e.g. arg0, arg1, etc.). 997

The input to the model is the same as for the 998

LSTM: the concatenation of the previous two di- 999

alogue turns, followed by the current user utter- 1000

ance. These are tokenized and embedded with 300- 1001

D GloVe embeddings as well as 100-D character 1002

CNN features. There is embedding dropout with 1003

p = 0.33 to prevent overfitting. The input text 1004

is also passed through bert-base-cased, with 1005

each subword receiving a 768-D representation. 1006

These are max-pooled across subword tokens to 1007

align with the token-level embeddings. The en- 1008

coder hidden size is 512, with a 8 heads and a feed- 1009

forward dimension of 2048. The layer-norm and 1010

feedforward layers are swapped, and the weight 1011

initialization is downscaled by a factor of 512, fol- 1012

lowing Nguyen and Salazar (2019). The encoder 1013

has dropout p = 0.2. 1014

For the transformer, the decoder embeddings 1015

are also initialized with GloVe and character CNN 1016

features. The decoder also has 8 layers with the 1017

same dimensions and dropout as the encoder. As in 1018

the LSTM model, source attention is implemented 1019

as an MLP, here with a hidden dimension of 512. 1020

The target attention (for target-side copy) is iden- 1021

tical. Source attention uses coverage (See et al., 1022
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Intent Utterance
play radio play radio mirchi for me
play radio go to channel one hundred and six point nine
play radio i want to hear morning edition on npr
play radio are you set radio on my favorite radio station
email query open email for unread mails
email query what is the subject of latest email i got and who sent it
email query has dad sent any emails recently
email query new email from mom
email querycontact find all the contacts named john
email querycontact what is mary s.’s birthday
email querycontact what information do you have on file in my information about bill
email querycontact give me charles telephone number
general quirky nice to talk to you
general quirky ask me an arithmetic question
general quirky i would like it to help with coding debugging
general quirky i like my robot to talk to me like a friend
transit traffic what is the traffic situation right in broadway street
transit traffic what is the traffic like today
transit traffic is there traffic right now in maiden lane
transit traffic let me know about current traffic in carmen drive

Table 2: Examples of intent recognition data.

Symbol Tokens
email query emails, inbox
email querycontact contact, phone, number
general quirky day, today, tell, can
play radio channel, radio, fm, point, station, tune
transport traffic traffic
FindManager boss, manager, supervisor
PlaceHasFeature takeout, casual, waiter
Tomorrow tomorrow
FenceAttendee meet, mom
DoNotConfirm cancel, n’t, no

Table 3: Triggers for each symbol.

2017). The biaffine parser projects the transformer1023

representations to 512 and has dropout p = 0.2.1024

The transformer models are trained with a patience1025

of 20, using Adam with a linear learnining rate1026

warmup stage, followed by exponential learning1027

rate decay. We set the number of warmup steps to1028

8000.1029
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Function Dialogue Context Current User Utterance
FindManager N/A Make an event with Abby and her boss
FindManager User: Who are Jake’s reports, Agent: Jake Cobb

has no direct reports.
Who does he report to?

FindManager User: Add an event called presentation with Jamal
and his supervisor for Friday at 11. Agent: Is this
good?

Add Igor and his supervisor to this as well.

Tomorrow N/A Find an event for tomorrow after 4 pm.
Tomorrow N/A Schedule lunch with Nick tomorrow at noon
Tomorrow User: What time will the sun rise in seattle tomor-

row Agent: Sunrise will be at 12 : 00 AM tomorrow.
what time will the sun set in seattle tomorrow

DoNotConfirm User: Can you change the time to 4 instead? Agent:
How about now?

No, I don’t like either of those.

DoNotConfirm User: No I need it to be in the afternoon, Agent
Does one of these work?

No they don’t

DoNotConfirm User: Schedule a dentist appointment tomorrow
afternoon, Agent: Does one of these work?

No

FenceAttendee N/A Create lunch with mom on sunday
FenceAttendee User: what events do I have tomorrow, Agent: I

found 2 events tomorrow .
Add my sister , brother , and Daniel

FenceAttendee N/A Can you tell me if I meet with our repair rep this
week or next week ?

PlaceHasFeautre User: What cuisine do they serve ?, Agent: Sorry ,
I can’t handle that yet .

Does the Black Bottle restaurant have a full service
bar ?

PlaceHasFeature User: Find me Round Table Pizza in Truckee,
Agent: I found one option .

Could I bring a party of people there ?

PlaceHasFeature N/A Is Bamonte ’s in Brooklyn capable for large parties
?

Table 4: Example data for SMCalflow Parsing.

14


