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ABSTRACT

Cooperative multi-agent reinforcement learning (MARL) faces the challenge of
adapting to multiple tasks with varying agents and targets. Previous multi-task
MARL approaches require costly interactions to simultaneously learn or fine-tune
policies in different tasks. However, the situation that an agent should generalize
to multiple tasks with only offline data from limited tasks is more in line with the
needs of real-world applications. Since offline multi-task data contains a variety of
behaviors, an effective data-driven approach is to extract informative latent variables
that can represent universal skills for realizing coordination across tasks. In this
paper, we propose a novel Offline MARL algorithm to Discover coordInation Skills
(ODIS) from multi-task data. ODIS first extracts task-invariant coordination skills
from offline multi-task data and learns to delineate different agent behaviors with
the discovered coordination skills. Then we train a coordination policy to choose
optimal coordination skills with the centralized training and decentralized execution
paradigm. We further demonstrate that the discovered coordination skills can assign
effective coordinative behaviors, thus significantly enhancing generalization to
unseen tasks. Empirical results in cooperative MARL benchmarks, including the
StarCraft multi-agent challenge, show that ODIS obtains superior performance in a
wide range of tasks only with offline data from limited sources.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL) has drawn broad attention in addressing
problems like video games, sensor networks, and autopilot (Peng et al., 2017; Cao et al., 2013;
Gronauer & Diepold, 2022; Yun et al., 2022; Xue et al., 2022b). Since recent MARL methods mainly
focus on learning policies in one single task with simulating environments (Sunehag et al., 2018;
Rashid et al., 2020; Lowe et al., 2017; Foerster et al., 2018), there exist two obstacles when applying
them to real-world problems. One is poor generalization when facing tasks with varying agents
and targets, where the practical demand is to adapt to multiple tasks rather than learning every new
task from scratch (Omidshafiei et al., 2017). The other is potentially high costs and risks caused by
real-world interactions through an under-learning policy (Levine et al., 2020).

Multi-agent systems are expected to perform flexibly among multiple general scenarios where the
agents and targets may differ. Multi-task MARL is one promising way to realize such flexibility and
generalizability. Previous related works mainly focus on training simultaneously in a pre-defined task
set (Omidshafiei et al., 2017; Iqbal et al., 2021) or fine-tuning a pre-trained policy to target tasks (Hu
et al., 2021; Zhou et al., 2021; Qin et al., 2022a) in an online manner. Although these approaches
exhibit promising performance in some tasks, the expensive cost of online interactions hinders their
applications to a broader range of tasks. Offline RL (Levine et al., 2020), aiming at learning policies
from a static dataset, is anticipated to remove the need for interactions during training. However,
most current offline RL methods conservatively regularize the learned policies towards datasets
(Wu et al., 2019; Kumar et al., 2019; Yang et al., 2021; Fujimoto et al., 2019). Albeit conservatism
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Figure 1: An illustration of coordination skill discovery from multi-task offline data. Offline data from
marine battle source tasks like 5m and 8m of StarCraft multi-agent challenge contain generalizable
coordination skills like focusing fire, moving back, etc. After discovering these coordination skills
from source data, a coordination policy learns to appropriately choose coordination skills through
an offline RL training process. When facing the unseen task 10m, the agents reuse the discovered
coordination skills to achieve coordination and accomplish the task.

effectively mitigates the distribution shift issue of offline learning, it will restrict the learned policy
to be similar to the behavior policy, leading to severe degradation of generalization when facing
unseen data (Chen et al., 2021b). Therefore, leveraging multi-agent offline data to train a policy with
adequate generalization ability across tasks is in demand.

This paper finds that the underlying generic skills can greatly help to improve the policy’s general-
ization. Indeed, humans are good at summarizing skills from several tasks and reusing these skills
in other similar tasks. Taking Figure 1 as an example, we try to learn a policy from some StarCraft
multi-agent challenge (Samvelyan et al., 2019) tasks, 5m and 8m, where we need to control five or
eight marines separately to beat the same number of enemy marines. Moreover, we aim to directly
deploy the learned policy without fine-tuning to an unseen target task, 10m, a task with ten marines
on each side. One effective way to achieve this is to extract skills from the source tasks, like focusing
fire on the same enemy or moving back low-health units, and then apply these skills to the target task.
Although these tasks have different state spaces or action spaces, these skills can be applicable to
a broad range of tasks. We refer to such task-invariant skills as coordination skills since they are
beneficial to realize coordination in different tasks. In other words, extracting such coordination skills
from known tasks facilitate generalization via reusing them in unseen tasks.

Towards learning and reusing coordination skills in a data-driven way, we propose a novel Offline
MARL algorithm to Discover coordInation Skills (ODIS), where agents only access a multi-task
dataset to discover coordination skills and learn generalizable policies. ODIS first extracts task-
invariant coordination skills that delineate agent behaviors from a coordinative perspective. These
shared coordination skills will help agents perform high-level decision-making without considering
specific action spaces. ODIS then learns a coordination policy to select appropriate coordination
skills to maximize the global return via the centralized training and decentralized execution (CTDE)
paradigm (Oliehoek et al., 2008). Finally, we deploy the coordination policy directly to unseen tasks.
Our proposed coordination skill is noteworthy compared to previous works in online multi-agent
skill discovery (Yang et al., 2020; He et al., 2020), which utilize hierarchically learned skills to
improve exploration and data efficiency. Empirical results show that ODIS can learn to choose proper
coordination skills and generalize to a wide range of tasks only with data from limited sources. To
the best of our knowledge, it is the first attempt towards unseen task generalization in offline MARL.

2 RELATED WORK

Multi-task MARL. Multi-task RL and transfer learning in MARL can improve sample efficiency
with knowledge reuse (da Silva & Costa, 2021). The knowledge reuse across multiple tasks may
be impeded by varying populations and input dimensions, asking for policy networks with flexible
structures like graph neural networks (Agarwal et al., 2020) or self-attention mechanisms (Hu
et al., 2021; Zhou et al., 2021). Recent works consider utilizing policy representations or agent
representations to realize multi-task adaptations (Grover et al., 2018). EPL (Long et al., 2020)
introduces an evolutionary-based curriculum learning approach to scale up the number of agents.
REFIL (Iqbal et al., 2021) adopts randomized entity-wise factorization for multi-task learning. UPDeT
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(Hu et al., 2021) utilizes transformer-based value networks to realize adaptations among alterable
populations and inputs. However, these approaches only consider simultaneous learning or fine-tuning
in different tasks. Training generalizable policies for deployment in unseen tasks remains a challenge.

Offline MARL. Offline RL attracts tremendous attention for its data-driven training paradigm without
interactions with the environment (Levine et al., 2020). Offline MARL is a promising research
direction (Zhang et al., 2021; Formanek et al., 2023) that trains policies from a static dataset. Previous
work (Fujimoto et al., 2019) discusses the distribution shift issue in offline learning and considers
learning behavior-constrained policies to relieve extrapolation error from unseen data estimations
(Wu et al., 2019; Kumar et al., 2019). Existing offline MARL methods often try to adopt conservative
constraints upon current online MARL methods, which either extend policy gradient algorithms to
multi-agent cases (Lowe et al., 2017; Foerster et al., 2018; Iqbal & Sha, 2019; Wang et al., 2021b;
Xue et al., 2022a) or adopt Q-learning paradigms with value decomposition (Sunehag et al., 2018;
Rashid et al., 2020; Wang et al., 2021a; Cao et al., 2021; Yuan et al., 2022b;a). Most offline MARL
methods consider training policies with sufficient conservatism (Yang et al., 2021; Jiang & Lu, 2021;
Pan et al., 2022; Guan et al., 2023). These methods can help learn an effective policy from offline
data, but the conservative learning manner may significantly degrade the performance when facing
unseen tasks, as learned policies will fail to generalize with out-of-distribution inputs. Some data
sharing methods in single-agent RL (Li et al., 2020; Yu et al., 2021; 2022) consider properly using
multi-task data for offline policy training. However, potential coordination skills from multi-task
MARL data cannot be efficiently exploited by these single-agent data sharing methods.

Skill discovery with hierarchical structures. Hierarchical RL (Barto & Mahadevan, 2003; Tang
et al., 2019; Pateria et al., 2021) provides an approach to realizing temporal abstraction and hierarchi-
cal organization. Skill discovery methods adopt the hierarchical structure to discover unsupervised
high-level skills with state empowerment from information theory (Eysenbach et al., 2019; Campos
et al., 2020; Sharma et al., 2020). This diverse skill discovery methods from online RL can also be
extended to MARL. HSD (Yang et al., 2020) learns latent skill variables via centralized training and
MASD (He et al., 2020) considers performing skill discovery in an adversarial way. However, these
methods are usually tailored to address data efficiency in online RL, where the proposed skills are
different from our multi-task reusable skills towards generalizable MARL. On the other hand, recent
works in offline RL also exhibit that high-level latent actions help tackle extrapolation errors from
out-of-distribution actions and learn primitive behaviors (Zhou et al., 2020; Ajay et al., 2021). A
data-driven approach to extracting and reusing high-level multi-agent behaviors (i.e., our proposed
coordination skills) can be a practical and promising direction toward multi-task generalization.

3 BACKGROUND

3.1 COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING

A cooperative multi-agent task can be modeled as a decentralized partially observable Markov
decision process (Dec-POMDP) (Oliehoek & Amato, 2016) T = ⟨I,S,A, P,Ω, O,R, γ⟩, where
I = {1, . . . , n} is the set of agents, S is the set of global states, A is the set of actions, and Ω is
the set of observations. At each time step with state s ∈ S, each agent i ∈ I only acquires an
observation oi ∈ Ω drawn from the observation function O(s, i), and then chooses its action ai ∈ A.
The joint action a = (a1, . . . , an) leads to a next state s′ ∼ P (s′ | s,a) and the corresponding global
reward r = R(s,a). The target is to find a joint policy π(a | τ ) to maximize the discounted return
Qπ(τ ,a) = E [

∑∞
t=0 γ

tR(st,at) | s0 = s,a0 = a,π], where γ ∈ [0, 1) is a discount factor that
trades off between current and future rewards. Here τ = (τ1, . . . , τn), where τi denotes the trajectory
(o1i , a

1
i , . . . , o

t−1
i , at−1

i , oti) of agent i.

Most value-based cooperative MARL algorithms apply the CTDE paradigm (Sunehag et al., 2018;
Rashid et al., 2020; Wang et al., 2021a), where agents can learn a decomposable global value function
Qtot(τ ,a) represented by a mixing network in the training phase and use the decomposed value
function Qi(τi, ai) for decentralized decision. The global value function parameterized by θ can be
learned by minimizing the squared temporal difference (TD) error (Sutton & Barto, 2018), using
experience replay and a target network parameterized by θ− to stabilize training (Mnih et al., 2015):

min
θ

Eτ ,a,r,τ ′

[(
r + γmax

a′
Qtot

(
τ ′,a′; θ−

)
−Qtot(τ ,a; θ)

)2
]
.
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Figure 2: The overall framework of ODIS. ODIS is trained with multi-task offline data from limited
tasks and can be deployed to different tasks with varying agents and targets. (1) ODIS learns a
state encoder and an action decoder from unlabeled multi-task data (without reward information) to
discover coordination skills across different tasks. (2) ODIS performs centralized training to learn
coordination policies that can maximize the global return with the help of a mixing network. (3) In
multi-task decentralized execution, ODIS individually chooses a coordination skill according to the
coordination policy and decodes specific actions using the action decoder.

3.2 MULTI-TASK MULTI-AGENT REINFORCEMENT LEARNING

Recent multi-task MARL works consider policy learning among two or several cooperative multi-
agent tasks (Hu et al., 2021; Iqbal et al., 2021). In our settings, we focus on learning and deploying
policies in a static task set {Ti}. A major difficulty in multi-agent multi-task transfer is varying
agent numbers and observation/action dimensions. To learn a transferable or universal policy across
different tasks, previous methods (Hu et al., 2021) develop a population-invariant network structure
by utilizing the transformer structure (Vaswani et al., 2017). For the individual Q-network, the
observation oi of agent i can be decomposed into self/environmental information oown

i and other
entities’ information {ootheri,j }. The network further generates embeddings of Q,K,V and calculate
the attention output according to the attention mechanism:

Q = MLPQ([o
own
i , ootheri,1 , . . . ]), K = MLPK([o

own
i , ootheri,1 , . . . ]), V = MLPV([o

own
i , ootheri,1 , . . . ]),

[eown
i , eotheri,1 , . . . ] = softmax

(
QKT

√
dK

)
V, dK = dim(K).

The output representations eown
i , eotheri,1 , . . . can be further utilized to derive Q-values, where eown

i can
be used for actions without interactions with other entities and eotheri,j can be used for interactive actions
with entity j. To handle the partial observability, we can append an additional historical embedding
ht−1
i from the last time step t− 1 to the transformer input sequence and acquire corresponding ht

i. It
is notable that this decomposition technique with transformer models can also be applied to process
the state information in mixing networks or other modules (Zhou et al., 2021; Qin et al., 2022a) to
effectively handle multi-task inputs with varying data shapes.

4 METHOD

In this section, we will describe our proposed Offline MARL algorithm to Discover coordInation
Skills (ODIS) from a static multi-task dataset D, which is a fully data-driven approach to learning
generalizable policies for multiple tasks. As shown in Figure 2, ODIS begins with unsupervised
coordination skill discovery that leverages a state encoder q(zi | s,a, i) to extract the coordination
skill zi, . . . , zn for each agent using the unlabeled portion of D without reward information. The
discovered coordination skill zi represents an abstraction of coordinative behaviors, which can be
decoded to a task-related action with local information τi by an individual action decoder p(ai | τi, zi).
Both the state encoder and the action decoder are trained in an unsupervised learning manner to
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discover effective and distinct coordination skills. After that, ODIS learns a coordination policy to
select appropriate coordination skills with offline RL training in the entire dataset D. This offline
MARL training process adopts the CTDE paradigm with a conservative learning manner. In the
decentralized execution phase, the agent can use individual coordination policy to choose the best
coordination skill and decode it to a specific action with the pre-trained action decoder. The high-level
decision-making of ODIS promotes generalization across different tasks, especially in unseen tasks
with varying targets and controllable agents. To tackle the alterable data shapes from multi-task
settings, we design flexible and powerful network structures based on the transformer model to
process input data, whose details are illustrated in Appendix C.

4.1 COORDINATION SKILL DISCOVERY

Coordination skill discovery is expected to extract effective coordination skills from offline data. We
assume the coordination skill zi for agent i is a discrete variable from a finite set Z , where |Z| is a
hyper-parameter varying among tasks. We leverage a state encoder q(zi | s,a, i) using the sampled
state s and joint action a to obtain a coordination skill zi for agent i. By feeding states and joint
actions as input, we can ensure the state encoder outputs appropriate coordination skills from the
global perspective. In practice, we implement the state encoder with a transformer model, which
simultaneously outputs coordination skills z = (z1, . . . , zn) of all agents in a sequence. Moreover,
we need to derive task-related actions from the coordination skill in decentralized executions, where
acquiring global information is impractical for individual agents. Thus we further introduce an action
decoder that can predict a task-related action âi ∼ p(· | τi, zi) with an agent i’s local information
τi and the chosen coordination skill zi. The training objective is to maximize the likelihood of the
real action ai from data, along with the Kullback-Leibler divergence between q(zi | s,a, i) and an
uniform prior p̃(zi) as a regularization, following β-VAE (Higgins et al., 2017). The regularization
with a uniform distribution of coordination skills can prevent the state encoder from choosing similar
coordination skills for all inputs, thereby helping to discover distinguished coordination skills. The
objective for coordination skill learning is presented as follows:

Ls(θa, ϕs) = −E(s,τ ,a)∼D

[
n∑

i=1

Ezi∼q(·|s,a,i) [log p(ai | τi, zi)]− βDKL (q(· | s,a, i) ∥ p̃(·))

]
,

(1)
where ϕs and θa denote the parameters of the state encoder and the action decoder, respectively, and
β is the regularization coefficient. Our implementations of the state encoder and the action decoder
utilize the transformer structure to handle alterable dimensions of states, observations, and actions
in multi-task settings. The key technique is to decompose input into sequence data as illustrated in
Section 3.2 and project each portion to an embedding with a fixed dimension. In Appendix C we
provide detailed descriptions of the network structures.

4.2 COORDINATION POLICY LEARNING

After coordination skill discovery, we train an action decoder that can generate a task-related action
using an agent’s local information and input coordination skills. Therefore, we can further consider
developing high-level decision-making on discovered coordination skills. As our coordination skills
are universal for a given task set, we can train a generalizable coordination policy to decide on
appropriate coordination skills for different tasks.

We adopt a value-based MARL method with the CTDE paradigm to learn a global value function
Qtot(τ , z) that can be decomposed into individual value functions Q1(τ1, z1), . . . , Qn(τn, zn). The
global value function Qtot(τ , z) is trained with the squared TD loss as follows:

LTD(θv) = E(s,τ ,a,r,τ ′)∼D,z

[(
r + γmax

z′
Qtot

(
τ ′, z′; θ−v

)
−Qtot(τ , z; θv)

)2
]
, (2)

where we use θv to denote all parameters in value networks including individual and mixing networks,
θ−v to denote parameters of target networks. Note that in Equation 2, we cannot directly acquire the
joint coordination skill z from the offline dataset D. Therefore, the state encoder q(zi | s,a, i) trained
in the coordination discovery phase is reused to provide a joint coordination skill z = (z1, . . . , zn)
from the state and joint action. When estimating Q-targets, we choose the joint coordination skill z′

by selecting each coordination skill z′i with maximal individual Q-value Qi(τ
′
i , z

′
i) to avoid search in
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the large joint coordination skill space, following previous MARL methods (Sunehag et al., 2018;
Rashid et al., 2020). When the value decomposition method satisfies the individual-global-max (IGM)
principle (Wang et al., 2021a), the action selection with individual value functions is correct. We
adopt a QMIX-style mixing network to ensure that it can satisfy this property.

Our design of the individual value network and mixing network also utilizes the powerful transformer
structure. Practically, the individual value network calculates local Q-values by taking representations
from an observation encoder as input. The observation encoder has the same network structure as the
aforementioned action decoder to process local trajectory information. The mixing network takes the
global state information as input to generate non-negative weights for combining individual Q-values.
We also provide detailed descriptions of these networks in Appendix C.

As the coordination skills from the previous discovery phase are obtained with global information,
it remains a challenge that the coordination policy may not explicitly learn to choose effective
coordination skills only with local observations. We find that directly learning this from the TD
objective will be extremely inefficient. Therefore, it will be necessary to introduce an auxiliary
objective to learn better representations that can guide the coordination policy towards a coordinative
perspective. When updating parameters of the observation encoder, we use the last layer of the
previous state encoder to process output representations from the observation encoder and thus
acquire a coordination skill distribution q̂i(· | τi). We expect that the output distribution can be
similar to the pre-trained state encoder q(· | s,a, i). We calculate the KL-divergence between them
to update the observation encoder as the consistent loss Lc below:

Lc(ϕo) =

n∑
i=1

E(s,τ ,a)∼D [DKL (q̂i(· | τi) ∥ q(· | s,a, i))] , (3)

where ϕo denotes parameters of the observation encoder in individual value network.

To tackle the out-of-distribution issue in offline RL, we also adopt the popular conservative Q-learning
(CQL) method (Kumar et al., 2020). To be concise, the total loss term in the coordination exploitation
phase is presented as Lp(θv, ϕo) = LTD(θv) + αLCQL(θv) + λLc(ϕo), where α and λ are two
coefficients and LCQL is the loss term from CQL.

Decentralized Execution. When performing decentralized executions in a test task, we use local
information to calculate Q-values for each coordination skill with individual value network Qi(τi, zi)
and then choose the coordination skill with maximal Q-value. The action decoder further uses the
coordination skill and local information to provide a task-related action for the particular task.

5 EXPERIMENTS

In this section, we design experiments to evaluate the following properties of ODIS1. (a) The ability of
multi-task generalization, including zero-shot generalization in unseen tasks. We conduct experiments
in specially designed task sets from the StarCraft multi-agent challenge (SMAC) (Samvelyan et al.,
2019) using offline data with diverse qualities. (b) The semantics of discovered coordination skills.
We analyze the coordination skill usage in several test episodes from different tasks to investigate
how ODIS makes decisions with different coordination skills. (c) Effectiveness of the ODIS structure.
We conduct ablation studies to find out how the components of ODIS affect performance.

5.1 PERFORMANCES ON MULTI-TASK GENERALIZATION

Baselines. We introduce comparable baselines and perform several adaptations since none of the
existing multi-task MARL algorithms considers offline learning. UPDeT (Hu et al., 2021) is a
state-of-the-art multi-agent transfer learning baseline that adopts a transformer-based individual
network to tackle multi-agent transfer. However, the mixing network of UPDeT is not designed
for simultaneous multi-task learning. As its alternatives, we implement two variants of UPDeT by
adopting the transformer-based mixing network of ODIS (UPDeT-m), and the linear decomposable
network of VDN (Sunehag et al., 2018) (UPDeT-l), respectively. We also keep the same transformer
structures and adopt the same CQL loss to these UPDeT baselines. Therefore, UPDeT-m can be

1Code available at https://github.com/LAMDA-RL/ODIS
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Table 1: Average test win rates of the final policies in the task set marine-hard with different data
qualities. The listed performance is averaged over five random seeds. We abbreviate asymmetric task
names for simplicity. For example, the task name “5m6m“ denotes the SMAC map “5m_vs_6m”.
Results of BC-best stands for the best test win rates between BC-t and BC-r.

Task Expert Medium
BC-best UPDeT-l UPDeT-m ODIS (ours) BC-best UPDeT-l UPDeT-m ODIS (ours)

Source tasks

3m 97.7 ± 2.6 71.0 ± 16.6 82.8 ± 16.0 98.4 ± 2.7 65.4 ± 14.7 56.6 ± 14.2 51.2 ± 3.4 85.9 ± 10.5
5m6m 50.4 ± 2.3 12.1 ± 12.6 17.2 ± 28.0 53.9 ± 5.1 21.9 ± 3.4 5.6 ± 4.8 6.3 ± 4.9 22.7 ± 7.1

9m10m 95.3 ± 1.6 26.6 ± 12.0 3.1 ± 5.4 80.4 ± 8.7 63.8 ± 10.9 34.4 ± 13.9 28.5 ± 10.2 78.1 ± 3.8

Unseen Tasks

4m 92.1 ± 3.5 28.6 ± 21.6 33.0 ± 27.1 95.3 ± 3.5 48.8 ± 21.1 21.6 ± 17.2 14.1 ± 5.2 61.7 ± 17.7
5m 87.1 ± 10.5 40.1 ± 25.9 33.6 ± 40.2 89.1 ± 10.0 76.6 ± 14.1 77.4 ± 16.0 67.2 ± 21.3 85.9 ± 11.8

10m 90.5 ± 3.8 33.9 ± 25.2 54.7 ± 44.4 93.8 ± 2.2 56.2 ± 20.6 36.8 ± 20.7 32.9 ± 11.3 61.3 ± 11.3
12m 70.8 ± 15.2 10.9 ± 18.9 17.2 ± 28.0 58.6 ± 11.8 24.0 ± 10.5 4.0 ± 5.3 3.2 ± 3.8 35.9 ± 8.1

7m8m 18.8 ± 3.1 0.8 ± 1.4 0.0 ± 0.0 25.0 ± 15.1 1.6 ± 1.6 2.4 ± 2.6 0.0 ± 0.0 28.1 ± 22.0
8m9m 15.8 ± 3.3 1.6 ± 1.6 0.0 ± 0.0 19.6 ± 6.0 3.1 ± 3.8 3.1 ± 3.1 2.3 ± 2.6 4.7 ± 2.7

10m11m 45.3 ± 11.1 0.8 ± 1.4 0.0 ± 0.0 42.2 ± 7.2 19.7 ± 8.9 2.4 ± 1.4 4.0 ± 3.4 29.7 ± 15.4
10m12m 1.0 ± 1.5 0.0 ± 0.0 0.0 ± 0.0 1.6 ± 1.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.6 ± 1.6
13m15m 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2.3 ± 2.6 0.6 ± 1.3 0.0 ± 0.0 0.0 ± 0.0 1.6 ± 1.6

Medium-Expert Medium-Replay

Source Tasks

3m 67.7 ± 23.7 50.1 ± 23.9 85.2 ± 17.9 73.6 ± 22.0 81.1 ± 8.8 27.3 ± 25.9 41.4 ± 20.1 83.6 ± 14.0
5m6m 31.3 ± 6.3 2.3 ± 2.6 1.6 ± 1.6 9.4 ± 2.2 25.0 ± 3.1 0.8 ± 1.4 0.8 ± 1.4 16.6 ± 4.7

9m10m 26.0 ± 13.9 27.7 ± 24.1 24.3 ± 18.7 31.3 ± 14.5 33.4 ± 13.1 2.3 ± 4.1 0.8 ± 1.4 34.4 ± 8.0

Unseen Tasks

4m 81.3 ± 18.9 41.0 ± 8.0 43.9 ± 39.0 82.8 ± 13.5 61.5 ± 9.0 23.4 ± 15.5 35.9 ± 12.6 55.6 ± 14.5
5m 74.0 ± 2.9 65.7 ± 10.1 33.6 ± 40.2 82.8 ± 17.7 75.0 ± 24.2 54.7 ± 23.5 61.7 ± 20.3 96.1 ± 4.1

10m 78.1 ± 6.7 39.8 ± 20.1 32.8 ± 38.1 82.8 ± 16.8 82.4 ± 8.2 8.6 ± 8.7 11.0 ± 7.8 84.4 ± 15.1
12m 64.8 ± 24.3 9.4 ± 7.9 9.4 ± 8.6 81.3 ± 20.6 83.4 ± 4.5 2.3 ± 4.1 2.3 ± 2.6 84.4 ± 6.6

7m8m 13.3 ± 4.5 4.0 ± 4.2 2.3 ± 4.1 15.6 ± 4.4 7.3 ± 6.4 2.3 ± 2.6 1.6 ± 2.7 9.4 ± 2.2
8m9m 10.2 ± 4.6 5.6 ± 4.8 9.5 ± 8.6 10.9 ± 4.7 11.5 ± 3.9 0.8 ± 1.4 0.8 ± 1.4 11.7 ± 8.7

10m11m 26.6 ± 4.7 8.0 ± 12.2 11.8 ± 8.1 33.6 ± 8.9 46.8 ± 6.6 2.3 ± 4.1 0.8 ± 1.4 35.9 ± 5.2
10m12m 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.6 ± 1.6 1.6 ± 2.7 0.0 ± 0.0 0.0 ± 0.0 2.3 ± 1.4
13m15m 0.8 ± 1.4 0.0 ± 0.0 0.0 ± 0.0 2.3 ± 2.6 1.6 ± 1.6 0.0 ± 0.0 0.0 ± 0.0 2.4 ± 1.4

seen as an ODIS variant without coordination skill discovery but learning an RL policy to directly
select actions. We also implement behavior cloning baselines since they are popular for offline tasks.
We introduce a transformer-based behavior cloning baseline (BC-t) that has the same structure as
ODIS. As decision transformer methods (Chen et al., 2021a) prevail in recent offline literature, we
also append return-to-go information to BC-t and thus get a baseline BC-r. More details of our
implementations and hyper-parameters are reported in Appendix C. We notice that a recent work,
MADT (Meng et al., 2021), proposed to train a multi-agent decision transformer with offline training
and online tuning. However, we find that MADT is generally not comparable in our settings and put
related discussion in Appendix G.

StarCraft multi-agent micromanagement tasks. Following previous multi-task MARL methods
(Hu et al., 2021; Qin et al., 2022a), we extend the original SMAC maps and sort out three task sets.
In each task set, agents will control some units like marines, stalkers, and zealots, but the numbers of
controllable agents and target enemies differ from tasks. We refer to our three task sets as marine-easy,
marine-hard, and stalker-zealot. Detailed descriptions of these task sets can be found in Appendix A.
We adopt the popular QMIX algorithm (Rashid et al., 2020) to collect four classes of offline datasets
with different qualities. Following guidelines in single-agent D4RL offline RL benchmarks (Fu et al.,
2020; Qin et al., 2022b), the four different dataset qualities are labeled as expert, medium, medium-
expert, and medium-replay. We report the detailed properties of these datasets in Appendix B.

We conduct experiments in three task sets with four different data qualities. We train all methods
with offline data only from three source tasks and evaluate them in a wide range of unseen tasks.
The average test win rates in the task set marine-hard are shown in Table 1, while results of the two
other task sets are deferred to Appendix I. The tables report the best test win rates between BC-t
and BC-r as BC-best. We find that ODIS generally outperforms other baselines in both source tasks
and unseen tasks. ODIS can discover and exploit common coordination skills from multi-task data,
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Figure 3: An illustration of the semantics of discovered coordination skills. We plot the percentages
of used coordination skills in two maps from (a) the marine-easy task set and (b) the stalker-zealot
task set. We anticipate the semantics of each coordination skill and visualize several test frames from
corresponding time steps in (c) 5m and 12m maps and (d) 2s3z and 3s4z maps. Agents in colored
circle choose the corresponding coordination skill with the same color in legends of (a) and (b).

resulting in superior and stable performance compared with UPDeT-l and UPDeT-m, which cannot
generalize well among different levels of tasks. We notice that behavior cloning methods present
comparable performance, especially in expert datasets, indicating that our proposed transformer
structure also enhances generalization across tasks. However, these behavior cloning baselines cannot
effectively exploit multi-task data to further improve its performance, although we add additional
global return-to-go information in BC-r.

To evaluate the validity of ODIS, we also compare ODIS with other single-task MARL approaches
that can perform offline training, including ICQ (Yang et al., 2021) and QPLEX (Wang et al., 2021a).
These works can adopt offline learning manners but cannot directly learn from multi-task data. We
find that ODIS can exhibit comparable performance with these single-task offline MARL methods
even in the unseen task of ODIS. These experiments reveal that the multi-task offline training manner
of ODIS can indeed promote generalization to different tasks. We defer the experimental results and
detailed discussion to Appendix D.

Cooperative navigation tasks. To further validate the effectiveness of ODIS, we also conduct
experiments in several cooperative navigation tasks from the multi-agent particle environment (Lowe
et al., 2017), where varying numbers of agents learn to reach corresponding landmarks. We notice
that ODIS still shows superior performance in both source and unseen tasks. The results and detailed
descriptions of these tasks can be found in Appendix F.

5.2 SEMANTICS OF DISCOVERED COORDINATION SKILLS

To investigate how the discovered coordination skill helps decision-making, we deploy ODIS agents
to different tasks and record chosen coordination skills in test episodes. As shown in Figure 3, we
exhibit the percentage of each coordination skill usage from policies learned in marine-easy and
stalker-zealot task sets with expert datasets. For the marine-easy task set in Figure 3(a), we adopt
a coordination skill number of three and find that the curves of each coordination skill are pretty
similar between a source task 5m and an unseen task 12m despite different episode lengths. Further
visualization shows that the three coordination skills represent different coordinative behaviors. The
agents learn to utilize skill 3 to disperse in different directions and then use skill 2 to advance. When
enemies are in the attack range, most agents choose skill 1 to focus fire on specific enemies, and a few
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(a) ODIS with multi-task/single-task coordination skill discovery (b) Performance of ODIS with/without consistent loss

Source tasks Unseen tasks

1e4 1e4

3m-medium 9m_vs_10m-medium

Figure 4: (a) average test win rates of ODIS when performing multi-task/single-task coordination
skill discovery. (b) average test win rates of ODIS with/without consistent loss.

agents choose skill 2 and skill 3 to pursue enemies or run away from fire. For the stalker-zealot task
set in Figure 3(b), we adopt a coordination skill number of four as the task is a little more complicated.
We exhibit the coordination skill usages in a source task 2s3z and an unseen task 3s4z, whose curves
are also similar. The visualization indicates that the chosen coordination skill may present different
semantics from marine-easy. In the beginning, agents use skill 4 to advance. When approaching
the enemies, some agents choose to attack nearby enemies with skill 2, and others learn to absorb
damage forwardly with skill 1. We find that the stalker, a melee unit, is more willing to draw enemy
fire than the ranging unit stalker. After that, a few agents will use skill 3 to attack enemies far away,
and more agents tend to choose skill 3 when nearby enemies fall.

5.3 ABLATION STUDIES

In ablation studies, we investigate the effectiveness of each component in our proposed ODIS structure.
First, we try to find whether discovering coordination skills from multiple tasks can yield better
performance in a particular task. We perform ODIS offline training separately with multi-task and
single-task coordination skill discovery. ODIS with multi-task coordination skill discovery can utilize
data from the two other tasks to discover potentially more effective coordination skills, while ODIS
with single-task coordination skill discovery can only access data from the corresponding task. In
coordination policy learning, both two approaches are learned from single-task data. Results in
Figure 4(a) show that ODIS with multi-task coordination skill discovery acquires better performance,
indicating that shared coordination skills across tasks can benefit other tasks.

We also conduct experiments to investigate our proposed consistent loss, which helps learn effective
local representations for choosing coordination skills from a coordinative perspective as the state
encoder does. We run experiments with two variants of ODIS with and without consistent loss in the
marine-hard task set and present average test win rates in three source tasks and four unseen tasks. As
shown in Figure 4(b), the performance of ODIS with consistent loss is significantly better than ODIS
without consistent loss, which shows the proposed loss can maintain the consistency of coordination
skills chosen between coordination skill discovery and coordination policy learning.

Furthermore, the number of coordination skills is a key hyper-parameter of ODIS, so we conduct ex-
periments to compare performances with different coordination skill numbers in Table 7. We find the
performance of ODIS is not sensitive with coordination skills numbers ranging from 3 to 16. However,
adopting less skill numbers or random selection will significantly fail, as discussed in Appendix E.

6 CONCLUSION

We propose ODIS, an offline MARL algorithm applying coordination skill discovery from multi-
task data, realizing multi-task generalization in a fully data-driven manner. ODIS extracts and
utilizes coordination skills shared among different tasks and thus acquires superior performance in
both source and unseen tasks. The effectiveness of ODIS indicates that underlying coordination
skills from multi-task data can be crucial for generalization in cooperative MARL. As the discrete
coordination skill might be limited when facing dissimilar tasks, developing general representations
among dissimilar tasks from multi-task or many-task data is a promising direction in the future. In
addition, research on offline MARL algorithms and benchmarks in various domains will also be
helpful to real-world applications of MARL.
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A DESCRIPTIONS OF DEFINED TASK SETS IN SMAC

The StarCraft multi-agent challenge (SMAC) (Samvelyan et al., 2019) is a widely used cooperative
multi-agent environment containing different types of StarCraft micromanagement tasks. In this paper,
we sort out three task sets and call them marine-easy, marine-hard, and stalker-zealot, respectively.
The marine-easy and marine-hard task sets include several marine battle tasks where several ally
marines need to beat the same number or a larger number of enemy marines. In the marine-easy task
set, the number of enemy marines equals the number of ally marines, while tasks from the marine-hard
task set contain both equal numbers and larger numbers of enemy marines. The stalker-zealot task set
includes several tasks with symmetric stalkers and zealots on each side. We exhibit illustrations of
these tasks in Figure 5(a) and Figure 5(b). For our goal of generalization to unseen tasks with limited
sources, we select three tasks from the task set as training tasks, and the other tasks are only for
evaluation. The detailed properties of these task sets can be seen in Tables 2, 3, and 4, respectively.

Agent 1

Agent 2Agent 3

(a) 5m_vs_6m (SMAC) (b) 2s3z (SMAC) (c) Cooperative navigation (3 agents)

Figure 5: Illustrations of different kinds of tasks in the experiments section. (a) The marine battle task
5m_vs_6m of SMAC, where agents control 5 controllable marines to beat 6 built-in-AI marines. (b)
The heterogeneous task 2s3z of SMAC, where agents control 2 stalkers and 3 zealots to beat the same
number of built-in-AI units. (c) The cooperative navigation task with 3 agents from the multi-agent
particle environment, where 3 agents need to reach corresponding landmarks.

Table 2: Descriptions of tasks in marine-easy task set.
Task type Task Ally units Enemy units Properties

Source tasks
3m 3 Marines 3 Marines homogeneous & symmetric
5m 5 Marines 5 Marines homogeneous & symmetric
10m 10 Marines 10 Marines homogeneous & symmetric

Unseen tasks

4m 4 Marines 4 Marines homogeneous & symmetric
6m 6 Marines 6 Marines homogeneous & symmetric
7m 7 Marines 7 Marines homogeneous & symmetric
8m 8 Marines 8 Marines homogeneous & symmetric
9m 9 Marines 9 Marines homogeneous & symmetric
11m 11 Marines 11 Marines homogeneous & symmetric
12m 12 Marines 12 Marines homogeneous & symmetric

B PROPERTIES OF OFFLINE DATASETS

As stated in the experiments section, we construct offline datasets based on the PyMARL implemen-
tation2 of the MARL algorithm QMIX (Rashid et al., 2020). Following the popular single-agent
offline reinforcement learning benchmark D4RL (Fu et al., 2020), we collect data with four types
of qualities called expert, medium, medium-expert, and medium-replay, respectively. Definitions of
these four qualities are listed below:

• The expert dataset contains trajectory data collected by a QMIX policy trained with
2, 000, 000 steps of environment interactions. We also record the test win rate of the
trained QMIX policy (as the expert policy) for constructing medium datasets.

2https://github.com/oxwhirl/pymarl
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Table 3: Descriptions of tasks in marine-hard task set.
Task type Task Ally units Enemy units Properties

Source tasks
3m 3 Marines 3 Marines homogeneous & symmetric

5m_vs_6m 5 Marines 6 Marines homogeneous & asymmetric
9m_vs_10m 9 Marines 10 Marines homogeneous & asymmetric

Unseen tasks

4m 4 Marines 4 Marines homogeneous & symmetric
5m 5 Marines 5 Marines homogeneous & symmetric

10m 10 Marines 10 Marines homogeneous & symmetric
12m 12 Marines 12 Marines homogeneous & symmetric

7m_vs_8m 7 Marines 8 Marines homogeneous & asymmetric
8m_vs_9m 8 Marines 9 Marines homogeneous & asymmetric

10m_vs_11m 10 Marines 11 Marines homogeneous & asymmetric
10m_vs_12m 10 Marines 12 Marines homogeneous & asymmetric
13m_vs_15m 13 Marines 15 Marines homogeneous & asymmetric

Table 4: Descriptions of tasks in stalker-zealot task set.
Task type Task Ally units Enemy units Properties

Source tasks

2s3z 2 Stalkers,
3 Zealots

2 Stalkers,
3 Zealots heterogeneous & symmetric

2s4z 2 Stalkers,
4 Zealots

2 Stalkers,
4 Zealots heterogeneous & symmetric

3s5z 3 Stalkers,
5 Zealots

3 Stalkers,
5 Zealots heterogeneous & symmetric

Unseen tasks

1s3z 1 Stalkers,
3 Zealots

1 Stalkers,
3 Zealots heterogeneous & symmetric

1s4z 1 Stalkers,
4 Zealots

1 Stalkers,
4 Zealots heterogeneous & symmetric

1s5z 1 Stalkers,
5 Zealots

1 Stalkers,
5 Zealots heterogeneous & symmetric

2s5z 2 Stalkers,
5 Zealots

2 Stalkers,
5 Zealots heterogeneous & symmetric

3s3z 3 Stalkers,
3 Zealots

3 Stalkers,
3 Zealots heterogeneous & symmetric

3s4z 3 Stalkers,
4 Zealots

3 Stalkers,
4 Zealots heterogeneous & symmetric

4s3z 4 Stalkers,
3 Zealots

4 Stalkers,
3 Zealots heterogeneous & symmetric

4s4z 4 Stalkers,
4 Zealots

4 Stalkers,
4 Zealots heterogeneous & symmetric

4s5z 4 Stalkers,
5 Zealots

4 Stalkers,
5 Zealots heterogeneous & symmetric

• The medium dataset contains trajectory data collected by a QMIX policy (as the medium
policy) whose test win rate is half of the expert QMIX policy.

• The medium-expert dataset mixes data from the expert dataset and the medium dataset to
acquire a more diverse dataset.

• The medium-replay dataset is the replay buffer of the medium policy, containing trajectory
data with lower qualities.

As we consider generalization to unseen tasks, we only require offline datasets in the source tasks of
the three task sets mentioned above. For the expert and medium datasets, we collect 2, 000 trajectories
to construct each dataset, and thus the medium-expert dataset contains 4, 000 trajectories as a mixture
of the expert and medium data. The trajectory number of the medium-replay dataset depends on
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Table 5: Properties of offline datasets with different qualities.
Task Quality # Trajectories Average return Average win rate

3m

expert 2000 19.8929 0.9910
medium 2000 13.9869 0.5402
medium-expert 4000 16.9399 0.7656
medium-replay 3630 N/A N/A

5m

expert 2000 19.9380 0.9937
medium 2000 17.3288 0.7411
medium-expert 4000 18.6334 0.8674
medium-replay 771 N/A N/A

10m

expert 2000 19.9438 0.9922
medium 2000 16.6297 0.5413
medium-expert 4000 18.2595 0.7626
medium-replay 571 N/A N/A

5m_vs_6m

expert 2000 17.3424 0.7185
medium 2000 12.6408 0.2751
medium-expert 4000 14.9916 0.4968
medium-replay 32607 N/A N/A

9m_vs_10m

expert 2000 19.6140 0.9431
medium 2000 15.5049 0.4146
medium-expert 4000 17.5594 0.6789
medium-replay 13731 N/A N/A

2s3z

expert 2000 19.7655 0.9602
medium 2000 16.6279 0.4465
medium-expert 4000 18.1967 0.7034
medium-replay 4505 N/A N/A

2s4z

expert 2000 19.7402 0.9509
medium 2000 16.8735 0.4965
medium-expert 4000 18.3069 0.7237
medium-replay 6172 N/A N/A

3s5z

expert 2000 19.7850 0.9518
medium 2000 16.3126 0.3114
medium-expert 4000 18.0488 0.6316
medium-replay 11528 N/A N/A

the number of sampling trajectories before the medium policy stops training. When performing
multi-task offline training in our experiments, we select up to 2, 000 trajectories of data from each
source task. When the medium-replay dataset contains less than 2, 000 trajectories of data, we select
all trajectories. Data from different tasks are merged into a multi-task dataset to ensure that the policy
is trained with multi-task data simultaneously.

C STRUCTURES, HYPER-PARAMETERS, AND TRAINING DETAILS OF ODIS

In this section, we will exhibit the network structure, hyper-parameter choices, and other training
details of ODIS. As illustrated in Figure 6, the network structure of ODIS mainly contains four
components, the action decoder, state encoder, observation encoder, and mixing network, respectively.
These four components apply the attention mechanism to process alterable state and observation
spaces. The observation encoder and the action decoder take the observation as input, and the state
encoder and the mixing network take the global state as input.

As presented in the preliminaries, we decompose the observation information oi of an agent i into
several portions including its own/environmental information oown

i and other entities’ information
{ootheri,j }. Each kind of portion is fed into a separate fully connected layer to acquire an embedding
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Figure 6: The network structure of ODIS. In coordination skill discovery, ODIS leverages (a) a local
action decoder and (b) a global state encoder to discover coordination skills from multi-task offline
data. In coordination policy learning, ODIS performs MARL with the CTDE paradigm to train indi-
vidual coordination policies with the assistance of (c) a mixing network. The individual coordination
policy contains (d) an observation encoder to extract representations from local information.

Table 6: Hyper-parameters of ODIS.
Hyper-parameter Value

hidden layer dimension 64

attention dimension 64

α 5.0

β 0.001

λ 5.0

coordination skill number 3 (marine-easy); 5 (marine-hard); 4 (stalker-zealot)

steps of coordination skill discovery 15000

optimizer Adam

learning rate 0.0005

with the dimension of 64. For the self-attention network, we generate Q,K,V with fully connected
layers from the embedding sequence and then perform self-attention (Vaswani et al., 2017) with the
input and output dimensions of 64. The output sequence can be formalized as the representation of
the agent i’s own information eown

i and the representation to other entities {eotheri,j } in agent i’s view.
To handle the partial observability, we append the input sequence with a historical embedding ht−1

i
when applying self-attention and thus acquire the output of ht

i, following the UPDeT structure (Hu
et al., 2021). For the observation encoder, we only select the own information representation eown

i to
calculate Q-values and feed it into the individual network or the coordination skill classifier. For the
action decoder, we embed the chosen skill to a vector of 64 dimension and concatenate it with the
output sequence. When predicting actions, we divide available actions into interactive actions and
non-interactive actions, where the interactive action means an action that needs to interact with an
entity and non-interactive action means an action that is only relevant to an agent itself. We output
the values of non-interactive actions from eown

i and the values of interactive actions with entity j
from corresponding eotheri,j and further concatenate them to select the action with the maximal value.
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Figure 7: Average test win rates of ODIS, ICQ, and QPLEX in three maps of the marine-easy task set
with medium datasets (top), medium datasets (middle), and medium-expert datasets (bottom). Here
ODIS is trained with offline data from three source tasks, 3m, 5m, and 10m, as shown in Table 2,
while ICQ and QPLEX are trained with corresponding single-task data. Note that 8m is an unseen
task for ODIS, where ODIS can still acquire comparable performance with the two other offline
MARL algorithms using offline data of 8m for training.

We also decompose the state information s into several portions including the environment information
senv, ally information {sallyi }, and other entities’ information {sotherj }. Like the process of the
observation, we feed them into a separate fully connected layer to acquire embeddings with the
dimension of 64 and further calculate Q,K,V and perform self-attention. The dimensions of Q and
K are set to 8 to reduce computation as the state may contain numerous entities, while V remains
a dimension of 64. The output sequence consists of the representation of each portion. For the
mixing network, we utilize all ally information to generate non-negative weights by calculating the
absolute value of MLP outputs. For the state encoder, we additionally append the action ai to the
corresponding ally information sallyi to perform self-attention and use ally representations from the
output sequence as the input of the coordination skill classifier. The coordination skill classifier
contains a fully connected layer along with the softmax function to compute the probability of each
coordination skill. The individual value network also contains a fully connected layer to transform
local representations into Q-values.

Besides the above network structure, ODIS needs two training phases to perform coordination skill
discovery and coordination policy learning separately. We implement ODIS with the aforementioned
PyMARL framework to ensure that the mechanics irrelevant to the algorithm are the same as previous
methods. Other specific hyper-parameters are listed in Table 6. All the tabular results show the
performance of ODIS with 50, 000 optimization steps, and the steps of the coordination policy
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Table 7: Average test win rates of the final policies trained with different coordination skill numbers
(abbreviated as “skill num.”) in the task set marine-hard with medium data quality. The listed
performance is averaged over five random seeds. We abbreviate asymmetric task names for simplicity.
For example, the task name “5m6m” denotes the SMAC map “5m_vs_6m”. The column name “rand.
skill” stands for random coordination skill selection.

Task skill num. 1 skill num. 3 skill num. 5 skill num. 8 skill num. 16 rand. skill

Source tasks

3m 67.8 ± 12.1 72.7 ± 10.2 85.9 ± 10.5 85.2 ± 8.9 80.5 ± 5.6 0.0 ± 0.0
5m6m 21.4 ± 5.5 22.7 ± 10.5 22.7 ± 7.1 14.8 ± 11.8 18.8 ± 6.2 0.0 ± 0.0

9m10m 66.1 ± 9.2 47.7 ± 8.1 78.1 ± 3.8 45.3 ± 12.2 65.6 ± 12.7 0.0 ± 0.0

Unseen Tasks

4m 44.3 ± 12.5 78.1 ± 9.4 61.7 ± 17.7 65.6 ± 5.8 64.1 ± 10.9 0.0 ± 0.0
5m 73.2 ± 12.4 57.0 ± 24.5 85.9 ± 11.8 78.1 ± 4.9 100.0 ± 0.0 0.0 ± 0.0

10m 37.1 ± 23.4 55.5 ± 30.7 61.3 ± 11.3 53.9 ± 7.1 62.5 ± 36.0 0.0 ± 0.0
12m 22.7 ± 26.8 32.0 ± 37.8 35.9 ± 8.1 15.6 ± 13.1 30.5 ± 25.4 0.0 ± 0.0

7m8m 1.6 ± 1.6 3.1 ± 5.4 28.1 ± 22.0 1.6 ± 1.6 4.7 ± 5.2 0.0 ± 0.0
8m9m 3.1 ± 3.8 1.6 ± 1.6 4.7 ± 2.7 1.6 ± 1.6 3.1 ± 3.1 0.0 ± 0.0

10m11m 21.2 ± 6.7 21.1 ± 13.5 29.7 ± 15.4 3.1 ± 5.4 10.2 ± 8.1 0.0 ± 0.0
10m12m 0.0 ± 0.0 0.0 ± 0.0 1.6 ± 1.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
13m15m 0.0 ± 0.0 0.0 ± 0.0 1.6 ± 1.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Table 8: Properties of offline datasets with different qualities in cooperative navigation tasks.

Task Quality # Trajectories Average return Average success rate

CN-2 expert 2000 1.0000 1.0000
medium 2000 0.6152 0.6152

CN-4 expert 2000 0.7173 0.7173
medium 2000 0.4273 0.4273

learning phase are the subtraction of the coordination skill discovery steps from the total steps. The
training process of ODIS with an NVIDIA GeForce RTX 2080Ti GPU and a 32-core CPU costs
12-14 hours typically. Our released implementation of ODIS, along with the provided offline datasets,
follows Apache License 2.0, the same as the PyMARL framework.

D COMPARISONS WITH SINGLE-TASK OFFLINE MARL METHODS

Although ODIS aims at the multi-task offline MARL domain, we also compare ODIS with offline
MARL methods trained in single-task in the marine-easy task set, where ODIS utilizes three source
tasks for training. We select two baselines, ICQ and QPLEX, for comparison. ICQ (Yang et al.,
2021) is a conservative-style offline MARL algorithm that can handle the severe distribution shift
issue in offline MARL. QPLEX (Wang et al., 2021a) claims the IGM-complete value decomposition
can benefit offline training. As the two baselines cannot leverage multi-task offline data, we feed
the corresponding task dataset into these algorithms to train policies independently. We evaluate the
performance in three tasks, including 5m, 10m, and 8m, where 8m is an unseen task for ODIS. To train
the two baselines in task 8m, we also collect data with a QMIX policy like previous statements, and
the properties of the data are exhibited in Table 5. The data in 8m is only used for the two baselines
but remains unseen to ODIS. We conduct experiments with medium, expert, and medium-expert data
qualities. As shown in Figure 7, ODIS outperforms other baselines in both source tasks 5m and 8m
and the unseen task 8m, indicating that with learning through multi-task data, ODIS can not only
perform better than other single-task offline MARL methods in most tasks but present tremendous
zero-shot task generalization to unseen tasks. ICQ can generally acquire a good performance in
expert data, but its conservative paradigm may limit the performance. QPLEX struggles in these
datasets without particular tuning, and we speculate that it is because our datasets cannot provide
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Table 9: Average test success rates in the cooperative navigation task set with different data qualities.
Expert

Task ODIS (ours) BC-best UPDeT-m UPDeT-l QMIX (online)

Source tasks

CN-2 100.0 ± 0.0 99.0 ± 1.5 90.6 ± 6.8 91.7 ± 9.7 100.0
CN-4 46.2 ± 13.6 43.8 ± 7.7 15.6 ± 9.2 5.2 ± 5.3 71.7

Unseen tasks

CN-3 85.6 ± 7.6 72.9 ± 2.9 47.9 ± 10.3 30.2 ± 14.5 83.4
CN-5 20.0 ± 7.8 12.5 ± 6.8 2.1 ± 2.9 0.0 ± 0.0 0.0

Medium

Task ODIS (ours) BC-t UPDeT-m UPDeT-l QMIX (online)

Source tasks

CN-2 65.0 ± 5.4 50.0 ± 5.1 35.4 ± 12.1 47.9 ± 9.7 100.0
CN-4 28.7 ± 6.7 24.0 ± 3.9 4.2 ± 2.9 8.3 ± 2.9 71.7

Unseen tasks

CN-3 43.8 ± 5.2 43.8 ± 2.6 14.6 ± 3.9 26.0 ± 5.9 83.4
CN-5 8.1 ± 2.5 7.3 ± 3.9 0.0 ± 0.0 1.0 ± 1.5 0.0

diverse data for QPLEX to perform policy exploitation and lead to large extrapolation errors. The
empirical results show that discovering and sharing coordination skills can be efficient and powerful
across different tasks.

E EXPERIMENTS WITH DIFFERENT COORDINATION SKILL NUMBERS

The size of the coordination skill set Z is a key hyper-parameter in ODIS, which represents the
number of actions that can be chosen in the coordination policy. We conduct experiments in the
marine-hard task-set with medium quality to investigate whether decision-making in the coordination
skill space works. We select the coordination skill number of 5 as the default setting for our main
experiments. As shown in Table 7, we can find that the choices of coordination skill numbers 3, 5, 8,
and 16 exhibit comparable performances in most unseen tasks, indicating that ODIS does not need a
sophisticated tuning at the coordination skill number. We finally choose the coordination skill number
of 5 in this task set because it obtains a generally better performance. On the other hand, we can
find that a coordination skill number of 1 cannot generalize to most unseen tasks, as its performance
entirely depends on the reconstructive ability of the action decoder with only 1 coordination skill that
can be selected. We also evaluate the performance of ODIS with randomly choosing a coordination
skill when the total coordination skill number is 5, where the coordination policy is not trained and
we can only rely on the action decoder for decision-making. The results of ODIS with random
skills exhibit all average test win rates of 0, indicating that the discovered coordination skill can be
sufficiently utilized by the action decoder to generate task-relevant actions and cannot be simply
disentangled from the framework.

F RESULTS ON COOPERATIVE NAVIGATION TASKS

To further evaluate the effectiveness of ODIS, we design and conduct experiments in a task set
from the cooperative navigation environment. Cooperative navigation is a series of tasks from the
multi-agent particle environment (MPE) raised by MADDPG (Lowe et al., 2017). In this environment,
a number of agents try to reach corresponding landmarks and only acquire a reward of 1 when they
all successfully reach the landmarks. A visualization of this task can be found in Figure 5(c). We add
discrete control support to the original cooperative navigation tasks, where agents can execute actions
of moving towards four directions and a “none” operation. We design a task set in the cooperative
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Table 10: Average test win rates of ODIS and MADT in the marine-hard task set with expert and
medium data qualities.

Expert Medium

Task ODIS (ours) MADT Task ODIS (ours) MADT

Source tasks

3m 98.4 ± 2.7 88.5 ± 3.9 3m 85.9 ± 10.5 4.2 ± 1.5
5m_vs_6m 53.9 ± 5.1 3.1 ± 0.0 5m_vs_6m 22.7 ± 7.1 21.9 ± 2.6

9m_vs_10m 80.4 ± 8.7 1.0 ± 1.5 9m_vs_10m 78.1 ± 3.8 14.6 ± 7.4

Unseen tasks

4m. 95.3 ± 3.5 83.3 ± 5.3 4m 61.7 ± 17.7 31.2 ± 15.9
5m 89.1 ± 10.0 75.0 ± 6.8 5m 85.9 ± 11.8 63.5 ± 12.6

10m 93.8 ± 2.2 1.0 ± 1.5 10m 61.3 ± 11.3 33.3 ± 14.1
12m 58.6 ± 11.8 0.0 ± 0.0 12m 35.9 ± 8.1 0.0 ± 0.0

7m_vs_8m 25.0 ± 15.1 1.0 ± 1.5 7m_vs_8m 28.1 ± 22.0 1.0 ± 1.5
8m_vs_9m 19.6 ± 6.0 0.0 ± 0.0 8m_vs_9m 4.7 ± 2.7 0.0 ± 0.0

10m_vs_11m 42.2 ± 7.2 0.0 ± 0.0 10m_vs_11m 29.7 ± 15.4 0.0 ± 0.0
10m_vs_12m 1.6 ± 1.6 0.0 ± 0.0 10m_vs_12m 1.6 ± 1.6 0.0 ± 0.0
13m_vs_15m 2.3 ± 2.6 0.0 ± 0.0 13m_vs_15m 1.6 ± 1.6 0.0 ± 0.0

Table 11: Average test win rates of ODIS and MADT in a small task set (including source tasks of
3m and 5m, and unseen tasks of 4m and 6m) with medium data qualities.

Source Task ODIS (ours) MADT Unseen Task ODIS (ours) MADT

3m 85.9 ± 10.5 60.4 ± 10.3 4m 95.3 ± 3.5 51.0 ± 5.3
5m 85.9 ± 11.8 74.0 ± 3.9 6m 78.0 ± 9.0 10.4 ± 7.4

navigation environment by setting different numbers of agents and naming the cooperative navigation
task with n agents CN-n. Thus we set up four tasks named CN-2, CN-3, CN-4, and CN-5, respectively.
We collect different qualities of data using the QMIX algorithm. The detailed dataset properties are
shown in Table 8.

We compare ODIS with the aforementioned baselines, including BC-t, BC-r, UPDeT-m, and UPDeT-l,
and evaluate in the expert and medium datasets, respectively. The results are exhibited in Table 9.
ODIS outperforms other baselines in both expert data and medium data. As a reference, we also put
the results of online QMIX algorithms in the table. We find that in two unseen tasks, CN-3 and CN-5,
ODIS trained with expert data can acquire better performances than a learn-from-scratch QMIX
algorithm. A notable observation is that ODIS can generalize to CN-5, while an online QMIX will
fail to learn a valid policy in this task.

G EVALUATIONS OF ODIS AND MADT

MADT (Meng et al., 2021) is a recent approach to training a multi-agent decision transformer with
offline training and optional online tuning. However, MADT is not a baseline originally designed for
simultaneous multi-task training. We compare ODIS with MADT in the marine-hard task set with
expert and medium data qualities, and exhibit the results in Table 10. We find MADT cannot generally
learn a valid policy in our multi-task settings, and we provide the following three explanations:

1. MADT utilizes feature encoding and action masking techniques to deal with different input
shapes. All inputs are encoded into the same shape with zero padding, and the action space
has to be aligned to the maximal action space with unavailable actions masked. These
techniques may induce poor generalization when the input shape changes dramatically (e.g.,
the observation size of task 3m is 42 while for 10m_vs_11m it is 132).
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2. The multi-task generalization setting proposed by MADT adopts a task set with similar
input shapes (i.e., the observation size range is 25-48), which makes the above issue less
significant.

3. Our implemented baselines (including ODIS, BC-t, and raised UPDeT variants) decompose
input with particularly designed observation and state encoders to handle the varying shape
issue better. It means our baseline design is generally fair and comparable. The benefits of
our encoding method can be seen from the comparison between MADT and BC-t.

To validate the observed phenomena, we additionally conduct a simple experiment where the input
shapes of the task set are restricted to a small range. The results are shown in Table 11. MADT
generalizes better in this small task set, while ODIS can still outperform MADT.

Table 12: Average test win rates of ODIS in the marine-hard task set with expert data of 2000
trajectories (ODIS-2000) and 1000 trajectories (ODIS-1000).

Task ODIS-2000 ODIS-1000

Source tasks
3m 98.4 ± 2.7 100.0 ± 0.0

5m_vs_6m 53.9 ± 5.1 60.0 ± 3.6
9m_vs_10m 80.4 ± 8.7 80.0 ± 21.8

Unseen tasks

4m 95.3 ± 3.5 92.5 ± 4.7
5m 89.1 ± 10.0 90.0 ± 11.1
10m 93.8 ± 2.2 74.4 ± 27.8
12m 58.6 ± 11.8 56.9 ± 25.1

7m_vs_8m 25.0 ± 15.1 33.8 ± 17.7
8m_vs_9m 19.6 ± 6.0 32.5 ± 10.8

10m_vs_11m 42.2 ± 7.2 36.2 ± 25.8
10m_vs_12m 1.6 ± 1.6 3.8 ± 5.0
13m_vs_15m 2.3 ± 2.6 0.0 ± 0.0

H PERFORMANCE ON DIFFERENT SIZES OF DATASETS

When constructing the offline datasets, we choose the number of trajectories mainly based on recent
offline MARL works (Yang et al., 2021) and the single-agent offline RL benchmark D4RL (Fu
et al., 2020). As datasets in D4RL are transition-based, we estimate the corresponding trajectory
numbers based on the average episode length in our evaluated benchmarks. We finally chose a
trajectory number of 2000 for each task to compose multi-task offline datasets. We conduct additional
experiments in the expert dataset of the marine-hard task set to evaluate ODIS with datasets of 1000
trajectory numbers. The results are exhibited in Table 12. We find that ODIS-1000 can also present a
good performance, indicating that ODIS is not very sensitive to the data size.

Table 13: Test win rates of online QMIX algorithms in all test tasks. We abbreviate asymmetric
tasknames for simplicity. For example, the task name “5m6m” denotes the SMAC map “5m_vs_6m”.

Task 3m 4m 5m 6m 7m 8m 9m
QMIX win rate % 99.1 98.2 99.4 99.9 99.3 99.2 99.4

Task 10m 11m 12m 5m6m 6m7m 7m8m 8m9m
QMIX win rate % 99.2 99.4 99.6 71.9 74.3 88.8 93.1

Task 9m10m 10m11m 10m12m 13m15m 1s3z 1s4z 1s5z
QMIX win rate % 94.3 97.3 42.7 64.6 98.5 97.5 95.3

Task 2s3z 2s4z 2s5z 3s3z 3s4z 3s5z 4s3z
QMIX win rate % 96.0 95.1 94.4 95.1 87.0 95.1 94.6

Task 4s4z 4s5z
QMIX win rate % 84.1 91.6
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I ADDITIONAL RESULTS ON MULTI-TASK OFFLINE LEARNING IN SMAC

As stated in the experiments section, we conduct experiments in three designed task sets called
marine-easy, marine-hard, and stalker-zealot, respectively. As we have presented the empirical results
in the marine-hard task set in Table 1, we here exhibit the results in the marine-easy and stalker-zealot
task sets. The empirical results in the marine-easy task set are shown in Table 14, and the empirical
results in the stalker-zealot task set are shown in Table 15. As a reference, we also exhibit the online
QMIX performances in all tasks in Table 13. We find that ODIS generally outperforms other baselines
in most source and unseen tasks. A specific case is that the performance of ODIS is not so promising
in medium-replay data because the medium-replay data of marine-easy and stalker-zealot has very
low qualities and thus hinders ODIS from discovering effective coordination skills. Despite all that,
ODIS can still reach a similar performance compared to other baselines, indicating the validity of the
ODIS algorithm. In addition, ODIS can achieve comparable performances to online QMIX in some
unseen tasks with zero-shot generalization, showing the effectiveness of our proposed method.
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Table 14: Average test win rates in the marine-easy task set with different data qualities. Results of
BC-best stand for the best test win rates between BC-t and BC-r (the same to Table 15).

Task Expert Medium
BC-best UPDeT-l UPDeT-m ODIS BC-best UPDeT-l UPDeT-m ODIS

Source tasks

3m 94.5 ± 4.6 77.4 ± 16.8 83.6 ± 12.6 97.7 ± 2.6 67.2 ± 4.7 40.7 ± 19.7 60.2 ± 29.9 57.8 ± 9.2
5m 94.4 ± 7.6 34.8 ± 31.2 74.8 ± 22.9 95.3 ± 5.2 79.2 ± 5.9 70.2 ± 9.3 67.8 ± 5.9 82.8 ± 5.2

10m 86.1 ± 22.7 48.2 ± 39.6 83.6 ± 19.2 88.3 ± 20.3 63.1 ± 7.2 35.9 ± 10.5 48.8 ± 7.9 71.9 ± 6.6

Unseen Tasks

4m 91.2 ± 1.6 18.8 ± 4.1 53.0 ± 32.3 90.6 ± 7.0 62.5 ± 11.6 26.6 ± 23.4 41.7 ± 17.4 63.3 ± 16.1
6m 75.3 ± 22.6 9.1 ± 6.7 37.9 ± 8.6 79.7 ± 17.5 86.0 ± 4.7 40.2 ± 13.2 75.8 ± 22.7 89.8 ± 17.6
7m 70.3 ± 11.0 28.9 ± 6.4 44.2 ± 13.2 72.7 ± 16.9 100.0 ± 0.0 39.8 ± 19.4 65.2 ± 25.2 96.1 ± 1.4
8m 74.7 ± 16.5 31.0 ± 11.4 51.7 ± 26.2 80.9 ± 14.4 96.9 ± 2.2 18.2 ± 7.8 88.4 ± 13.7 97.7 ± 2.6
9m 97.7 ± 2.6 28.1 ± 15.5 76.3 ± 13.4 99.2 ± 1.4 78.9 ± 11.8 35.9 ± 14.7 64.8 ± 35.6 87.5 ± 2.2

11m 83.3 ± 11.8 20.3 ± 4.7 53.6 ± 22.4 83.6 ± 12.4 42.2 ± 4.7 26.6 ± 7.8 23.4 ± 11.8 64.7 ± 3.1
12m 56.7 ± 30.0 16.3 ± 6.4 44.3 ± 22.8 70.3 ± 30.2 29.7 ± 23.4 5.5 ± 7.8 13.5 ± 11.7 41.4 ± 6.0

Medium-Expert Medium-Replay

Seen Tasks

3m 81.3 ± 18.8 43.7 ± 30.9 48.4 ± 36.8 89.8 ± 9.7 77.8 ± 3.2 44.2 ± 13.5 29.7 ± 10.0 79.7 ± 4.7
5m 74.0 ± 2.9 45.6 ± 27.1 64.1 ± 17.9 83.7 ± 16.0 5.5 ± 5.6 16.1 ± 27.9 6.2 ± 10.8 3.1 ± 5.4

10m 90.6 ± 3.1 42.3 ± 26.0 68.8 ± 23.8 93.8 ± 4.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Unseen Tasks

4m 35.2 ± 38.0 53.5 ± 31.2 43.7 ± 25.0 57.8 ± 18.8 67.2 ± 4.7 25.5 ± 18.2 25.0 ± 22.6 25.0 ± 5.4
6m 42.2 ± 1.6 57.0 ± 25.1 47.7 ± 30.0 76.0 ± 6.0 7.8 ± 10.2 12.1 ± 21.0 0.0 ± 0.0 3.1 ± 5.4
7m 65.6 ± 16.4 32.0 ± 30.3 57.8 ± 32.9 66.4 ± 14.6 0.8 ± 1.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
8m 40.3 ± 42.6 35.9 ± 19.6 40.6 ± 19.3 43.8 ± 11.5 0.8 ± 1.4 0.8 ± 1.4 0.0 ± 0.0 1.6 ± 1.6
9m 70.8 ± 16.6 75.0 ± 9.4 47.7 ± 24.8 73.4 ± 16.2 0.8 ± 1.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

11m 55.5 ± 12.4 51.6 ± 35.9 85.9 ± 14.2 68.8 ± 20.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
12m 29.7 ± 29.8 19.7 ± 20.0 46.1 ± 15.5 62.5 ± 8.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Table 15: Average test win rates in the stalker-zealot task set with different data qualities.

Task Expert Medium
BC-best UPDeT-l UPDeT-m ODIS BC-best UPDeT-l UPDeT-m ODIS

Source tasks

2s3z 93.1 ± 4.6 53.1 ± 39.1 50.0 ± 33.4 97.7 ± 2.6 48.8 ± 9.8 30.6 ± 12.7 35.0 ± 23.0 49.2 ± 8.4
2s4z 78.1 ± 8.1 48.4 ± 24.3 23.4 ± 26.6 60.9 ± 6.8 12.5 ± 8.1 28.8 ± 4.1 18.8 ± 10.3 32.8 ± 12.2
3s5z 92.5 ± 4.2 40.6 ± 11.5 17.2 ± 19.8 87.5 ± 9.6 24.4 ± 12.4 15.0 ± 10.3 25.6 ± 24.2 28.9 ± 6.8

Unseen Tasks

1s3z 45.6 ± 23.8 26.6 ± 25.0 1.6 ± 1.6 76.6 ± 3.5 21.9 ± 37.6 33.1 ± 18.0 3.8 ± 5.0 41.4 ± 18.8
1s4z 60.0 ± 32.3 37.5 ± 31.9 26.6 ± 19.3 17.2 ± 10.5 6.2 ± 7.7 35.0 ± 7.2 2.5 ± 3.6 50.7 ± 7.5
1s5z 45.6 ± 26.9 14.8 ± 13.9 29.7 ± 26.4 2.5 ± 2.3 3.1 ± 2.6 13.1 ± 11.4 5.0 ± 4.2 14.1 ± 8.4
2s5z 75.6 ± 11.9 27.3 ± 19.3 23.4 ± 22.2 27.3 ± 6.0 14.4 ± 9.0 17.5 ± 9.2 16.9 ± 14.1 32.0 ± 4.6
3s3z 80.6 ± 9.1 49.2 ± 25.8 20.3 ± 10.9 89.1 ± 5.2 45.6 ± 14.6 23.8 ± 6.7 24.4 ± 28.6 23.4 ± 9.2
3s4z 92.5 ± 5.1 59.4 ± 16.4 12.5 ± 19.9 96.9 ± 2.2 40.0 ± 19.0 17.5 ± 10.0 28.8 ± 31.6 50.8 ± 15.5
4s3z 67.5 ± 19.8 50.8 ± 24.8 6.2 ± 4.4 64.1 ± 13.0 28.8 ± 26.4 3.1 ± 4.0 11.2 ± 18.0 13.3 ± 7.5
4s4z 53.1 ± 18.4 41.4 ± 16.0 7.8 ± 13.5 79.7 ± 10.9 20.0 ± 12.0 1.9 ± 2.5 1.2 ± 1.5 12.5 ± 7.0
4s5z 40.6 ± 19.1 28.1 ± 17.0 5.5 ± 7.8 86.7 ± 12.6 14.4 ± 8.5 5.0 ± 5.4 5.6 ± 8.5 7.0 ± 4.1
4s6z 48.1 ± 23.8 10.9 ± 7.2 4.7 ± 6.4 88.3 ± 8.4 3.8 ± 3.6 2.5 ± 2.3 1.9 ± 2.5 1.6 ± 1.6

Medium-Expert Medium-Replay

Seen Tasks

2s3z 57.5 ± 25.1 59.4 ± 20.8 57.5 ± 27.1 58.6 ± 15.5 3.1 ± 2.6 6.9 ± 10.7 14.4 ± 13.2 15.6 ± 18.2
2s4z 37.5 ± 15.3 32.0 ± 11.1 53.1 ± 24.6 41.4 ± 7.8 5.2 ± 7.4 6.2 ± 9.5 12.5 ± 9.7 7.8 ± 5.2
3s5z 63.1 ± 13.3 18.0 ± 11.8 35.0 ± 23.5 41.4 ± 18.5 31.3 ± 6.3 5.0 ± 7.0 20.0 ± 16.6 18.8 ± 3.1

Unseen Tasks

1s3z 55.6 ± 37.7 23.4 ± 14.1 4.4 ± 8.8 72.7 ± 12.2 24.0 ± 15.4 8.1 ± 10.4 0.0 ± 0.0 21.1 ± 20.4
1s4z 25.0 ± 30.7 35.2 ± 18.0 11.9 ± 9.8 44.5 ± 20.3 2.1 ± 2.9 6.9 ± 13.8 7.5 ± 10.0 6.2 ± 7.7
1s5z 14.4 ± 19.4 16.4 ± 11.6 3.8 ± 4.6 42.2 ± 31.4 7.3 ± 6.4 1.9 ± 3.8 11.9 ± 9.6 7.8 ± 6.4
2s5z 26.9 ± 20.2 5.5 ± 7.8 37.5 ± 22.5 43.0 ± 10.7 12.5 ± 15.5 4.4 ± 8.8 20.0 ± 16.8 14.1 ± 8.1
3s3z 35.6 ± 18.0 7.0 ± 3.4 33.8 ± 15.0 50.0 ± 13.3 35.4 ± 12.1 5.6 ± 7.0 17.5 ± 12.3 25.0 ± 20.1
3s4z 74.4 ± 16.3 3.1 ± 3.1 43.1 ± 20.7 52.3 ± 9.5 20.8 ± 9.0 5.0 ± 8.5 15.6 ± 11.2 19.5 ± 16.6
4s3z 69.8 ± 7.8 0.0 ± 0.0 23.8 ± 21.0 17.2 ± 7.2 17.7 ± 5.3 11.2 ± 13.9 11.2 ± 15.0 8.6 ± 14.9
4s4z 41.9 ± 14.9 3.1 ± 3.8 10.6 ± 13.8 20.3 ± 6.8 15.6 ± 6.8 3.8 ± 3.6 5.6 ± 9.8 4.7 ± 8.1
4s5z 17.3 ± 5.3 0.8 ± 1.4 11.9 ± 16.1 21.9 ± 2.2 1.0 ± 1.5 3.1 ± 4.0 10.6 ± 19.7 0.8 ± 1.4
4s6z 13.8 ± 3.2 0.8 ± 1.4 5.0 ± 8.5 18.0 ± 5.1 0.0 ± 0.0 2.5 ± 5.0 6.9 ± 13.8 2.3 ± 4.1
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