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Abstract

In ill-posed imaging inverse problems, uncertainty quantification remains a fundamental
challenge, especially in safety-critical applications. Recently, conformal prediction has been
used to quantify the uncertainty that the inverse problem contributes to downstream tasks
like image classification, image quality assessment, fat mass quantification, etc. While
existing works handle only a scalar estimation target, practical applications often involve
multiple targets. In response, we propose an asymptotically minimax approach to multi-
target conformal prediction that provides tight prediction intervals while ensuring joint
marginal coverage. We then outline how our minimax approach can be applied to multi-
metric blind image quality assessment, multi-task uncertainty quantification, and multi-round
measurement acquisition. Finally, we numerically demonstrate the benefits of our minimax
method, relative to existing multi-target conformal prediction methods, using both synthetic
and magnetic resonance imaging (MRI) data.

1 Introduction

Imaging inverse problems (Bertero et al., 2021) span a wide array of tasks, such as denoising, inpainting,
accelerated magnetic resonance imaging (MRI), limited-angle computed tomography, phase retrieval, and
image-to-image translation. In such problems, the objective is to recover a true image x0 from noisy,
incomplete, or distorted measurements y0 = A(x0). These problems tend to be ill-posed, in that many
distinct hypotheses of x0 can explain the collected measurements y0. When perfect recovery of x0 is difficult
or impossible, uncertainty quantification (UQ) is critical to safely using/interpreting a given reconstruction
x̂0, especially in high-stakes fields like science or medicine (Chu et al., 2020; Banerji et al., 2023).

The field of image recovery has evolved significantly over the decades, and most contemporary approaches
are based on deep learning (DL) (Arridge et al., 2019). Quantitatively, recent DL-based methods outperform
classical methods on average and, qualitatively, they produce reconstructions that are sharp and detailed
(Ongie et al., 2020). When the inverse problem is highly ill-posed, classical methods tend to produce
recoveries with recognizable visual artifacts, from which it is relatively easy to gauge uncertainty. For example,
radiologists receive explicit training in this regard (Virmani et al., 2015). In contrast, DL-based methods
can hallucinate, i.e., generate recoveries that are visually plausible but differ from the truth in clinically or
scientifically important ways (Cohen et al., 2018; Belthangady & Royer, 2019; Hoffman et al., 2021; Muckley
et al., 2021; Bhadra et al., 2021; Gottschling et al., 2023; Tivnan et al., 2024). This underscores the need for
rigorous UQ, e.g., methods that provide statistical guarantees on estimates of x0 or of some function µ(x0).

For example, a recent line of work (Wen et al., 2024; Cheung et al., 2024) quantifies the imaging-induced
uncertainty on downstream tasks such as pathology classification or fat-mass quantification. Defining the
target z0 as the output of the task applied to the (unknown) true image, they use conformal prediction (Vovk
et al., 2005; Angelopoulos & Bates, 2023) to construct prediction intervals C that are statistically guaranteed
to contain the target. In a related line of work, Wen et al. (2025) provides statistical guarantees on the quality
of the reconstructed image x̂0 relative to the true image, where “quality” is defined according to an arbitrary
full-reference image-quality (FRIQ) metric like peak signal-to-noise ratio (PSNR) or structural similarity
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index measure (SSIM) (Wang et al., 2004). Defining the target as the FRIQ of x̂0 relative to the (unknown)
true x0, they use conformal prediction to construct a bound on FRIQ that is statistically guaranteed.

While the above methods rigorously quantify the downstream impact of reconstruction uncertainty, they
handle only a scalar target. In practice, one may want to consider multiple targets. For example, one may
seek to identify multiple pathologies from a single recovery or to judge the quality of that recovery according
to multiple metrics. Although multi-target conformal prediction methods have been proposed, they suffer
from either limited interpretability (Messoudi et al., 2022; Feldman et al., 2023)(Rosenberg et al., 2023;
Thurin et al., 2025; Braun et al., 2025), a lack of guaranteed joint coverage (Messoudi et al., 2021; Teneggi
et al., 2023; Park & Cho, 2025), or some combination of overly conservative prediction intervals and/or high
computational complexity (Messoudi et al., 2020; Diquigiovanni et al., 2022; Sampson & Chan, 2024)(Sun &
Yu, 2024), as we explain in the sequel.

We thus propose a new approach to multi-target conformal prediction. For problems with K ≥ 1 targets, our
goal is to ensure a notion of fairness between targets. With prediction intervals Ck and scalar targets Z0,k for
k = 1, . . . , K, our method aims to ensure that no one “single-target coverage” Pr{Z0,k ∈ Ck} is favored over
another, while also ensuring that all prediction intervals simultaneously contain their corresponding targets
with a user-specified probability of 1−α. To do this, we minimize the maximum single-target coverage under
the joint-coverage constraint Pr{∩kZ0,k ∈ Ck} ≤ 1−α. Since the single-target coverage increases with the
interval size |Ck|, our approach additionally aims to prevent any prediction set Ck from being unnecessarily
large. Our contributions are as follows:

1. Using a minimax formulation, we propose a novel multi-target conformal prediction approach with
finite-sample marginal joint-coverage guarantees and low computational complexity.

2. We prove that our method is minimax in the limit of infinite tuning and calibration data.

3. For inverse problems, we propose a multi-round measurement acquisition scheme with marginal
coverage guarantees on the final round.

4. We numerically compare our proposed method to several existing multi-target conformal prediction
methods on a synthetic-data problem and four accelerated-MRI problems.

2 Background

2.1 Single-target conformal prediction

Conformal prediction (Vovk et al., 2005; Angelopoulos & Bates, 2023) is a general framework that enables one
to construct uncertainty intervals with certain statistical guarantees for any black-box predictor. Importantly,
it does not require any distributional assumptions on the data other than exchangeability, which allows for
adoption in a broad range of applications. In this section, we briefly review the basics of conformal prediction,
and in particular the computationally-efficient version known as split conformal prediction (Papadopoulos
et al., 2002; Lei et al., 2018).

Suppose that we have a black-box model h : U → R that predicts a target z0 ∈ R from features u0 ∈ U . The
prediction ẑ0 = h(u0) may or may not be close to the true target z0, but one can use conformal prediction to
compute a prediction interval Cλ(ẑ0) ⊂ R that contains z0 with high probability. To compute this interval,
conformal prediction uses a dataset {(ui, zi)}n

i=1 of feature–target pairs distinct from those used to train h(·).
This dataset is converted to a calibration set dcal ≜ {(ẑi, zi)}n

i=1 using ẑi = h(ui), and dcal is used to find a
λ̂(dcal) satisfying the marginal coverage guarantee (Lei & Wasserman, 2014)

Pr
{

Z0 ∈ C
λ̂(Dcal)

(Ẑ0)
}

≥ 1 − α, (1)

where α is a user-chosen error rate. Here and in the sequel, we use capital letters to denote random variables
and lower-case letters to denote their realizations. In words, (1) guarantees that the unknown target Z0 falls
within the interval C

λ̂(Dcal)
(Ẑ0) with probability at least 1−α when averaged over the randomness in the test

data (Z0, Ẑ0) and calibration data Dcal.
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The process of computing λ̂(dcal) is known as calibration. To calibrate, one first defines a nonconformity score
s(ẑi, zi). The choice of the nonconformity score function is quite flexible; it requires only that the score is
higher when there is a worse agreement between zi and ẑi. Common approaches include the absolute residual,
locally-weighted residual (Lei et al., 2018), and conformalized quantile regression methods (Romano et al.,
2019). The nonconformity score si = s(ẑi, zi) is then computed for each sample pair (ẑi, zi) in the calibration
set dcal, and λ̂(dcal) is chosen as

λ̂(dcal) ≜ EmpQuant
(⌈(1 − α)(n + 1)⌉

n
; s1, . . . , sn

)
, (2)

which is a slightly more conservative quantile than the 1−α quantile. With λ̂(dcal) computed, the prediction
interval for the ith sample is simply defined as

C
λ̂(dcal)

(ẑi) =
{

z : s(ẑi, z) ≤ λ̂(dcal)
}

. (3)

Following this design, the marginal coverage guarantee (1) holds when (Ẑ0, Z0), (Ẑ1, Z1), . . . , (Ẑn, Zn) are
statistically exchangeable (Vovk et al., 2005), a weaker condition than i.i.d. Under the additional assumption
that the nonconformity scores S0, S1, . . . , Sn are almost surely distinct, the coverage can also be upper
bounded (Romano et al., 2019) by

Pr
{

Z0 ∈ C
λ̂(Dcal)

(Ẑ0)
}

≤ 1 − α + 1
n + 1 . (4)

2.2 Application to imaging inverse problems

In imaging inverse problems, conformal prediction has emerged as a tool to quantify the uncertainty in image
recovery. Several approaches (Angelopoulos et al., 2022b; Horwitz & Hoshen, 2022; Teneggi et al., 2023;
Kutiel et al., 2023; Narnhofer et al., 2024) use conformal prediction to construct, for each individual pixel, an
interval that is guaranteed to contain the true pixel value with high probability. For quantifying multi-pixel
uncertainty, Belhasin et al. (2023) propose to compute conformal intervals on the principal components of the
posterior covariance matrix, and Sankaranarayanan et al. (2022) construct conformal intervals for semantic
attributes in the latent space of a disentangled generative adversarial network.

Although these notions of uncertainty are interesting to consider, they don’t directly quantify the impact of
recovery errors on downstream imaging tasks such as image classification, image quality assessment, and
quantitative imaging. Consequently, task-based image uncertainty methods like (Wen et al., 2024; Cheung
et al., 2024; Wen et al., 2025) have been proposed. We now briefly review these methods using a unified
notational framework.

Both Wen et al. (2024) and Cheung et al. (2024) quantify the uncertainty in estimating µ(x0) ∈ R given the
measurements y0. In Wen et al. (2024) µ(·) is a soft-output classifier, and in Cheung et al. (2024) it is a
fat-mass quantifier, but in either case the target is set at z0 = µ(x0). Assuming access to an approximate
posterior sampler g(·, ·) that generates c samples {x̃

(j)
i }c

j=1 per measurement vector yi via x̃
(j)
i = g(yi, ṽ

(j)
i )

using i.i.d code vectors ṽ
(j)
i ∼ N (0, I), the prediction is computed as

ẑi = [ẑ(1)
i , . . . , ẑ

(c)
i ]⊤ = [µ(x̃(1)

i ), . . . , µ(x̃(c)
i )]⊤ ∈ Rc. (5)

Several nonconformity scores can be used, but here we describe only the version with the conformalized
quantile regression (CQR) method of Romano et al. (2019). With CQR, the α

2 and 1− α
2 empirical quantiles

are computed as

q̂ α
2

(ẑi) = EmpQuant
(α

2 ; ẑ
(1)
i , . . . , ẑ

(c)
i

)
and q̂1− α

2
(ẑi) = EmpQuant

(
1 − α

2 ; ẑ
(1)
i , . . . , ẑ

(c)
i

)
, (6)

respectively, and the nonconformity score is defined as

s(ẑi, zi) = max
{

q̂ α
2

(ẑi) − zi, zi − q̂1− α
2

(ẑi)
}

, (7)
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after which the prediction interval C
λ̂(dcal)

(ẑi) is constructed as in (3). Because this prediction interval changes
with yi, it is said to be “adaptive” (Lei et al., 2018). In any case, it satisfies the marginal coverage guarantee
in (1) when (Ẑ0, Z0), (Ẑ1, Z1), . . . , (Ẑn, Zn) are statistically exchangeable.

In related work, Wen et al. (2025) seek to estimate the FRIQ (e.g., PSNR, SSIM, etc.) m(x̂0, x0) of an image
recovery x̂0 = f(y0) relative to the true image x0 when given access to measurements y0 but not x0 itself.
To do so, they set the target as z0 = m(x̂0, x0) and use an approximate posterior sampler that generates c

samples {x̃
(j)
i }c

j=1 per measurement vector yi to compute the prediction

ẑi = [m(x̂i, x̃
(1)
i ), . . . , m(x̂i, x̃

(c)
i )]⊤ ∈ Rc. (8)

Wen et al. (2025) then used empirical quantiles to construct a one-sided prediction interval Cλ(·) to either
lower- or upper-bound the FRIQ, as appropriate. Note that m(x̂i, ·) can be viewed as a recovery-conditioned
task. To maintain consistency with other task-based approaches, when discussing FRIQ estimation in the
sequel, we construct two-sided intervals using (3) with the nonconformity score from (7).

2.3 Multi-target conformal prediction

As discussed in Section 1, one may be interested in conformal prediction of several targets, which we combine
into a multi-dimensional target vector [zi,1, . . . , zi,K ] = zi ∈ RK . We focus on the case where one is given a
prediction ẑ0 ∈ RK of unknown test z0 ∈ RK , along with a calibration set dcal = {(ẑi, zi)}n

i=1, and the goal is
to compute K prediction intervals {C

λ̂(Dcal),k
(Ẑ0)}K

k=1 that satisfy the joint marginal coverage guarantee

Pr
{

∩K
k=1 Z0,k ∈ C

λ̂(Dcal),k
(Ẑ0)

}
≥ 1 − α. (9)

This guarantee ensures that all target components simultaneously lie within their respective prediction
intervals with a probability at least 1−α over the randomness in the calibration and test data.

Variations on (9) are possible, such as minimizing a risk that allows a fraction of the target components to lie
outside their prediction intervals (Teneggi et al., 2023). Likewise, while (9) can be interpreted as constructing
a hyper-rectangle in RK that contains Z0 with high probability, it is possible to construct non-rectangular
regions, such as ellipsoidal regions (Messoudi et al., 2022) or more complicated regions defined by the outputs
of a conditional variational auto-encoder (Feldman et al., 2023), vector quantile regressor (Rosenberg et al.,
2023), optimal-transport map (Thurin et al., 2025), or a volume-minimizing mapping (Braun et al., 2025).
Although these non-rectangular regions can give smaller uncertainty volumes, they are less interpretable
for the applications we consider, since the uncertainty interval on one target component will depend on the
values of the other target components.

Inspired by (9), several approaches have been proposed to construct prediction intervals. Messoudi et al. (2020)
assume that the nonconformity score components are statistically independent, so that when the components
are individually calibrated to yield an error-rate of α1, the joint error-rate α will equal 1 − (1−α1)K . This
allows setting α1 = 1 − (1−α)1/K to meet a desired joint error-rate of α. However, the independence
assumption may not hold in practice, where one could encounter K dependent score components that yield a
joint error-rate > 1 − (1−α1)K , in which case the joint-coverage guarantee (9) would be violated. But even
when the joint coverage holds, we show in Section 5 that the prediction intervals from Messoudi et al. (2020)
are overly conservative.

Another line of work uses copulas (Nelsen, 2006) to model the statistical dependency between the score
components {si,k}K

k=1, where si,k = sk(ẑi,k, zi,k). Given a random vector S = [S1, . . . , SK ] with marginal
CDFs FSk

(sk) = Pr{Sk ≤ sk}, the copula of S is defined as the function CS : [0, 1]K → [0, 1] for which

CS(v1, . . . , vK) = Pr{FS1(S1) ≤ v1, . . . , FSK
(SK) ≤ vK}. (10)

That is, the probability integral transform is used to convert each marginal Sk into a uniform random variable
Vk = FSk

(Sk) and the copula CS is the joint CDF of V = [V1, . . . , VK ]. Messoudi et al. (2021) approximate
the copula as ĈS using the empirical marginal CDFs F̂Sk

computed using the calibration data, and then
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search for a v̂ ∈ [0, 1] for which ĈS(v̂, . . . , v̂) ≥ 1−α. The corresponding λ̂(dcal) = [F̂ −1
S1

(v̂), . . . , F̂ −1
SK

(v̂)] ∈ RK

then approximately satisfies FS(λ̂(dcal)) ≥ 1−α, and λ̂k(dcal) can be used to define a prediction interval for
ẑi,k via (3). However, they provide no coverage guarantees on these intervals. Sun & Yu (2024) and Park &
Cho (2025) instead search for a v̂ ∈ [0, 1]K for which

v̂ = arg min
v∈[0,1]K

K∑
k=1

vk such that ĈS(v) ≥ 1 − α, (11)

after which they set λ̂(dcal) = [F̂ −1
S1

(v̂1), . . . , F̂ −1
SK

(v̂K)] ∈ RK . Park & Cho (2025) use semiparametric vine
copulas and provide coverage guarantees only in the limit of infinite calibration data. Sun & Yu (2024) use the
empirical copula together with conformal marginal CDFs (Vovk et al., 2017) and obtain a finite-data coverage
guarantee similar to (9). But (11) provides no incentive for balancing coverage across targets (as we will see
in Section 5), and there’s no clear way to solve the non-convex optimization in (11). Even approximately
solving (11) is computationally expensive (e.g., Sun & Yu (2024) use gradient descent).

As an alternative, Diquigiovanni et al. (2022) and Sampson & Chan (2024) propose to combine the score
components {si,k}K

k=1 into a single score via

si = max{si,1, . . . , si,K}. (12)

Using calibration {si}n
i=1 with (2) and extending (3) to component-wise intervals

C
λ̂(dcal),k

(ẑi) =
{

z : sk(ẑi,k, z) ≤ λ̂(dcal)
}

, k = 1, . . . , K, (13)

the arguments from Vovk et al. (2005) imply that the joint-coverage guarantee (9) and upper bound (4) both
hold under the usual exchangeability assumption. However, Sampson & Chan (2024) note that this approach
can disproportionally favor the target components with larger nonconformity scores, causing the prediction
intervals of the other components to be overly conservative. To mitigate this issue, they propose to scale the
nonconformity scores to a common range. To do so, they first train a pair of quantile regressors q̂ α

2 ,k(·) and
q̂1− α

2 ,k(·) that estimate the α
2 and 1− α

2 quantile of Zi,k, respectively, for each k ∈ {1, . . . , K}, and then form
the scaled nonconformity scores

si,k = max
{

q̂ α
2 ,k(ẑi) − zi,k, zi,k − q̂1− α

2 ,k(ẑi)
} q̂1− α

2 ,1(ẑi) − q̂ α
2 ,1(ẑi)

q̂1− α
2 ,k(ẑi) − q̂ α

2 ,k(ẑi)︸ ︷︷ ︸
Scale relative to 1st target

, (14)

where ẑi = ui. This helps to balance the single-target coverages Pr{Z0,k ∈ C
λ̂(Dcal),k

(Ẑ0)} across k ∈ {1, . . . , K}
while ensuring the joint-coverage guarantee (9) and upper bound (4). In Section 3, we show how to obtain a
better balance.

In the broader scope of distribution-free UQ, the Learn-Then-Test (LTT) framework of Angelopoulos et al.
(2022a) provide an alternative approach to handling multiple targets that uses multiple hypothesis testing.
Although LTT is generally used for cases in which there are multiple notions of risk, our case involves only a
single risk and thus LTT would provide a guarantee of the form

Pr
[

Pr
{

∩K
k=1 Z0,k ∈ C

λ̂(Dcal),k
(Ẑ0)

∣∣ Dcal
}

≥ 1 − α
]

≥ 1 − δ, (15)

where α, δ ∈ (0, 1) are each user-selected error rates. In (15), the inner probability is over the randomness
in the test data while the outer probability is over the randomness in the calibration data. Since the LTT
guarantee takes a different form than (9), the LTT procedure is not directly comparable to any of the
previously mentioned multi-target methods. Also, the use of two user-selectable error rates in (15) complicates
the design. In this paper, we focus only on methods that provide joint-coverage guarantees of the form (9).
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3 Minimax multi-target conformal prediction

In this section, we propose a new approach to multi-target conformal prediction using a minimax formulation.
We first formulate the minimax problem using random variables. Then we present the finite-sample version
of our approach, which manifests as an instance of split conformal prediction. Finally we prove that the
finite-sample solution converges to the solution of the original minimax problem as the number of samples
grows to infinity.

3.1 Random variable perspective

To build intuition, we first consider the design of prediction sets when the targets and predictions are
modeled as random variables Z = [Z1, . . . , ZK ] ∈ RK and Ẑ = [Ẑ1, . . . , ẐK ], respectively. For the kth
component, suppose that the nonconformity score function is sk(·, ·) and the prediction set is constructed as
C

ζ̂k
(Ẑk) ≜ {z : sk(Ẑk, z) ≤ ζ̂k}, where ζ̂k is a design variable. Then the “single-target coverage” of the kth

component will be

Pr
{

Zk ∈ C
ζ̂k

(Ẑk)
}

= Pr
{

Zk ∈ {z : sk(Ẑk, z) ≤ ζ̂k}
}

= Pr
{

sk(Ẑk, Zk) ≤ ζ̂k

}
. (16)

Using Sk ≜ sk(Ẑk, Zk), we can write the single-target coverage more succinctly as

Pr
{

Sk ≤ ζ̂k

}
= FSk

(ζ̂k), (17)

where FSk
(ζ̂k) is the CDF of Sk evaluated at ζ̂k. Similarly, the joint coverage of all K components will be

Pr
{

∩K
k=1 Zk ∈ C

ζ̂k
(Ẑk)

}
= Pr

{
∩K

k=1 Sk ≤ ζ̂k

}
. (18)

For a given joint miscoverage rate of α, we’d like to find a tuple (ζ̂1, . . . , ζ̂K) that ensures

Pr
{

∩K
k=1 Sk ≤ ζ̂k

}
≥ 1 − α. (19)

But, in general, many (ζ̂1, . . . , ζ̂K) will yield the same value of Pr{∩K
k=1Sk ≤ ζ̂k}, and for some choices

of (ζ̂1, . . . , ζ̂K), a portion of the prediction intervals C
ζ̂k

(Ẑk) can be overly conservative. Since a larger
Pr{Sk ≤ ζ̂k} generally corresponds to a larger prediction interval C

ζ̂k
(Ẑk) due to their monotonically non-

decreasing relationship, we propose to design prediction intervals that minimize the maximum single-target
coverage while ensuring joint coverage, i.e.,

(ζ̂1, . . . , ζ̂K) = arg min
ζ1,...,ζK

max
k

Pr{Sk ≤ ζk} s.t. Pr{∩K
k=1Sk ≤ ζk} ≥ 1 − α. (20)

Using (17) and the fact that the CDF is non-decreasing, we can restate (20) as

(ζ̂1, . . . , ζ̂K) = arg min
ζ1,...,ζK

max
k

FSk
(ζk) s.t. Pr{∩K

k=1FSk
(Sk) ≤ FSk

(ζk)} ≥ 1 − α, (21)

and further restate it using λk ≜ FSk
(ζk) as

(λ̂1, . . . , λ̂K) = arg min
λ1,...,λK

max
k

λk s.t. Pr{∩K
k=1FSk

(Sk) ≤ λk} ≥ 1 − α. (22)

Although the solution to (22) may not be unique, it suffices to find a single minimax (λ̂1, . . . , λ̂K). Towards
this aim, observe that Pr{∩K

k=1FSk
(Sk) ≤ λk} is monotonically non-decreasing with respect to any λk. Thus,

given any tuple (λ1, . . . , λK) that satisfies the constraint in (22), the tuple (λ′, . . . , λ′) for λ′ ≜ maxk λk also
satisfies the constraint while simultaneously yielding the same value of the objective “maxk λk.” This implies
that, without loss of minimax optimality, we can reframe (22) as a search for a single parameter λ̂:

λ̂ = arg min
λ

λ s.t. Pr{∩K
k=1FSk

(Sk) ≤ λ} ≥ 1 − α. (23)

Although (22) bears some similarities to the copula methodology in (11), note that (22) uses a max where
(11) uses a sum. Also, (22) can be reduced to a simple one-dimensional search (23), whereas the non-convex
(11) involves an expensive multi-variable optimization.
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3.2 Finite-sample case

We now adapt (23) to the practical case where the Sk distributions are unknown and must be learned. For
this purpose, we assume access to “tuning” data {(ui, zi)}n+ntune

i=n+1 that is distinct from the data {(ui, zi)}n
i=1

used for split conformal prediction and from the data used to train the predictor that generates ẑi.

We propose to do the following for each target component k ∈ {1, . . . , K}. First, we construct the set
dtune,k ≜ {(ẑi,k, zi,k)}n+ntune

i=n+1 and compute the nonconformity score si,k for all samples i in dtune,k. Using these
nonconformity scores, we compute the empirical CDF F̂Sk

(·), where

F̂Sk
(ζ) = |{si,k : si,k ≤ ζ, i = n+1, . . . , n+ntune}|

ntune
. (24)

Next, we compute the nonconformity scores si,k for all samples i in the calibration set dcal,k ≜ {(ẑi,k, zi,k)}n
i=1

and apply the learned F̂Sk
(·) to obtain the transformed calibration scores

si,k ≜ F̂Sk
(si,k) for i = 1, . . . , n. (25)

Because si,k ∈ [0, 1], the scores {si,k}n
i=1 are implicitly normalized across k ∈ {1, . . . , K}. Finally, we take

the maximum across components,
si ≜ max(si,1, . . . , si,K), (26)

and from these {si}n
i=1 compute λ̂(dcal) in the same manner as (2):

λ̂(dcal) = EmpQuant
(⌈(1 − α)(n + 1)⌉

n
; s1, . . . , sn

)
. (27)

The target-domain prediction intervals can then be constructed as

C
λ̂(dcal),k

(ẑi) =
{

z : F̂Sk

(
sk(ẑi,k, z)

)
≤ λ̂(dcal)

}
, k = 1, . . . , K. (28)

Since the tuning data used to construct F̂Sk
(·) is distinct from the calibration data, our method follows the

framework of split conformal prediction. By taking the max of the transformed scores, we ensure the inclusion
of all the scores, and thus enjoy the finite-sample joint marginal coverage guarantee of (9), as summarized in
the following lemma:
Lemma 1. For any α ∈ (0, 1), the prediction intervals {C

λ̂(Dcal),k
(Ẑ0)}K

k=1 from (28) obey

Pr
{

∩K
k=1 Z0,k ∈ C

λ̂(Dcal),k
(Ẑ0)

}
≥ 1 − α (29)

when (Ẑ0, Z0), (Ẑ1, Z1), . . . , (Ẑn, Zn) are statistically exchangeable.

The guarantee in Lemma 1 is similar to that in Sampson & Chan (2024) and stronger than that in Sun &
Yu (2024), since the latter requires exchangeability of the test, calibration, and tuning samples. (In fact the
proof in Sun & Yu (2024) makes the stronger assumption that the test, calibration, and tuning samples are
i.i.d.) In other words, the finite-sample guarantee in Lemma 1 is conditional on the tuning samples whereas
that in Sun & Yu (2024) is not. Furthermore, we demonstrate in Section 5 that, as a result of our minimax
formulation, our coverages tend to be more balanced (across targets) than those of Sampson & Chan (2024)
and Sun & Yu (2024), which prevents our prediction intervals from being unnecessarily large.

Algorithm 1 summarizes our proposed split-conformal prediction procedure.

3.3 Asymptotically minimax

Because the proposed finite-sample methodology uses the empirical CDF (24) in place of the true CDF FSk

and the empirical quantile (26)-(27) in place of the true quantile in (23), one may wonder how the calibration
parameter λ̂(dcal) in (27) relates to the minimax λ̂ in (23). Below we show that λ̂(dcal) converges to λ̂ in the
limit of infinite tuning and calibration data.

7
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Algorithm 1 Minimax-based conformal prediction of test target z0 ∈ RK from feature vector u0 ∈ U .
Require: Error rate α ∈ (0, 1).

Test feature vector u0.
Prediction model h : U → RK .
Data {(ui, zi)}n+ntune

i=1 not used to train h(·).
Nonconformity score functions sk : R × R → R for k = 1, . . . , K.

1: Compute the predictions {ẑi}n+ntune
i=0 using ẑi = h(ui).

2: for k = 1, . . . , K do
3: Compute the nonconformity scores {si,k}n+ntune

i=1 using si,k = sk(ẑi,k, zi,k).

4: Compute the empirical CDF F̂Sk
(·) using F̂Sk

(ζ) = |{si,k : si,k ≤ ζ, i = n+1, . . . , n+ntune}|
ntune

.

5: Compute the transformed nonconformity scores {si,k}n
i=1 using si,k = F̂Sk

(si,k).
6: Compute the component-maximized scores {si}n

i=1 using si = max(si,1, . . . , si,K).

7: Compute the threshold λ̂(dcal) = EmpQuant
(⌈(1−α)(n+1)⌉

n
; s1, . . . , sn

)
.

8: Compute the prediction intervals C
λ̂(dcal),k

(ẑi) =
{

z : F̂Sk

(
sk(ẑi,k, z)

)
≤ λ̂(dcal)

}
for k = 1, . . . , K.

9: return Prediction interval C
λ̂(dcal),k

(ẑ0) on unknown z0,k for each k = 1, . . . , K.

Theorem 2. For each target component k = 1, . . . , K, suppose that the nonconformity scores {Si,k}n+ntune
i=1

are i.i.d with CDF FSk
(·) and, for T ≜ maxk FSk

(Sk), suppose that FT (·) is continuous and strictly increasing
at the (1−α)-level quantile of T . Then λ̂(dcal) from (27) converges to λ̂ from (23) almost surely as n → ∞
and ntune → ∞.

See Appendix A for a proof.

4 Applications of multi-target conformal prediction in imaging

In Section 2.2, we described several applications of conformal prediction to single-target UQ in imaging
inverse problems. In this section, we propose several applications of conformal prediction to multi-target UQ
in imaging inverse problems.

We now establish a common notation that can be used across several applications. Consider a target vector
zi ∈ RK , prediction matrix ẑi ∈ RK×c, and nonconformity score si,k = sk(ẑi,k, zi,k) for the kth target and
ith sample. With CQR, the nonconformity score would be computed as

si,k = sk(ẑi,k, zi,k) = max
{

q̂ α
2 ,k(ẑi,k) − zi,k, zi,k − q̂1− α

2 ,k(ẑi,k)
}

(30)

with

q̂ α
2 ,k(ẑi,k) = EmpQuant

(α

2 ; ẑ
(1)
i,k , . . . , ẑ

(c)
i,k

)
and q̂1− α

2 ,k(ẑi,k) = EmpQuant
(

1 − α

2 ; ẑ
(1)
i,k , . . . , ẑ

(c)
i,k

)
. (31)

With this problem setup, the proposed minimax method from Section 3, or any of the existing multi-target
approaches discussed in Section 2.3, can be applied to generate prediction sets C

λ̂(dcal),k
(ẑ0) for target indices

k = 1, . . . , K. When the joint-coverage guarantee in (9) holds, all K prediction sets will simultaneously
include the corresponding true-target values with a probability of at least 1−α. We emphasize that this
guarantee holds regardless of the quality of the approximate posterior sampler used to generate {ẑi,k}c

j=1.
As this sampler gets worse, the prediction sets will get looser but the guarantee will still hold. Below, we
describe how to construct these quantities in different applications.

4.1 Multi-metric blind FRIQ assessment

We first consider blind FRIQ assessment, where the goal is to estimate the FRIQ of a reconstruction x̂0 = f(y0)
relative to the true image x0, given measurements y0 = A(x0) but no direct access to x0. Whereas Section 2.2

8
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discussed the use of a single FRIQ metric, one may instead be interested in assessing image quality according
several FRIQ metrics, since different metrics may be complementary (Wang, 2011).

Consider the case of K FRIQ metrics {mk(·, ·)}K
k=1. To extend the conformal prediction approach from

Section 2.2, we set the target vector as zi = [zi,1, . . . , zi,K ]⊤ ∈ RK with zi,k = mk(x̂i, xi), and use c

posterior samples {x̃
(j)
i }c

j=1 to form the prediction matrix ẑi = [ẑi,1, . . . , ẑi,K ]⊤ ∈ RK×c, where ẑi,k =
[mk(x̂i, x̃

(1)
i ), . . . , mk(x̂i, x̃

(c)
i )]⊤.

4.2 Multi-task uncertainty quantification

Now consider task-based UQ, as described in Section 2.2 for the case of a single task. In practice, one may
want to consider several tasks, such as classifying the presence/absence of several different pathologies from a
single image. To extend the task-based UQ method from Section 2.2 to K downstream tasks {µk(·)}K

k=1, we
form the target vector as zi = [zi,1, . . . , zi,K ]⊤ ∈ RK with zi,k = µk(xi) and use c posterior samples {x̃

(j)
i }c

j=1

to form the prediction matrix ẑi = [ẑi,1, . . . , ẑi,K ]⊤ ∈ RK×c, where ẑi,k = [µk(x̃(1)
i ), . . . , µk(x̃(c)

i )]⊤.

4.3 Multi-round measurement acquisition

In Wen et al. (2024) the authors propose a task-based multi-round measurement protocol where measurements
are gradually collected until the conformal interval length falls below a user-specified threshold τ . More
precisely, at the end of each measurement round b ∈ {1, . . . , B}, a prediction ẑ

[b]
0 ∈ R and conformal prediction

interval C[b](ẑ[b]
0 ) are constructed from the cumulative measurements y

[b]
0 . Measurement collection stops if

|C[b](ẑ[b]
0 )| ≤ τ (or if b = B) but otherwise continues to the next round. The goal is to reduce measurement

costs while guaranteeing that the collected measurements are sufficient for the task. This is especially useful in
applications like accelerated MRI, where long scan times increase both patient discomfort and the likelihood
of motion artifacts (Knoll et al., 2020).

A limitation of the multi-round protocol from Wen et al. (2024) is that the marginal coverage guarantee
holds for each round in isolation, but not for the multi-round protocol as a whole. In the sequel, we refer
to the multi-round protocol from Wen et al. (2024) as the “separate calibration” (SC) method, because
it is implemented using a bank of B independetly calibrated conformal predictors. That is, although the
SC method ensures that Pr{Z0 ∈ C[b](Ẑ [b]

0 )} ≥ 1 − α for each round b assuming (Z0, Ẑ
[b]
0 ), . . . , (Zn, Ẑ

[b]
n ) are

exchangeable, we really desire that the multi-round coverage

Pmulti ≜
B∑

b=1
Pr

{
Z0 ∈ C[b](Ẑ [b]

0 ), final round = b
}

(32)

= Pr
{

Z0 ∈ C[1](Ẑ [1]
0 ), |C[1](Ẑ [1]

0 )| ≤ τ
}

+
B−1∑
b=2

Pr
{

Z0 ∈ C[b](Ẑ [b]
0 ), |C[b](Ẑ [b]

0 )| ≤ τ, |C[b−1](Ẑ [b−1]
0 )| > τ, . . . , |C[1](Ẑ [1]

0 )| > τ
}

+ Pr
{

Z0 ∈ C[B](Ẑ [B]
0 ), |C[B−1](Ẑ [B−1]

0 )| > τ, . . . , |C[1](Ẑ [1]
0 )| > τ

}
(33)

is at least 1−α. This is because, in practice, we don’t apriori know which round will be the accepted round,
and thus we must ensure coverage in all cases. To address this limitation, we note from (32) that

Pmulti ≥
B∑

b=1
Pr

{
∩B

k=1 Z0 ∈ C[k](Ẑ [k]
0 ), final round = b

}
= Pr

{
∩B

k=1 Z0 ∈ C[k](Ẑ [k]
0 )

}
, (34)

with equality due to the fact that
∑B

b=1 Pr{final round = b} = 1. Thus, if

Pr
{

∩B
b=1 Z0 ∈ C[b](Ẑ [b]

0 )
}

≥ 1 − α, (35)

then it follows that Pmulti ≥ 1−α. Since (35) is a special case of the joint marginal coverage guarantee (9), we
can ensure (35) using multi-target conformal prediction techniques like the one proposed in Section 3.

9
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That said, the above B-round protocol handles only scalar z0 ∈ R, i.e., a single task. To extend it to L tasks
{µl(·)}L

l=1, we set the target vector as zi = [zi,1, . . . , zi,K ]⊤ ∈ RK , where K = BL and zi,L(b−1)+l = µl(xi)
for all b. Then, for each round b, we generate c posterior samples {x̃

[b](j)
i }c

j=1 via x̃
[b](j)
i = g(y[b]

i , ṽ
[b](j)
i )

with i.i.d ṽ
[b](j)
i ∼ N (0, I) and form the predictions ẑi = [ẑi,1, . . . , ẑi,K ]⊤ ∈ RK×c with ẑi,L(b−1)+l =

[µl(x̃[b](1)
i ), . . . , µl(x̃[b](c)

i )]⊤. When the joint-coverage guarantee in (9) holds, the prediction intervals for
all tasks will simultaneously contain their respective targets with probability at least 1−α in the final
measurement round.

5 Numerical experiments

We now numerically evaluate the proposed asymptotically minimax multi-target conformal prediction method
from Section 3.2, along with the independence-assumption (IA)-based method from Messoudi et al. (2020),
the quantile-normalization (QN)-based method from Sampson & Chan (2024), and the copula-based “CPTS”
method from Sun & Yu (2024), all described in Section 2.3. We compare all four methods using both synthetic
data and real-world accelerated-MRI data. For q̂ α

2 ,k(·) and q̂1− α
2 ,k(·), we use the empirical quantile estimator

(6) for all MRI experiments in Section 5.2 but train a quantile regression (Koenker & Bassett, 1978) model
for the synthetic experiments in Section 5.1. For the IA method, we use the CQR nonconformity score
from (7) with an adjusted error-rate of α1 = 1 − (1−α) 1

K to provide a joint-coverage rate of 1−α. For the
QN method, we compute the nonconformity scores for each target using (14) before taking the max across
targets in (12). For the CPTS method, we use the CQR nonconformity score from (7) but otherwise use
the implementation settings from Sun & Yu (2024). Since our minimax method can be applied with any
nonconformity score sk(·, ·), we test one variation with the CQR score (7), denoted as “CQR+Minimax,” and
one with the QN score (14), denoted as “QN+Minimax.”

For evaluation, we first randomly draw a fixed tuning dataset dtune from the non-training data. Since the
joint guarantee (9) holds over the randomness in the calibration and test data, we perform T = 10 000 Monte
Carlo trials, where in each trial t ∈ {1, . . . , T} we randomly partition the remaining non-training data into a
calibration set dcal[t] with indices i ∈ Ical[t] and a test set with indices i ∈ Itest[t]. As a coverage metric, we
evaluate the empirical joint coverage

EJC ≜
1
T

T∑
t=1

1
|Itest[t]|

∑
i∈Itest[t]

∏
k∈{1,...,K}

1{zi,k ∈ C
λ̂(dcal[t]),k

(ẑi)}, (36)

where 1{·} is the indicator function. Since a larger coverage generally indicates a more conservative prediction
interval for a given nonconformity score, we also measure the empirical single-target coverage for each target
k:

ESCk ≜
1
T

T∑
t=1

1
|Itest[t]|

∑
i∈Itest[t]

1{zi,k ∈ C
λ̂(dcal[t]),k

(ẑi)} (37)

and, to quantify the corresponding prediction-interval size, we measure the mean interval length:

MILk ≜
1
T

T∑
t=1

1
|Itest[t]|

∑
i∈Itest[t]

|C
λ̂(dcal[t]),k

(ẑi)|. (38)

5.1 Synthetic data

We start with a synthetic multi-target regression problem. The random data {Zi} are constructed i.i.d across
i ∈ {0, 1, . . . , n + ntune + ntest + ntrain} with Zi = [Zi,1, Zi,2, Zi,3]⊤,

Zi,1 = 10Ui + 10 + ϵi,1 (39a)
Zi,2 = −2Ui + 1 + ϵi,2 (39b)
Zi,3 = 0.1U2

i + ϵi,3, (39c)

10
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Table 1: Empirical joint coverage versus desired joint coverage 1−α for the synthetic experiment.

1 − α

Noise Type Method 0.70 0.75 0.80 0.85 0.90 0.95
IA (Messoudi et al., 2020) 0.7000 0.7501 0.8001 0.8501 0.9000 0.9499
CPTS (Sun & Yu, 2024) 0.7002 0.7501 0.8001 0.8501 0.9001 0.9501

Independent QN (Sampson & Chan, 2024) 0.7002 0.7501 0.8001 0.8501 0.9000 0.9500
CQR+Minimax (Ours) 0.7000 0.7500 0.8000 0.8500 0.9000 0.9501
QN+Minimax (Ours) 0.7002 0.7502 0.8001 0.8501 0.9000 0.9501

IA (Messoudi et al., 2020) 0.7583 0.7991 0.8393 0.8791 0.9187 0.9584
CPTS (Sun & Yu, 2024) 0.7001 0.7502 0.8001 0.8501 0.9001 0.9502

Correlated QN (Sampson & Chan, 2024) 0.7001 0.7501 0.8001 0.8500 0.9000 0.9500
CQR+Minimax (Ours) 0.7000 0.7501 0.8001 0.8500 0.9000 0.9500
QN+Minimax (Ours) 0.7001 0.7502 0.8001 0.8501 0.9001 0.9501

Ui ∼ Unif(−5, 5), and two cases of random ϵi = [ϵi,1, ϵi,2, ϵi,3]⊤. In the first case, ϵi,1 ∼ N (10, 1), ϵi,2 ∼
Gamma(shape = 1, scale = 1), and ϵi,3 ∼ Exp(scale = 1) are independent. In the second case, ϵi is formed by
stacking those three independent noise variables into a vector and multiplying by the Cholesky factor of

Σ =

 1 0.8 0.7
0.8 1 0.4
0.7 0.4 1

 (40)

to construct a correlated noise vector.

In either case, we generate ntrain = 10 000 training samples. For each target component k, we train two linear
quantile regressors q̂ α

2 ,k(·) and q̂1− α
2 ,k(·) to estimate the α

2 and 1− α
2 quantiles of Zi,k, respectively, from

ẑi = ui. We generate ntune = 10 000 tuning samples to estimate the empirical CDF for the minimax approach
(see (24)) and CPTS approach (see Sun & Yu (2024, Eq.(5))). Then, for each Monte Carlo trial t, we generate
n = 10 000 calibration samples and ntest = 5000 test samples. For fairness, the IA and QN methods use the
tuning samples as additional calibration samples.

Empirical coverage: Table 1 shows the EJC (36) for each method versus the desired joint coverage 1−α.
There we see that, in the independent-noise case, all four methods perform nearly identically, with EJCs that
almost exactly match the desired 1−α. In the correlated-noise case, however, the IA method yields an overly
conservative EJC while the QN, CPTS, and minimax methods give an EJC of almost exactly the desired
1−α. This behavior is not surprising, since the IA method assumes independent target components while the
other methods do not.

Single-target coverage: Figure 1(a) and (b) plot the maxk ESCk and mink ESCk of each method versus
the desired joint coverage 1−α for the independent- and correlated-noise cases, respectively. With independent
noise, the QN and CPTS methods result in the largest ESC spread (i.e., maxk ESCk − mink ESCk), especially
at 1−α = 0.8. With correlated noise, the IA method yields much more conservative ESCks than the other
methods, while the QN and CPTS methods result in the largest ESC spread, especially for 1−α ≤ 0.75.

Sensitivity to quantile-estimator quality: We now investigate the effect of quantile-estimator quality,
which can be difficult to guarantee in practice. To do this, we vary the number of training samples ntrain
used to train the quantile regressor. Since, when ntrain is small, the performance can vary significantly over
different draws of the training set, we run the experiment five times. Figure 1(c) plots the mean (across
these 5 runs) of maxk ESCk and mink ESCk versus ntrain ∈ {50, 500, 1000, 2000} with α = 0.1 and correlated
noise. The QN method shows a large ESCk spread for small values of ntrain, while the other methods show
robustness to ntrain.

Sensitivity to tuning samples: Since the CPTS and minimax methods rely on tuning samples, we now
investigate ESCk as the number of tuning samples ntune is varied. (Recall that the IA and QN methods use
these tuning samples as additional calibration samples.) Again we run the experiment five times, drawing new
training and tuning sets each time. Figure 1(d) plots the mean (across runs) of maxk ESCk and mink ESCk
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versus ntune ∈ {50, 500, 1000, 2000, 5000, 10000} with α = 0.1 and correlated noise. As expected, the CPTS
and minimax methods perform poorly when ntune is too small. For sufficiently large ntune, both the CPTS
and minimax methods perform on par with QN. But to reach this level of performance, CPTS requires more
samples than the minimax methods (in this case, 10 000 versus 5000).

In summary, the IA method is sensitive to noise correlation, while the other methods are not. Meanwhile,
the QN method is sensitive to poor quantile estimators (e.g., from too-few training samples) while CPTS and
the proposed minimax methods are sensitive to too-few tuning samples. Since conformal prediction is often
applied post-hoc, where one has significant control over the tuning/calibration process but no control over
the training, CPTS and the proposed minimax methods can be advantageous. We will see this behavior arise
in the subsequent MRI experiments, where we have little control over the quantile-estimator performance.
Finally, Fig. 1 suggests that the proposed minimax methods offer more balanced single-target coverages than
CPTS.

5.2 Magnetic resonance imaging

We now compare all five methods on experiments with accelerated magnetic resonance imaging (MRI) (Knoll
et al., 2020; Hammernik et al., 2023). MRI is renowned for its ability to provide high-quality soft tissue images
without the use of harmful ionizing radiation. However, MRI scans are slow, which compromises patient
comfort and throughput and can lead to motion artifacts. In accelerated MRI, the scan time is reduced by a
factor of R by collecting only 1/R of the measurements required by the Nyquist sampling theorem. Doing so,
however, leads to an ill-posed imaging inverse problem, where it is impossible to guarantee recovery of the
true image. Thus, for robust diagnoses, uncertainty quantification becomes important.

Data: We follow the experimental setup of Wen et al. (2024), which uses the non-fat-suppressed subset
of the multicoil fastMRI knee dataset from Zbontar et al. (2018). This subset contains 17 286 training
images and 2188 validation images. To generate the accelerated measurements, the spatial Fourier domain,
known as the “k-space”, is retrospectively subsampled with random Cartesian masks at acceleration rates
R ∈ {16, 8, 4, 2}. The masks use Golden Ratio Offset (GRO) sampling (Joshi et al., 2022) and include a fully
sampled autocalibration signal (ACS) region in the center, and they are nested such that the measurements
collected at each R include all measurements collected at higher R. See Wen et al. (2024) for details.

Models: For the image-recovery model f(·), we use the popular E2E-VarNet from Sriram et al. (2020), and
for the posterior-sampling method g(·, ·), we use the conditional normalizing flow (CNF) from Wen et al.
(2023) with c = 32 posterior samples. Both networks are trained (using the fastMRI training images) to handle
acceleration rates R ∈ {16, 8, 4, 2} following the procedure in Wen et al. (2024). The conformal predictors
are all given access to the same tuning and calibration samples {(ẑi, zi)} and thus the image-recovery and
posterior-sampling models are used identically across methods.

Validation: We first construct a tuning set dtune using 656 of the 2188 fastMRI validation samples (i.e.,
30%), selected randomly. Since the joint-coverage guarantee (9) holds over the randomness in the calibration
and test data, we evaluate performance using T = 10 000 Monte Carlo trials. In each Monte Carlo trial
t ∈ {1, . . . , T}, we randomly partition the remaining validation data into a calibration set dcal[t] of size
n = 1073 (or 50%) and a test set of size ntest = 459 (or 20%) using indices i ∈ Itest[t]. Because the IA
and QN methods do not use a tuning set, we add the tuning samples to their calibration sets (now of size
n + ntune = 1729) for fair comparison to the CPTS and minimax methods.

5.2.1 Multi-metric blind FRIQ assessment

We begin with the multi-metric blind FRIQ assessment problem from Section 4.1. For the FRIQ metrics, we
consider PSNR, SSIM, learned perceptual image patch similarity (LPIPS) (Zhang et al., 2018), and deep
image structure and texture similarity (DISTS) (Ding et al., 2020). The average FRIQ performance of the
E2E-VarNet and CNF on the fastMRI validation set match those reported in Wen et al. (2025).

Empirical coverage: Table 2 shows EJC versus desired joint coverage 1−α at acceleration R = 8. While
all methods satisfy the joint-coverage guarantee (9), the EJC of the IA method is overly conservative.
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Figure 1: For the synthetic experiment, (a) shows mink ESCk and maxk ESCk versus desired joint coverage
1−α for the independent-noise case and (b) shows the same for the correlated-noise case. Then for the
correlated-noise case, (c) shows mink ESCk and maxk ESCk versus ntrain at 1−α = 0.9 and (d) shows the
same versus ntune. The traces in (c) and (d) represent the average across 5 draws of training and tuning data.
In some cases the green curves are hidden behind the red curves.
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Table 2: Empirical joint coverage versus 1−α for the multi-metric and multi-task MRI experiments at R = 8.

1 − α

Task Method 0.70 0.75 0.80 0.85 0.90 0.95
IA (Messoudi et al., 2020) 0.7797 0.8140 0.8485 0.8856 0.9264 0.9625
CPTS (Sun & Yu, 2024) 0.7025 0.7518 0.8025 0.8525 0.9026 0.9520

multi-metric QN (Sampson & Chan, 2024) 0.7006 0.7502 0.8006 0.8503 0.9005 0.9503
CQR+Minimax (Ours) 0.7008 0.7511 0.8005 0.8506 0.9002 0.9506
QN+Minimax (Ours) 0.7010 0.7502 0.8007 0.8508 0.9002 0.9508

IA (Messoudi et al., 2020) 0.7935 0.8344 0.8677 0.8997 0.9340 0.9697
CPTS (Sun & Yu, 2024) 0.7019 0.7529 0.8034 0.8518 0.9010 0.9526

multi-task QN (Sampson & Chan, 2024) 0.7005 0.7502 0.8005 0.8502 0.9005 0.9505
CQR+Minimax (Ours) 0.7013 0.7506 0.8009 0.8511 0.9004 0.9507
QN+Minimax (Ours) 0.7013 0.7505 0.8006 0.8509 0.9004 0.9505
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Figure 2: Min and max ESCk

versus 1−α for multi-metric MRI
at acceleration R = 8.
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Figure 3: ESCk for each FRIQ metric k and desired coverage level 1−α in
MRI at acceleration R = 8.

Single-target coverage: Figure 2 plots maxk ESCk and mink ESCk versus 1−α at R = 8. The QN method
suffers from very highly spread ESCk, reminiscent of the synthetic experiment with poor quantile estimates,
while the IA method suffers from overly conservative ESCk, reminiscent of the synthetic experiment with
correlated noise. The CPTS method gives maxk ESCk values similar to IA (i.e., overly conservative) but
slightly better for small values of 1−α, while the CPR-minimax method gives noticeably better maxk ESCk

than CPTS, which is consistent with its minimax formulation. (Recall that CPR-minimax and CPTS use the
same nonconformity score.) Figure 3 shows ESCk individually for each target k, revealing that QN provides
a massively conservative ESCk ≈ 1 for PSNR and an overly small ESCk for LPIPS. Based on Section 5.1, we
conjecture that QN’s coverage imbalance stems from unreliable quantile estimators q̂ α

2 ,k(·) and q̂1− α
2 ,k(·).

When the QN score is used within our minimax framework, however, the single-target coverages become well
balanced.

Mean interval length: Figure 4 shows mean interval length MILk versus desired joint coverage 1−α for
each metric k at R = 8. For the PSNR metric, we see QN producing extremely loose prediction intervals at
all 1−α, which is consistent with the overly generous single-target coverage shown in Fig. 3. For the LPIPS
metric, although QN gives tighter prediction intervals than QN+Minimax, they come at the cost of very weak
single-target coverage guarantees, as shown in Fig. 3. Although the IA method performs very consistently
across the four target metrics, both CPTS and the proposed CQR+Minimax give tighter predictions intervals
in every instance. Although CQR+Minimax performs similarly to CPTS in most cases, it gives noticeably
tighter prediction intervals for SSIM and LPIPS at high 1−α.

Overall, we see the minimax methods behaving as expected in this multi-metric MRI experiment, i.e.,
providing well-balanced single-target coverages and thereby avoiding overly large prediction intervals.
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Figure 4: MIL versus 1−α for the multi-metric MRI experiments at acceleration R = 8.

5.2.2 Multi-task uncertainty quantification

We now consider a multi-task UQ problem, where the goal is to ascertain the presence/absence of each of
K = 5 different pathologies in accelerated MRI with R = 8. We assume that a multi-label soft-output classifier
µ(·) has been trained on clean images xi to output a vector of probabilities zi ∈ [0, 1]K . At inference time, since
we have access to only the accelerated measurements y0 and not the true image x0, the goal is to construct,
for each pathology k, a prediction interval C

λ̂(dcal),k
(ẑ0) that contains the true soft-output z0,k= [µ(x0)]k with

some probabilistic guarantee. We apply the IA, QN, CPTS, CQR+Minimax, and QN+Minimax methods as
described in Section 4.2.

For the classifier, we use a ResNet-50 (He et al., 2016) with K = 5 outputs in the final linear layer. To train
it, we first initialize using ImageNet weights, then pretrain using SimCLR loss (Chen et al., 2020) on the
(unlabeled) fastMRI knee data, and lastly fine-tune using binary cross-entropy loss on the (labeled) fastMRI+
knee data (Zhao et al., 2022). The chosen pathologies, listed in Fig. 6, were the five with the most fastMRI+
samples. Additional details can be found in Appendix B.

Empirical coverage: Table 2 reports EJC versus desired joint coverage 1−α. There we see that all methods
satisfy the joint-coverage guarantee (9), but that the EJC of IA is overly conservative. In fact, the IA method
is even more conservative in this multi-task experiment than it was in the multi-metric experiment, which
(recalling Section 5.1) may be due to increased correlation among the non-conformity scores for different
tasks.

Single-target coverage: Figure 5 plots the maxk ESCk and mink ESCk versus 1−α for each method
at R = 8. Again, the IA method gives overly conservative ESCk for all 1−α. The CPTS method suffers
from imbalanced ESCk across targets, and consequently its maxk ESCk is similar to IA’s in most cases. By
contrast, the CQR+Minimax method yields well-balanced ESCk over the entire range. As for the methods
that use the QN nonconformity score, we see that QN and QN+Minimax give similar ESCk except around
1−α = 0.8, where QN+Minimax is better balanced. Figure 6 shows ESCk individually for each target k and
shows that each method distributes coverage across targets in a unique manner, especially at 1−α = 0.7.

Mean interval length: Figure 7 plots MILk versus desired joint coverage 1−α for each target k. Among
the CQR-based methods (i.e., IA, CPTS, CQR+Minimax), we see that IA tends to give the loosest prediction
intervals, while CPTS and CQR+Minimax trade for the tightest interval on a case-by-case basis. For large
1−α, however, CPTS gives unnecessarily loose intervals for 3 of the 5 classes, while CQR+Minimax avoids
this unwanted behavior. Relative to the CQR-based methods, the QN-based ones are much less consistent, in
that they give very tight intervals for some classes (e.g., Meniscus Tear) but very loose ones for others (e.g.,
Bone–Subchondral Edema). Overall, QN and QN+Minimax achieve similar performance, with one or the
other winning on a case-by-case basis. The loose interval produced by QN+Minimax at 1−α = 0.95 is most
likely due to the use of relatively few tuning samples (recall Fig. 1(d)), recalling that the proposed methods
are minimax only asymptotically.
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Figure 5: Min and max ESCk

versus 1−α for multi-task MRI
at acceleration R = 8.
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Figure 6: ESCk versus target k for several values of 1−α in multi-task
MRI at acceleration R = 8.
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Figure 7: MILk versus 1−α for each task k in multi-task MRI at acceleration R = 8.

5.2.3 Multi-round measurement acquisition with FRIQ guarantees

We now consider applying the multi-round measurement protocol from Section 4.3 to accelerate MRI while
providing a probabilistic FRIQ guarantee. We adopt the experimental setup of Wen et al. (2025), where
measurements are collected over B = 5 rounds at acceleration rates R ∈ {16, 8, 4, 2, 1} but stop as soon as
a conformal upper bound on DISTS1 falls below a threshold of2 τ = 0.16. To adapt the proposed multi-
target method from Section 4.3 to this upper-bounding setup, we run the IA, CPTS, and CQR+Minimax
methods with the one-sided CQR nonconformity score sk(ẑi,k, zi,k) = zi,k − q̂1− α

2
(ẑi,k) and we run QN and

QN+Minimax with one-sided QN nonconformity score

sk(ẑi,k, zi,k) =
(
zi,k − q̂1− α

2 ,k(ẑi)
) q̂1− α

2 ,1(ẑi) − q̂ α
2 ,1(ẑi)

q̂1− α
2 ,k(ẑi) − q̂ α

2 ,k(ẑi)
, (41)

as motivated by (14).

Figure 8(a) plots the empirical accepted coverage

EAC ≜
1
T

T∑
t=1

1
|Itest[t]|

∑
i∈Itest[t]

1{zi ∈ C[bi](ẑ[bi]
i )}, (42)

where bi denotes the accepted round for the ith sample, versus the desired accepted coverage of 1−α for
the IA, QN, CPTS, CQR+Minimax, and QN+Minimax versions of the multi-target method proposed in
Section 4.3, as well as the separate-calibration (SC) method from Wen et al. (2024) discussed in Section 4.3.

1A recent clinical MRI study (Kastryulin et al., 2023) evaluated 35 FRIQ metrics and found that DISTS correlated best with
radiologists’ ratings of perceived noise level, contrast level, and artifacts when comparing reconstructions to ground-truth images.

2Wen et al. (2025) chose τ = 0.16 because this is the DISTS threshold at which a single-round measurement scheme at
acceleration R = 2 achieves 1−α = 0.95 coverage.
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Figure 8: For multi-round measurements that stop as
soon as the DISTS upper bound falls below τ = 0.16,
(a) plots EAC and (b) plots Ravg versus the desired
accepted coverage 1−α.
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Figure 9: For multi-round measurements that stop
as soon as the prediction intervals for all pathology
labels fall below τ = 0.1, (a) plots EAC and (b) plots
Ravg versus the number of labels L at 1−α = 0.9.

The figure shows that the measurements accepted by the SC method do not provide the desired coverage,
while those accepted by the multi-target methods do, validating the goal of Section 4.3. Figure 8(b) plots the
average accepted acceleration-rate

Ravg ≜
( 1

T

T∑
t=1

1
|Itest[t]|

∑
i∈Itest[t]

1
Rbi

)−1
(43)

versus 1−α, where Rbi
is the acceleration rate at the accepted round for test sample i. Although the SC

method achieves higher Ravg than the multi-target methods, it comes at the cost of not providing a coverage
guarantee on accepted samples. Among the multi-target methods, the CPTS and CQR+Minimax methods
yield the highest Ravg in all cases, demonstrating the advantage of tight conformal bounds. However, the
much lower computational complexity of CQR+Minimax makes it advantageous in practice.

5.2.4 Multi-round measurement acquisition with downstream classification guarantees

Finally, we consider an application of the multi-round measurement protocol from Section 4.3 that aims to
accelerate MRI while providing a probabilistic guarantee on downstream classification of multiple pathologies.
For this we combine the multi-round setup from Section 5.2.3 with the multi-label setup from Section 5.2.2.
In particular, we take measurements over B = 5 rounds at acceleration rates R ∈ {16, 8, 4, 2, 1} but stop as
soon as the prediction interval lengths for all L pathology labels fall below3 τ = 0.1. Rather than exclusively
considering L = 5 pathology labels, we experiment with L ∈ {2, 3, 4, 5} to investigate the effect of L. Here,
L = l corresponds to the l most prevalent classes in the fastMRI+ training data.

For a desired accepted coverage of 1−α = 0.9, Fig. 9(a) plots EAC versus the number of labels L. There we see
that all methods meet the desired coverage for all L, which shows that the multi-round methodology proposed
in Section 4.3 is flexible with regards to the choice of conformal predictor. Figure 9(b) plots Ravg versus the
number of labels L for different conformal predictors. This figure shows that the proposed CQR+Minimax
method yields the highest Ravg across all tested values of L. It also shows that Ravg decreases with L, which
is expected because the stopping criterion becomes more strict with larger L.

6 Conclusion

Motivated by the need for multi-target uncertainty quantification in imaging inverse problems, we propose
a minimax-based approach to multi-target conformal prediction. The proposed method aims to minimize
the maximum single-target coverage, maxk Pr{Z0,k ∈ C

λ̂(Dcal),k
(Ẑ0)}, across targets k subject to a marginal

3We chose τ = 0.1 purely for the sake of demonstration. A practically meaningful τ could be attained with expert guidance
through clinical trials.
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joint-coverage guarantee of the form Pr{∩K
k=1Z0,k ∈ C

λ̂(Dcal),k
(Ẑ0)} ≥ 1−α, where α is user-specified. Because

our approach is an instance of split conformal prediction, it guarantees marginal joint-coverage with finite-sized
tuning and calibration datasets under the usual test/calibration exchangeability condition. Furthermore,
it converges to the minimax solution as the size of the tuning and calibration sets grow to infinity. In
addition to our minimax multi-target conformal predictor, we propose a multi-round measurement acquisition
scheme that guarantees marginal coverage of the final-round prediction interval. We numerically compared
the proposed minimax multi-target predictor to several existing methods on a synthetic-data problem as
well as four accelerated-MRI problems and found that the proposed minimax method gives better balanced
single-target coverages while guaranteeing joint marginal coverage. In addition, we numerically investigated
the proposed multi-round measurement scheme and confirmed that it provides marginal accepted coverage
when used with a variety of conformal predictors.

Limitations

There are several limitations to this work. First, like with many conformal prediction methods, the joint-
coverage guarantee (9) holds only for prediction/target pairs (Ẑi, Zi) that are statistically exchangeable
over the test and calibration data. Furthermore, to prove that our approach is asymptotically minimax, we
assumed that the nonconformity scores {Si,k}n+ntune

i=1 are i.i.d. Further work is needed to generalize these
restrictions, and the works Tibshirani et al. (2019), Barber et al. (2023), Cauchois et al. (2024) suggest
modifications that address non-exchangeability. In addition, the proposed applications to MRI are preliminary,
in that rigorous clinical trials are needed before they are adopted in practice.

Broader impact statement

We expect that our methodology will positively impact the field of imaging inverse problems by providing
prediction intervals on multiple estimation targets that involve the (unknown) true image. These intervals
inform the practitioner of how much uncertainty the measurement-and-reconstruction process introduces to
downstream tasks, and whether the collected measurements are sufficient for a given reconstruction method.
Furthermore, the proposed multi-round acquisition protocol allows one to collect fewer measurements while
still providing guarantees on estimation performance. However, clinicians must be careful when interpreting
the results, understanding, for example, that our coverage guarantees are marginal and not conditional. As
such, they hold only when averaged over many different test samples and calibration sets, rather than for a
specific test sample and/or calibration set. Furthermore, they hold only when the test sample is statistically
exchangeable with the calibration samples.
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A Proof of Theorem 2

In this section, we show that λ̂(dcal) in (27) converges to λ̂ in (23) as n → ∞ and ntune → ∞. We first recall
the definition of almost-sure convergence.
Definition 1 (Almost-sure convergence). Let (Xn)n≥1 be a sequence of random variables defined on a
probability space (Ω, F , P ). We say that Xn converges almost surely (or with probability 1) to a random
variable X, denoted as Xn

a.s.−−→ X, if

Pr
{

lim
n→∞

Xn = X
}

= 1.

That is, the outcomes ω ∈ Ω under which Xn(ω) converges to X(ω) occur with probability one.

We now state two theorems that form the basis for our convergence analysis.
Theorem 3 (Glivenko-Cantelli (Fristedt & Gray, 2013)). Suppose X1, . . . , Xn are i.i.d random variables
with CDF F (·). Define the empirical CDF as

F̂ (x) ≜ |{i : Xi ≤ x, i = 1, . . . , n}|
n

.

Then F̂ (·) converges uniformly to F (·) almost surely, i.e.

sup
x∈R

|F̂ (x) − F (x)| a.s.−−→ 0.

Theorem 4. Let X1, X2, . . . , Xn be i.i.d random variables with CDF F (·). Define the quantile at level
p ∈ (0, 1) as

Q(p) = inf{x : F (x) ≥ p}

and the empirical quantile at level p ∈ (0, 1) as

Qn(p) = inf{x : F̂ (x) ≥ p},

where F̂ (·) is the empirical CDF. For a fixed level p, construct the n-dependent level

γn = ⌈p(n + 1)⌉
n

,

which approaches p as n → ∞. If F (·) is continuous and strictly increasing at Q(p), then

Qn(γn) a.s−−→ Q(p).

That is, the empirical quantile at level γn converges almost surely to the true quantile at level p.

Proof. First, we analyze the convergence of γn. Observe that

γn = ⌈p(n + 1)⌉
n

= p(n + 1) + ∆n

n
= p + p + ∆n

n
(44)

where ∆n ∈ [0, 1) accounts for the rounding of the ceiling function. Thus

p < γn < p + 2
n

, (45)

and limn→∞ γn = p. Next, we look to bound Qn(γn) as n → ∞. For any fixed ϵ > 0, and assuming F (·) is
continuous and strictly increasing at Q(p), we have

F (Q(p) − ϵ) < p < F (Q(p) + ϵ).
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And by Theorem 3, the Glivenko-Cantelli theorem, F̂ (·) converges uniformly to F (·) almost surely. This
means that, for any δ > 0, there almost surely exists an N such that, for all n ≥ N and for all x ∈ R,

|F̂ (x) − F (x)| ≤ δ.

By choosing
δ < min{p − F (Q(p) − ϵ), F (Q(p) + ϵ) − p}

we get

F (Q(p) − ϵ) + δ < p < F (Q(p) + ϵ) − δ, (46)

and so

F̂ (Q(p) − ϵ) < p < F̂ (Q(p) + ϵ) (47)

for all n ≥ N . We now establish two intermediate results.

Lemma 5. For sufficiently large n, we have Qn(γn) ≥ Q(p) − ϵ.

Proof. We prove the claim using contradiction. Suppose that Qn(γn) < Q(p) − ϵ. Then, due to the
non-decreasing property of F̂ (·), we have

F̂ (Qn(γn)) ≤ F̂ (Q(p) − ϵ) (48)

for any n. Furthermore, since F̂ (Qn(γn)) ≥ γn for any n by the definition of the empirical quantile, and since
γn > p from (45), we have

F̂ (Q(p) − ϵ) ≥ γn > p. (49)

However, (49) contradicts (47) when n ≥ N . This implies that Qn(γn) ≥ Q(p) − ϵ for sufficiently large n. ■

Lemma 6. For sufficiently large n, we have Qn(γn) ≤ Q(p) + ϵ.

Proof. We prove the claim using contradiction. Suppose that Qn(γn) > Q(p) + ϵ. Recall that, by definition,
Qn(γn) = inf{x : F̂ (x) ≥ γn}. Thus if Q(p) + ϵ < Qn(γn) then

F̂ (Q(p) + ϵ) < γn. (50)

And recall from (46) that F (Q(p) + ϵ) − δ > p, or equivalently that

F (Q(p) + ϵ) − δ

2 > p + δ

2 . (51)

From Theorem 3, the Glivenko-Cantelli theorem, F̂ (·) converges uniformly to F (·) almost surely. This means
that, for the given δ, there almost surely exists an N ′ such that, for all n ≥ N ′ and any x ∈ R,

|F̂ (x) − F (x)| ≤ δ

2 ⇒ F̂ (x) ≥ F (x) − δ

2 . (52)

Combining (51) and (52), we have that, for all n ≥ N ′,

F̂ (Q(p) + ϵ) ≥ F (Q(p) + ϵ) − δ

2 > p + δ

2 .

From (45), we see that, for n ≥ 4/δ,
γn < p + 2

n
≤ p + δ

2 .

Thus, for sufficiently large n, we have
F̂ (Q(p) + ϵ) > γn,

which contradicts (50). This implies that Qn(γn) ≤ Q(p) + ϵ for large n. ■
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Lemma 5 and Lemma 6 hold almost surely for an arbitrary ϵ > 0, and together say that

Q(p) − ϵ ≤ Qn(γn) ≤ Q(p) + ϵ

for sufficiently large n. Since we can make ϵ arbitrarily small, we have that

lim
n→∞

Qn(γn) = Q(p),

almost surely, and thus Qn(γn) a.s.−−→ Q(p).

Having established Theorem 3 and Theorem 4, we now return to our main objective, which is proving that
the λ̂(dcal) in (27) converges to the λ̂ in (23). For clarity, we restate Theorem 2 here.
Theorem (Restatement of Theorem 2). For each target component k = 1, . . . , K, suppose that the non-
conformity scores {Si,k}n+ntune

i=1 are i.i.d with CDF FSk
(·), and for T ≜ maxk FSk

(Sk), suppose that FT (·) is
continuous and strictly increasing at the (1−α)-level quantile of T . Then λ̂(dcal) from (27) converges to λ̂
from (23) almost surely as n → ∞ and ntune → ∞.

Proof. We first analyze the effect of ntune → ∞ for an arbitrary fixed n. Recall that the empirical CDF
F̂Sk

(·) of the nonconformity score for the kth component is computed as in (24) using the tuning samples
{Si,k}n+ntune

i=n+1 . From Theorem 3, F̂Sk
(·) converges uniformly to the CDF FSk

(·) almost surely as ntune → ∞.
As a result, it follows that for each calibration nonconformity score Si,k, where i ∈ {1, . . . , n}, we have

Si,k ≜ F̂Sk
(Si,k) a.s.−−→ FSk

(Si,k)

as ntune → ∞, recalling the definition of the transformed score Si,k from (25). Let us now consider the
maximum transformed score Si ≜ maxk{Si,k}K

k=1 defined in (26). Since the maximum function is continuous
everywhere on RK and F̂Sk

(Si,k) a.s.−−→ FSk
(Si,k), the continuous mapping theorem implies that

Si = max
k

F̂Sk
(Si,k) a.s.−−→ max

k
FSk

(Si,k) ≜ Ti

as ntune → ∞. Because {Si,k}n
i=1 are assumed to be i.i.d with CDF FSk

(·), we see that {Ti}n
i=1 are i.i.d with

CDF FT (·) for T ≜ maxk FSk
(Sk).

Next, we analyze the effect of n → ∞. Let us denote the n-sample empirical quantile of T as Qn(·) and the
quantile of T as Q(·). Recall from (27) that

λ̂(Dcal) = Qn

(
⌈(1 − α)(n + 1)⌉

n

)
.

Because FT (·) is assumed to be continuous and strictly increasing at Q(1 − α), Theorem 4 establishes that,
as n → ∞,

λ̂(Dcal) = Qn

(
⌈(1 − α)(n + 1)⌉

n

)
a.s.−−→ Q(1 − α). (53)

Finally, recall the definition of λ̂ from (23):

λ̂ = arg min
λ

λ s.t. Pr{∩K
k=1FSk

(Sk) ≤ λ} ≥ 1 − α.

The constraint can be rewritten as

Pr{max
k

FSk
(Sk) ≤ λ} = Pr{T ≤ λ} ≥ 1 − α,

which allows (23) to be rewritten as

λ̂ = arg min
λ

λ s.t. Pr{T ≤ λ} ≥ 1 − α. (54)
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Table 3: Number of positive samples in the non-fat-suppressed subset of the fastMRI+ knee dataset.

Label Positive Training Samples Positive Validation Samples
Meniscus Tear 1921 335
Cartilage - Partial Thickness loss/defect 871 176
Joint Effusion 225 41
Bone-Fracture/Contusion/dislocation 97 6
Bone - Subchondral edema 76 21

Table 4: Classifier performance on the fastMRI+ validation set.

Label Accuracy Precision Recall AUROC
Meniscus Tear 0.6595 0.3005 0.9784 0.889
Cartilage - Partial Thickness loss/defect 0.6184 0.1558 0.8988 0.8564
Joint Effusion 0.9031 0.1356 0.8000 0.9465
Bone-Fracture/Contusion/dislocation 0.7715 0.0060 0.5000 0.7971
Bone - Subchondral edema 0.5704 0.0127 0.5714 0.6338
Average 0.7046 0.1221 0.7497 0.8246

But the λ̂ in (54) is simply the (1 − α)-level quantile of T . In other words,

λ̂ = inf{λ : FT (λ) ≥ 1 − α} = Q(1 − α). (55)

Finally, combining (53) with (55), we conclude that

λ̂(Dcal)
a.s.−−→ λ̂

as ntune → ∞ and n → ∞.

B Classifier Details

We train the multi-label classifier on the K = 5 labels with the most annotations in the non-fat-suppressed
subset of the fastMRI+ knee data from Zhao et al. (2022). Table 3 shows the number of positive samples for
each of those labels. Note that images with multiple instances of the same pathology only count as a single
positive sample.

We implement and train the multi-label classifier using nearly the same procedure as Wen et al. (2024). In
particular, we start by initializing a standard ResNet-50 (He et al., 2016) with the pretrained ImageNet
weights from (Deng et al., 2009), after which we reduce the number of final-layer outputs to K = 5. Then we
pretrain the network in a self-supervised fashion using the (unlabeled) non-fat-suppressed fastMRI knee data
following the SimCLR procedure from Chen et al. (2020) with a learning rate of 0.0002, batch size of 128,
and 500 epochs. Finally, we perform supervised fine-tuning using binary cross-entropy loss on the fastMRI+
data, where we address class imbalance by weighting the loss contribution from each class by the ratio of
negative labels to positive labels for that particular class. To encourage adversarial robustness, we use the
same l2-bounded gradient ascent attack as Wen et al. (2024), and we train the classifier for 150 epochs with a
batch size of 128, learning rate of 5e−5, and weight decay of 1e−7. Finally, we save the model checkpoint
with the lowest validation loss. Performance on the validation dataset is shown in Table 4.
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