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Abstract

In natural language understanding (NLU) pro-
duction systems, the end users’ evolving needs
necessitate the addition of new abilities, in-
dexed by discrete symbols, requiring addi-
tional training data and resulting in dynamic,
ever-growing datasets. Dataset growth intro-
duces new challenges: we find that when learn-
ing to map inputs to a new symbol from a fixed
number of annotations, more data can in fact
reduce the model’s performance on examples
that involve this new symbol. We show that
this trend holds for multiple models on two
datasets for common NLU tasks: intent recog-
nition and semantic parsing (see Fig. 1). We
demonstrate that the performance decrease is
largely associated with an effect we refer to
as source signal dilution (cf. Fig. 2), which
occurs when strong lexical cues in the train-
ing data become diluted as the dataset grows.
Selectively dropping training examples to pre-
vent source signal dilution often reverses the
performance decrease, suggesting a promising
direction for addressing this issue.

1 Introduction

Broad-coverage natural language understanding
(NLU) that simultaneously supports a wide range
of user requests is critical for developing general-
purpose natural language interfaces. Such systems
are currently being deployed and reach millions
of users worldwide: As of 2021, Amazon Alexa
contains more than 80,000 different skills (Vail-
shery, 2021), and Microsoft has deployed a new
conversational interface for Outlook that uses over
300 composable functions to represent fine-grained
semantics in task-oriented user-agent dialogues (Se-
mantic Machines et al., 2020; Burrage, 2021).
These broad-coverage NLU systems do not ac-
quire their full capability on day one: new features
(e.g., intents or functions) are incrementally added
over time, along with new supervised training data
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Figure 1: Overall and per-symbol test accuracy for in-
tent recognition and semantic parsing when the num-
ber of training examples for a certain symbol is fixed.
Each line represents fixing a different symbol. As train-
ing data size increases, overall accuracy increases but
accuracy for the fixed symbol often decreases.

for learning the new features. However, there has
been little research on the data and learning dynam-
ics during such incremental development, which
is critical considering the wide deployment and
high cost of such systems. This work aims to bring
attention to this important problem. We consider
two prototypical NLU tasks: intent recognition and
semantic parsing. NLU generally consists of map-
ping utterances into a space of symbols or symbol
sequences (e.g., intent labels for intent recognition
and sequences of functions/predicates for semantic
parsing; we refer to both cases as “symbols” for
ease of discussion). We consider the following in-
cremental development process (which is typical in
practice): given a set of existing symbols and their
training data, we want to learn a new symbol, which
entails adding new annotations for the symbol. As
the system supports more and more symbols, its
training data size continually increases.

At first blush, this growth may seem positive, in
holding with a common assumption of supervised
learning: more data is generally better (Kearns
et al., 1994). However, our analyses reveal a trou-
bling quirk: as the training data size increases, it
becomes increasingly difficult to learn new symbols.
To investigate this further, we create datasets of in-
creasing size by adding a fixed number of training
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examples for a new symbol into increasingly larger
datasets of examples for other existing symbols,
simulating learning a new symbol with larger and
larger datasets. We then train on each setting and
evaluate on the same test set, measuring test accu-
racy on the new symbol. We repeat this across an
intent recognition dataset (Liu et al., 2019) and a
semantic parsing dataset (Semantic Machines et al.,
2020), examining 5 symbols per dataset.

Fig. 1 shows the overall test accuracy of our
best models (cf. §2) as well as the accuracy on ex-
amples containing the new symbol. As the size
of the dataset increases, the average test accuracy
across all symbols monotonically increases. How-
ever, the accuracy on the examples for the new
symbol generally decreases. The decrease in per-
formance could lead to a vicious cycle, whereby
an increasing number of training examples would
need to be collected to achieve adequate accuracy
for each new symbol, which accelerates the growth
of the dataset and in turn increases the demand
for training data for future symbols, and possibly
also for existing symbols, as they become a smaller
percentage of the data, even further. Class imbal-
ance is one obvious candidate explanation for the
performance decrease: as the dataset grows and
the number of examples for the new symbol stays
fixed, the prior probability of the new symbol in the
training data decreases. If this were true, simply
upsampling the new symbol’s annotations should
revert the decrease. With a view to addressing this
kind of class imbalance, we explore two common
solutions: group distributionally robust optimiza-
tion (DRO) (Sagawa et al., 2019, 2020) and upsam-
pling. The failure of these solutions to attenuate
the accuracy drop leads us to identify a different
force associated with the performance decrease,
source signal dilution, whereby the reliability of
the signal coming from indicative tokens in the
user utterances for the new symbol is diminished
in larger datasets. This force is illustrated in Fig. 2.
At low data settings, some tokens are highly cor-
related with the FindManager symbol, but as the
dataset grows, the correlation with these tokens is
reduced by competing examples that, often by co-
incidence, contain the same tokens. We show that
when confounding examples (shown in red) are re-
moved, the accuracy decrease largely disappears,
indicating that our state-of-the-art neural models
are overly-reliant on simple lexical cues for learn-
ing the symbol of interest. We later argue that while
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“Make a meeting with my boss”: (Yield (.. (FindManager..)))
“Who’s Sally’s supervisor?”: (Yield (.. (FindManager..)))

“Who else reports to my manager”: (Yield (.. (FindManager..)))

P(FindManager|t € input) = 1.0
( 100K train, 100 FindManager
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“Make a meeting with my boss”: (Yield (.. (FindManager..)))
“Who’s Mike’s supervisor?”: (Yield (.. (FindManager..)))
“Who else reports to my manager”: (Yield (.. (FindManager)))
“Add my manager’s wife”: (FenceAttendee)

“Who has Tina as a boss”: (Yield (.. (FindReports)))

P(FindManager|t € input) = 0.6

Figure 2: Source signal dilution in the training set: as
the data grows, the set of cues ¢ (in bold) associated
with FindManager becomes less predictive of it.

the removal of these examples may cure the symp-
toms expressed under increasing dataset sizes, they
do not represent an adequate cure.

Our main contributions are threefold:

* We identify a troubling quirk in developing
broad-coverage NLU systems that challenges
the common assumption of more data entail-
ing better performance.

* Based on our observations, we identify plausi-
ble forces leading to the decreased accuracy
seen in Fig. 1, foremost among them the dilu-
tion of the source signal (cf. Fig. 2). A deeper
understanding of this force may guide us in de-
veloping systematic solutions to this problem
in the future.

* Finally, we release our code and models, in-
cluding a model for the SMCalFlow dataset
(Semantic Machines et al., 2020) that achieves
state-of-the-art performance. We hope it will
serve as a useful baseline for future develop-
ment on this challenging dataset.

2 Datasets and Models

Intent recognition and task-oriented semantic pars-
ing share multiple common features. They both
translate user utterances to structured objects (or at
least to categorical intents) and they are both com-
monly used in production NLU systems trained
on annotated examples. This makes them ideal
testbeds for exploring the dynamics in learning
new symbols as the training dataset grows.



2.1 Intent Recognition

Intent recognition involves classifying utterances
into a fixed set of “intents,” which are typically
the symbols of some agent (e.g., a digital personal
assistant) (Lorenc et al., 2021). Intents often index
into a set of pre-defined templates (e.g., the intent
play_music might index into a template with slots
“song name,” “song artist” etc.) and are central to
many digital assistant technologies. New intents
may be added to the agent incrementally during the
development process as needs for new capabilities
arise. For example, an agent capable of cooking
tasks may be extended to other household tasks,
requiring it to understand the associated intents.

We use the NLU evaluation dataset provided by
Liu et al. (2019), which contains 25,715 utterances
for 68 intents across 18 scenarios. 2571 and 5144
utterances are reserved for validation and testing,
respectively. We simulate learning a new intent
under different data regimes by choosing an in-
tent to learn, and then sampling examples for that
intent and the rest of the dataset at different ra-
tios. The number of examples for the new intent is
fixed at 30, and we vary the size of the dataset
N € {750,1500, 3000, 7500, 15,000, 18,000}
where 18,000 is the max in Fig. 1. Our experiments
span 5 intents:

* play_radio is primarily triggered when

users ask for radio stations to be played.

* email _query is for email-related queries.

* email _querycontact is triggered by ques-

tions about contacts in an address book.

* general _quirky is a catch-all category for

trivia-style questions and pleasantries.

* transport_traffic is triggered by traffic-

related questions and commands.
Some of the intents (e.g., play_radio) have a
set of easily-identified input triggers (e.g., “radio”,
“fm”) while others (e.g., general_quirky) have
very diverse inputs. Example utterances for each
intent can be found in Appendix A.1.

To model this data, we apply a linear classifica-
tion layer to the [CLS] token of BERT base (Devlin
et al., 2019), finetuning the whole contextualized
encoder at training time. This model was trained
to convergence with the Adam optimizer, using a
learning rate of le—5.

2.2 Semantic Parsing

While providing a good environment for exper-
imentation, the intent recognition task lacks the
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Figure 3: Example SMCalFlow program; it can be rep-
resented as a Lisp expression or as a DAG.

complexity of a full real-world production environ-
ment. We therefore seek to expand our intent recog-
nition experiments and analyses to a production-
level task and dataset. To that end, we use the SM-
CalFlow dataset (Semantic Machines et al., 2020;
Burrage, 2021), which offers a task-oriented seman-
tic parsing challenge, where a user iteratively cre-
ates a dataflow graph in a dialogue with an agent (cf.
Fig. 3). The dataset has 41,517 dialogues with 338
function types, yielding 121,024 training user turns
in the full setting. The input to our parsing model
is the previous user utterance, the corresponding
agent response, and the current user utterance, all
concatenated. The model is tasked with learning
to generate a typed Lisp program; see Fig. 3 for an
example, with further examples in Appendix A.2.

We explore both a sequence-to-sequence
(seq2seq) model and a sequence-to-graph
(seq2graph) model, using the MISO framework
(Zhang et al., 2019b; Stengel-Eskin et al., 2021),
which is built on top of AllenNLP (Gardner et al.,
2018). The former directly predicts the Lisp string,
while the latter produces a DAG as seen at the
bottom of Fig. 3. Details follow.

LSTM seq2seq Our baseline model is an LSTM-
based seq2seq model similar to that used by Dong
and Lapata (2016) and Semantic Machines et al.
(2020). The model consists of a BILSTM encoder
and an LSTM decoder with attention over the en-
coder states and a source copy operation to copy
entity spans from the source text, with its embed-
ding layer initialized from GloVe embeddings (Pen-
nington et al., 2014). Additional model details are
given in Appendix B.1.



Transformer-based transductive A more com-
petitive approach follows the transductive parsing
paradigm (Zhang et al., 2019a) which aims to di-
rectly produce the underlying DAG instead of the
surface form, generating graph nodes as well as
edges. We implement a transformer-based trans-
ductive model, based on the architecture and code
from Stengel-Eskin et al. (2021). The model di-
rectly generates the linearized DAG (cf. Fig. 3)
underlying the SMCalFlow Lisp expression; the
nodes of the DAG (functions and arguments) are
generated in a sequence-to-sequence fashion, with
graph edges and edge types being assigned during
decoding via a biaffine parser (Dozat and Manning,
2017). Following past work, the input features for
this model are a concatenation of BERT (Devlin
et al., 2019), GloVe, and character CNN features.
Additional details on the transductive transformer
model are given in Appendix B.2.

Data As SMCalFlow’s test set is not pub-
licly available, we first split the validation
data in half to obtain a held-out test set. We
then construct training splits by selecting 100
examples for each symbol and varying N &
{5000, 10,000, 20,000, 50,000, 100,000, max},
where max is the maximum amount of data that
can be taken from the 121,024 training examples
while excluding all but 100 examples for the new
symbol. This number is typically slightly under
120,000. We describe the symbols examined;
Appendix A.2 has further examples.

* FindManager is invoked when a user queries
for a person’s manager.

* Tomorrow returns tomorrow’s date.

* DoNotConfirm is applied when a user wants
to cancel a proposed action (e.g., confirming
the creation of an event) by the agent.

* FenceAttendee is invoked when a user tries
to make an event with an attendee who is not
in their contact list.

* PlaceHasFeature is used when a user asks
whether a place has certain amenities (e.g.,
outdoor seating) or offers certain services.

These vary in compositionality: FindManager
and PlaceHasFeature take arguments, but
Tomorrow does not, and FenceAttendee and
DoNotConfirm are complete programs in them-
selves. FindManager and Tomorrow have
strong input cues, but DoNotConfirm and
FenceAttendee come from very diverse inputs.

3 Experiments

Baseline The first experimental setting is the
baseline setting, as presented in Fig. 1. Here, we
vary the size of the training data while holding the
number of examples for each given symbol fixed.
We train each model with three random seeds for
all experiments, reporting the average.

Upsampling Given the the limited number of ex-
amples for the new symbol, upsampling is a natural
solution to attempt. After exploring upsampling
ratios r € {2,4,8,16, 32,64}, we selected 32 as
the factor by which to upsample the new symbol ex-
amples based on validation performance, i.e. each
example for the new symbol is copied 32 times
in the training set. This setting addresses both the
class imbalance (the class corresponding to the new
symbol is now 32 times more likely) and to some
extent the decreased reliability of source triggers
at higher dataset sizes (i.e., source signal dilution),
since it upsamples examples with a reliable trigger-
to-symbol mapping.

Group DRO has been proposed as a method for
robust generalization under severe class imbalances
(Sagawa et al., 2019). Rather than optimizing by
minimizing the average loss across a training batch,
group DRO seeks to minimize the loss for the worst-
performing group in each batch. More formally,
given a set of groups G, a parameter space O, a
network f(x;0), aloss [, and a per-group training
distribution P, the group DRO objective is:

0* = arggergin (r;leagx E(g,p)~p, [1(f(;6), y)D

We apply this objective to our intent recognition
model, treating each intent as a separate group. As
long as the worst-performing group is the intent of
interest (e.g., play_radio), the model will be op-
timized solely for that intent. For the SMCalFlow
setting, applying group DRO is more challenging,
as the output is a program containing multiple func-
tions rather than a single class. We apply group
DRO to SMCalFlow by defining two groups: pro-
grams with the new symbol, and those without it.

4 Results and Analysis

4.1 Overall Model Performance

For intent recognition, the BERT-based classifier,
when trained on the full dataset, obtains 90.49%
test accuracy, indicating that it is suited to the task.
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Figure 4: Per-symbol accuracy on intent recognition and semantic parsing as the size of the training set increases.
Shaded regions represent 95% bootstrap confidence intervals.

Table 1 shows the performance of the semantic
parsing models on the full validation and test splits
of SMCalFlow. Here, the test split is the held-out
split used in the official SMCalFlow leaderboard.
To further increase the Transformer model’s perfor-
mance, we follow Stengel-Eskin et al. (2020) and
unfreeze the top 8 layers of BERT. This model out-
performs Platanios et al. (2021), and represents the
current state-of-the-art SMCalFlow parser. For the
following experiments, we use the model without
fine-tuning BERT in order to reduce computation.

Model Validation EM  Test EM
LSTM (ours) 66.9% 52.4%
Transformer (ours) 79.3% 74.5%
Platanios et al. (2021) - 75.3%
Transformer tuned (ours) 80.3% 75.5%

Table 1: Semantic parsing exact-match (EM) perfor-
mance when trained on the full dataset. The transduc-
tive model with encoder tuning is the state of the art.

4.2 More Data Can Hurt Performance

Intent Recognition Fig. 1 and Fig. 4 show the
overall and per-symbol accuracy of a model when
the number of examples for a new intent is fixed
at 30. As the size of the training set increases, the
overall accuracy of the model, averaged across all
intents, improves. However, the accuracy on the
intents of interest decreases.

Semantic Parsing When the number of exam-
ples for a symbol is fixed at 100, and the number
of other training examples increases, Fig. 1 and
Fig. 4 show that the accuracy on new symbols is

highly non-monotonic. Fig. 5 shows that the non-
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Figure 5: LSTM performance on symbols of interest
decreases as the total training size increases, but remov-
ing source signal dilution largely fixes it.

monotonic accuracy is not just a quirk of transduc-
tive parsing but is also seen in a commonly-used
LSTM-based seq2seq baseline model. While intent
recognition displayed a largely decreasing perfor-
mance curve, some curves for SMCalFlow symbols
(e.g., FindManager) increase and decrease at dif-
ferent settings. This may be attributed to competing
forces: additional data may increase the seq2seq or
seq2graph model’s fluency in producing syntacti-
cally correct outputs, but also increase the source
dilution, with different settings having different
balances of these forces.

4.3 Addressing Class Imbalance

As the size of the dataset grows, the ratio of other
symbols to the symbol of interest grows, i.e., there
is greater class imbalance, with the symbol of
interest representing a smaller and smaller mi-
nority. If a growing class imbalance is the cul-
prit behind the decrease in accuracy observed in



Fig. 1, then we should expect a robust optimiza-
tion technique that prioritizes minority classes to
ameliorate the problem. The group DRO curves
in Fig. 4 show that, while the accuracy on the new
symbol is often raised above the baseline (e.g.,
FenceAttendee, email_query), it generally still
decreases as the training set grows. Additionally,
applying group DRO often results in an accuracy
lower than the baseline for many training data
sizes (e.g., PlaceHasFeature, FindManager,
traffic). Thus, while group DRO may improve
the results on the new symbol for a given setting, it
does not alleviate the core problem: a larger dataset
leads to lower accuracy than what could have been
obtained with a smaller dataset.

The upsampling curves in Fig. 4 show a sim-
ilar trend: upsampling can improve overall ac-
curacy and can reduce the rate at which the ac-
curacy decreases, but often fails to remove the
decrease. In some cases (e.g., email_query,
PlaceHasFeature) upsampling does lead to
monotonically-improving accuracy; however, these
improvements are inconsistent across symbols, sug-
gesting that there may be other forces at play.

4.4 Addressing Source Signal Dilution

The failure of group DRO and upsampling to solve
the problem suggests that it may not be due purely
to an increased class imbalance between the sym-
bol of interest and the other symbols. An addi-
tional contributing factor might be a decrease in
the reliability of the source signal as additional
data is added. For many symbols, there is often a
set of tokens 7 that can be found in most of the
utterances for that symbol. For example, for the
play-radio intent, at least one of the tokens in
T = {radio, fm, play} is found in 78.04% of the
corresponding utterances in the full training data.
Thus, the set 7 is a strong signal for predicting
play-radio. However, as more data is added, ele-
ments in 7 will happen to appear in the inputs for
other intents, reducing their strength as a signal. In
other words, the high performance on play_radio
at lower data settings may be due to the strong sig-
nal of the elements in 7, which becomes diluted as
the dataset grows.

Fig. 6 shows the empirical probability of the
symbol, given that at least one of its trigger tokens
appeared in the input, under the dataset. Trigger
tokens were determined manually, and are given in
Appendix A.3. Across symbols, as the size of the
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Figure 6: As the dataset size increases, the probability
of the symbol given the source triggers ¢ decreases.

dataset increases, this probability decreases, with
more examples for other symbols containing the
same triggers in their inputs, diluting the signal.
Note that the different starting points of these lines
indicate that different symbols start with higher
or lower source trigger associations. For exam-
ple, even at the most concentrated setting (750 to-
tal examples to 30 general_quirky examples),
general _quirky has no triggers that are strongly
correlated, while play_radio has a set of triggers
that are perfectly correlated with it. Taken together
with Fig. 1, Fig. 6 shows that decreased probability
of the symbol given its triggers, i.e. source signal
dilution, has a positive correlation with decreased
performance on that symbol.

Upsampling would present an intuitive solution
here, as it boosts the correlations seen in Fig. 6 by
increasing the number of times the symbol is seen
with the input triggers, but unfortunately, as men-
tioned in Section 4.3, the curves in Fig. 4 indicate
that upsampling does not deliver on these promises
in practice.

To further investigate the impact of these dilut-
ing examples on the model performance, we exper-
iment with removing them from the training data.
In the “no dilution” setting of Fig. 4, we add the
same number of examples for other symbols as
in the base setting where we simply train on each
data setting,” but we ensure that the new examples
do not contain source triggers for the symbol of
interest. In other words, we change the dataset
such that the curves in Fig. 6 remain flat. Here, we
see that the decrease is in fact often attenuated at
larger training datasets, even increasing for several
intents and functions, suggesting that it is in fact
the reduced reliability of the source-target mapping,
rather than an increase in class imbalance, that is
the main factor leading to lower performance at

This holds except for the max setting, where the max
amount of data is reduced since more examples are discarded.
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Figure 7: Test accuracy on examples that contain the
triggers associated with the new intent, but whose label
is some other intent.

higher data settings. This result is also not unique
to BERT-based models: when we remove the same
examples for the GloVe-based LSTM SMCalFlow
parser, we see similar trends (cf. Fig. 5).

4.5 Impact on Competing Examples

The increase in performance on the symbol of in-
terest that results from removing competing source
examples, as seen in Fig. 4, might come at a cost.
Specifically, since we are removing examples con-
taining triggers associated with the symbol of in-
terest (e.g., examples containing the word “man-
ager” in the input, but without FindManager in
the output), we run the risk of losing performance
on those examples in the test set. Fig. 7 shows
the intent recognition test set performance on test
examples that contain triggers in the source utter-
ance, but are not labeled with the new intent (i.e.,
examples that would have been excluded from the
training set), averaged across training steps. The
accuracy decreases when we remove diluting ex-
amples, sometimes substantially. In other words,
the improvement to the new symbol from removing
diluting examples comes at a cost to exactly the
type of examples we are removing. While this is
unsurprising, it is unfortunate, as it indicates that
the strengthening of the source signal through re-
moval, while perhaps addressing the symptom of
the problem seen in Fig. 1, falls short of present-
ing a satisfactory cure. SMCalFlow does not have
enough examples with source-side competition for
other predicates in the test set to perform a similar
quantitative evaluation,

5 Discussion

Firstly, our results show that as datasets grow, per-
formance on new symbols is highly non-monotonic
and often decreasing. The longer the life-span of
a system, the more new symbols will be added to
it — our results suggest that as a system becomes
more developed, the annotation cost to the system’s
developer will continuously increase. Simple so-

lutions like upsampling and group DRO do not
suffice in this case: even with these in place, the
performance remains non-monotonic. Our results
demonstrate that removing diluting source exam-
ples does largely remove the performance decrease.

Treating this removal as a solution is, however,
unsatisfying in three ways. First, we now face a
new challenge as we iterate the addition of new
symbols. Perhaps for the first symbol added, we
can successfully remove offending examples from
the training set; but as we iterate this process, we
may find ourselves removing increasing percent-
ages of our training data, with increasingly dis-
parate subsets of annotations for each symbol. This
makes removal an unattractive solution. Secondly,
while we can intervene on the training distribu-
tion, we cannot control the user distribution. Fig. 7
shows that the performance on test examples con-
taining trigger tokens but labeled with other intents
does decrease after removal. This suggests that
the model’s ability to capture the full range of user
utterances may be reduced on some axes after re-
moval, even if the accuracy on the new symbol is
increased. Finally, treating removal of diluting ex-
amples as a solution means accepting that our mod-
els are largely failing to compositionally analyze
the inputs. Despite the fact that our models lever-
age the power of recurrence and often use large
pre-trained contextualized encoders, their reliance
on simple non-contextual lexical cues is reminis-
cent of simpler non-contextual models like Naive
Bayes classifiers. We would ideally hope that a
contextualized representation would be sensitive
to the difference between, for example, “Who is
my manager?” and “Invite my manager’s wife.”
However, it seems that despite their contextualized
inputs, the models analyzed here may be overly
sensitive to the presence or absence of individual
tokens.

Despite these unsatisfying observations, the re-
moval of source-diluting examples also leads to
a more promising conclusion, namely that the
models we investigate seem to be able to handle
large amounts of class imbalance, provided that
the source signal is strong enough for the minor-
ity class. In the source removal setting, the class
imbalance remains unchanged, with the ratio of
examples for the new symbol to the overall training
data remaining the same as for the baseline and
group DRO settings. This lack of change suggests
that the model can cope with large class imbalances



(e.g., 100,000 total examples to 100 symbol exam-
ples) provided that the lexical cues for the minority
class in the training data are strong. Both the intent
classifier and the transductive parser are capable of
handling extremely large class imbalance ratios if
the source-target mapping is reliable. This helps
explain why the model’s performance can improve
even as the class imbalance increases.

6 Related Work

Our learning setting relates closely to work on
learning with imbalanced data as well as analyses
of spurious correlations. Sagawa et al. (2020) find
that over-parameterized networks display a similar
trend to our trends on the worst-performing group
as model capacity is increased: minority-group
performance decreases as overall performance in-
creases. They conclude that large models tend to
memorize minority-class data and rely on spurious
correlations, leading to worsening accuracy. Our
work examines the accuracy on specific symbols
as the size of the dataset (rather than of the model)
grows. Different solutions have been proposed to
improve generalization on minority data, such as
distributionally robust optimization (DRO; Oren
et al., 2019; Sagawa et al., 2019; Zhou et al., 2021)
as well as other training and re-weighting strategies
(Liu et al., 2021; Ye et al., 2021). These solutions
are typically applied to image classification tasks;
in a space more closely related to NLU, Li and
Nenkova (2014) explore several upsampling and
re-weighting strategies for discourse relation clas-
sification with imbalanced data, and Larson et al.
(2019) investigate the effect of imbalanced data
for detecting out-of-scope intents. Gardner et al.
(2021) argue that simple lexical features, such as
the ones we highlight, represent spurious corre-
lations in the data; on this account, the models
investigated here are prone to over-reliance on such
spurious correlations, with the removal of diluting
examples strengthening them. In a similar vein,
McCoy et al. (2019) present evidence that natural
language interface models rely upon spuriously-
correlated features, and present a challenge dataset
with such correlations mitigated.

This past work in learning with spurious corre-
lations and imbalanced data has focused on single-
label multi-class classification problems; we follow
this trend in our experiments with intent recogni-
tion. However, we go beyond the single-label set-
ting in our semantic parsing experiments, where we

investigate class imbalance in a highly structured
multi-label multi-class output space.

The challenging setting we present differs also
from never-ending learning (Mitchell et al., 2015)
and domain adaptation/continued training in that
for each iteration of the dataset, a new model is
trained, rather than continued training on a single
model. Li et al. (2021a) investigate few-shot learn-
ing for semantic parsing via continued training,
where a trained model is exposed to a small set of
annotations for a new predicate. While we also
attempt to learn from relatively few annotations,
we do not adapt learned models, instead simulating
the common production setting where models are
re-trained on datasets as a whole.

Previous parsing approaches for SMCalFlow
have followed both modeling paradigms used here:
Semantic Machines et al. (2020) present a seq2seq
baseline for SMCalFlow; this follows previous
work in seq2seq semantic parsing (Vinyals et al.,
2015; Dong and Lapata, 2016; Jia and Liang, 2016).
Platanios et al. (2021) outperform that baseline
with a transductive seq2graph model using explicit
type constraints. Treating semantic parsing as
a seq2graph problem has proved to be a strong
paradigm for parsing Abstract Meaning Representa-
tions (Banarescu et al., 2013; Zhang et al., 2019a,b),
Semantic Dependencies (Oepen et al., 2014a,b,
2016; Zhang et al., 2019b), Universal Concep-
tual Cognitive Annotation (Abend and Rappoport,
2013; Zhang et al., 2019b), Universal Decomposi-
tional Semantics (White et al., 2020; Stengel-Eskin
et al., 2020, 2021), and GQA (Li et al., 2021b).

7 Conclusion

We examined the effect of a growing dataset on
the ease of learning new symbols for NLU, finding
that it often becomes harder to learn a new symbol
as more data is collected. This trend holds across
models and settings, and could pose significant
problems as NLU systems increase in lifespan and
coverage. We found that the weakening of simple
lexical associations as the datasets grow is closely
tied to the decrease in performance, indicating that
the neural models tested in this study may be overly
reliant on simple lexical cues. We end by encourag-
ing others to examine these effects in the problems
tested here and also in similar problems, where
similar effects are likely to be found.
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A Data

A.1 Intent recognition

Table 2 contains example utterances for each intent.

A.2 Semantic parsing

The SMCalFlow data consists of user-agent dia-
logues, where the agent produces executable Lisp
programs based on user commands. Variable bind-
ing can be performed in Lisp to refer to a value
multiple times in a program in a parsimonious way.
Underlyingly, the variable binding procedure cor-
responds to re-entrancy in the DAG encoding the
program graph. Thus, the SMCalFlow parsing task
can be tackled either at the level of the Lisp string
(sequence-to-sequence) or at the level of the DAG
(sequence-to-graph), with the latter approach de-
manding a method for handling re-entrant nodes in
a graph.

A.3 Trigger Tokens

Table 3 has the trigger tokens per symbol. These
were determined manually by examining tokens
which yielded high P(symbol|t € input) at the
lowest data setting.

B Models

B.1 LSTM

The LSTM model takes as input the previous user
utterance, the produced agent utterance (if these
are available) and the current user utterance, all
separated by special tokens. These are tokenized
and embedded using an embedding layer initialized
with 300-dimensional GloVe embeddings (Penning-
ton et al., 2014). Note that there is no contextual-
ized encoder used here. The encoder is a 2 layer
stacked BiLSTM, with a hidden size of 192 and
dropout of p = 0.5 between cells. The decoder
embeddings are initialized randomly and are also
300-dimensional. The decoder also has 2 layers
with a hidden size of 384, and recurrent dropout of
p = 0.5. The source attention is implemented as an
MLP with hidden size 64. Batches are bucketed by
length during training, and a patience threshold of
20 epochs without improvement is set. The LSTM
models are trained with ADAM using a learn rate
of 1e — 3 and weight decay of 3e — 9. Note that for
SMCalFlow this paradigm is fairly weak due to its
tendency to produce malformed Lisp expressions
at lower data regimes and the handling of variable
binding through let expressions.
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B.2 Transformer

For the transductive model, the DAG for a pro-
gram (cf. Fig. 3) is first transformed into a tree by
copying and co-indexing re-entrant nodes. The tree
is then linearized into a sequence of nodes, edge
heads, edge types, and node indices. At test time,
the model produces these sequences, which can
be deterministically reconstructed into a DAG by
merging co-indexed nodes. The generation com-
ponent of the model maintains a dynamic output
vocabulary over three operations: generation from
a fixed vocabulary, source copying from the input,
and target copying from previously generated to-
kens. The target copy operation allows the model
to handle re-entrant nodes, which appear more than
once in the linearized tree. This operation allows
us to later recover node indices and thus re-build
a DAG by merging copied nodes. The edge heads
and labels are parsed by a biaffine parser (Dozat
and Manning, 2017). This allows the model to
handle functions, arguments, and types separately
via typed edges. Each operation type (ValueOp,
BuildStructOp, CallLikeOp) corresponds to a
different edge type; the edge types for arguments
are also indexed to allow for explicit argument or-
dering (e.g. arg0, argl, etc.).

The input to the model is the same as for the
LSTM: the concatenation of the previous two di-
alogue turns, followed by the current user utter-
ance. These are tokenized and embedded with 300-
D GloVe embeddings as well as 100-D character
CNN features. There is embedding dropout with
p = 0.33 to prevent overfitting. The input text
is also passed through bert-base-cased, with
each subword receiving a 768-D representation.
These are max-pooled across subword tokens to
align with the token-level embeddings. The en-
coder hidden size is 512, with a 8 heads and a feed-
forward dimension of 2048. The layer-norm and
feedforward layers are swapped, and the weight
initialization is downscaled by a factor of 512, fol-
lowing Nguyen and Salazar (2019). The encoder
has dropout p = 0.2.

For the transformer, the decoder embeddings
are also initialized with GloVe and character CNN
features. The decoder also has 8 layers with the
same dimensions and dropout as the encoder. As in
the LSTM model, source attention is implemented
as an MLP, here with a hidden dimension of 512.
The target attention (for target-side copy) is iden-
tical. Source attention uses coverage (See et al.,



Intent

Utterance

play_radio
play_radio
play_radio
play_radio

play radio mirchi for me

go to channel one hundred and six point nine
i want to hear morning edition on npr

are you set radio on my favorite radio station

email_query
email_query
email_query
email_query

open email for unread mails

what is the subject of latest email i got and who sent it
has dad sent any emails recently

new email from mom

email_querycontact
email _querycontact
email_querycontact
email _querycontact

find all the contacts named john

what is mary s.’s birthday

what information do you have on file in my information about bill
give me charles telephone number

general _quirky
general _quirky
general _quirky
general _quirky

nice to talk to you

ask me an arithmetic question

i would like it to help with coding debugging
i like my robot to talk to me like a friend

transit_traffic
transit_traffic
transit_traffic
transit_traffic

what is the traffic situation right in broadway street
what is the traffic like today

is there traffic right now in maiden lane

let me know about current traffic in carmen drive

Table 2: Examples of intent recognition data.

Symbol

Tokens

email_query
email_querycontact
general _quirky
play_radio
transport_traffic

emails, inbox

contact, phone, number

day, today, tell, can

channel, radio, fm, point, station, tune
traffic

FindManager
PlaceHasFeature
Tomorrow
FenceAttendee
DoNotConfirm

boss, manager, supervisor
takeout, casual, waiter
tomorrow

meet, mom

cancel, n’t, no

Table 3: Triggers for each symbol.

2017). The biaffine parser projects the transformer
representations to 512 and has dropout p = 0.2.
The transformer models are trained with a patience
of 20, using Adam with a linear learnining rate
warmup stage, followed by exponential learning
rate decay. We set the number of warmup steps to

8000.
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Function Dialogue Context Current User Utterance
FindManager N/A Make an event with Abby and her boss
FindManager User: Who are Jake’s reports, Agent: Jake Cobb | Who does he report to?
has no direct reports.
FindManager User: Add an event called presentation with Jamal | Add Igor and his supervisor to this as well.
and his supervisor for Friday at 11. Agent: Is this
good?
Tomorrow N/A Find an event for tomorrow after 4 pm.
Tomorrow N/A Schedule lunch with Nick tomorrow at noon
Tomorrow User: What time will the sun rise in seattle tomor- | what time will the sun set in seattle tomorrow
row Agent: Sunrise will be at 12 : 00 AM tomorrow.
DoNotConfirm User: Can you change the time to 4 instead? Agent: | No, I don’t like either of those.
How about now?
DoNotConfirm User: No I need it to be in the afternoon, Agent | No they don’t
Does one of these work?
DoNotConfirm User: Schedule a dentist appointment tomorrow | No
afternoon, Agent: Does one of these work?
FenceAttendee N/A Create lunch with mom on sunday
FenceAttendee User: what events do I have tomorrow, Agent: 1 | Add my sister, brother , and Daniel
found 2 events tomorrow .
FenceAttendee N/A Can you tell me if I meet with our repair rep this
week or next week ?
PlaceHasFeautre User: What cuisine do they serve ?, Agent: Sorry , | Does the Black Bottle restaurant have a full service
I can’t handle that yet . bar ?
PlaceHasFeature User: Find me Round Table Pizza in Truckee, | Could I bring a party of people there ?
Agent: I found one option .
PlaceHasFeature N/A Is Bamonte ’s in Brooklyn capable for large parties

?

Table 4: Example data for SMCalflow Parsing.
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