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Abstract

In ill-posed imaging inverse problems, uncertainty quantification remains a fundamental
challenge, especially in safety-critical applications. Recently, conformal prediction has been
used to quantify the uncertainty that the inverse problem contributes to downstream tasks
like image classification, image quality assessment, fat mass quantification, etc. While
existing works handle only a scalar estimation target, practical applications often involve
multiple targets. In response, we propose a minimax approach to multi-target conformal
prediction that provides tight prediction intervals while ensuring joint marginal coverage. We
then outline how our minimax approach can be applied to multi-metric blind image quality
assessment, multi-task uncertainty quantification, and multi-round measurement acquisition.
Finally, we numerically demonstrate the benefits of our minimax method, relative to existing
multi-target conformal prediction methods, using magnetic resonance imaging (MRI) data.

1 Introduction

Imaging inverse problems (Bertero et al., 2021) span a wide array of tasks, such as denoising, inpainting,
accelerated magnetic resonance imaging (MRI), limited-angle computed tomography, phase retrieval, and
image-to-image translation. In such problems, the objective is to recover a true image x0 from noisy,
incomplete, or distorted measurements y0 = A(x0). These problems tend to be ill-posed, in that many
distinct hypotheses of x0 can explain the collected measurements y0. When perfect recovery of x0 is difficult
or impossible, uncertainty quantification (UQ) is critical to safely using/interpreting a given reconstruction
x̂0, especially in high-stakes fields like science or medicine (Chu et al., 2020; Banerji et al., 2023).

The field of image recovery has evolved significantly over the decades, and most contemporary approaches
are based on deep learning (DL) (Arridge et al., 2019). Quantitatively, recent DL-based methods outperform
classical methods on average and, qualitatively, they produce reconstructions that are sharp and detailed
(Ongie et al., 2020). When the inverse problem is highly ill-posed, classical methods tend to produce recoveries
with recognizable visual artifacts, from which it is relatively easy to gauge uncertainty, and radiologists receive
explicit training in this regard (Virmani et al., 2015). In contrast, DL-based methods can hallucinate, i.e.,
generate recoveries that are visually plausible but differ from the truth in clinically or scientifically important
ways (Cohen et al., 2018; Belthangady & Royer, 2019; Hoffman et al., 2021; Muckley et al., 2021; Bhadra
et al., 2021; Gottschling et al., 2023; Tivnan et al., 2024). This underscores the need for rigorous UQ, e.g.,
methods that provide statistical guarantees on estimates of x0 or of some function µ(x0).

For example, a recent line of work (Wen et al., 2024; Cheung et al., 2024) quantifies the imaging-induced
uncertainty on downstream tasks such as pathology classification or fat-mass quantification. Defining the
target z0 as the output of the task applied to the (unknown) true image, they use conformal prediction (Vovk
et al., 2005; Angelopoulos & Bates, 2023) to construct prediction intervals C that are statistically guaranteed
to contain the target. In a related line of work, Wen et al. (2025) provides statistical guarantees on the quality
of the reconstructed image x̂0 relative to the true image, where “quality” is defined according to an arbitrary
full-reference-image-quality (FRIQ) metric like peak signal-to-noise ratio (PSNR) or structural similarity
index measure (SSIM) (Wang et al., 2004). Defining the target as the FRIQ of x̂0 relative to the (unknown)
true x0, they use conformal prediction to construct a bound on FRIQ that is statistically guaranteed.
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While the above methods rigorously quantify the downstream impact of reconstruction uncertainty, they
handle only a single target. In practice, one may want to consider multiple targets. For example, one may
seek to identify multiple pathologies from a single recovery or to judge the quality of that recovery according
to multiple metrics. Although multi-target conformal prediction methods have been proposed, they suffer
from either limited interpretability (Messoudi et al., 2022; Feldman et al., 2023), a lack of guaranteed joint
coverage (Messoudi et al., 2021; Teneggi et al., 2023; Park et al., 2024), or conservative prediction intervals
(Messoudi et al., 2020; Diquigiovanni et al., 2022; Sampson & Chan, 2024), as we explain in the sequel.

We thus propose a new approach to multi-target conformal prediction. For problems with K ≥ 1 targets,
our goal is to ensure that the prediction interval Ck is not overly large for any target k ∈ {1, . . . , K} while
guaranteeing that all prediction intervals simultaneously contain their corresponding targets Z0,k with a
user-specified probability of 1 − α. Leveraging the fact that the “single-target coverage” Pr{Z0,k ∈ Ck}
increases with the interval size |Ck|, our method aims to minimize the maximum single-target coverage while
obeying a joint coverage guarantee of the form Pr{∩kZ0,k ∈ Ck} ≤ 1 − α. Our contributions are as follows:

1. We propose a novel multi-target conformal prediction approach based on minimax optimization.

2. We prove the statistical convergence of our method in the large-sample regime.

3. For inverse problems, we propose a multi-round measurement acquisition scheme with performance
guarantees on the final round.

4. We numerically compare our proposed method to several existing multi-target conformal prediction
methods on four accelerated-MRI problems.

2 Background

2.1 Single-target conformal prediction

Conformal prediction (Vovk et al., 2005; Angelopoulos & Bates, 2023) is a general framework that enables one
to construct uncertainty intervals for any black-box predictor with certain statistical guarantees. Importantly,
it does not require any distributional assumptions on the data other than exchangeability, which allows for
adoption in a broad range of applications. In this section, we briefly review the basics of conformal prediction,
and in particular the computationally-efficient version known as split conformal prediction (Papadopoulos
et al., 2002; Lei et al., 2018).

Suppose that we have a black-box model h : U → R that predicts a target z0 ∈ R from features u0 ∈ U . The
prediction ẑ0 = h(u0) may or may not be close to the true target z0, but one can use conformal prediction to
compute a prediction interval Cλ(ẑ0) ⊂ R that contains z0 with high probability. To compute this interval,
conformal prediction uses a dataset {(ui, zi)}n

i=1 of feature–target pairs distinct from those used to train h(·).
This dataset is converted to a calibration set dcal ≜ {(ẑi, zi)}n

i=1 using ẑi = h(ui), and dcal is used to find a
λ̂(dcal) satisfying the marginal coverage guarantee (Lei & Wasserman, 2014)

Pr
{

Z0 ∈ C
λ̂(Dcal)

(Ẑ0)
}

≥ 1 − α, (1)

where α is a user-chosen error rate. Here and in the sequel, we use capital letters to denote random variables
and lower-case letters to denote their realizations. In words, (1) guarantees that the unknown target Z0 falls
within the interval C

λ̂(Dcal)
(Ẑ0) with probability at least 1 − α when averaged over the randomness in the test

data (Z0, Ẑ0) and calibration data Dcal.

The process of computing λ̂(dcal) is known as calibration. To calibrate, one first defines a nonconformity score
s(ẑi, zi). The choice of the nonconformity score function is quite flexible; it requires only that the score is
higher when there is a worse agreement between zi and ẑi. Common choices include the absolute residual,
locally-weighted residual (Lei et al., 2018), and conformalized quantile regression methods (Romano et al.,
2019). The nonconformity score si = s(ẑi, zi) is computed for each sample pair (ẑi, zi) in the calibration set
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dcal, and λ̂(dcal) is chosen as

λ̂(dcal) ≜ EmpQuant
(⌈(1 − α)(n + 1)⌉

n
; s1, . . . , sn

)
, (2)

which is a slightly more conservative quantile than the 1 − α quantile. With λ̂(dcal) computed, the prediction
interval for the i-th sample is simply defined as

C
λ̂(dcal)

(ẑi) = {z : s(ẑi, z) ≤ λ̂(dcal)}. (3)

Following this design, the marginal coverage guarantee (1) holds when (Ẑ0, Z0), (Ẑ1, Z1), . . . , (Ẑn, Zn) are
statistically exchangeable (Vovk et al., 2005), a weaker condition than i.i.d. Under the additional assumption
that the nonconformity scores S1, . . . , Sn are almost surely distinct, the coverage can also be upper bounded
(Romano et al., 2019) by

Pr
{

Z0 ∈ C
λ̂(Dcal)

(Ẑ0)
}

≤ 1 − α + 1
n + 1 . (4)

2.2 Application to imaging inverse problems

In imaging inverse problems, conformal prediction has emerged as a tool to quantify the uncertainty in
image recovery. Several approaches (Angelopoulos et al., 2022; Horwitz & Hoshen, 2022; Teneggi et al., 2023;
Kutiel et al., 2023; Narnhofer et al., 2024) use conformal prediction to construct, for each individual pixel, an
interval that is guaranteed to contain the true pixel value with high probability. For quantifying multi-pixel
uncertainty, Belhasin et al. (2023) propose to compute conformal intervals on the principal components of the
posterior covariance matrix, and Sankaranarayanan et al. (2022) construct conformal intervals for semantic
attributes in the latent space of a disentangled generative adversarial network.

Although these notions of uncertainty are interesting to consider, they don’t directly quantify the impact of
recovery errors on downstream imaging tasks such as image classification, image quality assessment, and
quantitative imaging. Consequently, task-based image uncertainty methods like (Wen et al., 2024; Cheung
et al., 2024; Wen et al., 2025) have been proposed. We now briefly review these methods using a unified
notational framework.

Both Wen et al. (2024) and Cheung et al. (2024) quantify the uncertainty in estimating µ(x0) ∈ R given the
measurements y0. In Wen et al. (2024) µ(·) is a soft-output classifier, and in Cheung et al. (2024) it is a
fat-mass quantifier, but in either case the target is set at z0 = µ(x0). Assuming access to an approximate
posterior sampler g(·, ·) that generates c samples {x̃

(j)
i }c

j=1 per measurement vector yi via x̃
(j)
i = g(yi, ṽ

(j)
i )

using i.i.d code vectors ṽ
(j)
i ∼ N (0, I), the prediction is computed as

ẑi = [ẑ(1)
i , . . . , ẑ

(c)
i ]⊤ = [µ(x̃(1)

i ), . . . , µ(x̃(c)
i )]⊤ ≜ h(ui) ∈ Rc, (5)

where h(ui) and ui ≜ [x̃(1)
i , . . . , x̃

(c)
i ]⊤ follow the notation introduced just before (1).

Several nonconformity scores can be used, but here we describe only the conformalized quantile regression
(CQR) method of Romano et al. (2019). In CQR, the α

2 and 1 − α
2 empirical quantiles are computed as

q̂ α
2

(ẑi) = EmpQuant
(α

2 ; ẑ
(1)
i , . . . , ẑ

(c)
i

)
and q̂1− α

2
(ẑi) = EmpQuant

(
1 − α

2 ; ẑ
(1)
i , . . . , ẑ

(c)
i

)
, (6)

respectively, and the nonconformity score is defined as

s(ẑi, zi) = max{q̂ α
2

(ẑi) − zi, zi − q̂1− α
2

(ẑi)}, (7)

after which the prediction interval C
λ̂(dcal)

(ẑi) is constructed as in (3). Because this prediction interval changes
with yi, it is said to be “adaptive” (Lei et al., 2018). In any case, it satisfies the marginal coverage guarantee
in (1) when (Ẑ0, Z0), (Ẑ1, Z1), . . . , (Ẑn, Zn) are statistically exchangeable.
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In related work, Wen et al. (2025) seek to estimate the FRIQ (e.g., PSNR, SSIM, etc.) m(x̂0, x0) of an image
recovery x̂0 = f(y0) relative to the true image x0 when given access to measurements y0 but not x0 itself.
To do so, they set the target as z0 = m(x̂0, x0) and use an approximate posterior sampler that generates c

samples {x̃
(j)
i }c

j=1 per measurement vector yi to compute the prediction

ẑi = [m(x̂i, x̃
(1)
i ), . . . , m(x̂i, x̃

(c)
i )]⊤ ≜ h(ui) ∈ Rc, (8)

where h(ui) and ui ≜ [x̃(1)
i , . . . , x̃

(c)
i , x̂i]⊤ follow the notation introduced just before (1). Wen et al. (2025)

then used empirical quantiles to construct a one-sided prediction interval Cλ(·) to either lower- or upper-bound
the FRIQ, as appropriate. Note that m(x̂i, ·) can be viewed as a recovery-conditioned task. To maintain
consistency with other task-based approaches, when discussing FRIQ estimation in the sequel, we construct
two-sided intervals using (3) with the nonconformity score from (7).

2.3 Multi-target conformal prediction

As discussed in Section 1, one may be interested in conformal prediction of several targets, which we combine
into a multi-dimensional target vector [zi,1, . . . , zi,K ] = zi ∈ RK . We focus on the case where one is given a
prediction ẑ0 ∈ RK of unknown test z0 ∈ RK , along with a calibration set dcal = {(ẑi, zi)}n

i=1, and the goal is
to compute K prediction intervals {C

λ̂(dcal),k
(ẑ0)}K

k=1 that satisfy the joint marginal coverage guarantee

Pr
{

∩K
k=1 Z0,k ∈ C

λ̂(Dcal),k
(Ẑ0)

}
≥ 1 − α. (9)

This guarantee ensures that all target components simultaneously lie within their respective prediction
intervals with a probability at least 1 − α over the randomness in the calibration and test data.

Variations on (9) are possible, such as minimizing a risk that allows a fraction of the target components to lie
outside their prediction intervals (Teneggi et al., 2023), but we focus on the stricter requirement (9). Likewise,
while (9) can be interpreted as constructing a hyper-rectangle in RK that contains Z0 with high probability,
it is possible to construct non-rectangular regions, such as ellipsoidal regions (Messoudi et al., 2022) or more
complicated regions defined by the outputs of a a conditional variational auto-encoder (Feldman et al., 2023).
Although these non-rectangular regions can give smaller uncertainty volumes, they are less interpretable, since
the uncertainty interval on one target component will depend on the values of the other target components.

Inspired by (9), several approaches have been proposed to construct prediction intervals. Messoudi et al. (2020)
assume that the nonconformity score components are statistically independent, so that when the components
are individually calibrated to yield an error-rate of α1, the joint error-rate α will equal 1 − (1 − α1)K . This
allows setting α1 = 1 − (1 − α)1/K to meet a desired joint error-rate of α. However, the independence
assumption may not hold in practice, where one could encounter K dependent score components that yield a
joint error-rate > 1 − (1 − α1)K , in which case the joint coverage guarantee (9) would be violated. But even
when the joint coverage holds, we show in Section 5 that the prediction intervals from Messoudi et al. (2020)
are overly conservative.

Another line of work (Messoudi et al., 2021; Park et al., 2024) uses copulas (Nelsen, 2006) to model the
statistical dependency between the score components {si,k}K

k=1. There, the calibration data is used to
compute empirical estimates of the copula and the marginal distributions, from which the joint cumulative
distribution function (CDF) of the nonconformity scores, FS(·), is approximated as F̂S(·). A λ̂(dcal) ∈ RK is
then computed that satisfies F̂S(λ̂(dcal)) ≥ 1 − α. However, the quality of the CDF approximation depends
on the choice of the copula, and there is no guarantee of satisfying a coverage guarantee like (9) with a finite
calibration set.

As an alternative, Diquigiovanni et al. (2022) and Sampson & Chan (2024) propose to individually compute
the nonconformity score components as si,k = sk(ẑi,k, zi,k) for each k and combine them into a single score

si = max{si,1, . . . , si,K}. (10)

Using calibration {si}n
i=1 with (2) and extending (3) to component-wise intervals

C
λ̂(dcal),k

(ẑi) = {z : sk(ẑi,k, z) ≤ λ̂(dcal)}, k = 1, . . . , K, (11)
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the arguments from Vovk et al. (2005) imply that the joint coverage guarantee (9) and upper bound (4) both
hold under the usual exchangeability assumption. However, Sampson & Chan (2024) note that this approach
can disproportionally favor the target components with larger nonconformity scores, causing the prediction
intervals of the other components to be overly conservative. To mitigate this issue, they propose to scale the
nonconformity scores to a common range. To do so, they first train a pair of quantile regressors q̂ α

2 ,k(ui) and
q̂1− α

2 ,k(ui), which estimate the α
2 and 1 − α

2 quantile of Zi,k, respectively, for each k ∈ {1, . . . , K}, and then
form the scaled nonconformity scores

si,k = max{q̂ α
2 ,k(ẑi) − zi,k, zi,k − q̂1− α

2 ,k(ẑi)}
q̂1− α

2 ,1(ẑi) − q̂ α
2 ,1(ẑi)

q̂1− α
2 ,k(ẑi) − q̂ α

2 ,k(ẑi)︸ ︷︷ ︸
Scale relative to 1st target

, (12)

where ẑi = ui. This helps to balance the marginal coverages Pr{Z0,k ∈ C
λ̂(Dcal),k

(Ẑ0)} across k ∈ {1, . . . , K}
while ensuring the joint coverage guarantee (9) and upper bound (4). In Section 3, we show how to obtain a
better balance and thus tighter prediction intervals.

3 Minimax multi-target conformal prediction

In this section, we formulate a new approach to multi-target conformal prediction that is based on minimax
optimization. First we describe the optimization problem in the context of random variables, then we describe
our conformal method in the finite sample case, and finally we prove that the finite-sample method converges
to a solution of the original minimax optimization as the number of samples grows to infinity.

3.1 Random variable perspective

To build intuition, we first consider the design of prediction sets when the targets and predictions are
modeled as random variables Z = [Z1, . . . , ZK ] ∈ RK and Ẑ = [Ẑ1, . . . , ẐK ], respectively. For the kth
component, suppose that the nonconformity score function is sk(·, ·) and the prediction set is constructed as
C

ζ̂k
(Ẑk) ≜ {z : sk(Ẑk, z) ≤ ζ̂k}, where ζ̂k is a design variable. Then the “single-target” coverage of the kth

component will be

Pr
{

Zk ∈ C
ζ̂k

(Ẑk)
}

= Pr
{

Zk ∈ {z : sk(Ẑk, z) ≤ ζ̂k}
}

= Pr
{

sk(Ẑk, Zk) ≤ ζ̂k

}
. (13)

Using Sk ≜ sk(Ẑk, Zk), we can write the single-target coverage more succinctly as

Pr
{

Sk ≤ ζ̂k

}
= FSk

(ζ̂k), (14)

where FSk
(ζ̂k) is the CDF of Sk evaluated at ζ̂k. Similarly, the joint coverage of all K components will be

Pr
{

∩K
k=1 Zk ∈ C

ζ̂k
(Ẑk)

}
= Pr

{
∩K

k=1 Sk ≤ ζ̂k

}
. (15)

For a given joint miscoverage rate of α, we’d like to find a tuple (ζ̂1, . . . , ζ̂K) that ensures

Pr
{

∩K
k=1 Sk ≤ ζ̂k

}
≥ 1 − α. (16)

But, in general, many (ζ̂1, . . . , ζ̂K) will yield the same value of Pr{∩K
k=1Sk ≤ ζ̂k}, and for some choices

of (ζ̂1, . . . , ζ̂K), a portion of the prediction intervals C
ζ̂k

(Ẑk) may be overly conservative. Since a larger
Pr{Sk ≤ ζ̂k} generally corresponds to a larger prediction interval C

ζ̂k
(Ẑk) due to their monotonically non-

decreasing relationship, we propose to design prediction intervals that minimize the maximum single-target
coverage while ensuring joint coverage, i.e.,

(ζ̂1, . . . , ζ̂K) = arg min
ζ1,...,ζK

max
k

Pr{Sk ≤ ζk} s.t. Pr{∩K
k=1Sk ≤ ζk} ≥ 1 − α. (17)
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Using (14) and the fact that the CDF is non-decreasing, we can restate (17) as

(ζ̂1, . . . , ζ̂K) = arg min
ζ1,...,ζK

max
k

FSk
(ζk) s.t. Pr{∩K

k=1FSk
(Sk) ≤ FSk

(ζk)} ≥ 1 − α, (18)

and further restate it using λk ≜ FSk
(ζk) as

(λ̂1, . . . , λ̂K) = arg min
λ1,...,λK

max
k

λk s.t. Pr{∩K
k=1FSk

(Sk) ≤ λk} ≥ 1 − α. (19)

Although the solution to (19) may not be unique, it suffices to find a single minimax (λ̂1, . . . , λ̂K). Towards
this aim, observe that Pr{∩K

k=1FSk
(Sk) ≤ λk} is monotonically non-decreasing with respect to any λk. Thus,

given any tuple (λ1, . . . , λK) that satisfies the constraint in (19), the tuple (λ′, . . . , λ′) for λ′ ≜ maxk λk also
satisfies the constraint while simultaneously yielding the same value of the objective “maxk λk.” This implies
that we can reframe (19) as a search for a single parameter λ̂:

λ̂ = arg min
λ

λ s.t. Pr{∩K
k=1FSk

(Sk) ≤ λ} ≥ 1 − α. (20)

3.2 Finite-sample case

We now adapt (20) to the practical case where the Sk distributions are unknown and must be learned. For
this purpose, we assume access to “tuning” data {(ui, zi)}n+ntune

i=n+1 that is distinct from the data {(ui, zi)}n
i=1

used for split conformal prediction and from the data used to train the predictor h(·) that generates ẑi.

We propose to do the following for each target component k ∈ {1, . . . , K}. First, we construct the set
dtune,k ≜ {(ẑi,k, zi,k)}n+ntune

i=n+1 and compute the nonconformity score si,k for all samples i in dtune,k. Using these
nonconformity scores, we compute the empirical CDF F̂Sk

(·), where

F̂Sk
(ζ) = |{si,k : si,k ≤ ζ, i = n+1, . . . , n+ntune}|

ntune
. (21)

Next, we compute the nonconformity scores si,k for all samples i in the calibration set dcal,k ≜ {(ẑi,k, zi,k)}n
i=1

and apply the learned F̂Sk
(·) to obtain the transformed calibration scores

si,k ≜ F̂Sk
(si,k). (22)

Because si,k ∈ [0, 1], the scores {si,k}n
i=1 are normalized across k ∈ {1, . . . , K}. Finally, we take the maximum

across components,
si ≜ max(si,1, . . . , si,K), (23)

and from these {si}n
i=1 compute λ̂(dcal) in the same manner as (2):

λ̂(dcal) = EmpQuant
(

⌈(1−α)(n+1)⌉
n ; s1, . . . , sn

)
. (24)

The target-domain prediction intervals can then be constructed as

C
λ̂(dcal),k

(ẑi) =
{

z : F̂Sk

(
sk(ẑi,k, z)

)
≤ λ̂(dcal)

}
, k = 1, . . . , K. (25)

Since the tuning data used to construct F̂Sk
(·) is distinct from the calibration data, our method follows

the framework of split conformal prediction. By taking the max of the transformed scores, we ensure the
inclusion of all the scores, and thus enjoy the joint marginal coverage guarantee of (9), similar to Sampson
& Chan (2024). However, we demonstrate in Section 4 that, as a result of our minimax formulation, our
prediction intervals are tighter than those of Sampson & Chan (2024).

Moreover, we can show our method converges to a solution of the minimax optimization in (20) in the limit
of infinite tuning and calibration data.
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Theorem 1. For each target component k = 1, . . . , K, suppose that the nonconformity scores {Si,k}n+ntune
i=1

are i.i.d with CDF FSk
(·), and for T ≜ maxk FSk

(Sk), suppose that FT (·) is continuous and strictly increasing
at the (1 − α)-level quantile of T . Then λ̂(dcal) from (24) converges to λ̂ from (20) almost surely as n → ∞
and ntune → ∞.

We provide a proof of Theorem 1 in Appendix A. Through its minimax design, our multi-target approach
ensures that no single prediction interval is overly large.

4 Applications of multi-target conformal prediction in imaging

In Section 2.2, we described several applications of conformal prediction to single-target UQ in imaging
inverse problems. In this section, we propose several applications of conformal prediction to multi-target UQ
in imaging inverse problems.

4.1 Multi-metric blind FRIQ assessment

We first consider blind FRIQ assessment, where the goal is to estimate the FRIQ of a reconstruction x̂0 = f(y0)
relative to the true image x0, given measurements y0 = A(x0) but no direct access to x0. Whereas Section 2.2
discussed the use of a single FRIQ metric, one may instead be interested in assessing image quality according
several FRIQ metrics, since different metrics may be complementary (Wang, 2011).

Consider the case of K FRIQ metrics {mk(·, ·)}K
k=1. To extend the conformal prediction approach

from Section 2.2, we set the target vector as zi = [zi,1, . . . , zi,K ]⊤ ∈ RK with zi,k = mk(x̂i, xi), and
use c posterior samples {x̃

(j)
i }c

j=1 to form the prediction matrix ẑi = [ẑi,1, . . . , ẑi,K ]⊤ ∈ RK×c, where
ẑi,k = [mk(x̂i, x̃

(1)
i ), . . . , mk(x̂i, x̃

(c)
i )]. We can also write ẑi,k = hk(ui) for ui ≜ [x̃(1)

i , . . . , x̃
(c)
i , x̂i]⊤ and an

appropriately defined hk(·). With CQR, the non-conformity score for the kth metric would be computed as

si,k = sk(ẑi,k, zi,k) = max{q̂ α
2 ,k(ẑi,k) − zi,k, zi,k − q̂1− α

2 ,k(ẑi,k)} (26)

with

q̂ α
2 ,k(ẑi,k) = EmpQuant

(α

2 ; ẑ
(1)
i,k , . . . , ẑ

(c)
i,k

)
and q̂1− α

2 ,k(ẑi,k) = EmpQuant
(

1 − α

2 ; ẑ
(1)
i,k , . . . , ẑ

(c)
i,k

)
. (27)

With this problem setup, the proposed minimax method from Section 3, or any of the existing multi-target
approaches discussed in Section 2.3, can be applied to generate prediction sets C

λ̂(dcal),k
(ẑ0) for k = 1, . . . , K.

When the joint coverage guarantee in (9) holds, all K prediction sets will simultaneously include the
corresponding true-metric values with a probability of at least 1 − α.

4.2 Multi-task uncertainty quantification

Now consider task-based UQ, as described in Section 2.2 for the case of a single task. In practice, one may
want to consider several tasks, such as classifying the presence/absence of several different pathologies from a
single image. To extend the task-based UQ method from Section 2.2 to K downstream tasks {µk(·)}K

k=1, we
form the target vector as zi = [zi,1, . . . , zi,K ]⊤ ∈ RK with zi,k = µk(xi) and use c posterior samples {x̃

(j)
i }c

j=1

to form the prediction matrix ẑi = [ẑi,1, . . . , ẑi,K ]⊤ ∈ RK×c, where ẑi,k = [µk(x̃(1)
i ), . . . , µk(x̃(c)

i )]. We can also
write ẑi,k = hk(ui) for ui ≜ [x̃(1)

i , . . . , x̃
(c)
i ] and an appropriately defined hk(·). With the CQR score (26)-(27),

the proposed minimax method from Section 3, or any of the existing multi-target approaches discussed in
Section 2.3, can be applied to generate prediction sets C

λ̂(dcal),k
(ẑ0) for k = 1, . . . , K. When the joint coverage

guarantee (9) holds, all prediction sets will simultaneously contain the corresponding true task-outputs with
a probability of at least 1 − α.

4.3 Multi-round measurement acquisition

In Wen et al. (2024) the authors propose a task-based multi-round measurement protocol where measurements
are gradually collected until the conformal interval length falls below a user-specified threshold τ . More

7
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precisely, at the end of each measurement round b ∈ {1, . . . , B}, a prediction ẑ
[b]
0 ∈ R and conformal prediction

interval C[b](ẑ[b]
0 ) are constructed from the cumulative measurements y

[b]
0 . Measurement collection stops if

|C[b](ẑ[b]
0 )| ≤ τ (or if b = B) but otherwise continues to the next round. The goal is to reduce measurement

costs while guaranteeing that the collected measurements are sufficient for the task. This is especially useful in
applications like accelerated MRI, where long scan times increase both patient discomfort and the likelihood
of motion artifacts (Knoll et al., 2020).

A limitation of the multi-round protocol from Wen et al. (2024) is that the marginal coverage guarantee
holds for each round in isolation, but not for the multi-round protocol as a whole. That is, although
Pr{Z0 ∈ C[b](Ẑ [b]

0 )} ≥ 1 − α for each round b assuming (Z0, Ẑ
[b]
0 ), . . . , (Zn, Ẑ

[b]
n ) are exchangeable, we really

desire that the multi-round coverage

Pmulti ≜
B∑

b=1
Pr

{
Z0 ∈ C[b](Ẑ [b]

0 ), final round = b
}

(28)

= Pr
{

Z0 ∈ C[1](Ẑ [1]
0 ), |C[1](Ẑ [1]

0 )| ≤ τ
}

+
B∑

b=2
Pr

{
Z0 ∈ C[b](Ẑ [b]

0 ), |C[b](Ẑ [b]
0 )| ≤ τ, |C[b−1](Ẑ [b−1]

0 )| > τ, . . . |C[1](Ẑ [1]
0 )| > τ

}
(29)

is at least 1 − α. To address this limitation, we note from (28) that

Pmulti ≥
B∑

b=1
Pr

{
∩B

k=1 Z0 ∈ C[k](Ẑ [k]
0 ), final round = b

}
= Pr

{
∩B

k=1 Z0 ∈ C[k](Ẑ [k]
0 )

}
, (30)

with equality due to the fact that
∑B

b=1 Pr{final round = b} = 1. Thus, if

Pr
{

∩B
b=1 Z0 ∈ C[b](Ẑ [b]

0 )
}

≥ 1 − α, (31)

then it follows that Pmulti ≥ 1 − α. Since (31) is a special case of the joint marginal coverage guarantee (9),
we can ensure (31) using multi-target conformal prediction techniques like the one proposed in Section 3.

That said, the above B-round protocol handles only scalar z0 ∈ R, i.e., a single task. To extend it to L tasks
{µl(·)}L

l=1, we set the target vector as zi = [zi,1, . . . , zi,K ]⊤ ∈ RK , where K = BL and zi,L(b−1)+l = µl(xi)
for all b. Then, for each round b, we generate c posterior samples {x̃

[b](j)
i }c

j=1 via x̃
[b](j)
i = g(y[b]

i , ṽ
[b](j)
i )

with i.i.d ṽ
[b](j)
i ∼ N (0, I) and form the predictions ẑi = [ẑi,1, . . . , ẑi,K ]⊤ ∈ RK×c with ẑi,L(b−1)+l =

[µl(x̃[b](1)
i ), . . . , µl(x̃[b](c)

i )]. With the CQR score (26)-(27), the proposed minimax method from Section 3, or
any of the existing multi-target approaches discussed in Section 2.3, can be applied. When the joint coverage
guarantee in (9) holds, the prediction intervals for all tasks will simultaneously contain their respective targets
with probability at least 1 − α in the final measurement round.

5 Numerical experiments

We now numerically evaluate the proposed “minimax” multi-target conformal prediction method from
Section 3.2, along with the independence-assumption (IA)-based method from Messoudi et al. (2020) and
the quantile-normalization (QN)-based method from Sampson & Chan (2024), described in Section 2.3. For
q̂ α

2 ,k(·) and q̂1− α
2 ,k(·), we use the empirical quantile estimator (6) in all cases. For the minimax method, we

use the nonconformity score from (7) for each target component. For the IA method, we use the nonconformity
score from (7) with an adjusted error-rate of α1 = 1 − (1 − α) 1

K to provide a joint coverage rate of 1 − α.
For the QN method, we compute the nonconformity scores for each target using (12) before taking the max
across targets in (10).

We compare all three methods on experiments with accelerated magnetic resonance imaging (MRI) (Knoll
et al., 2020; Hammernik et al., 2023). MRI is renowned for its ability to provide high-quality soft tissue

8
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images without the use of harmful ionizing radiation. However, MRI scans are slow, which compromises
patient comfort and throughput, and can lead to motion artifacts. To mitigate this issue, the scan time is
accelerated by a factor of R by collecting only 1/R of the measurements required by the Nyquist sampling
theorem. Doing so, however, leads to an ill-posed imaging inverse problem, where it is impossible to guarantee
recovery of the true image. Thus, for robust diagnoses, uncertainty quantification becomes important.

Data: We follow the experimental setup of Wen et al. (2024), which uses the non-fat-suppressed subset
of the multicoil fastMRI knee dataset from Zbontar et al. (2018). This subset contains 17 286 training
images and 2188 validation images. To generate the accelerated measurements, the spatial Fourier domain,
known as the “k-space”, is retrospectively subsampled with random Cartesian masks at acceleration rates
R ∈ {16, 8, 4, 2}. The masks use Golden Ratio Offset (GRO) sampling (Joshi et al., 2022) and include a fully
sampled autocalibration signal (ACS) region in the center, and they are nested such that the measurements
collected at each R include all measurements collected at higher R. See Wen et al. (2024) for details.

Models: For the image recovery model f(·), we use the popular E2E-VarNet from Sriram et al. (2020), and
for the posterior sampling method g(·, ·), we use the conditional normalizing flow (CNF) from Wen et al.
(2023) with c = 32 posterior samples. Both networks are trained (using the fastMRI training images) to
handle acceleration rates R ∈ {16, 8, 4, 2} following the procedure in Wen et al. (2024).

Validation: We first construct a tuning set dtune using 656 of the 2188 fastMRI validation samples (i.e.,
30%), selected randomly. Since the joint coverage guarantee (9) holds over the randomness in the calibration
and test data, we evaluate performance using T = 10 000 Monte Carlo trials. In each Monte Carlo trial
t ∈ {1, . . . , T}, we randomly partition the remaining validation data into a calibration set dcal[t] of size
n = 1073 (or 50%) and a test set of size ntest = 459 (or 20%) using indices i ∈ Itest[t]. Because the IA and
QN methods do not use a tuning set, we merge the tuning samples into their calibration sets (now of size
n + ntune = 1729) for fair comparison to the minimax method.

As a coverage metric, we evaluate the empirical joint coverage

EJC ≜
1
T

T∑
t=1

1
|Itest[t]|

∑
i∈Itest[t]

∏
k∈{1,...,K}

1{zi,k ∈ C
λ̂(dcal[t]),k

(ẑi)}. (32)

To quantify the prediction-interval size, we measure the mean interval length for each target k:

MILk ≜
1
T

T∑
t=1

1
|Itest[t]|

∑
i∈Itest[t]

|C
λ̂(dcal[t]),k

(ẑi)|. (33)

5.1 Multi-metric blind FRIQ assessment

We begin with the multi-metric blind FRIQ assessment problem from Section 4.1. For the FRIQ metrics, we
consider PSNR, SSIM, learned perceptual image patch similarity (LPIPS) (Zhang et al., 2018), and deep
image structure and texture similarity (DISTS) (Ding et al., 2020).

Empirical coverage: Table 1 shows EJC versus desired joint coverage 1 − α at acceleration R = 8. While
all methods satisfy the joint coverage guarantee (9), the EJC of the IA method is overly conservative.

Mean interval length: Figure 1 shows mean interval length versus α for each metric at R = 8. The
minimax method provides the smallest mean interval lengths (i.e., tightest bounds) in nearly every case.

5.2 Multi-task uncertainty quantification

We now consider a multi-task UQ problem, where the goal is to ascertain the presence/absence of each
of K = 5 different pathologies in accelerated MRI with R = 8. We assume that a multi-label soft-output
classifier has been trained on clean images xi to output a vector of probabilities zi ∈ [0, 1]K . At inference
time, since we have access to only the accelerated measurements y0 and not the true image x0, the goal is to
construct, for each pathology k, a prediction interval C

λ̂(dcal),k
(ẑ0) that contains the true soft-output z0,k with

some probabilistic guarantee. We apply the minimax, IA, and QN methods as described in Section 4.2.

9
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Table 1: Empirical joint coverage versus 1 − α for the multi-metric and multi-task MRI experiments at R = 8.

1 − α

Task Method 0.70 0.75 0.80 0.85 0.90 0.95
IA (Messoudi et al., 2020) 0.7797 0.8140 0.8485 0.8856 0.9264 0.9625

multi-metric QN (Sampson & Chan, 2024) 0.7006 0.7502 0.8006 0.8503 0.9005 0.9503
Minimax (Ours) 0.7008 0.7511 0.8005 0.8506 0.9002 0.9506

IA (Messoudi et al., 2020) 0.7935 0.8344 0.8677 0.8997 0.9340 0.9697
multi-task QN (Sampson & Chan, 2024) 0.7005 0.7502 0.8005 0.8502 0.9005 0.9505

Minimax (Ours) 0.7013 0.7506 0.8009 0.8511 0.9004 0.9507
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Figure 1: MIL versus 1 − α for the multi-metric MRI experiments at acceleration R = 8.

For the classifier, we use a ResNet-50 (He et al., 2016) with K = 5 outputs in the final linear layer. To
train it, we first initialize using ImageNet weights, then pretrain using SimCLR loss (Chen et al., 2020) on
the (unlabeled) fastMRI knee data, and finally fine-tuned using binary cross-entropy loss on the (labeled)
fastMRI+ knee data (Zhao et al., 2022). The K = 5 pathologies with the most fastMRI+ samples were
chosen for this experiment. Additional details can be found in Appendix B.

Empirical coverage: Table 1 reports EJC versus desired joint coverage 1 − α. As before, all methods
satisfy the joint coverage guarantee (9) but the EJC of the IA method is overly conservative. The table shows
that the IA method is more conservative in the multi-task experiment than the multi-metric one, which
demonstrates how correlation among the nonconformity scores can vary across problems.

Mean interval length: Figure 2 plots MIL versus desired joint coverage 1 − α for each of the L = 5 labels.
The minimax method produces the smallest average interval lengths (i.e., tightest bounds) except with the
meniscus-tear label and the cartilage-thickness-loss label at larger α. Although the QN method gives the best
MIL for the meniscus-tear label, it provides the worst MIL for the bone-subchondral-edema label, illustrating
a large variability in its performance.

5.3 Multi-round measurement acquisition with FRIQ guarantees

We now consider applying the multi-round measurement protocol from Section 4.3 to accelerate MRI
while providing a probabilistic FRIQ guarantee. We adopt the experimental setup of Wen et al. (2025),
where measurements are collected over B = 5 rounds at acceleration rates R ∈ {16, 8, 4, 2, 1} but stop
as soon as a conformal upper bound on DISTS1 falls below a threshold of τ = 0.16. To adapt the
proposed multi-target method from Section 4.3 to this upper-bounding setup, we run the IA and minimax
methods with the nonconformity score sk(ẑi,k, zi,k) = zi,k − q̂1− α

2
(ẑi,k) and run QN with sk(ẑi,k, zi,k) =(

zi,k − q̂1− α
2 ,k(ẑi)

) q̂1− α
2 ,1(ẑi)−q̂ α

2 ,1(ẑi)

q̂1− α
2 ,k(ẑi)−q̂ α

2 ,k(ẑi)
, as motivated by (12).

1A recent clinical MRI study (Kastryulin et al., 2023) evaluated 35 FRIQ metrics and found that DISTS correlated best with
radiologists’ ratings of perceived noise level, contrast level, and artifacts when comparing reconstructions to ground-truth images.
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Figure 2: MIL versus 1 − α for multi-label classification with MRI acceleration R = 8.
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Figure 4: For multi-round measurements that stop
as soon as the prediction intervals for all pathology
labels fall below τ = 0.1, (a) plots EAC and (b) plots
Ravg versus the number of labels L at 1 − α = 0.9.

Using bi to denote the final round for test sample i, Fig. 3(a) plots the empirical accepted coverage

EAC ≜
1
T

T∑
t=1

1
|Itest[t]|

∑
i∈Itest[t]

1{zi ∈ C[bi](ẑ[bi]
i )}, (34)

versus the desired coverage 1 − α for the IA, QN, and minimax versions of the multi-target method from
Section 4.3, as well as the separate calibration (SC) method from Wen et al. (2025). The figure shows that the
measurements accepted by the IA-, QN-, and minimax-based multi-target EACs provide the desired coverage,
while those accepted by the SC method do not. Figure 3(b) plots the average accepted acceleration-rate

Ravg ≜
( 1

T

T∑
t=1

1
|Itest[t]|

∑
i∈Itest[t]

1
Rbi

)−1
(35)

versus 1 − α, where Rbi
is the acceleration rate of the final round for test sample i. Although the SC

method achieves higher Ravg than the IA and minimax methods, it comes at the cost of not providing a
coverage guarantee. Among the multi-target methods, the minimax method yields the highest Ravg in all
cases, demonstrating the advantage of tight conformal bounds.

5.4 Multi-round measurement acquisition with downstream classification guarantees

Finally, we consider an application of the multi-round measurement protocol from Section 4.3 that aims to
accelerate MRI while providing a probabilistic guarantee on downstream classification of multiple pathologies.
For this we combine the multi-round setup from Section 5.3 with the multi-label setup from Section 5.2. In
particular, we take measurements over B = 5 rounds at acceleration rates R ∈ {16, 8, 4, 2, 1} but stop as
soon as the prediction interval lengths for all L pathology labels fall below τ = 0.1. Rather that exclusively
considering L = 5 pathology labels, we experiment with L ∈ {2, 3, 4, 5} to investigate the effect of L. Here,
L = l corresponds to the l most prevalent classes in the fastMRI+ training data.
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For a desired coverage of 1 − α = 0.9, Fig. 4(a) plots EAC versus the number of labels L. The figure again
shows that the IA, QN, and minimax methods meet the desired coverage in all cases. Figure 4(b) plots Ravg
versus the number of labels L. The figure shows that the proposed minimax method yields the highest Ravg
across all values of L. It also shows that Ravg decreases with L, which is expected because the stopping
criterion becomes more strict with larger L.

6 Conclusion

Motivated by the need for multi-target uncertainty quantification in imaging inverse problems, we propose
a minimax approach to multi-target conformal prediction. The proposed method aims to minimize the
maximum single-target coverage, maxk Pr{Z0,k ∈ C

λ̂(Dcal),k
(Ẑ0)}, across targets k subject to a joint coverage

guarantee of the form Pr{∩K
k=1Z0,k ∈ C

λ̂(Dcal),k
(Ẑ0)} ≥ 1 − α, where α is user-specified. We proved that the

finite-sample version of our approach converges to the desired minimax solution as the tuning and calibration
sets grow in size. Furthermore, for inverse problems, we proposed a multi-round measurement acquisition
scheme with marginal coverage guarantees on the final-round prediction intervals. We numerically compared
the proposed method to several existing multi-target conformal prediction methods on four accelerated-MRI
problems and found that the proposed minimax method gives tighter prediction intervals in most cases while
guaranteeing joint marginal coverage.

Limitations

There are several limitations to this work. First, like with many conformal prediction methods, the joint-
coverage guarantee (9) is known to hold only for statistically exchangeable prediction/target pairs {(Ẑi, Zi)}n

i=0.
Furthermore, the convergence of the finite-sample method has been established only under i.i.d. nonconformity
scores {Si,k}n+ntune

i=1 . Further work is needed to generalize these restrictions, and the works Tibshirani et al.
(2019), Barber et al. (2023), Cauchois et al. (2024) suggest modifications that address non-exchangeability. In
addition, the proposed applications to MRI are preliminary in that rigorous clinical trials are needed before
they are adopted in practice.

Broader impact statement

We expect that our methodology will positively impact the field of imaging inverse problems by providing
prediction intervals on multiple estimation targets that involve the (unknown) true image. These intervals
inform the practitioner of how much uncertainty the measurement-and-reconstruction process introduces to
downstream tasks, and whether the collected measurements are sufficient for a given reconstruction method.
Furthermore, the propose multi-round acquisition protocol allows one to collect fewer measurements while
still providing a guarantee on estimation performance.
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A Proof of Theorem 1

In this section, we show that λ̂(dcal) in (24) converges to λ̂ in (20) as n → ∞ and ntune → ∞. We first recall
the definition of almost-sure convergence.
Definition 1 (Almost-sure convergence). Let (Xn)n≥1 be a sequence of random variables defined on a
probability space (Ω, F , P ). We say that Xn converges almost surely (or with probability 1) to a random
variable X, denoted as Xn

a.s.−−→ X, if

Pr
{

lim
n→∞

Xn = X
}

= 1.

That is, the outcomes ω ∈ Ω under which Xn(ω) converges to X(ω) occur with probability one.

We now state two theorems that form the basis for our convergence analysis.
Theorem 2 (Glivenko-Cantelli (Fristedt & Gray, 2013)). Suppose X1, . . . , Xn are i.i.d random variables
with CDF F (·). Define the empirical CDF as

F̂ (x) ≜ |{i : Xi ≤ x, i = 1, . . . , n}|
n

.

Then F̂ (·) converges uniformly to F (·) almost surely, i.e.

sup
x∈R

|F̂ (x) − F (x)| a.s.−−→ 0.

Theorem 3. Let X1, X2, . . . , Xn be i.i.d random variables with CDF F (·). Define the quantile at level
p ∈ (0, 1) as

Q(p) = inf{x : F (x) ≥ p}

and the empirical quantile at level p ∈ (0, 1) as

Qn(p) = inf{x : F̂ (x) ≥ p},

where F̂ (·) is the empirical CDF. For a fixed level p, construct the n-dependent level

γn = ⌈p(n + 1)⌉
n

,

which approaches p as n → ∞. If F (·) is continuous and strictly increasing at Q(p), then

Qn(γn) a.s−−→ Q(p).

That is, the empirical quantile at level γn converges almost surely to the true quantile at level p.

Proof. First, we analyze the convergence of γn. Observe that

γn = ⌈p(n + 1)⌉
n

= p(n + 1) + ∆n

n
= p + p + ∆n

n
(36)

where ∆n ∈ [0, 1) accounts for the rounding of the ceiling function. Thus

p < γn < p + 2
n

, (37)

and limn→∞ γn = p. Next, we look to bound Qn(γn) as n → ∞. For any fixed ϵ > 0, and assuming F (·) is
continuous and strictly increasing at Q(p), we have

F (Q(p) − ϵ) < p < F (Q(p) + ϵ).
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And by Theorem 2, the Glivenko-Cantelli theorem, F̂ (·) converges uniformly to F (·) almost surely. This
means that, for any δ > 0, there almost surely exists an N such that, for all n ≥ N and for all x ∈ R,

|F̂ (x) − F (x)| ≤ δ.

By choosing
δ < min{p − F (Q(p) − ϵ), F (Q(p) + ϵ) − p}

we get

F (Q(p) − ϵ) + δ < p < F (Q(p) + ϵ) − δ, (38)

and so

F̂ (Q(p) − ϵ) < p < F̂ (Q(p) + ϵ) (39)

for all n ≥ N . We now establish two intermediate results.

Lemma 4. For sufficiently large n, we have Qn(γn) ≥ Q(p) − ϵ.

Proof. We prove the claim using contradiction. Suppose that Qn(γn) < Q(p) − ϵ. Then, due to the
non-decreasing property of F̂ (·), we have

F̂ (Qn(γn)) ≤ F̂ (Q(p) − ϵ) (40)

for any n. Furthermore, since F̂ (Qn(γn)) ≥ γn for any n by the definition of the empirical quantile, and since
γn > p from (37), we have

F̂ (Q(p) − ϵ) ≥ γn > p. (41)

However, (41) contradicts (39) when n ≥ N . This implies that Qn(γn) ≥ Q(p) − ϵ for sufficiently large n. ■

Lemma 5. For sufficiently large n, we have Qn(γn) ≤ Q(p) + ϵ.

Proof. We prove the claim using contradiction. Suppose that Qn(γn) > Q(p) + ϵ. Recall that, by definition,
Qn(γn) = inf{x : F̂ (x) ≥ γn}. Thus if Q(p) + ϵ < Qn(γn) then

F̂ (Q(p) + ϵ) < γn. (42)

And recall from (38) that F (Q(p) + ϵ) − δ > p, or equivalently that

F (Q(p) + ϵ) − δ

2 > p + δ

2 . (43)

From Theorem 2, the Glivenko-Cantelli theorem, F̂ (·) converges uniformly to F (·) almost surely. This means
that, for the given δ, there almost surely exists an N ′ such that, for all n ≥ N ′ and any x ∈ R,

|F̂ (x) − F (x)| ≤ δ

2 ⇒ F̂ (x) ≥ F (x) − δ

2 . (44)

Combining (43) and (44), we have that, for all n ≥ N ′,

F̂ (Q(p) + ϵ) ≥ F (Q(p) + ϵ) − δ

2 > p + δ

2 .

From (37), we see that, for n ≥ 4/δ,
γn < p + 2

n
≤ p + δ

2 .

Thus, for sufficiently large n, we have
F̂ (Q(p) + ϵ) > γn,

which contradicts (42). This implies that Qn(γn) ≤ Q(p) + ϵ for large n. ■
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Lemma 4 and Lemma 5 hold almost surely for an arbitrary ϵ > 0, and together say that

Q(p) − ϵ ≤ Qn(γn) ≤ Q(p) + ϵ

for sufficiently large n. Since we can make ϵ arbitrarily small, we have that

lim
n→∞

Qn(γn) = Q(p),

almost surely, and thus Qn(γn) a.s.−−→ Q(p).

Having established Theorem 2 and Theorem 3, we now return to our main objective, which is proving that
the λ̂(dcal) in (24) converges to the λ̂ in (20). For clarity, we restate Theorem 1 here.
Theorem (Restatement of Theorem 1). For each target component k = 1, . . . , K, suppose that the non-
conformity scores {Si,k}n+ntune

i=1 are i.i.d with CDF FSk
(·), and for T ≜ maxk FSk

(Sk), suppose that FT (·) is
continuous and strictly increasing at the (1 − α)-level quantile of T . Then λ̂(dcal) from (24) converges to λ̂
from (20) almost surely as n → ∞ and ntune → ∞.

Proof. We first analyze the effect of ntune → ∞ for an arbitrary fixed n. Recall that the empirical CDF
F̂Sk

(·) of the nonconformity score for the kth component is computed as in (21) using the tuning samples
{Si,k}n+ntune

i=n+1 . From Theorem 2, F̂Sk
(·) converges uniformly to the CDF FSk

(·) almost surely as ntune → ∞.
As a result, it follows that for each calibration nonconformity score Si,k, where i ∈ {1, . . . , n}, we have

Si,k ≜ F̂Sk
(Si,k) a.s.−−→ FSk

(Si,k)

as ntune → ∞, recalling the definition of the transformed score Si,k from (22). Let us now consider the
maximum transformed score Si ≜ maxk{Si,k}K

k=1 defined in (23). Since the maximum function is continuous
everywhere on RK and F̂Sk

(Si,k) a.s.−−→ FSk
(Si,k), the continuous mapping theorem implies that

Si = max
k

F̂Sk
(Si,k) a.s.−−→ max

k
FSk

(Si,k) ≜ Ti

as ntune → ∞. Because {Si,k}n
i=1 are assumed to be i.i.d with CDF FSk

(·), we see that {Ti}n
i=1 are i.i.d with

CDF FT (·) for T ≜ maxk FSk
(Sk).

Next, we analyze the effect of n → ∞. Let us denote the n-sample empirical quantile of T as Qn(·) and the
quantile of T as Q(·). Recall from (24) that

λ̂(Dcal) = Qn

(
⌈(1 − α)(n + 1)⌉

n

)
.

Because FT (·) is assumed to be continuous and strictly increasing at Q(1 − α), Theorem 3 establishes that,
as n → ∞,

λ̂(Dcal) = Qn

(
⌈(1 − α)(n + 1)⌉

n

)
a.s.−−→ Q(1 − α). (45)

Finally, recall the definition of λ̂ from (20):

λ̂ = arg min
λ

λ s.t. Pr{∩K
k=1FSk

(Sk) ≤ λ} ≥ 1 − α.

The constraint can be rewritten as

Pr{max
k

FSk
(Sk) ≤ λ} = Pr{T ≤ λ} ≥ 1 − α,

which allows (20) to be rewritten as

λ̂ = arg min
λ

λ s.t. Pr{T ≤ λ} ≥ 1 − α. (46)
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Table 2: Number of positive samples in the non-fat-suppressed subset of the fastMRI+ knee dataset.

Label Positive Training Samples Positive Validation Samples
Meniscus Tear 1921 335
Cartilage - Partial Thickness loss/defect 871 176
Joint Effusion 225 41
Bone-Fracture/Contusion/dislocation 97 6
Bone - Subchondral edema 76 21

Table 3: Classifier performance on the fastMRI+ validation set.

Label Accuracy Precision Recall AUROC
Meniscus Tear 0.6595 0.3005 0.9784 0.889
Cartilage - Partial Thickness loss/defect 0.6184 0.1558 0.8988 0.8564
Joint Effusion 0.9031 0.1356 0.8000 0.9465
Bone-Fracture/Contusion/dislocation 0.7715 0.0060 0.5000 0.7971
Bone - Subchondral edema 0.5704 0.0127 0.5714 0.6338
Average 0.7046 0.1221 0.7497 0.8246

But the λ̂ in (46) is simply the (1 − α)-level quantile of T . In other words,

λ̂ = inf{λ : FT (λ) ≥ 1 − α} = Q(1 − α). (47)

Finally, combining (45) with (47), we conclude that

λ̂(Dcal)
a.s.−−→ λ̂

as ntune → ∞ and n → ∞.

B Classifier Details

We train the multi-label classifier on the K = 5 labels with the most annotations in the non-fat-suppressed
subset of the fastMRI+ knee data from Zhao et al. (2022). Table 2 shows the number of positive samples for
each of those labels. Note that images with multiple instances of the same pathology only count as a single
positive sample.

We implement and train the multi-label classifier using nearly the same procedure as Wen et al. (2024). In
particular, we start by initializing a standard ResNet-50 (He et al., 2016) with the pretrained ImageNet
weights from (Deng et al., 2009), after which we reduce the number of final-layer outputs to K = 5. Then we
pretrain the network in a self-supervised fashion using the (unlabeled) non-fat-suppressed fastMRI knee data
following the SimCLR procedure from Chen et al. (2020) with a learning rate of 0.0002, batch size of 128,
and 500 epochs. Finally, we perform supervised fine-tuning using binary cross-entropy loss on the fastMRI+
data, where we address class imbalance by weighting the loss contribution from each class by the ratio of
negative labels to positive labels for that particular class. To encourage adversarial robustness, we use the
same l2-bounded gradient ascent attack as Wen et al. (2024), and we train the classifier for 150 epochs with a
batch size of 128, learning rate of 5e−5, and weight decay of 1e−7. Finally, we save the model checkpoint
with the lowest validation loss. Performance on the validation dataset is shown in Table 3.
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