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Abstract

In ill-posed imaging inverse problems, uncertainty quantification remains a fundamental
challenge, especially in safety-critical applications. Recently, conformal prediction has been
used to quantify the uncertainty that the inverse problem contributes to downstream tasks
like image classification, image quality assessment, fat mass quantification, etc. While
existing works handle only a scalar estimation target, practical applications often involve
multiple targets. In response, we propose an asymptotically minimax approach to multi-
target conformal prediction that provides tight prediction intervals while ensuring joint
marginal coverage. We then outline how our minimax approach can be applied to multi-
metric blind image quality assessment, multi-task uncertainty quantification, and multi-round
measurement acquisition. Finally, we numerically demonstrate the benefits of our minimax
method, relative to existing multi-target conformal prediction methods, using both synthetic
and magnetic resonance imaging (MRI) data.

1 Introduction

Imaging inverse problems (Bertero et al., 2021) span a wide array of tasks, such as denoising, inpainting,
accelerated magnetic resonance imaging (MRI), limited-angle computed tomography, phase retrieval, and
image-to-image translation. In such problems, the objective is to recover a true image xy from noisy,
incomplete, or distorted measurements yo = A(xg). These problems tend to be ill-posed, in that many
distinct hypotheses of g can explain the collected measurements yo. When perfect recovery of z is difficult
or impossible, uncertainty quantification (UQ) is critical to safely using/interpreting a given reconstruction
Zo, especially in high-stakes fields like science or medicine (Chu et al.l |2020; |Banerji et al.l |2023)).

The field of image recovery has evolved significantly over the decades, and most contemporary approaches
are based on deep learning (DL) (Arridge et al., 2019). Quantitatively, recent DL-based methods outperform
classical methods on average and, qualitatively, they produce reconstructions that are sharp and detailed
(Ongie et al., [2020). When the inverse problem is highly ill-posed, classical methods tend to produce
recoveries with recognizable visual artifacts, from which it is relatively easy to gauge uncertainty. For example,
radiologists receive explicit training in this regard (Virmani et al., [2015)). In contrast, DL-based methods
can hallucinate, i.e., generate recoveries that are visually plausible but differ from the truth in clinically or
scientifically important ways (Cohen et al.| |2018; Belthangady & Royer |2019; Hoffman et al. 2021; [Muckley
et al} 2021; [Bhadra et al} 2021; |Gottschling et al., |2023; [Tivnan et al., [2024)). This underscores the need for
rigorous UQ), e.g., methods that provide statistical guarantees on estimates of xg or of some function u(xg).

For example, a recent line of work (Wen et al. 2024, |(Cheung et al.| [2024) quantifies the imaging-induced
uncertainty on downstream tasks such as pathology classification or fat-mass quantification. Defining the
target zo as the output of the task applied to the (unknown) true image, they use conformal prediction (Vovk
et al., |2005; |Angelopoulos & Bates, |2023)) to construct prediction intervals C that are statistically guaranteed
to contain the target. In a related line of work, |Wen et al.| (2025)) provides statistical guarantees on the quality
of the reconstructed image Zy relative to the true image, where “quality” is defined according to an arbitrary
full-reference image-quality (FRIQ) metric like peak signal-to-noise ratio (PSNR) or structural similarity
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index measure (SSIM) (Wang et al., 2004)). Defining the target as the FRIQ of Z relative to the (unknown)
true xg, they use conformal prediction to construct a bound on FRIQ that is statistically guaranteed.

While the above methods rigorously quantify the downstream impact of reconstruction uncertainty, they
handle only a scalar target. In practice, one may want to consider multiple targets. For example, one may
seek to identify multiple pathologies from a single recovery or to judge the quality of that recovery according
to multiple metrics. Although multi-target conformal prediction methods have been proposed, they suffer
from either limited interpretability (Messoudi et al.| 2022} [Feldman et al.l [2023|)(Rosenberg et al.l [2023}
Thurin et al.|, 2025} [Braun et al. 2025)), a lack of guaranteed joint coverage (Messoudi et all, |2021; Teneggil
et al. [2023; [Park & Cho, [2025)), or some combination of overly conservative prediction intervals and/or high
computational complexity (Messoudi et al., 2020; [Diquigiovanni et all 2022} |Sampson & Chan| 2024))(Sun &/

2024]), as we explain in the sequel.

We thus propose a new approach to multi-target conformal prediction. For problems with K > 1 targets, our
goal is to ensure a notion of fairness between targets. With prediction intervals C;, and scalar targets Zo j, for
k=1,...,K, our method aims to ensure that no one “single-target coverage” Pr{Zy € Cy} is favored over
another, while also ensuring that all prediction intervals simultaneously contain their corresponding targets
with a user-specified probability of 1—a. To do this, we minimize the maximum single-target coverage under
the joint-coverage constraint Pr{N;Zy ; € Cx} < 1—«. Since the single-target coverage increases with the
interval size |Ci|, our approach additionally aims to prevent any prediction set Cj, from being unnecessarily
large. Our contributions are as follows:

1. Using a minimax formulation, we propose a novel multi-target conformal prediction approach with
finite-sample marginal joint-coverage guarantees and low computational complexity.

2. We prove that our method is minimax in the limit of infinite tuning and calibration data.

3. For inverse problems, we propose a multi-round measurement acquisition scheme with marginal
coverage guarantees on the final round.

4. We numerically compare our proposed method to several existing multi-target conformal prediction
methods on a synthetic-data problem and four accelerated-MRI problems.

2 Background

2.1 Single-target conformal prediction

Conformal prediction (Vovk et al.l 2005; |Angelopoulos & Bates| [2023) is a general framework that enables one
to construct uncertainty intervals with certain statistical guarantees for any black-box predictor. Importantly,
it does not require any distributional assumptions on the data other than exchangeability, which allows for
adoption in a broad range of applications. In this section, we briefly review the basics of conformal prediction,
and in particular the computationally-efficient version known as split conformal prediction
let all 2002} [Lei et al.l [2018).

Suppose that we have a black-box model h : Y — R that predicts a target zg € R from features ug € U. The
prediction Zp = h(ug) may or may not be close to the true target zp, but one can use conformal prediction to
compute a prediction interval Cy(2Zp) C R that contains zy with high probability. To compute this interval,
conformal prediction uses a dataset {(u;, z;)},; of feature—target pairs distinct from those used to train h(:).
This dataset is converted to a calibration set dea = {(Zi, 2;)}"; using Z; = h(u;), and dg, is used to find a

X(dcaﬂ) satisfying the marginal coverage guarantee (ILei & Wassermanl, |2014

Pr{Zy € C5,, y(Z0)} 21— a, (1)

where « is a user-chosen error rate. Here and in the sequel, we use capital letters to denote random variables
and lower-case letters to denote their realizations. In words, guarantees that the unknown target Zj falls

within the interval C:\\( IS I)(Z)) with probability at least 1—«a when averaged over the randomness in the test

data (Zp, 20) and calibration data D).
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The process of computing X(dc;ﬂ) is known as calibration. To calibrate, one first defines a nonconformity score
$(Zi, z;). The choice of the nonconformity score function is quite flexible; it requires only that the score is
higher when there is a worse agreement between z; and z;. Common approaches include the absolute residual,

locally-weighted residual (Lei et al., 2018), and conformalized quantile regression methods (Romano et al.|

2019). The nonconformity score s; = s(z;, ;) is then computed for each sample pair (Z;, z;) in the calibration
set deal, and A(dca)) is chosen as

X(dcm) £ EmpQuant <W; S1y..., sn), (2)

which is a slightly more conservative quantile than the 1—a quantile. With /):(dca|) computed, the prediction
interval for the ith sample is simply defined as

C/)‘\(dcm)(gi) = {Z : S(Z,Z) < X(dc;n)}. (3)

Following this design, the marginal coverage guarantee holds when (20, Zo), (2\17 VAD RN (Zn, Z,) are
statistically exchangeable (Vovk et al., 2005)), a weaker condition than i.i.d. Under the additional assumption
that the nonconformity scores Sy, S1,...,S, are almost surely distinct, the coverage can also be upper
bounded (Romano et al. 2019)) by

= 1
PI'{ZU GC/X(Dcal)(ZO)} < ].—CE‘Fm (4)

2.2 Application to imaging inverse problems

In imaging inverse problems, conformal prediction has emerged as a tool to quantify the uncertainty in image
recovery. Several approaches (Angelopoulos et al. [2022b} Horwitz & Hoshen| [2022; Teneggi et all, 2023}
[Kutiel et al., [2023; Narnhofer et al., 2024]) use conformal prediction to construct, for each individual pixel, an
interval that is guaranteed to contain the true pixel value with high probability. For quantifying multi-pixel
uncertainty, Belhasin et al.|(2023) propose to compute conformal intervals on the principal components of the
posterior covariance matrix, and [Sankaranarayanan et al.| (2022]) construct conformal intervals for semantic
attributes in the latent space of a disentangled generative adversarial network.

Although these notions of uncertainty are interesting to consider, they don’t directly quantify the impact of
recovery errors on downstream imaging tasks such as image classification, image quality assessment, and
quantitative imaging. Consequently, task-based image uncertainty methods like (Wen et al. [2024; |(Cheung]
let al.l |2024; [Wen et all 2025) have been proposed. We now briefly review these methods using a unified
notational framework.

Both [Wen et al.| (2024) and |Cheung et al.| (2024) quantify the uncertainty in estimating pu(zo) € R given the
measurements yo. In Wen et al.| (2024) p(-) is a soft-output classifier, and in |Cheung et al. (2024) it is a
fat-mass quantifier, but in either case the target is set at zg = u(xg). Assuming access to an approximate

posterior sampler g(-,-) that generates ¢ samples {9?5] )}§=1 per measurement vector y; via fl(j ) = g(yi,@'gj ))
using i.i.d code vectors @Q) ~ N(0, ), the prediction is computed as

~ 1 ~(1 ~

G=[3" BT = @) @) e R (5)

Several nonconformity scores can be used, but here we describe only the version with the conformalized
quantile regression (CQR) method of Romano et al| (2019). With CQR, the § and 1—§ empirical quantiles
are computed as

75 (Z;) = EmpQuant (%; 251), . ,2§c)> and  §1—2(2;) = EmpQuant (1 - %; ’z\gl), . ’z\gc)), (6)

respectively, and the nonconformity score is defined as

s(Zi, z;) = max {Z]\% (Z:) — 21,2 — 51\1—%(31‘)}7 (7)
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after which the prediction interval C5, , | (Z;) is constructed as in (i Because this prediction interval changes

with y;, it is said to be “adaptive” (Lei et all [2018)). In any case, it satisfies the marginal coverage guarantee
in when (Zy, Zy), (Z1,21), - ..,(Zn, Z,) are statistically exchangeable.

In related work, Wen et al.| (2025) seek to estimate the FRIQ (e.g., PSNR, SSIM, etc.) m(Zo, zo) of an image
recovery o = f(yo) relative to the true image xg when given access to measurements yo but not z itself.
To do so, they set the target as zp = m(Zg, zo) and use an approximate posterior sampler that generates ¢

samples {igj )}521 per measurement vector y; to compute the prediction

%= [m@, &), .., m(3,7)] " e R (8)

i i

|[Wen et al.| (2025) then used empirical quantiles to construct a one-sided prediction interval Cy(-) to either
lower- or upper-bound the FRIQ, as appropriate. Note that m(Z;,-) can be viewed as a recovery-conditioned
task. To maintain consistency with other task-based approaches, when discussing FRIQ estimation in the
sequel, we construct two-sided intervals using with the nonconformity score from @

2.3 Multi-target conformal prediction

As discussed in Section [I} one may be interested in conformal prediction of several targets, which we combine
into a multi-dimensional target vector [z;1,...,2i, k| = 2; € RE. We focus on the case where one is given a
prediction Zy € RE of unknown test zg € R¥, along with a calibration set dea = {(Zi, ;) }_,, and the goal is

to compute K prediction intervals {C:\\( Do) k(ZO)}szl that satisfy the joint marginal coverage guarantee
Pr{nf, Zoy € Gy sZ0)} 21 -a (9)

This guarantee ensures that all target components simultaneously lie within their respective prediction
intervals with a probability at least 1—a over the randomness in the calibration and test data.

Variations on @D are possible, such as minimizing a risk that allows a fraction of the target components to lie
outside their prediction intervals (Teneggi et al) [2023). Likewise, while (9) can be interpreted as constructing
a hyper-rectangle in R¥ that contains Zy with high probability, it is possible to construct non-rectangular
regions, such as ellipsoidal regions (Messoudi et al.| [2022)) or more complicated regions defined by the outputs
of a conditional variational auto-encoder (Feldman et al., 2023)), vector quantile regressor (Rosenberg et al.)
2023)), optimal-transport map (Thurin et al., 2025), or a volume-minimizing mapping (Braun et al. 2025)).
Although these non-rectangular regions can give smaller uncertainty volumes, they are less interpretable
for the applications we consider, since the uncertainty interval on one target component will depend on the
values of the other target components.

Inspired by (9)), several approaches have been proposed to construct prediction intervals. [Messoudi et al] (2020)
assume that the nonconformity score components are statistically independent, so that when the components
are individually calibrated to yield an error-rate of aj, the joint error-rate a will equal 1 — (1—aq)®. This
allows setting oy = 1 — (1—a)1/ K to meet a desired joint error-rate of a. However, the independence
assumption may not hold in practice, where one could encounter K dependent score components that yield a
joint error-rate > 1 — (1—a;)¥, in which case the joint-coverage guarantee @) would be violated. But even
when the joint coverage holds, we show in Section [5] that the prediction intervals from [Messoudi et al.| (2020)
are overly conservative.

Another line of work uses copulas (Nelsen, |2006) to model the statistical dependency between the score
components {s; ;}_;, where s; x = s(Zik, i k). Given a random vector S = [Si,..., Sk] with marginal
CDFs Fgs, (s1,) = Pr{Si < si}, the copula of S is defined as the function Cg : [0,1]% — [0,1] for which

Cs(v1,...,vg) =Pr{Fs,(S1) <wvi,...,Fs,.(Sk) < vk} (10)

That is, the probability integral transform is used to convert each marginal Sy, into a uniform random variable
Vi = Fs, (Sk) and the copula Cg is the joint CDF of V = [V4,..., Vk]. Messoudi et al.| (2021)) approximate
the copula as C's using the empirical marginal CDFs Fg, computed using the calibration data, and then
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search for a o € [0, 1] for which Cs(D, . ..,7) > 1—a. The corresponding A(dea) = [ﬁgll @),..., F\STKI (0)] € RE
then approximately satisfies Fg(X(dca|)) > 1—q, and /)\\k(dcm) can be used to define a prediction interval for

Zi via (3). However, they provide no coverage guarantees on these intervals. [Sun & Yu| (2024) and [Park &/
(2025) instead search for a ¥ € [0,1]% for which

K

U= arg ver[r(l)%{l]K ];vk such that 5’5(1}) >1—-a, (11)

after which they set X(dca|) = [ﬁs_ll (1), ﬁs_Kl (k)] € RX. |Park & Cho| (]2025') use semiparametric vine
copulas and provide coverage guarantees only in the limit of infinite calibration data. |Sun & Yu|(2024) use the
empirical copula together with conformal marginal CDFs (Vovk et all 2017) and obtain a finite-data coverage
guarantee similar to @D But provides no incentive for balancing coverage across targets (as we will see
in Section |5), and there’s no clear way to solve the non-convex optimization in . Even approximately
solving is computationally expensive (e.g., |Sun & Yul (2024) use gradient descent).

As an alternative, [Diquigiovanni et al. (2022) and [Sampson & Chanl (2024)) propose to combine the score
components {s; x}H*_, into a single score via

s; = max{s;1,...,8i K} (12)
Using calibration {s;} , with and extending to component-wise intervals

o B = {750 2) < Adea)}, k=1, K, (13)

the arguments from [Vovk et al| (2005) imply that the joint-coverage guarantee () and upper bound (4) both
hold under the usual exchangeability assumption. However, [Sampson & Chan| (2024) note that this approach
can disproportionally favor the target components with larger nonconformity scores, causing the prediction
intervals of the other components to be overly conservative. To mitigate this issue, they propose to scale the
nonconformity scores to a common range. To do so, they first train a pair of quantile regressors Z]\%k( -) and
412 k(+) that estimate the § and 1—§ quantile of Z; j, respectively, for each k € {1,..., K}, and then form
the scaled nonconformity scores

o~

oy ©i-g1(Zi) —q21(2)

Sip =max {qze ,x(Z) — Zik, Zik — Qi—2 k(Zi) } = — —, 14

? { 3 ( l) 7 7 D) ( l) q17%,k(2i) _q%,k(zz) ( )
Scale relative to 1st target

where Z; = u;. This helps to balance the single-target coverages Pr{Z j € C+ (20)} across k € {1,...,K}

A(Dear) k
while ensuring the joint-coverage guarantee @D and upper bound . In Section |3 we show how to obtain a
better balance.

In the broader scope of distribution-free UQ, the Learn-Then-Test (LTT) framework of [Angelopoulos et al.|
provide an alternative approach to handling multiple targets that uses multiple hypothesis testing.
Although LTT is generally used for cases in which there are multiple notions of risk, our case involves only a
single risk and thus LTT would provide a guarantee of the form

Pr[Pr{nf, Zox € G5y 1 (Z0)| Dea} 2 1—a] 2154, (15)

where «,d € (0,1) are each user-selected error rates. In , the inner probability is over the randomness
in the test data while the outer probability is over the randomness in the calibration data. Since the LTT
guarantee takes a different form than @D, the LTT procedure is not directly comparable to any of the
previously mentioned multi-target methods. Also, the use of two user-selectable error rates in complicates
the design. In this paper, we focus only on methods that provide joint-coverage guarantees of the form @D
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3 Minimax multi-target conformal prediction

In this section, we propose a new approach to multi-target conformal prediction using a minimax formulation.
We first formulate the minimax problem using random variables. Then we present the finite-sample version
of our approach, which manifests as an instance of split conformal prediction. Finally we prove that the
finite-sample solution converges to the solution of the original minimax problem as the number of samples
grows to infinity.

3.1 Random variable perspective

To build intuition, we first consider the design of prediction sets when the targets and predictions are
modeled as random variables Z = [Z;,...,Zk| € REX and Z = [Zy,...,Zk], respectively. For the kth
component, suppose that the nonconformity score function is sg(-,-) and the prediction set is constructed as
ka (Z) 2 {2 : sx(Zk, z) < (i}, where (i is a design variable. Then the “single-target coverage” of the kth
component will be

Pr{Z, ¢ ca@k)} =Pr{Z € {z:51(Z,2) <G} = Pr{su(Zi, Zt) < G} (16)
Using Sy = sk(fk, Zy), we can write the single-target coverage more succinctly as
Pr{S; < Zk} = FSk(Ek), (17)
where Fg, (Ek) is the CDF of Sj, evaluated at Ek Similarly, the joint coverage of all K components will be
Pr{N{l, Zx € C; (Z1)} = Pr{nj, Sk < e} (18)
For a given joint miscoverage rate of «, we’d like to find a tuple (21, RN ZK) that ensures
Pr{nk, s <G}>1-a (19)
But, in gerleral, many (21, .. ,ZK) will yield the same valAue of Pr{nk_, 3, < Zk}, and for some choices
of (¢1,...,Ck), a portion of the prediction intervals Cac (Zk) can be overly conservative. Since a larger

Pr{S; < Zk} generally corresponds to a larger prediction interval Cz\k (Ek) due to their monotonically non-

decreasing relationship, we propose to design prediction intervals that minimize the maximum single-target
coverage while ensuring joint coverage, i.e.,

(CroenoiCr) = arg miIé m]?XPf{Sk <G} st Pr{nfl S < G} > 1 - (20)
15--C0K
Using and the fact that the CDF is non-decreasing, we can restate as
Gy e s Cie) = arg min max F, (G) st Pr{nfl, Fs, (Sy) < Fo, (G} 21—, (21)
150K

and further restate it using \y £ Fs, (Cx) as
(Xl, . ,XK) = arg mir}\ max e st Pr{nf_ Fg (Sp) < M} >1—a. (22)

1.0y NK

Although the solution to may not be unique, it suffices to find a single minimax (3\\1, e ,XK). Towards
this aim, observe that Pr{N{*_, F, (Sx) < Ax} is monotonically non-decreasing with respect to any A,. Thus,
given any tuple (Aq,..., Ak ) that satisfies the constraint in , the tuple (X,...,\) for X' £ max;, A\ also
satisfies the constraint while simultaneously yielding the same value of the objective “maxy Ax.” This implies
that, without loss of minimax optimality, we can reframe as a search for a single parameter \:

= argm}%n/\ st. Pr{nf_ Fs, (Sp) <A} >1—a. (23)

Although bears some similarities to the copula methodology in 7 note that uses a max where
(11)) uses a sum. Also, can be reduced to a simple one-dimensional search , whereas the non-convex
(11)) involves an expensive multi-variable optimization.
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3.2 Finite-sample case

We now adapt (23 . ) to the practical case where the Sy distributions are unknown and must be learned. For
this purpose, we assume access to “tuning” data {(u;, z;)}70 " that is distinct from the data {(u;, z;)}7,
used for split conformal prediction and from the data used to train the predictor that generates Zz;.

We propose to do the following for each target component k € {1,...,K}. First, we construct the set

A ~ . .. .
drune,e = {(Zi ks Zi k) f:fﬂe and compute the nonconformity score s; i for all samples ¢ in diune,x. Using these

nonconformity scores, we compute the empirical CDF ﬁsk (+), where

|{3i,k DSk < ¢, i=n+l,... 7n+ntune}|

Ntune

Fs.(0) = (24)

Next, we compute the nonconformity scores s; j for all samples ¢ in the calibration set dca £ {(Em, sz)};’:l
and apply the learned F, () to obtain the transformed calibration scores

Sik = ﬁsk (si) fori=1,...,n. (25)

Because 3; 1 € [0, 1], the scores {3; x}" ; are implicitly normalized across k € {1,..., K}. Finally, we take
the maximum across components,

— A — —

5 = max(S;1,...,5,K), (26)

and from these {3;}}_; compute )\(dca|) in the same manner as :
~ 1- 1
A(dca) = EmpQuant (%M;El, e ,En). (27)

The target-domain prediction intervals can then be constructed as
G/\\(dcm),k(gi) = {Z : Fg, (Sk(/Z\i,k,Z)) < )\(dca|)}, k=1,..., K. (28)

Since the tuning data used to construct ﬁsk (+) is distinct from the calibration data, our method follows the
framework of split conformal prediction. By taking the max of the transformed scores, we ensure the inclusion
of all the scores, and thus enjoy the finite-sample joint marginal coverage guarantee of @I), as summarized in
the following lemma:

Lemma 1. For any o € (0, 1), the prediction intervals {C+ Z() }/,1 from (28) obey

A(Deal
Pr{Ni_; Zox € cw)m)_k(z(,>} >1-a (29)

when (20, Z0), (21 s 21 )y (2,1, Zn) are statistically exchangeable.

The guarantee in L(tmmn is similar to that in [Sampson & Chan| (2024)) and stronger than that in
. since the latter requires exchangeability of the test, calibration, and tuning samples. (In fact the
2024) makes the stronger assumption that the test, calibration, and tuning samples are
i.i.d.) In other words, the finite-sample guarantee in Lemma [l]is conditional on the tuning samples whereas
that in is not. Furthermore, we demonstrate in Section [5 that, as a result of our minimax
formulation, our coverages tend to be more balanced (across targets) than those of [Sampson & Chan| (2024)
and [Sun & Yu| (2024)), which prevents our prediction intervals from being unnecessarily large.

Algorithm [[] summarizes our proposed split-conformal prediction procedure.

3.3 Asymptotically minimax

Because the proposed finite- sample methodology uses the empirical CDF in place of the true CDF Fg,
and the emplrlcal quantlle in place of the true quantlle in , one may ° wonder how the calibration
parameter )\(dca| in relates to the minimax \ in . Below we show that )\(dca|) converges to X in the
limit of infinite tumng and calibration data.
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Algorithm 1 Minimax-based conformal prediction of test target zo € R from feature vector ug € U.

Require: Error rate a € (0,1).
Test feature vector wuyg.
Prediction model h : I — RE.
Data {(ui, z;)}77"™" not used to train h(-).

Nonconformity score functions s, : R xR —- R for k=1,..., K.

) k :

1: Compute the predictions {2; }77" using 2; = h(u;).

2: for k=1,..., K do

3: Compute the nonconformity scores {s; x ”Jr”‘“"& using s; x = $x(Zik, Zik)-

o ) . . Sik Sik<(C,it=n+1,..., N+ Ntun
4: Compute the empirical CDF Fsp (+) using Fg,\ €)= [{sik : ik S G tune } .

”tune
5: Compute the transformed nonconformity scores {s; ;. }7_; using s; . = Fls, (S )
6: Compute the component-maximized scores {5;}, using 5; = max(s; 1,..., SiK)
) } 1 n—+1
7: Compute the threshold /\(dca|) = EmpQuant (w:ﬁl ..... .?’,Z).
n
8: Compute the prediction intervals CX( )A‘( ) = 1/, : Fg} (s/ (Zikey 2 )) < /\((lca|)1 for k=1,..., K.
9: return Prediction interval C/\“ ,) A(? ) on unknown zqj for each k =1,..., K.
al
Theorem 2. For each target component k=1,...,K, suppose that the nonconformity scores {S; i ”+”“”"e

are i.i.d with CDF Fs, (-) and, for T = maxy, Fg, (Sk) suppose that Fp(- ) is continuous and strictly mcreasmg
at the (1—a)-level quantile of T. Then )\( cal) from (2 (.) converges to P\ from (2 (.) almost surely as n — oo
and Nyype — 0O.

See Appendix [A] for a proof.

4 Applications of multi-target conformal prediction in imaging

In Section [2.2] we described several applications of conformal prediction to single-target UQ in imaging
inverse problems. In this section, we propose several applications of conformal prediction to multi-target UQ
in imaging inverse problems.

We now establish a common notation that can be used across several applications. Consider a target vector
z; € RE | prediction matrix z; € RE*¢, and nonconformity score Sik = Sk(Zik, 2i ) for the kth target and
ith sample. With CQR, the nonconformity score would be computed as

Sik = Sk(Ziks 2ik) = max {Qa x(Zik) — zig zik — Q-9 k(Zik)} (30)
with
~ ~ c ~ ~ ¢ c
a 1(Zi 1) = EmpQuant (2 ; Az(lk), . ,21(,2) and  G1—2 x(Zix) = EmpQuant (1 — 5 25’1,3, . ,Efk)) (31)

With this problem setup, the proposed minimax method from Section [3] or any of the existing multi-target
approaches discussed in Section can be applied to generate prediction sets C/\ (o). k(ZO) for target indices

k=1,...,K. When the JOlnt—coverage guarantee in @D holds, all K prediction sets will simultaneously
include the corresponding true-target values with a probability of at least 1—a. We emphasize that this
guarantee holds regardless of the quality of the approximate posterior sampler used to generate {/z}k}jzl
As this sampler gets worse, the prediction sets will get looser but the guarantee will still hold. Below, we
describe how to construct these quantities in different applications.

4.1 Multi-metric blind FRIQ assessment

We first consider blind FRIQ assessment, where the goal is to estimate the FRIQ of a reconstruction Zo = f(yo)
relative to the true image xg, given measurements yo = A(zg) but no direct access to zyp. Whereas Section
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discussed the use of a single FRIQ metric, one may instead be interested in assessing image quality according
several FRIQ metrics, since different metrics may be complementary (Wang, 2011)).

Consider the case of K FRIQ metrics {my(-,-)}X_,. To extend the conformal prediction approach from
Section we set the target vector as z; = [2i1,...,2ik] € RE with 2,5 = my(Z;,;), and use c

]T c RKxc

posterior samples {5(-”}0 1 to form the prediction matrix z; = [Z;1,..., %k , where Z; , =

(@, 30), i@ 7)) T
4.2 Multi-task uncertainty quantification

Now consider task-based UQ, as described in Section [2:2] for the case of a single task. In practice, one may
want to consider several tasks, such as classifying the presence/absence of several different pathologies from a

single image. To extend the task-based UQ method from Section 2{to K downstream tasks {pu(+)}H< k 1, we

MNe

form the target vector as z; = [2;1,..., 2 k] € RE with 2; x = g (2;) and use ¢ posterior samples {:1: S=1

€ RExe, (~(C))]T_

to form the prediction matrix z; = [Zi1,..., 21 k] " where Z; , = [ (T, 7 )), ey bk

4.3 Multi-round measurement acquisition

In (2024) the authors propose a task-based multi-round measurement protocol where measurements

are gradually collected until the conformal interval length falls below a user-specified threshold 7. More

2]

precisely, at the end of each measurement round b € {1,..., B}, a prediction Z;" € R and conformal prediction

interval cll (A[b]) are constructed from the cumulative measurements y([)]. Measurement collection stops if
ictb ( )| < 7 (or if b = B) but otherwise continues to the next round. The goal is to reduce measurement
costs Whlle guaranteeing that the collected measurements are sufficient for the task. This is especially useful in

applications like accelerated MRI, where long scan times increase both patient discomfort and the likelihood
of motion artifacts (Knoll et al., 2020).

A limitation of the multi-round protocol from Wen et al.| (2024) is that the marginal coverage guarantee
holds for each round in isolation, but not for the multi-round protocol as a whole. In the sequel, we refer
to the multi-round protocol from [Wen et al] (2024) as the “separate calibration” (SC) method, because
it is implemented using a bank of B independetly calibrated conformal predictors. That is, although the
SC method ensures that Pr{Z; € C[b](z[)b])} > 1 — « for each round b assuming (Zo, 2([)1;])7 o (Zn,s Z[Lb]) are
exchangeable, we really desire that the multi-round coverage

P = iPr {Zy € C[b](z[)b]),ﬁnal round = b} (32)
b=1
— Pr{Zy € CU(ZY), | (21)] < r)
3 Pr {0 € COZD, ICMED] < B ZE ) 5 e CUE) 5 1)
b=2
+Pr{Zy € P2, 1eP N Z T > w12 > ) (33)

is at least 1—a. This is because, in practice, we don’t apriori know which round will be the accepted round,
and thus we must ensure coverage in all cases. To address this limitation, we note from (32)) that

B
Pruii > ZPr{ nB_, Z, € C[k](z[)k]),ﬁnal round = b} =Pr{ng., Z, € C[’“](Z[)’“])}, (34)
b=1

with equality due to the fact that Zszl Pr{final round = b} = 1. Thus, if
Pr{nf, Z,ec(ZM} >1-a, (35)

then it follows that Pny > 1—a. Since is a special case of the joint marginal coverage guarantee (9)), we
can ensure using multi-target conformal prediction techniques like the one proposed in Section



Under review as submission to TMLR

That said, the above B-round protocol handles only scalar zy € R, i.e., a single task. To extend it to L tasks

{m()}lL 1, we set the target vector as z; = [21,...,2i k] € RE, where K = BL and 2 L(b—1)+1 = pa(;)
for all b. Then, for each round b, we generate ¢ posterior samples {x[ 1 )} via fgb](j ) = g(yz[b],~l[b](J ))
with i.i.d vz[b]m ~ N(0,I) and form the predictions z; = [Zi1,...,21.x|" € REX¢ with Zi L(b—1)+l =

[t (iﬁ”]“)), ey ul(%gb](c))]T. When the joint-coverage guarantee in (Eb holds, the prediction intervals for

all tasks will simultaneously contain their respective targets with probability at least 1 —« in the final
measurement round.

5 Numerical experiments

We now numerically evaluate the proposed asymptotically minimax multi-target conformal prediction method
from Section along with the independence-assumption (IA)-based method from Messoudi et al.| (2020)),
the quantile-normalization (QN)-based method from [Sampson & Chan| (2024), and the copula-based “CPTS”
method from [Sun & Yu M , all described in Sectionn We compare all four methods using both synthetic
data and real-world accelerated MRI data. For g x(-) and q1—g x(-), we use the empirical quantile estimator
(6) for all MRI experiments in SeCthHE but train a quantlle regression (Koenker & Bassett], |1978) model
for the synthetic experiments in Section For the TA method, we use the CQR nonconformity score
from @ with an adjusted error-rate of oy =1 — (1—oz)% to provide a joint-coverage rate of 1—q«. For the
QN method, we compute the nonconformity scores for each target using before taking the max across
targets in . For the CPTS method, we use the CQR nonconformity score from but otherwise use
the implementation settings from [Sun & Yu| (2024). Since our minimax method can be applied with any
nonconformity score sg(+, ), we test one variation with the CQR score , denoted as “CQR+Minimax,” and
one with the QN score 7 denoted as “QN+Minimax.”

For evaluation, we first randomly draw a fixed tuning dataset dine from the non-training data. Since the
joint guarantee @D holds over the randomness in the calibration and test data, we perform 7" = 10000 Monte
Carlo trials, where in each trial ¢ € {1,...,T} we randomly partition the remaining non-training data into a
calibration set dc,[t] with indices i € I, [t] and a test set with indices i € Liest[t]. As a coverage metric, we
evaluate the empirical joint coverage

BJC = Z |Lest Z H L{zig € C g G 1 (36)

1€ Ltest [t] ke { 1,. }

where 1{-} is the indicator function. Since a larger coverage generally indicates a more conservative prediction
interval for a given nonconformity score, we also measure the empirical single-target coverage for each target
k:

T
ESCy, £ %Z m P ek € Gy B (37)
t=1 1€ Lrest [t]
and, to quantify the corresponding prediction-interval size, we measure the mean interval length:
1 1
MILy, £ ; Tl EZZ | 1C3 ey e - (38)

st
test

5.1 Synthetic data

We start with a synthetic multi-target regression problem. The random data {Z;} are constructed i.i.d across
1€ {07 1,00 1+ Niune + Nitest + ntrain} with Z; = [Zi,17 Z’i,Q, Zi,3]T7

Zi1=10U; + 10 + €;1 (39a)
Zi’g = —2Ui + 1+ €i,2 (39b)
Ziz = 01U} + €3, (39¢)

10
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Table 1: Empirical joint coverage versus desired joint coverage 1—a« for the synthetic experiment.

1—«a
Noise Type Method 0.70 0.75 0.80 0.85 0.90 0.95

IA (]Messoudi et al. |2020} 0.7000 0.7501 0.8001 0.8501 0.9000 0.9499

CPTS (Sun & Yu|[2024) 0.7002 0.7501 0.8001 0.8501 0.9001 0.9501

Independent QN (]Sampson & Chan| |2024} 0.7002 0.7501 0.8001 0.8501 0.9000 0.9500
CQR+Minimax (Ours) 0.7000  0.7500 0.8000 0.8500 0.9000 0.9501

QN+Minimax (Ours) 0.7002 0.7502 0.8001 0.8501 0.9000 0.9501

IA QMtcssoudi et al.| |2020} 0.7583 0.7991 0.8393 0.8791 0.9187 0.9584

CPTS (Sun & Yu||2024) 0.7001 0.7502 0.8001 0.8501 0.9001 0.9502

Correlated QN QSampson & Chan| |2024} 0.7001  0.7501 0.8001 0.8500 0.9000 0.9500
CQR+Minimax (Ours) 0.7000 0.7501 0.8001 0.8500 0.9000 0.9500

QN+Minimax (Ours) 0.7001 0.7502 0.8001 0.8501 0.9001 0.9501

U; ~ Unif(—5,5), and two cases of random €; = [€; 1,€;2,€.3)] . In the first case, €1 ~ N(10,1), €2 ~
Gamma(shape = 1,scale = 1), and ¢; 3 ~ Exp(scale = 1) are independent. In the second case, ¢; is formed by
stacking those three independent noise variables into a vector and multiplying by the Cholesky factor of

1 08 07
=108 1 04 (40)
07 04 1

to construct a correlated noise vector.

In either case, we generate nip;, = 10000 training samples. For each target component k, we train two linear

quantile regressors ga x(-) and q1—g k(-) to estimate the § and 1—% quantiles of Z; j, respectively, from

z; = u;. We generate nyne = 10000 tuning samples to estimate the empirical CDF for the minimax approach
(see (24)) and CPTS approach (see[Sun & Yul Eq.(5))). Then, for each Monte Carlo trial ¢, we generate
n = 10000 calibration samples and nist = 5000 test samples. For fairness, the TA and QN methods use the
tuning samples as additional calibration samples.

Empirical coverage: Table [l|shows the EJC for each method versus the desired joint coverage 1—a.
There we see that, in the independent-noise case, all four methods perform nearly identically, with EJCs that
almost exactly match the desired 1—a. In the correlated-noise case, however, the IA method yields an overly
conservative EJC while the QN, CPTS, and minimax methods give an EJC of almost exactly the desired
1—a. This behavior is not surprising, since the IA method assumes independent target components while the
other methods do not.

Single-target coverage: Figure a) and (b) plot the maxy ESCy and ming ESCy, of each method versus
the desired joint coverage 1—a for the independent- and correlated-noise cases, respectively. With independent
noise, the QN and CPTS methods result in the largest ESC spread (i.e., maxy ESCy — ming ESCy), especially
at 1—a = 0.8. With correlated noise, the IA method yields much more conservative ESCys than the other
methods, while the QN and CPTS methods result in the largest ESC spread, especially for 1—a < 0.75.

Sensitivity to quantile-estimator quality: We now investigate the effect of quantile-estimator quality,
which can be difficult to guarantee in practice. To do this, we vary the number of training samples Nirain
used to train the quantile regressor. Since, when ny.i, is small, the performance can vary significantly over
different draws of the training set, we run the experiment five times. Figure c) plots the mean (across
these 5 runs) of maxy ESCy and ming ESCy, versus nyain € {50,500, 1000,2000} with v = 0.1 and correlated
noise. The QN method shows a large ESCy spread for small values of nain, while the other methods show
robustness to Nirain-

Sensitivity to tuning samples: Since the CPTS and minimax methods rely on tuning samples, we now
investigate ESCy, as the number of tuning samples nyne is varied. (Recall that the IA and QN methods use
these tuning samples as additional calibration samples.) Again we run the experiment five times, drawing new
training and tuning sets each time. Figure[[[d) plots the mean (across runs) of maxy ESCj, and miny ESCy,

11
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VErsus nyne € {50, 500, 1000, 2000, 5000, 10000} with o = 0.1 and correlated noise. As expected, the CPTS
and minimax methods perform poorly when ngye is too small. For sufficiently large niyne, both the CPTS
and minimax methods perform on par with QN. But to reach this level of performance, CPTS requires more
samples than the minimax methods (in this case, 10000 versus 5000).

In summary, the IA method is sensitive to noise correlation, while the other methods are not. Meanwhile,
the QN method is sensitive to poor quantile estimators (e.g., from too-few training samples) while CPTS and
the proposed minimax methods are sensitive to too-few tuning samples. Since conformal prediction is often
applied post-hoc, where one has significant control over the tuning/calibration process but no control over
the training, CPTS and the proposed minimax methods can be advantageous. We will see this behavior arise
in the subsequent MRI experiments, where we have little control over the quantile-estimator performance.
Finally, Fig. [I] suggests that the proposed minimax methods offer more balanced single-target coverages than
CPTS.

5.2 Magnetic resonance imaging

We now compare all five methods on experiments with accelerated magnetic resonance imaging (MRI) (Knoll
let al |2020; Hammernik et al.| 2023). MRI is renowned for its ability to provide high-quality soft tissue images
without the use of harmful ionizing radiation. However, MRI scans are slow, which compromises patient
comfort and throughput and can lead to motion artifacts. In accelerated MRI, the scan time is reduced by a
factor of R by collecting only 1/R of the measurements required by the Nyquist sampling theorem. Doing so,
however, leads to an ill-posed imaging inverse problem, where it is impossible to guarantee recovery of the
true image. Thus, for robust diagnoses, uncertainty quantification becomes important.

Data: We follow the experimental setup of [Wen et al.| (2024), which uses the non-fat-suppressed subset
of the multicoil fastMRI knee dataset from [Zbontar et al.| (2018). This subset contains 17286 training
images and 2188 validation images. To generate the accelerated measurements, the spatial Fourier domain,
known as the “k-space”, is retrospectively subsampled with random Cartesian masks at acceleration rates
R € {16,8,4,2}. The masks use Golden Ratio Offset (GRO) sampling (Joshi et all [2022)) and include a fully
sampled autocalibration signal (ACS) region in the center, and they are nested such that the measurements
collected at each R include all measurements collected at higher R. See [Wen et al| (2024) for details.

Models: For the image-recovery model f(-), we use the popular E2E-VarNet from |Sriram et al| (2020)), and
for the posterior-sampling method g(-,-), we use the conditional normalizing flow (CNF) from |Wen et al.
(2023) with ¢ = 32 posterior samples. Both networks are trained (using the fastMRI training images) to handle
acceleration rates R € {16, 8,4, 2} following the procedure in [Wen et al. (2024). The conformal predictors
are all given access to the same tuning and calibration samples {(Z;, z;)} and thus the image-recovery and

posterior-sampling models are used identically across methods.

Validation: We first construct a tuning set dyne using 656 of the 2188 fastMRI validation samples (i.e.,
30%), selected randomly. Since the joint-coverage guarantee @D holds over the randomness in the calibration
and test data, we evaluate performance using 7' = 10000 Monte Carlo trials. In each Monte Carlo trial
t € {1,...,T}, we randomly partition the remaining validation data into a calibration set dc,[t] of size
n = 1073 (or 50%) and a test set of size nist = 459 (or 20%) using indices i € Iiet[t]. Because the TA
and QN methods do not use a tuning set, we add the tuning samples to their calibration sets (now of size
N + Nune = 1729) for fair comparison to the CPTS and minimax methods.

5.2.1 Multi-metric blind FRIQ assessment

We begin with the multi-metric blind FRIQ assessment problem from Section [I.1} For the FRIQ metrics, we
consider PSNR, SSIM, learned perceptual image patch similarity (LPIPS) (Zhang et al., [2018)), and deep
image structure and texture similarity (DISTS) (Ding et al 2020). The average FRIQ performance of the
E2E-VarNet and CNF on the fastMRI validation set match those reported in |Wen et al| (2025)).

Empirical coverage: Table [2]shows EJC versus desired joint coverage 1—a at acceleration R = 8. While
all methods satisfy the joint-coverage guarantee @D, the EJC of the TA method is overly conservative.

12
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Figure 1: For the synthetic experiment, (a) shows ming ESC and maxy ESCy, versus desired joint coverage
1—a for the independent-noise case and (b) shows the same for the correlated-noise case. Then for the
correlated-noise case, (c¢) shows ming ESCy and maxy ESCy versus nyain at 1—a = 0.9 and (d) shows the
same Versus niyne. Lhe traces in (c¢) and (d) represent the average across 5 draws of training and tuning data.
In some cases the green curves are hidden behind the red curves.
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Table 2: Empirical joint coverage versus 1—a for the multi-metric and multi-task MRI experiments at R = 8.

1—«a
Task Method 0.70 0.75 0.80 0.85 0.90 0.95

IA QMessoudi et al. |2020} 0.7797 0.8140 0.8485 0.8856 0.9264 0.9625

CPTS (Sun & Yu||2024) 0.7025 0.7518 0.8025 0.8525 0.9026 0.9520

multi-metric QN (]Sampson & Chan| |2024} 0.7006 0.7502 0.8006 0.8503 0.9005 0.9503
CQR+Minimax (Ours) 0.7008 0.7511 0.8005 0.8506 0.9002 0.9506

QN+Minimax (Ours) 0.7010  0.7502 0.8007 0.8508 0.9002 0.9508

IA (Messoudi et al.| 2020} 0.7935 0.8344 0.8677 0.8997 0.9340 0.9697

CPTS (Sun & Yul[2024) 0.7019  0.7529 0.8034 0.8518 0.9010 0.9526

multi-task QN (Sampson & Chan[[2024) 0.7005 0.7502 0.8005 0.8502 0.9005 0.9505
CQR+Minimax (Ours) 0.7013  0.7506 0.8009 0.8511 0.9004 0.9507

QN-+Minimax (Ours) 0.7013  0.7505 0.8006 0.8509 0.9004 0.9505
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“ Figure 3: ESCy, for each FRIQ metric k& and desired coverage level 1—a in
Figure 2: Min and max ESCr ~ MRI at acceleration R = 8.
versus 1—« for multi-metric MRI

at acceleration R = 8.

Single-target coverage: Figure|2| plots max; ESCy and ming ESCy versus 1—a at R = 8. The QN method
suffers from very highly spread ESCy, reminiscent of the synthetic experiment with poor quantile estimates,
while the TA method suffers from overly conservative ESCy, reminiscent of the synthetic experiment with
correlated noise. The CPTS method gives maxy ESCy, values similar to TA (i.e., overly conservative) but
slightly better for small values of 1—c, while the CPR-minimax method gives noticeably better max; ESCy,
than CPTS, which is consistent with its minimax formulation. (Recall that CPR-minimax and CPTS use the
same nonconformity score.) Figure [3[ shows ESC}, individually for each target k, revealing that QN provides
a massively conservative ESCy, ~ 1 for PSNR and an overly small ESC;, for LPIPS. Based on Section [5.1] we
conjecture that QN’s coverage imbalance stems from unreliable quantile estimators s x(-) and g1 &(-).
When the QN score is used within our minimax framework, however, the single-target coverages become well
balanced.

Mean interval length: Figure [ shows mean interval length MILj, versus desired joint coverage 1—a for
each metric k at R = 8. For the PSNR metric, we see QN producing extremely loose prediction intervals at
all 1—q, which is consistent with the overly generous single-target coverage shown in Fig. [3] For the LPIPS
metric, although QN gives tighter prediction intervals than QN-+Minimax, they come at the cost of very weak
single-target coverage guarantees, as shown in Fig. [8] Although the IA method performs very consistently
across the four target metrics, both CPTS and the proposed CQR+Minimax give tighter predictions intervals
in every instance. Although CQR+Minimax performs similarly to CPTS in most cases, it gives noticeably
tighter prediction intervals for SSIM and LPIPS at high 1—a.

Overall, we see the minimax methods behaving as expected in this multi-metric MRI experiment, i.e.,
providing well-balanced single-target coverages and thereby avoiding overly large prediction intervals.
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Figure 4: MIL versus 1—a for the multi-metric MRI experiments at acceleration R = 8.

5.2.2 Muilti-task uncertainty quantification

We now consider a multi-task UQ problem, where the goal is to ascertain the presence/absence of each of
K = 5 different pathologies in accelerated MRI with R = 8. We assume that a multi-label soft-output classifier
() has been trained on clean images z; to output a vector of probabilities z; € [0, 1]%. At inference time, since
we have access to only the accelerated measurements yy and not the true image xg, the goal is to construct,
for each pathology k, a prediction interval C ), k(/Z\()) that contains the true soft-output zg = [/t(z0)]; with

some probabilistic guarantee. We apply the IA QN, CPTS, CQR+Minimax, and QN+Minimax methods as
described in Section .2

For the classifier, we use a ResNet-50 with K = 5 outputs in the final linear layer. To train
it, we first initialize using ImageNet weights, then pretrain using SImCLR loss (Chen et all, [2020) on the
(unlabeled) fastMRI knee data, and lastly fine-tune using binary cross-entropy loss on the (labeled) fastMRI+
knee data (Zhao et al] [2022). The chosen pathologies, listed in Fig. [6] were the five with the most fastMRI+
samples. Additional details can be found in Appendix

Empirical coverage: Table[2]reports EJC versus desired joint coverage 1—a. There we see that all methods
satisfy the joint-coverage guarantee @D, but that the EJC of IA is overly conservative. In fact, the IA method
is even more conservative in this multi-task experiment than it was in the multi-metric experiment, which
(recalling Section may be due to increased correlation among the non-conformity scores for different
tasks.

Single-target coverage: Figure [5] plots the max; ESCy and ming ESCy, versus 1—a« for each method
at R = 8. Again, the IA method gives overly conservative ESCy, for all 1 —a. The CPTS method suffers
from imbalanced ESCy, across targets, and consequently its maxy; ESCy, is similar to IA’s in most cases. By
contrast, the CQR+Minimax method yields well-balanced ESCy, over the entire range. As for the methods
that use the QN nonconformity score, we see that QN and QN+Minimax give similar ESCy, except around
1—a = 0.8, where QN+Minimax is better balanced. Figure [f] shows ESCy, individually for each target k& and
shows that each method distributes coverage across targets in a unique manner, especially at 1—a = 0.7.

Mean interval length: Figure[7] plots MILj, versus desired joint coverage 1—a for each target k. Among
the CQR-based methods (i.e., IA, CPTS, CQR+Minimax), we see that IA tends to give the loosest prediction
intervals, while CPTS and CQR~+Minimax trade for the tightest interval on a case-by-case basis. For large
1—a, however, CPTS gives unnecessarily loose intervals for 3 of the 5 classes, while CQR+Minimax avoids
this unwanted behavior. Relative to the CQR-based methods, the QN-based ones are much less consistent, in
that they give very tight intervals for some classes (e.g., Meniscus Tear) but very loose ones for others (e.g.,
Bone-Subchondral Edema). Overall, QN and QN+Minimax achieve similar performance, with one or the
other winning on a case-by-case basis. The loose interval produced by QN+Minimax at 1—a = 0.95 is most
likely due to the use of relatively few tuning samples (recall Fig. d)), recalling that the proposed methods
are minimax only asymptotically.
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Figure 7: MILj versus 1—a for each task k in multi-task MRI at acceleration R = 8.

5.2.3 Multi-round measurement acquisition with FRIQ guarantees

We now consider applying the multi-round measurement protocol from Section to accelerate MRI while
providing a probabilistic FRIQ guarantee. We adopt the experimental setup of Wen et al.| (2025)), where
measurements are collected over B = 5 rounds at acceleration rates R € {16,8,4,2,1} but stop as soon as
a conformal upper bound on DISTSH falls below a threshold oﬂ 7 = 0.16. To adapt the proposed multi-
target method from Section [£.3] to this upper-bounding setup, we run the IA, CPTS, and CQR+Minimax
methods with the one-sided CQR nonconformity score si(Z; i, 2ik) = 2ik — qu,% (Zi.1;) and we run QN and
QN+Minimax with one-sided QN nonconformity score

- . o B1-21(Z) — g2 1(2)
sk (Ziks 2ik) = (2ik — Q-2 1(Z)) @17;1@ %) = qA;k(EZ , (41)
as motivated by .
Figure a) plots the empirical accepted coverage
BAC 2 X ZT: LY ectiEt) (42)
T = rest[t]] 1€ Thest 1] l C

where b; denotes the accepted round for the ith sample, versus the desired accepted coverage of 1—a« for
the IA, QN, CPTS, CQR+Minimax, and QN+Minimax versions of the multi-target method proposed in
Section as well as the separate-calibration (SC) method from Wen et al.| (2024) discussed in Section

LA recent clinical MRI study (Kastryulin et all [2023)) evaluated 35 FRIQ metrics and found that DISTS correlated best with
radiologists’ ratings of perceived noise level, contrast level, and artifacts when comparing reconstructions to ground-truth images.

chose 7 = 0.16 because this is the DISTS threshold at which a single-round measurement scheme at
acceleration R = 2 achieves 1—a = 0.95 coverage.
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Figure 8: For multi-round measurements that stop as Figure 9: For multi-round measurements that stop
soon as the DISTS upper bound falls below 7 = 0.16, as soon as the prediction intervals for all pathology
(a) plots EAC and (b) plots Rayg versus the desired labels fall below 7 = 0.1, (a) plots EAC and (b) plots
accepted coverage 1—a. R,.g versus the number of labels L at 1—a = 0.9.

The figure shows that the measurements accepted by the SC method do not provide the desired coverage,
while those accepted by the multi-target methods do, validating the goal of Section Figure b) plots the
average accepted acceleration-rate

R & (12T:1 3 L)fl (43)
Ve AT =1 ‘Itest[t” 1 qu',

1€ Lrest [t

versus 1—a, where Ry, is the acceleration rate at the accepted round for test sample i. Although the SC
method achieves higher R,z than the multi-target methods, it comes at the cost of not providing a coverage
guarantee on accepted samples. Among the multi-target methods, the CPTS and CQR+Minimax methods
yield the highest R, in all cases, demonstrating the advantage of tight conformal bounds. However, the
much lower computational complexity of CQR+Minimax makes it advantageous in practice.

5.2.4 Multi-round measurement acquisition with downstream classification guarantees

Finally, we consider an application of the multi-round measurement protocol from Section that aims to
accelerate MRI while providing a probabilistic guarantee on downstream classification of multiple pathologies.
For this we combine the multi-round setup from Section [5.2.3] with the multi-label setup from Section [5.2.2]
In particular, we take measurements over B = 5 rounds at acceleration rates R € {16,8,4,2, 1} but stop as
soon as the prediction interval lengths for all L pathology labels fall belowﬂ 7 = 0.1. Rather than exclusively
considering L = 5 pathology labels, we experiment with L € {2,3,4,5} to investigate the effect of L. Here,
L = corresponds to the [ most prevalent classes in the fastMRI+ training data.

For a desired accepted coverage of 1—a = 0.9, Fig. |§|(a) plots EAC versus the number of labels L. There we see
that all methods meet the desired coverage for all L, which shows that the multi-round methodology proposed
in Section is flexible with regards to the choice of conformal predictor. Figure |§|(b) plots R,., versus the
number of labels L for different conformal predictors. This figure shows that the proposed CQR~+Minimax
method yields the highest R,,, across all tested values of L. It also shows that R, decreases with L, which
is expected because the stopping criterion becomes more strict with larger L.

6 Conclusion

Motivated by the need for multi-target uncertainty quantification in imaging inverse problems, we propose
a minimax-based approach to multi-target conformal prediction. The proposed method aims to minimize

the maximum single-target coverage, maxy, Pr{Zg\ € CX( Do) k(ZO)}’ across targets k subject to a marginal

3We chose 7 = 0.1 purely for the sake of demonstration. A practically meaningful 7 could be attained with expert guidance
through clinical trials.
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joint-coverage guarantee of the form Pr{nX_,Z, \ € CX( Do) k(ZO)} > 1—a, where « is user-specified. Because
our approach is an instance of split conformal prediction, it éuarantees marginal joint-coverage with finite-sized
tuning and calibration datasets under the usual test/calibration exchangeability condition. Furthermore,
it converges to the minimax solution as the size of the tuning and calibration sets grow to infinity. In
addition to our minimax multi-target conformal predictor, we propose a multi-round measurement acquisition
scheme that guarantees marginal coverage of the final-round prediction interval. We numerically compared
the proposed minimax multi-target predictor to several existing methods on a synthetic-data problem as
well as four accelerated-MRI problems and found that the proposed minimax method gives better balanced
single-target coverages while guaranteeing joint marginal coverage. In addition, we numerically investigated
the proposed multi-round measurement scheme and confirmed that it provides marginal accepted coverage
when used with a variety of conformal predictors.

Limitations

There are several limitations to this work. First, like with many conformal prediction methods, the joint-

coverage guarantee holds only for prediction/target pairs (Z, Z;) that are statistically exchangeable
over the test and calibration data. Furthermore, to prove that our approach is asymptotically minimax, we
N~+Ntune

assumed that the nonconformity scores {S; }; ;"™ are i.i.d. Further work is needed to generalize these
restrictions, and the works Tibshirani et al. (2019), Barber et al.| (2023), |(Cauchois et al. (2024) suggest
modifications that address non-exchangeability. In addition, the proposed applications to MRI are preliminary,
in that rigorous clinical trials are needed before they are adopted in practice.

Broader impact statement

We expect that our methodology will positively impact the field of imaging inverse problems by providing
prediction intervals on multiple estimation targets that involve the (unknown) true image. These intervals
inform the practitioner of how much uncertainty the measurement-and-reconstruction process introduces to
downstream tasks, and whether the collected measurements are sufficient for a given reconstruction method.
Furthermore, the proposed multi-round acquisition protocol allows one to collect fewer measurements while
still providing guarantees on estimation performance. However, clinicians must be careful when interpreting
the results, understanding, for example, that our coverage guarantees are marginal and not conditional. As
such, they hold only when averaged over many different test samples and calibration sets, rather than for a
specific test sample and/or calibration set. Furthermore, they hold only when the test sample is statistically
exchangeable with the calibration samples.
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A Proof of Theorem

In this section, we show that /}\\(dc;ﬂ) in converges to N in as n — 00 and Nyne — 00. We first recall
the definition of almost-sure convergence.

Definition 1 (Almost-sure convergence). Let (X,,)n>1 be a sequence of random variables defined on a
probability space (Q, F, P). We say that X,, converges almost surely (or with probability 1) to a random
variable X, denoted as X, — X, if

Pr{ lim Xn:X}zl.

n—oo
That is, the outcomes w € Q under which X, (w) converges to X (w) occur with probability one.

We now state two theorems that form the basis for our convergence analysis.

Theorem 3 (Glivenko-Cantelli (Fristedt & Grayl, 2013). Suppose Xi,...,X,, are i.i.d random variables
with CDF F(-). Define the empirical CDF as

~ X, <z, i=1,...,

Then F(-) converges uniformly to F(-) almost surely, i.e.

sup |F(z) — F(z)| =5 0.
z€R

Theorem 4. Let X1, Xs,..., X, be i.i.d random variables with CDF F(-). Define the quantile at level
p€(0,1) as
Q(p) = inf{x : F(z) > p}

and the empirical quantile at level p € (0,1) as
Qn(p) = inf{z : F(z) > p},
where ﬁ() is the empirical CDF. For a fized level p, construct the n-dependent level

_Iptn]

n

which approaches p as n — oco. If F(+) is continuous and strictly increasing at Q(p), then

Qn(m) =5 Q(p).

That is, the empirical quantile at level v, converges almost surely to the true quantile at level p.

Proof. First, we analyze the convergence of ~,,. Observe that

n:fp(n:m p(n+;)+An:p+p+nAn (44)

where A,, € [0,1) accounts for the rounding of the ceiling function. Thus

2
P<Tm <Pt (45)

and lim,,_,o 7, = p. Next, we look to bound @,,(y,) as n — oo. For any fixed € > 0, and assuming F(-) is
continuous and strictly increasing at Q(p), we have

F(Q(p) —€) <p < F(Q(p) +¢).
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And by Theorem [3| the Glivenko-Cantelli theorem, F () converges uniformly to F'(-) almost surely. This
means that, for any > 0, there almost surely exists an N such that, for all n > N and for all x € R,

|F(z) — F(z)| < 6.
By choosing
6 <min{p — F(Q(p) —¢€), F(Q(p) +€) — p}

we get

F(Q(p) —€) +0 <p < F(Q(p) +¢€) — 4, (46)
and so

F(Q(p) —€) <p < F(Q(p) +¢) (47)

for all n > N. We now establish two intermediate results.
Lemma 5. For sufficiently large n, we have Q,(yn) = Q(p) — €.

Proof. We prove the claim using contradiction. Suppose that Q,(v,) < Q(p) — e. Then, due to the
non-decreasing property of F(-), we have

F(Qu(m)) < F(Q(p) —¢) (48)

for any n. Furthermore, since F (Qn(Yn)) = 7n for any n by the definition of the empirical quantile, and since
Y > p from 7 we have

F(Q(p) =€) = 7 > p. (49)
However, contradicts (47) when n > N. This implies that Q. () > Q(p) — € for sufficiently large n. W

Lemma 6. For sufficiently large n, we have Qn(vn) < Q(p) + €.
Proof. We prove the claim using contradiction. Suppose that Q,(7,) > Q(p) + €. Recall that, by definition,
@n(m) = inf{z : F(z) = yn}. Thus if Q(p) + € < Qn(yn) then

FQ®) +¢) < 7. (50)

And recall from that F(Q(p) +€) — 0 > p, or equivalently that

F(Q(p)+6)—g>p+g- (51)

From Theorem the Glivenko-Cantelli theorem, ﬁ() converges uniformly to F(-) almost surely. This means
that, for the given ¢, there almost surely exists an N’ such that, for all n > N’ and any x € R,

0 9
2 2
Combining and , we have that, for all n > N/,

|F(z) - F(z)| < 5 = F(a)>F(x) (52)

~

QW) + ) > FQp) +¢) — g > p+ g

From ([45)), we see that, for n > 4/6,

2 0
Yn<p+—<p+ .
n 2

Thus, for sufficiently large n, we have R
F(Q(p) +€) >,

which contradicts (50)). This implies that Q,(v,) < Q(p) + € for large n. [ ]
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Lemma [5] and Lemma [6] hold almost surely for an arbitrary e > 0, and together say that
Qp) =€ < Qn(m) <Q(p) +e€

for sufficiently large n. Since we can make € arbitrarily small, we have that

lim Qn(vn) = Q(p),

n—oo

almost surely, and thus Q,(v,) =23 Q(p). O

Having established Theorem |3| and Theorem [l we now return to our main objective, which is proving that
the A(dcal) in converges to the A in . For clarity, we restate Theorem [2| here.

Theorem (Restatement of Theorem . For each target component k = 1,..., K, suppose that the non-
conformity scores {S; ;. }72" are i.i.d with CDF Fs,(-), and for T £ maxy, Fs, (Sk), suppose that Fr(-) is
continuous and strictly increasing at the (1—a)-level quantile of T. Then /):(dca|) from converges to h)
from almost surely as n — 0o and Nyyne —> 0.

Proof. We first analyze the effect of nyne — 00 for an arbitrary fixed n. Recall that the empirical CDF
Fs, () of the nonconformity score for the kth component is computed as in 1) using the tuning samples

{Siyk}?jﬁ_”{e. From Theorem ﬁsk() converges uniformly to the CDF Ffg, (-) almost surely as nyne — 00.
As a result, it follows that for each calibration nonconformity score S; ;,, where i € {1,...,n}, we have

Sik 2 Fs (Six) =2 Fs, (Sik)

as NMyune — 00, recalling the definition of the transformed score ?i,k from 1' Let us now consider the
maximum transformed score S; £ maxy, {?i,k}le defined in ll Since the maximum function is continuous
everywhere on R and Fs, (S; ) =25 Fs, (Six), the continuous mapping theorem implies that

S; = ml?x ﬁSk(Si,k) LN ml?x Fs, (Sik) 2T

as Neyne — 00. Because {S; ;}7; are assumed to be i.i.d with CDF Fg,(-), we see that {T;}? ; are i.i.d with
CDF Fr(:) for T & maxy, Fs, (Sk).

Next, we analyze the effect of n — co. Let us denote the n-sample empirical quantile of T as @, () and the
quantile of T as Q(-). Recall from that

A(Dear) = Qn<[<1a><n+1ﬂ>

n

Because Fr(+) is assumed to be continuous and strictly increasing at Q(1 — «), Theorem [4] establishes that,
as nm — 00,

(D) = @ (=) 22, 1, 53)

Finally, recall the definition of X from :
X = argm}%n/\ st. Pr{nf_ Fs, (Sp) <A} >1—a.

The constraint can be rewritten as

Pr{mkax Fs, (Sk) <A} =Pr{T <A} >1—aq,

which allows to be rewritten as

X = arg m}%n)\ st. Pr{T <A} >1—-a. (54)
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Table 3: Number of positive samples in the non-fat-suppressed subset of the fastMRI+ knee dataset.

Label Positive Training Samples Positive Validation Samples
Meniscus Tear 1921 335

Cartilage - Partial Thickness loss/defect 871 176

Joint Effusion 225 41
Bone-Fracture/Contusion/dislocation 97 6

Bone - Subchondral edema 76 21

Table 4: Classifier performance on the fastMRI+ validation set.

Label Accuracy Precision Recall AUROC
Meniscus Tear 0.6595 0.3005  0.9784 0.889
Cartilage - Partial Thickness loss/defect 0.6184 0.1558  0.8988  0.8564
Joint Effusion 0.9031 0.1356  0.8000  0.9465
Bone-Fracture/Contusion/dislocation 0.7715 0.0060  0.5000  0.7971
Bone - Subchondral edema 0.5704 0.0127  0.5714  0.6338
Average 0.7046 0.1221  0.7497  0.8246

But the A in is simply the (1 — a)-level quantile of T'. In other words,
X=inf{\: Fr(\) >1—a} =Q(1 — a). (55)

Finally, combining with , we conclude that

o~

M Deat) 225 A

as Niyne — 00 and n — oo. O

B Classifier Details

We train the multi-label classifier on the K = 5 labels with the most annotations in the non-fat-suppressed
subset of the fastMRI+ knee data from [Zhao et al|(2022). Table [3[shows the number of positive samples for
each of those labels. Note that images with multiple instances of the same pathology only count as a single
positive sample.

We implement and train the multi-label classifier using nearly the same procedure asWen et al.| (2024)). In
particular, we start by initializing a standard ResNet-50 (He et al., [2016|) with the pretrained ImageNet
weights from (Deng et al., 2009)), after which we reduce the number of final-layer outputs to K = 5. Then we
pretrain the network in a self-supervised fashion using the (unlabeled) non-fat-suppressed fastMRI knee data
following the SImCLR procedure from (Chen et al| (2020)) with a learning rate of 0.0002, batch size of 128,
and 500 epochs. Finally, we perform supervised fine-tuning using binary cross-entropy loss on the fastMRI+
data, where we address class imbalance by weighting the loss contribution from each class by the ratio of
negative labels to positive labels for that particular class. To encourage adversarial robustness, we use the
same [o-bounded gradient ascent attack as Wen et al.| (2024]), and we train the classifier for 150 epochs with a
batch size of 128, learning rate of 5e—5, and weight decay of 1le—7. Finally, we save the model checkpoint
with the lowest validation loss. Performance on the validation dataset is shown in Table [
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