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Abstract

In recent years, mixup regularization has gained
popularity as an effective way to improve the gen-
eralization performance of deep learning models
by training on convex combinations of training
data. While many mixup variants have been ex-
plored, the proper adoption of the technique to
conditional density estimation and probabilistic
machine learning remains relatively unexplored.
This work introduces a novel framework for mixup
regularization based on probabilistic fusion that
is better suited for conditional density estimation
tasks. For data distributed according to a member
of the exponential family, we show that likelihood
functions can be analytically fused using log-linear
pooling. We further propose an extension of prob-
abilistic mixup, which allows for fusion of inputs
at an arbitrary intermediate layer of the neural net-
work. We provide a theoretical analysis comparing
our approach to standard mixup variants. Empirical
results on synthetic and real datasets demonstrate
the benefits of our proposed framework compared
to existing mixup variants.

1 INTRODUCTION

Mixup regularization has become a notable technique for
improving generalization in deep learning for supervised
learning tasks [Zhang et al., 2018]. Models trained with
mixup backpropagate the loss function on random convex
combinations of training sample pairs, using a mixing coeffi-
cient sampled from a Beta distribution. Theoretically, mixup
has been analyzed as a form of vicinal risk minimization
(VRM) [Chapelle et al., 2000, Zhang et al., 2021, Carratino
et al., 2022], contrasting with empirical risk minimization
(ERM) [Vapnik, 1999]. Empirical results show mixup effec-
tively improves out-of-sample performance while maintain-

ing competitive performance with state of the art models
in data modalities beyond tabular data, such as image [Guo
et al., 2019b, Liu et al., 2023, Islam et al., 2024, Wang et al.,
2024], natural language processing [Guo et al., 2019a, Sun
et al., 2020, Zhang et al., 2020], graph [Verma et al., 2021,
Han et al., 2022, Jeong et al., 2023] and speech [Tokozume
et al., 2018, Zhang et al., 2022]. Overall, many variations
have been introduced to address different aspects of the
original strategy, including the choice of mixing coefficient
distribution, modifications for different data modalities, and
label/feature mixing strategies; we refer the reader to Jin
et al. [2024] for a comprehensive survey.

In tandem with these developments and the rise of large
generative language models, the idea of combining or “fus-
ing" multiple deep learning models has gained attention as
a means to improve model capacity [Cai et al., 2025]. Key
frameworks include mixture of experts, which partitions the
input space and assigns different models to different regions
of the space, and product of experts, which combines model
outputs by multiplying their probability distributions [Ja-
cobs et al., 1991, Hinton, 2002] and have been successfully
incorporated into transformer architectures to train large
scale large language models [Lepikhin et al., 2021, Jiang
et al., 2024, Liu et al., 2024]. Related to this are deep en-
sembling and its variants, such as deep Gaussian mixture
ensembling, have been adopted to improve performance and
robustness [Lakshminarayanan et al., 2017, El-Laham et al.,
2023]. These frameworks can be viewed as probabilistic
fusion of multiple predictors; see Koliander et al. [2022] for
a review on fusing probability density functions.

Our work is motivated by the success of probabilistic fusion,
which has not yet found its footing in the mixup literature.
Traditionally, mixup fuses data (or their embeddings) di-
rectly rather than operating on statistical manifolds, which
are represented by random variables and their corresponding
density functions. This limits mixup’s application to random
variables; adapting mixup to more general settings like con-
ditional density estimation or probabilistic machine learning
could leverage probabilistic fusion benefits. In this paper, we
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introduce Probabilistic Mixup (ProbMix), a general frame-
work for handling uncertainty in mixup regularization by
adapting the methodology to a probabilistic setting using
the idea of probabilistic fusion. As this is the first approach
of its kind, we consider supervised learning tasks using both
tabular and time series data, and comparing with the most
used variants in such settings: (i) vanilla mixup [Zhang et al.,
2018], (ii) manifold mixup [Verma et al., 2019, El-Laham
et al., 2024], which constructs mixup augmentations on in-
termediate layers of the neural network and (iii) local mixup
[Guo et al., 2019b] which performs mixup augmentations
locally based on the assigned class of the data to address the
problem of manifold intrusion.

The contributions of this work are:

1. We present a novel reformulation of mixup from a prob-
abilistic perspective called ProbMix, that regularizes an
abitrary model by fusing likelihood functions from dif-
ferent training samples. We show that log-linear fusion
of likelihoods is analytically tractable for exponential
families members, allowing for easy implementation
for both classification and regression settings.

2. We propose an extension of ProbMix called M-ProbMix
that allows for probabilistic fusion at any intermediate
layer of the conditional density estimator.

3. We provide theoretical results showing that for certain
choices of the fusion function, mixup and manifold
mixup are special cases of ProbMix and M-ProbMix.

4. We demonstrate the competitive or superior perfor-
mance of ProbMix and M-ProbMix on classification
and regression tasks on several real datasets in terms
of uncertainty calibration on out-of-sample data.

2 BACKGROUND

2.1 PROBLEM SETTING

This work studies generalization in supervised learning prob-
lems from the perspective of statistical learning theory. In
supervised learning, we are interested in learning a func-
tion f : x ∈ X ⊆ Rdx → y ∈ Y ⊆ Rdy , for some
dx, dy ∈ N+. Suppose that the underlying random variables
X and Y have a joint probability density function (pdf)
(X,Y ) ∼ pdata(x, y). Our goal is to learn a function f ∈ F
that minimizes the risk R[f ] defined as:

R[f ] = E[ℓ(f(x), y)] (1)

=

∫
X×Y

ℓ(f(x), y)pdata(x, y)dxdy, (2)

where ℓ : Y × Y → R is a loss function that measures the
discrepancy between a prediction ŷ = f(x) and the true
output y. Typically, one restricts f to belong to a parametric
family of functions fθ ∈ Fθ defined by parameters θ ∈ Θ.

In this context, the goal is to learn the parameters θ̂ such
that they solve the following optimization problem:

θ̂ = argmin
θ∈Θ

R(θ), (3)

where R(θ) = E[ℓ(fθ(x), y)]. Since pdata(x, y) is un-
known, it is common to find the optimal θ̂ by minimizing an
approximation of (3). The most common approach is ERM,
where parameters are learned by minimizing an approxima-
tion of the risk using the empirical distribution of a dataset
of i.i.d. observations D = {(xi, yi)}ni=1:

θ̂ERM = argmin
θ∈Θ

1

n

n∑
i=1

ℓ(fθ(xi), yi). (4)

The optimization problem in (4) is a result of considering
the following empirical approximation to pdata(x, y):

pdata(x, y) ≈
1

n

n∑
i=1

δX,Y (xi, yi), (5)

where δX,Y (x, y) is used to denote a Dirac measure cen-
tered at (x, y). Importantly, for conditional density esti-
mation tasks, when the loss is defined as ℓ(fθ(x), y) =
− log pθ(y|x), where − log pθ(y|x) denotes the negative
log-likelihood (NLL), ERM is equivalent to maximum like-
lihood estimation of the parameters.

Under the assumption that the training data are independent
and identically distributed (i.i.d) and reflect the distribution
of out-of-sample data, the ERM principle will lead to a
model that generalizes well to out-of-sample data in the
limit of infinite training data. This is due to the fact that
(4) will produce the same result as the true risk minimiza-
tion problem in (3) as n → ∞. Typically, neither of these
requirements are satisfied in practice; that is to say that:
(a) training data are not infinite and in some cases scarcely
available, and (b) out-of-sample data may not conform ex-
actly to the distribution of the observed dataset. To improve
performance on out-of-sample data, different approxima-
tions of pdata(x, y) can be considered to regularize fθ to
have better generalization properties.

2.2 VICINAL RISK MINIMIZATION AND MIXUP

To combat the issue of limited data availability and out-of-
sample distribution mismatch, the VRM principle can be
utilized. VRM does not directly use the empirical density
of the data to approximate the risk, but rather uses a “per-
turbed" version of it. Let p̃ν,D(x, y) denote a joint pdf called
the vicinal distribution which depends on training examples
(xi, yi) ∈ D and potentially some additional hyperparame-
ters ν. Then, under the joint pdf p̃ν,D(x, y), the risk can be
approximated as follows:

R̃ν(θ) =

∫
X×Y

ℓ(fθ(x), y)p̃ν,D(x, y)dxdy (6)



Note that p̃ν,D(x, y) extends the computation of the risk
from the exact values of the pair (xi, yi) – as in pdata(x, y)
in equation 5 – to a neighborhood of (xi, yi). In general,
regularization based on data augmentation, adversarial train-
ing, and label smoothing can be viewed as a form of VRM.
To that end, it can be shown that classical mixup and its
variants can be viewed as a form of VRM.

Vanilla Mixup. Mixup is a VRM technique that con-
structs augmented samples by taking random convex com-
binations of existing ones. The corresponding vicinal distri-
bution in vanilla mixup is:

p̃α,D(x, y) =
1

n2

n∑
i=1

n∑
j=1

Eλ [δX,Y (x̃i,j,λ, ỹi,j,λ)] , (7)

where λ is a mixing coefficient, usually assumed to follow a
beta distribution B(α, α), with equal shape and scale α > 0.
We define x̃i,j,λ and ỹi,j,λ as

x̃i,j,λ = λxi + (1− λ)xj (8)
ỹi,j,λ = λyi + (1− λ)yj (9)

Based on this vicinal distribution, the overall loss function
that is minimized in vanilla mixup is the following:

R̃mix
α (θ) =

1

n2

n∑
i=1

n∑
j=1

Eλ [ℓ(fθ(x̃i,j,λ), ỹi,j,λ)] (10)

As α → ∞, the random variable λ converges to a degenerate
random variable such that P(λ = 1

2 ) = 1. In contrast, as
α → 0, the random variable λ converges to a Bernoulli
random variable such that P(λ = 0) = P(λ = 1) = 1

2 ,
in which case, mixup reduces to ERM as in (4). We refer
the reader to Appendix A for a detailed review of manifold
mixup and local mixup.

3 OUR METHODOLOGY

In this section, we introduce a general methodology for ex-
tending mixup regularization to statistical manifolds which
we call Probabilistic Mixup (ProbMix). We begin by dis-
cussing how to apply mixup to the likelihood functions
obtained via a generic conditional density estimator for
both regression and classification using linear and log-linear
fusion. Following the methodology for fusing likelihood
functions, we present an extension of our approach, called
Manifold Probabilistic Mixup (M-ProbMix), that allows for
probabilistic mixup at any intermediate layer by introducing
a conditional density mapping at the desired layer. As long
as the density mapping is an exponential family member,
we show that applying ProbMix to an intermediate layer
of a neural network is analytically tractable. Figure 1 pro-
vides a summary of the training forward pass of ProbMix as
compared to mixup-based approaches.

3.1 DATA GENERATING PROCESS

The key distinction between ProbMix and other mixup regu-
larization techniques is the assumption that the responses y
are assumed to have been independently generated from an
interpolated conditional density function

p̃θ(y|xi, xj , λ) = gxλ(pθ(y|xi), pθ(y|xj)) (11)

obtained by some fusion function gxλ, rather than the con-
ditional density pθ(y|xi,j,λ), which conditions based on
interpolated features. Let p(λ;α) denote a fixed and known
pdf over λ with tunable hyperparameters α and let G =
(D, E ,W) denote a weighted graph defined over the ob-
served dataset. We consider the following data generating
process in ProbMix:

λ ∼ p(λ;α), (i, j) ∼ G (12)
y ∼ p̃θ(y|xi, xj , λ) (13)

where we use the notation (i, j) ∼ G to denote the gener-
ation of an edge (i, j) ∈ E from the graph G based on the
weights W . Furthermore, for a given edge (i, j), we assume
that the observed label ỹ has a vicinal density

ỹ ∼ pβ(ỹ|yi, yj , λ) = gyλ(sβ(ỹ|yi), sβ(ỹ|yj)), (14)

obtained by some fusion function gyλ, where sβ(ỹ|y) de-
notes a kernel centered around y with hyperparameter β.
To summarize, the modeling assumption of ProbMix differs
from vanilla mixup in the following two ways:

1. Data generating process: In ProbMix the responses
are generated from a fusion of conditional densities
(guided by a fusion function gxλ) each of which are
conditioned on distinct features xi and xj , respectively.
In vanilla mixup, the responses are generated from a
single density conditioned on a mixture of features.

2. Observed responses: In ProbMix, the responses
are assumed to be latent, but with known density
gyλ(sβ(ỹ|yi), sβ(ỹ|yj)). In mixup, the responses are
observed and assumed to be a convex combination of
the corresponding edge that is being mixed.

3.2 OPTIMIZING MODEL PARAMETERS

The goal of ProbMix is to maximize the expected log-
likelihood of the latent observations ỹ, which can be ex-
pressed using the law of iterated expectations as:

l(θ;α,G) = Eλ,ỹ [log p̃θ(ỹ|xi, xj , λ)]

= Eλ

Eỹ

 ∑
(i,j)∈E

wi,j log p̃θ(ỹ|xi, xj , λ)

∣∣∣∣∣λ


=
∑

(i,j)∈E

wi,jEλ [Eỹ[log p̃θ(ỹ|xi, xj , λ)|λ]] ,
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Figure 1: Summary of training forward passes for both mixup vs. ProbMix.

where the inner expectation is taken w.r.t. pβ(ỹ|yi, yj , λ)
and the outer expectation is taken w.r.t. p(λ;α). Equiva-
lently, we can obtain the corresponding loss function from a
VRM perspective by replacing the loss function in (33) with
the expected NLL of the fusion function:

R̃P
α,G(θ) = −

∑
(i,j)∈E

wi,jEλ[Eỹ[log pθ(ỹ|xi, xj , λ)|λ]] (15)

Depending on the choice of fusion functions gxλ and gyλ, the
overall loss function in (15) will exhibit different regular-
ization effects. We remark that one can also maximize the
logarithm of the expected likelihood, which is related to
the former by Jensen’s inequality. We provide more details
about this alternative optimization criterion in Appendix B.

3.2.1 Monte Carlo Approximation

To minimize R̃P
α,G(θ), we can use the Monte Carlo approach

to obtain stochastic gradients where instead of taking gra-
dients with respect to R̃P

α,G(θ), we take gradients of an
estimator given by:

R̃P
α,G(θ) ≈ −

∑
(i,j)∈E

wi,j

K

K∑
k=1

log pθ(ỹ
(k)|xi, xj , λ

(k)),

(16)
where λ(k) ∼ p(λ;α) and ỹ(k) ∼ pβ(ỹ|yi, yj , λ(k)) for
k = 1, . . . ,K. Typically, a single sample (K = 1) is used.

3.2.2 Linear vs. Log-Linear Fusion

The ProbMix framework requires choosing the fusion func-
tions gxλ and gyλ. Two popular choices often found in the
probabilistic fusion literature are linear pooling:

gxλ(pθ(y|xi), pθ(y|xj)) = λpθ(y|xi) + (1− λ)pθ(y|xj)
(17)

and log-linear pooling:

gxλ(pθ(y|xi), pθ(y|xj)) ∝ [pθ(y|xi)]
λ
[pθ(y|xj)]

1−λ (18)

In this work, we utilize the log-linear pooling function, since
in the case of exponential family members, the fusion result
also belongs to exponential family of probability distribu-
tions. Important special cases of this result include the cat-
egorical distribution and the Gaussian distribution, which

are often the assumed statistical models in classification
and regression tasks, respectively. The detailed proof and
relevant analytical expressions related to this result can be
found in Appendix C.

3.2.3 Why ProbMix over Vanilla Mixup?

Here, we provide an intuitive example demonstrating a sce-
nario where ProbMix is preferred over vanilla mixup. Con-
sider the following data generating process:

y = x3 + (0.5x2 + 1)ϵ, ϵ ∼ N (0, 1), (19)

where the ground truth mean and variance functions are
µθ(x) = x3 and σ2

θ(x) = (0.5x2 + 1)2, respectively.
Suppose two samples (x1, y1) = (5, 130) and (x2, y2) =
(−5,−120) are observed. We would like to understand the
regularization effect of both mixup and ProbMix on the
ground truth mean and variance functions based on the two
observed samples for a mixing coefficient of λ = 0.8. In
the case of vanilla mixup, the predicted conditional is:

pMix(ỹ|x1, x2, λ = 0.8) = N (ỹ|27, 30.25), (20)

while for ProbMix it is:

pProbMix(ỹ|x1, x2, λ = 0.8) = N (ỹ|75, 182.25). (21)

Assuming β → 0 for ProbMix, the interpolated observation
ỹ = λy1 + (1− λ)y2 for which the likelihood is evaluated
is the same for both approaches and is ỹ = 80. Since the
interpolated observation ỹ = 80 lies in the right tail of pMix,
gradient updates made to the mean and variance functions
based on mixup will substantially alter the model, despite
the fact that µθ(x) and σ2

θ(x) are the ground truth mean
and variance functions. In contrast, ProbMix’s fused density
is much better calibrated to the interpolated target. This
demonstrates that in this example, mixup enforces a strong
linear bias on the mean and variance functions, which can
be inappropriate when the true relationship is nonlinear or
when the input features being fused are far apart. By working
on the statistical manifold when mixing, ProbMix avoids
this strong bias. We provide details of our calculations and
conditional density plots related to this illustrative example
in Appendix D.



3.3 MANIFOLD PROBABILISTIC MIXUP

We now discuss an extension of ProbMix, called M-ProbMix,
that allows for probabilistic fusion in an arbitrary embedding
defined by an intermediate layer of the neural network. The
idea behind the approach is to consider that our predictor
fθ = hθ1 ◦ hθ0 is the composition of the mappings hθ0 and
hθ1 . The mapping hθ0 maps the input of the predictor to the
parameters of the density of an embedding z (e.g., Gaussian
distribution with diagonal covariance matrix), while hθ1

maps from random embedding to the conditional density
of the response. Mapping the inputs to a density function
in the intermediate layers enables the use of probabilistic
fusion to mix samples at the embedding level.

Let qθ0(z|x) denote the parametric density of an embedding
z given some input feature x. The expected log-likelihood
in M-ProbMix can be determined as:

l(θ;α,G, Lmix) = E[log p̃θ(y|xi, xj , λ)] (22)

= Eλ

Eỹ

 ∑
(i,j)∈E

wi,j log pθ(ỹ|xi, xj , λ)

∣∣∣∣∣λ
 , (23)

where the density pθ(ỹ|xi, xj , λ) is given by:

pθ(ỹ|xi, xj , λ) =

∫
pθ1(ỹ|z)qθ0(z|xi, xj , λ)dz (24)

and the density of z given xi, xj and λ is the fusion of
the densities of the random embeddings according to some
fusion function gzλ:

qθ0(z|xi, xj , λ) = gzλ (qθ0(z|xi), qθ0(z|xj)) . (25)

We can readily obtain the corresponding risk as:

R̃P,M
α,G (θ) = −

∑
(i,j)∈E

wi,jEλ[Eỹ[log pθ(ỹ|xi, xj , λ)|λ]]

(26)
Put simply, M-ProbMix can be viewed as a probabilistic
extension to manifold mixup, whereby an intermediate layer
maps to a random variable rather than a fixed transforma-
tion of the input features. Just like ProbMix, the risk of M-
ProbMix can be approximated using a Monte Carlo estimate,
whereby sampling is additionally done at the embedding
level in order to approximate the integral in (24). Impor-
tantly, if one chooses qθ0(z|x) to belong to a member of the
exponential family, then log-linear pooling can be readily
applied. A standard and convenient choice is qθ0(z|x) is
a Gaussian distribution with diagonal covariance matrix,
since the reparameterization trick [Kingma, 2013] can be
readily applied. Finally, we highlight that the choice of the
embedding distribution is agnostic to the learning task, as
M-ProbMix focuses on fusing the distributions of the under-
lying embeddings, rather than the likelihoods themselves.

4 THEORETICAL INSIGHTS

In this section, we provide theoretical insights by comparing
the proposed ProbMix and M-ProbMix with mixup and man-
ifold mixup. For simplicity in the presentation, we assume
the following:

Assumption 4.1 (Negative Log-Likelihood Loss). The loss
function ℓ(fθ(x), y) = − log pθ(y|x). In the case of clas-
sification, log pθ(y|x) corresponds to the log probabilities
of each class, while in the case of regression, log pθ(y|x)
is assumed to be either a homoscedastic or heteroscedastic
Gaussian log-likelihood function.

Assumption 4.2 (Expected Loss over Labels). In the case
of classification, label mixing is done by mixing one-hot-
encoded vectors, and the risk is taken by taking the expected
value over the mixed label probabilities. That is,

Eλ[log pθ(yi,j,λ|xi,j,λ)] =

Eλ[λ log pθ(yi|xi,j,λ)] + Eλ[(1− λ) log pθ(yj |xi,j,λ)]

In the case of ProbMix, this corresponds to using the follow-
ing perturbation distribution for the responses:

gyλ(sβ(ỹ|yi), sβ(ỹ|yj)) = λδyi
+ (1− λ)δyj

Under Assumption 4.2, the expectation term over the labels
for the expected risk of ProbMix and M-ProbMix breaks
down into two separate terms due to linearity of expecta-
tion. Hence, when comparing mixup and ProbMix across
different settings, we can simply focus on comparing log-
likelihoods terms, i.e., log pθ(y|xi,j,λ) for mixup methods
and log pθ(y|xi, xj , λ) for probabilistic mixup methods.

4.1 PROBMIX OPERATES MIXUP ON THE
OUTPUTS

Theorems 4.3 and 4.4 show that, under log-linear fusion
gxλ of the likelihoods, ProbMix can be thought of as oper-
ating mixup on the output layers in both classification and
regression tasks.

Theorem 4.3 (ProbMix as mixup of Logits). Under Assump-
tions 4.2 and 4.1 and log-linear fusion gxλ of categorical
likelihoods, ProbMix is equivalent to vanilla mixup on the
logits.

Theorem 4.4 (ProbMix as Mixup of Means). Under As-
sumptions 4.2 and 4.1 and log-linear fusion gxλ of likeli-
hoods, ProbMix is equivalent to vanilla mixup of the output
means.

Proof Sketch.. For both theorems, the proof proceeds con-
structively showing that the likelihoods of ProbMix and
mixup on the output layers are proportional to the same
quantities.



4.2 MIXUP AS A SPECIAL CASE OF PROBMIX

Theorems 4.5 and 4.6 show that in both the classification
and regression tasks, ProbMix when using a linear mapping
fθ and log-linear pooling gxλ reduces to vanilla mixup. The-
orem 4.7 shows that log-linear pooling of homoscedastic
Gaussian embeddings makes M-ProbMix reducing to man-
ifold mixup, as long as embedding means are propagated
during training. We refer the reader to Appendix E for full
proofs.

Theorem 4.5 (Mixup and ProbMix for Multiclass Logistic
Regression). In classification tasks, under Assumptions 4.2
and 4.1, when setting gxλ as log-linear pooling of categori-
cal distributions and using a multi-class logistic regression
learner fθ, ProbMix reduces to vanilla Mixup.

Proof Sketch. Consider fθ = h1 ◦ hθ, where h1(z) is the
softmax function and hθ(x) = Ax+ b is a linear function
with A = [a1, . . . , ay]

⊺ ∈ Rdy×dx and b ∈ Rdy . The proof
proceeds constructively by showing that the probability of
the kth class is identical for both ProbMix in the settings
above and vanilla Mixup.

Theorem 4.6 (Mixup and ProbMix for Linear Regression).
In regression tasks, under Assumptions 4.2 and 4.1, when
setting gxλ as log-linear pooling of homoscedastic Gaussian
distributions and using a linear regression learner fθ(x) =
Ax+ b, ProbMix reduces to vanilla mixup.

Proof Sketch. The proof proceeds constructively by show-
ing that the log-likelihood is proportional to the same quan-
tities for both ProbMix in the settings above and traditional
mixup.

In the case of probabilistic manifold mixup with the choice
of the hidden distribution as a homoscedastic Gaussian,

Theorem 4.7 (M-ProbMix under Homoscedastic Gaussian
Approximation is Manifold Mixup). Assume a learner
fθ,ϕ = dϕ ◦ hθ, where hθ and dϕ are encoder and decoder,
respectively, and means are propagated directly during both
training and inference, i.e., fθ,ϕ = dϕ(hθ(x)). Then, under
Assumptions 4.2 and 4.1, M-ProbMix using a log-linear fu-
sion a homoscedastic Gaussian embeddings is equivalent to
manifold mixup.

Proof Sketch. As log-linear fusion of Gaussians is Gaussian
(see Section 3.2.2 and Appendix C), and the means are
propagated during training and inference, one can show
the log-likelihoods of M-ProbMix and manifold mixup are
equal.

5 PRACTICAL CONSIDERATIONS

Sampling strategies: When selecting pairs of samples for
training, one option is to uniformly sample across all pos-
sible pairs in the training data, as in classical mixup. This
corresponds to uniformly sampling edges in a fully con-
nected graph where training samples are nodes. However,
the edges between a pair of points (xi, xj) can be assigned
weights wi,j to enforce non-uniform sampling strategies.
In this work, we consider two types of sampling graphs: a
fully-connected graph, such that wi,j = 1

n2 for all edges
(i, j) ∈ E ; and a nearest neighbors graph, where wi,j ∝ 1
for all (i, j) ∈ E such that xj ∈ CK(xi), where CK(xi)
denotes the set of K nearest neighbors of xi. We refer
to variants of our methods that utilize the fully-connected
graph as ProbMix and M-ProbMix and the methods that
utilize the nearest neighbors graph as LocKProbMix and
LocKM-ProbMix. By default, we utilize K = 5 neighbors,
unless otherwise specified.

Mixing and perturbation distributions: In this work, we
consider λ ∼ B(α, α), where α ∈ (0, 1). With regards to
the choice of the response perturbation distribution sβ(ỹ|yi),
since we are utilizing log-linear pooling, we need to guaran-
tee that the distribution sβ(ỹ|yi) is positive (i.e., has nonzero
probability density over Y).

In regression tasks we use an isotropic Gaussian with vari-
ance β > 0, i.e.,

sβ(ỹ|yi) = N (ỹ|yi, βIdy
).

In classification tasks, we bias the probabilities of each label
(treated as a one-hot-encoded vector) by a positive constant
β > 0 such that the resulting distribution satisfies

P(ỹ = k|yi) ∝ P(yi = k) + β.

We note that in classification settings we normalize for the
perturbed response distribution to be a valid probability
distribution. We conducted ablation studies on both a toy
regression and classification dataset to explore different
settings of α and β: more details can be found in Appendix
F.1.

Mixing layer and embedding distribution: For M-
ProbMix, the choice of the embedding and its distributional
form are important considerations. In this work, we choose
the embedding layer to be the first layer after feature ex-
traction. In the case of simple regression or classification
tasks, this could be after the first of second layer of a fully
connected network. For more complex architectures, such
as LSTMs and transformers, we use the flattened output
(potentially transformed to a lower dimensional space) as
the embedding layer. In terms of the distributional form, we
utilize a diagonal Gaussian parameterized as follows:

qθ0(z|x) = N (z|hθ0(z),diag(σ
2
θ0)), (27)



where σ2
θ0

: X → Rdz is a variance network that maps the
input data to the diagonal covariance matrix of the embed-
ding. Importantly, for computational efficiency, σ2

θ0
should

share parameters with hθ0(x), especially for larger architec-
tures. Finally, we highlight that for this choice of qθ0(z|x),
the reparameterization trick can be applied to reduce the
variance of stochastic gradients during training.

6 EXPERIMENTS

In this section, we provide an empirical evaluation compar-
ing our approaches ProbMix, M-ProbMix, LocKProbMix,
and LocKM-ProbMix with ERM and classical variants of
mixup regularization: vanilla mixup (Mix), manifold mixup
(M-Mix), and local mixup (LocKMix). We additionally com-
pare to a combination of manifold mixup and local mixup
(LocKM-Mix). We note that local variants of both ProbMix
and Mix assume a nearest neighbors sampling graph with
K = 5 neighbors. We also split the training dataset into
80% train and 20% validation, unless noted otherwise. Once
training is complete, the model parameters that provide the
smallest loss on the validation dataset is used for evaluation.

6.1 TOY DATASETS

Toy regression: Consider the following data generating
process for the toy regression dataset:

yi = x3
i + ϵi, (28)

where ϵi ∼ N (0, 9). We generate n = 100 training exam-
ples such that xi ∼ U(−4, 4). Test examples are generated
by randomly sampling features xi ∼ U(4, 6), which are
considered out-of-distribution with respect to training data.
This experimental setup allows us to test the extrapolation
capabilities of each method. For each method, we use a
two-layer multi-layer perceptron (MLP) with 128 and 64
hidden units per layer and train with full-batch gradient de-
scent for E = 500 epochs with a learning rate of η = 0.01.
For manifold-based approaches, we set the mixing layer as
the first layer of the MLP (i.e., dz = 128). Figure 2 shows
a comparison of the extrapolation performance across the
different methods. More detailed box plots showing the per-
formance of each method with respect to both mean-squared
error (MSE) and negative log-likelihood (NLL) averaged
over 10 runs can be found in Appendix F.1.1.

In this example, while Mix achieves lower MSE than ERM,
the NLL is much larger on average, implying worse cali-
bration of the conditional density estimates. The other vari-
ants of mixup like M-Mix, LocKMix, and LocKMix achiever
similar MSE and NLL to ERM on average, but with much
higher variance. This also implies that these other variants of
mixup variation do not add any value to out-of-distribution
extrapolation, but rather only introduce variability in train-
ing. We see that ProbMix and LocKProbMix achieve similar

performance to the mixup variants, noting that introduces
in both cases of classical mixup regularization and proba-
bilistic mixup, introducing locality in the sampling graph
improves performance vastly in terms of NLL. This can be
attributed to the fact that without locality, likelihoods for dis-
similar (distant) features and their corresponding responses
are fused, introducing a large bias. We observe the best per-
formance in terms of bothe MSE and NLL with M-ProbMix
and LocKM-ProbMix methods.

Additionally, we provide results comparing the performance
of linear and log-linear pooling function for ProbMix in
Appendix F.1.2, as well as a comparison to latent variable
modeling without mixup regularization in Appendix F.1.3.

Toy classification: We consider a three class toy classifi-
cation problem from noisy ring-shaped distribution, where
the features xi ∈ R2 of each sample if yi = k is generated :

xi =

[
rk cos(ωi)
rk sin(ωi)

]
+ ϵi, (29)

where ωi ∼ U [0, 2π] and ϵi ∼ N (0, 0.09I2). We generate
n = 100 training examples from this generating process,
where approximately an equal number of samples are gener-
ated per class with class radii defined by r1 = 0.5, r2 = 1.5,
and r3 = 2.5. We generate test samples from the same dis-
tribution as training data and utilize the same architecture
and training hyperparameters as the toy regression dataset.
Detailed results comparing the decision boundaries compar-
ing decision boundaries, test accuracy and NLL, averaged
over 10 runs can be found in Appendix F.1.4.

In terms of test accuracy, we observe that all methods per-
form similarly, with ERM and LocKM-ProbMix performing
best on average. M-Mix and ProbMix (with β = 0) achieve
the worst performance; however, as evidence by the NLL,
ProbMix achieves competitive performance in terms of un-
certainty calibration. We highlight that M-Mix introduces
large bias in the model, as the NLL is about 2× as large as
that of ERM. By varying the β parameter, we notice that
ProbMix’s performance improves in terms of both accuracy
and NLL. Our probabilistic mixup framework shows best
performance when β = 0.01, as in this case, all variants
of our approach are competitive or outperform baseline ap-
proaches.

6.2 UCI REGRESSION

For the regression experiments, we use a two-layer MLP,
with 128 and 32 units per layer, respectively. We use a set
of regressions datasets from UCI, with a 90%/10% train/test
split, and a further 20% of the training data used as vali-
dation data to select the best performing model over 1000
epochs. We utilize the 20 train/test splits made available by
UCI, as in El-Laham et al. [2023]. The models are trained



1 0 1 2
x

2

0

2

4

6

8

y
Toy Data (Regression)

Train Data
Test Data
Mean Prediction
95% CI

(a) Mix.

1 0 1 2
x

2

0

2

4

6

8

y

Toy Data (Regression)
Train Data
Test Data
Mean Prediction
95% CI

(b) LocKMix.

1 0 1 2
x

2

0

2

4

6

8

y

Toy Data (Regression)
Train Data
Test Data
Mean Prediction
95% CI

(c) ProbMix.

1 0 1 2
x

2

0

2

4

6

8

y

Toy Data (Regression)
Train Data
Test Data
Mean Prediction
95% CI

(d) LocKProbMix.

Figure 2: Visual example of different approaches for toy regression. Mix and LocKMix show poor performance on test
samples, while LocKProbMix, although still mismatching in terms of the mean, outperforms mixup variants in terms of
uncertainty calibration on out-of-sample data.

by running the Adam optimizer for E = 1000 epochs and a
learning rate of η = 0.005.

Table 1 summarizes the uncertainty quantification results
in terms of negative log-likelihood (NLL), while Table 6 in
Appendix F provides the prediction performance in terms
of root mean-square error (RMSE). Results indicate that
ProbMix and its variants improve the uncertainty quantifi-
cation capabilities of the model in almost all datasets, also
providing a better prediction accuracy in terms of RMSE.
As we observed the uncertainty quantification generally
improves when considering M-ProbMix and various, we
have also included a further refinement, which we have in-
dicated as M-ProbMix⋆. In M-ProbMix⋆, a separate network
is trained to predict the embedding variance, only during
inference. For fairness of comparison with other methods,
for M-ProbMix⋆ we halved the size of the first embedding,
so that the total size of the MLP would be comparable with
the other experiments (i.e., the MLP is of size 64 and 32,
with an additional variance embedding of size 64). Result
show that M-ProbMix⋆ provides competitive results in terms
of uncertainty quantification, but predictions performance
might degrade in terms of RMSE, likely due to the reduced
overall capacity of the prediction model.

6.3 FINANCIAL TIME SERIES FORECASTING

Finally, we demonstrate the performance of probabilis-
tic mixup on a time-series forecasting task. Specifically,
we used historical data obtained for the following stocks:
Google (GOOG), Gamestop (GME), NVIDIA (NVDA), and
Royal Carribean (RCL). 1 . Let S = [S1, . . . , ST ] ∈ R4×T

denote a stock time series, where each St corresponds to
the open, high, low, and close price for day t. We use
the sliding window technique to extract price time-series
xi = [Si, . . . , Si+W ] ∈ R4×W and its corresponding fore-
cast of the close price yi = S4,i+W+H , where W = 42
denotes the window size and H = 21 denotes the forecast
horizon. We utilize data from the period: 01/01/2019 to

1Data available for download via the yfianace API https:
//pypi.org/project/yfinance/

01/01/2021 and consider two different time series architec-
tures for this forecasting task: an LSTM architecture with
one hidden layer with 64 hidden units; and a transformer ar-
chitecture with 2 attention heads, 2 encoder/decoder hidden
layers with 64 hidden units per layer. For both architectures,
the extracted features are flattened and linearly compressed
to an embedding of size dz = 64 (which corresponds to
the embedding layer). We train the models using the Adam
optimizer for E = 2000 epochs with a learning rate of
η = 0.0005. Results in terms of NLL can be found for the
LSTM and transformer models in Table 2, respectively. Re-
sults in terms of test RMSE can be found in Table 7, while
the average training NLL and average training RMSE can
be found in Tables 8 and 9 in Appendix F.3.

Results show that in 3 out of the 4 stocks, probabilistic
mixup variants outperform ERM and standard mixup vari-
ants in terms of NLL for both the LSTM and transformer
architecture. We can see for the case of GME, both architec-
tures overfit to the training data, reflected in the substantially
worse performance. While Mix improves performance as
compared to ERM for this dataset, we can see that probabilis-
tic mixup approaches can achieve lower NLL, indicating
better calibration of the conditional density estimates on out-
of-distribution samples. We attribute this performance gain
to the fact that probabilistic mixup approaches provide more
conservative predictions of the variance of the conditional
density (see sample plots in Appendix F.3).

7 CONCLUSIONS AND FUTURE WORK

In this work, we proposed a novel formulation of mixup
regularization tailored for conditional density estimation
tasks. Specifically, we introduced a mixup regularization
scheme called ProbMix, which operates by probabilistically
fusing the conditional densities of different input features
within the model. Additionally, we proposed an extension
called M-ProbMix, which involves fusing on a statistical
manifold defined at an intermediate layer of the network.
Our theoretical results demonstrate that many instances of
classic mixup regularization can be viewed as specific cases
within our proposed framework. Empirical results show that

https://pypi.org/project/yfinance/
https://pypi.org/project/yfinance/


Mixup Methods ProbMixup Methods

Dataset ERM Mix. LocKMix. M-Mix. LocKM-Mix. ProbMix. LocKProbMix. M-ProbMix. LocKM-ProbMix. M-ProbMix.⋆ LocKM-ProbMix.⋆

bostonHousing 3.37 ± 0.47 3.32 ± 1.17 3.46 ± 0.76 3.72 ± 2.32 3.31 ± 0.68 3.21 ± 1.07 3.26 ± 0.66 3.12 ± 0.56 3.09 ± 0.70 2.57 ± 0.41 2.52 ± 0.21
energy 1.24 ± 1.37 1.14 ± 1.00 1.08 ± 1.18 1.25 ± 1.52 1.00 ± 0.88 0.77 ± 0.32 0.82 ± 0.52 0.74 ± 0.42 0.93 ± 0.65 1.38 ± 0.18 1.13 ± 0.17

wine-quality-red 1.96 ± 2.08 1.84 ± 1.19 1.70 ± 1.43 1.87 ± 2.18 1.99 ± 2.01 1.50 ± 0.57 1.37 ± 0.32 1.26 ± 0.24 1.15 ± 0.18 1.16 ± 0.63 1.12 ± 0.22
concrete 4.50 ± 2.72 3.71 ± 0.64 3.75 ± 0.77 3.81 ± 0.95 3.69 ± 1.14 3.50 ± 0.58 3.67 ± 0.71 3.35 ± 0.48 3.37 ± 0.47 3.13 ± 0.22 3.07 ± 0.16

power-plant 2.86 ± 0.18 2.82 ± 0.11 2.84 ± 0.09 2.84 ± 0.12 2.85 ± 0.09 2.79 ± 0.06 2.84 ± 0.16 2.82 ± 0.06 2.84 ± 0.07 2.85 ± 0.05 2.86 ± 0.05
yacht 0.44 ± 0.94 1.70 ± 0.63 0.78 ± 0.38 0.49 ± 0.66 0.32 ± 0.29 1.39 ± 0.42 1.45 ± 0.88 0.27 ± 0.36 0.26 ± 0.25 0.92 ± 0.24 1.07 ± 0.28

kin8nm† -1.14 ± 0.10 -1.01 ± 0.13 -1.14 ± 0.11 -1.16 ± 0.09 -1.07 ± 0.13 -1.12 ± 0.10 -1.15 ± 0.08 -1.20 ± 0.07 -1.18 ± 0.05 -1.17 ± 0.05 -1.14 ± 0.05
naval-propulsion-plant† -5.89 ± 0.88 -6.15 ± 0.13 -6.46 ± 0.45 -6.28 ± 0.49 -6.47 ± 0.44 -6.36 ± 0.63 -6.12 ± 0.89 -6.13 ± 0.30 -5.44 ± 0.63 -5.03 ± 0.04 -4.92 ± 0.06

Table 1: Average NLL for UCI regression datasets. In all datasets (except naval-propulsion-plant), probabilistic mixup
variants obtain the best performance as compared to ERM and different mixup variants. ( † indicates normalization to a
single integer digit, while ⋆ indicates the use of a separate variance networks, see text for details.)

LSTM Mixup Methods ProbMixup Methods

Dataset ERM Mix LocKMix M-Mix LocKM-Mix ProbMix LocKProbMix M-ProbMix LocKM-ProbMix

GME 158.67± 14.80 106.54± 5.36 505.33± 15.76 170.99± 9.25 541.32± 50.82 257.74± 17.71 411.59± 48.22 67.32± 3.99 143.75± 8.33
GOOG 36.52± 6.26 148.71± 21.49 110.14± 3.66 102.01± 35.98 80.34± 15.73 141.25± 40.68 52.11± 4.27 5.83± 1.65 11.08± 2.47
NVDA 3.17± 0.73 5.43± 1.10 49.79± 8.65 9.06± 1.93 61.44± 15.22 5.19± 1.14 61.32± 13.26 1.67± 0.14 1.11± 0.08
RCL 14.22± 0.96 0.74± 0.08 128.31± 22.15 61.59± 10.45 55.22± 6.59 18.32± 1.33 56.42± 6.33 2.22± 0.30 6.22± 0.74

Transformer Mixup Methods ProbMixup Methods

Dataset ERM Mix LocKMix M-Mix LocKM-Mix ProbMix LocKProbMix M-ProbMix LocKM-ProbMix

GME 684.79± 83.17 507.55± 28.04 650.72± 59.74 788.60± 70.42 551.78± 27.83 389.45± 17.00 466.82± 25.67 374.15± 41.05 398.97± 16.66
GOOG 114.32± 23.27 147.85± 10.57 57.37± 16.75 164.20± 26.53 64.75± 12.21 203.44± 31.69 35.21± 7.98 111.34± 21.59 86.94± 15.56
NVDA 2.29± 0.32 1.32± 0.16 3.23± 0.44 2.38± 0.13 1.90± 0.11 7.77± 0.67 1.78± 0.03 0.91± 0.10 1.81± 0.08
RCL 10.04± 2.17 −0.05± 0.02 10.26± 1.17 8.46± 1.39 4.85± 0.78 7.46± 0.55 4.82± 0.65 3.46± 0.34 4.36± 0.85

Table 2: NLL on stock datasets for time series forecasting for LSTM model (above) and transformer model (below).
Numerical values have been normalized in each dataset so that the best performing method has one or two integer digits.
Probabilistic mixup variants outperforms all other methods except on the the RCL stock, for which Mix performs best.

both ProbMix and M-ProbMix produce conditional density
estimates that are significantly better calibrated for out-of-
sample data.

While the focus of this work was to devise a framework to
extend mixup in the context of conditional density estima-
tions, in future work we plan on extending ProbMix applica-
tions to more complex data modalities (such as images, text
and speech), as well as including a comparison with exist-
ing approaches for quantifying uncertainty in deep learning
models, and whether the inclusion of ProbMix could further
improve performance (e.g, if every model in the deep en-
semble approach in Lakshminarayanan et al. 2017 is trained
instead with probabilistic mixup). Potential future research
directions include exploring the applicability of our methods
to generative frameworks, such as variational autoencoders
or denoising diffusion probabilistic models. Finally, we envi-
sion a theoretical analysis on the generalization performance
of our proposed method could be pursued in a similar fash-
ion as in Yao et al. [2022].
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Mixup Regularization: A Probabilistic Perspective
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A REVIEW OF MIXUP VARIANTS

A.1 MANIFOLD MIXUP.

Manifold mixup is a variant of mixup that instead constructs augmented samples by mixing the features in some hidden
layer of the predictor. For discussing manifold mixup, it is helpful to think of the neural network predictor as a composition
of two functions fθ = hθ1 ◦ hθ0 , where hθ0 is referred to as the feature extractor and hθ1 is referred to as the predictor and
θ = {θ0, θ1}. Mathematically, the loss function for manifold mixup is given by:

R̃M
α,Lmix(θ) =

1

n2

n∑
i=1

n∑
j=1

Eλ [ℓ(hθ1(z̃i,j,λ), ỹi,j,λ)] (30)

where z̃i,j,λ is defined as a mixture of the features in after passing the input features through the feature extractor hθ0 :

z̃i,j,λ = λhθ0(xi) + (1− λ)hθ0(xj), (31)

with the mixing parameter λ following the same setting as in vanilla mixup. We note that manifold mixup introduces an
additional hyperparameter, namely in which layer the features are mixed, i.e., how to construct the feature extractor hθ0 and
predictor hθ1 . Finally, manifold mixup selects pairs within the manifold by sampling data points uniformly at random, hence
inducing a fully connected graph with all edges having the same weights.

A.2 LOCAL MIXUP.

While manifold mixup in essence seems more principled than vanilla mixup, the problem of manifold intrusion can arise
in both approaches, as the manifold learned by the feature extractor may not have desirable properties. To combat this,
several variants of mixup have been proposed that instead construct mixup augmentations locally based on a weighted graph.
Consider a graph G = (D, E ,W), where D are the vertices of the graph, while E and W denote edges and weights of the
graph, respectively. We use wi,j ∈ W to denote the weight of the edge betweeen (xi, yi) and (xj , yj). For example, local
mixup performs vanilla mixup augmentations locally based on the some weighted graph defined over the observed dataset,
thereby reducing the risk of mixing samples from different classes that lie on different manifolds. In essence local mixup
considers a more general form of the vicinal distribution than vanilla mixup:

p̃α,G(x, y) =
∑

(i,j)∈E

wi,jEλ [δX,Y (x̃i,j,λ, ỹi,j,λ)] , (32)

which leads to a weighted version of the vanilla mixup loss function:

R̃local
α,G (θ) =

∑
(i,j)∈E

wi,jEλ [ℓ(fθ(x̃i,j,λ), ỹi,j,λ)] (33)

This idea can also be trivially extended to manifold mixup.
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B LOG-EXPECTED LIKELIHOOD CRITERION

An alternative optimization criterion is to maximize the logarithm of the expected likelihood:

lup(θ;α,G) = logE [p̃θ(ỹ|xi, xj , λ)] (34)

= log

 ∑
(i,j)∈E

wi,jEλ [Eỹ[p̃θ(ỹ|xi, xj , λ)|λ]]

 (35)

We note that since the logarithm is outside the expectation operator, this loss function does not have an interpretation from a
VRM standpoint. Moreover, it is easy to see that, by Jensen’s inequality, lup(θ;α,G) upper bounds l(θ;α,G)

lup(θ;α,G) = logE [p̃θ(y|xi, xj , λ)] (36)
≥ E [log p̃θ(y|xi, xj , λ)] = l(θ;α,G) (37)

When K = 1, we note that Monte Carlo estimates of lup(θ;α,G) and l(θ;α,G) are identical, meaning that from a practical
perspective, gradient updates will be the same for both. Importantly, when K > 1, the expected log-likelihood and logarithm
of the expected likelihood will yield different stochastic gradient updates.

C LOG-LINEAR POOLING FOR EXPONENTIAL FAMILY MEMBERS

Theorem C.1 (Log-Linear Pooling of Exponential Families). Let gxλ denote the log-linear pooling function. Suppose that
pθ(y|x) belongs to the exponential family of probability distributions, that is,

pθ(y|x) = h(y) exp (ϕθ(x)T (y)−Aθ(x)) , (38)

Then for two inputs xi and xj , the log-linear fusion of pθ(y|xi) and pθ(y|xj) belongs to the same exponential family member.
That is,

gxλ(pθ(y|xi), pθ(y|xj)) = h(y) exp
(
ϕ̃θ,λ(xi, xj)T (y)− Ãθ,λ(xi, xj)

)
(39)

with

ϕ̃θ,λ(xi, xj) = λϕθ(xi) + (1− λ)ϕθ(xj) (40)

Ãθ,λ(xi, xj) = ξ + λAθ(xi) + (1− λ)Aθ(xj), (41)

where ξ denotes a normalization constant.

Proof. In the general case of the likelihood function of an example (x, y) belonging to the exponential family, we have:

pθ(y|x) = h(y) exp (ϕθ(x)T (y)−A(ϕθ(x))) , (42)

withe corresponding log-likelihood:

log pθ(y|x) = log h(y) + ϕθ(x)T (y)−A(ϕθ(x)) (43)

A log-linear pooling of the likelihood function of θ for the examples (xi, y) and (xj , y) is given by:

log p̃θ(y|xi, xj) = ξ(xi, xj , θ) + λ log pθ(y|xi) + (1− λ) log pθ(y|xj) (44)
= ξ(xi, xj , θ) + λ (log h(y) + ϕθ(xi)T (y)−A(ϕθ(xi))) + (1− λ) (log h(y) + ϕθ(xj)T (y)−A(ϕθ(xj))) (45)
= ξ(xi, xj , θ) + log h(y) + (λϕθ(xi) + (1− λ)ϕθ(xj))T (y)− (λA(ϕθ(xi)) + (1− λ)A(ϕθ(xj))) (46)

= log h(y) + ϕ̃θ(xi, xj , λ)T (y)− Ã(ϕθ(xi), ϕθ(xj), λ) (47)

where we define:

ϕ̃θ(xi, xj , λ) = λϕθ(xi) + (1− λ)ϕθ(xj) (48)

Ã(ϕθ(xi), ϕθ(xj), λ) = λA(ϕθ(xi)) + (1− λ)A(ϕθ(xj))− ξ(xi, xj , θ) (49)

Thus, in general, the log-linear pooling function applied to two exponential family members from the same family results in
a exponential family member. Furthermore, since the sufficient statistic T (y) is preserved in the fusion result, the log-linear
pooling function will always yield the same exponential family family member. Many important distributions belong to the
exponential family of probability distributions. These include normal distributions, beta, gamma, categorical, and Poisson
distributions, amongst others.



C.1 LOG-LINEAR POOLING FOR GAUSSIAN REGRESSION

In the classification setting, we have the following likelihood function for each example (x, y):

pθ(y|x) =
1√

2πσ2
θ(x)

exp

(
− (y − µθ(x))

2

2σ2
θ(x)

)
(50)

with corresponding log-likelihood function:

log pθ(y|x) = −1

2
log(2π)− 1

2
log σ2

θ(x)−
(y − µθ(x))

2

2σ2
θ(x)

(51)

A log-linear pooling of the likelihood function of θ for the examples (xi, y) and (xj , y) is given by:

log p̃θ(y|xi, xj) = ξ0(xi, xj , θ) + λ log pθ(y|xi) + (1− λ) log pθ(y|xj) (52)

= ξ1(xi, xj , θ)−
λ

2
log σ2

θ(xi)−
λ(y − µθ(xi))

2

2σ2
θ(xi)

− 1− λ

2
log σ2

θ(xj)−
(1− λ)(y − µθ(xi))

2

2σ2
θ(xi)

(53)

= ξ1(xi, xj , θ)−
1

2
log
((

σ2
θ(xi)

)λ (
σ2
θ(xj)

)1−λ
)
− λσ2

θ(xj)(y − µθ(xi))
2 + (1− λ)σ2

θ(xi)(y − µθ(xj))
2

2σ2
θ(xi)σ2

θ(xj)
(54)

=⇒ (55)

p̃θ(y|xi, xj) = N

(
y

∣∣∣∣∣
(

λ

σ2
θ(xi)

+
1− λ

σ2
θ(xj)

)−1(
λ

(
µθ(xi)

σ2
θ(xi)

)
+ (1− λ)

(
µθ(xj)

σ2
θ(xj)

))
,

(
λ

σ2
θ(xi)

+
1− λ

σ2
θ(xj)

)−1
)

(56)

C.2 LOG-LINEAR POOLING FOR CLASSIFICATION

In the classification setting, we have the following likelihood function for each example (x, y):

pθ(y|x) =
K∏

k=1

πk,θ(x)
1(y=ck) (57)

with corresponding log-likelihood:

log pθ(y|x) =
K∑

k=1

1(y = ck) log πk,θ(x) (58)

A log-linear pooling of the likelihood function of θ for the examples (xi, y) and (xj , y) is given by:

log p̃θ(y|xi, xj) = ξ(xi, xj , θ) + λ log pθ(y|xi) + (1− λ) log pθ(y|xj) (59)

= ξ(xi, xj , θ) + λ

(
K∑

k=1

1(y = ck) log πk,θ(xi)

)
+ (1− λ)

(
K∑

k=1

1(y = ck) log πk,θ(xj)

)
(60)

= ξ(xi, xj , θ) +

(
K∑

k=1

1(y = ck) log π
λ
k,θ(xi)

)
+

(
K∑

k=1

1(y = ck) log π
1−λ
k,θ (xj)

)
(61)

= ξ(xi, xj , θ) +

K∑
k=1

1(y = ck)
(
log πλ

k,θ(xi) + log π1−λ
k,θ (xj)

)
, (62)

where ξ(xi, xj , θ) is a normalizing constant that depends on xi, xj , and θ.This result implies that log-linear pooling of two
categorical distributions is itself a categorical distribution. In practice, one would just need to combine the logits using a
weighted arithmetic average to obtain the fused likelihood function.



D ILLUSTRATIVE EXAMPLE: HETEROSCEDASTIC GAUSSIAN REGRESSION

Here, we elaborate on the illustrative example from Section 3.2.3. In this illustrative example, we consider heteroscedastic
Gaussian predictors of the form:

y = µθ(x) +
√
σ2
θ(x)ϵ, ϵ ∼ N (0, 1), (63)

where µθ(x) denotes the mean function and σ2
θ(x) denotes the variance function. For two inputs (xi, yi) and (xj , yj), vanilla

mixup regularizes the model by learning to calibrate the random interpolations ỹ = λyi + (1− λ)yj to the following:

x̃ = λxi + (1− λ)xj (64)

pθ(ỹ|x̃) = N (ỹ|µθ(x̃), σ
2
θ(x̃)) (65)

Note that in Mixup, the input to both µθ (mean function) and σ2
θ (variance function) is the interpolated feature x̃ =

λxi + (1− λ)xj . Essentially, vanilla mixup biases both the mean function µθ(x) and variance function σ2
θ(x) to behave

linearly between observed samples. In contrast, ProbMix learns to calibrate the random interpolations ỹ to a (log-linear)
fusion of the predicted conditional densities directly:

pθ(ỹ|xi, xj , λ) = N (ỹ|µ⋆, σ
2
⋆) (66)

where

σ2
⋆ =

(
λ

σ2
θ(xi)

+
1− λ

σ2
θ(xj)

)−1

(67)

µ⋆ = σ2
⋆

(
λ

(
µθ(xi)

σ2
θ(xi)

)
+ (1− λ)

(
µθ(xj)

σ2
θ(xj)

))
(68)

ProbMix combines statistical information based on two sources of information (xi and xj) and depending on the degree of
confidence placed in each source (determined by the value of λ that is sampled), we obtain a different aggregated prediction
(fused conditional density). While vanilla mixup biases the mean and variance functions to behave linearly between samples,
ProbMix instead biases the model so that predicted conditional densities themselves behave log-linearly between samples.

In the context of the numerical example provided in Section 3.2.3, we consider the following data generating process:

y = x3 + (0.5x2 + 1)ϵ, ϵ ∼ N (0, 1). (69)

A perfectly fit model would learn mean and variance functions such that µθ(x) = x3 and σ2
θ(x) = (0.5x2 + 1)2. Supposing

that we observe two samples (x1, y1) = (5, 130) and (x2, y2) = (−5,−120), we would like to understand the regularization
effect of both mixup and ProbMix. Consider a sample of the mixing coefficient λ = 0.8. For this value of λ, vanilla mixup’s
mean and variance functions are determined by the interpolated feature x̃ = 0.8× 5 + 0.2×−5 = 3, and are given by

µθ(x̃) = µθ(3) = 33 = 27 (70)

σ2
θ(x̃) = σ2

θ(3) = (0.5× 32 + 1)2 = 5.52 = 30.25 (71)

and thus the predicted conditional density given by:

pMix(ỹ|x1, x2, λ = 0.8) = N (ỹ|27, 30.25). (72)

In ProbMix, the conditional densities are fused and result in another Gaussian conditional density, with variance and mean
given by:

σ2
⋆ =

(
0.8

σ2
θ(5)

+
0.2

σ2
θ(−5)

)−1

=

(
0.8

182.25
+

0.2

182.25

)−1

= 182.25 (73)

µ⋆ = σ2
⋆

(
0.8

(
µθ(5)

σ2
θ(5)

)
+ 0.2

(
µθ(−5)

σ2
θ(−5)

))
= 182.25

(
0.8

(
125

182.25

)
+ 0.2

(
−125

182.25

))
= 75 (74)

and thus,
pProbMix(ỹ|x1, x2, λ = 0.8) = N (ỹ|75, 182.25), (75)
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Figure 3: Top panel: Data generating process considered in the illustrative example with mean function (blue dashed)
and 95% uncertainty band (blue shaded between 2.5% and 97.5% percentiles). Bottom panel far left: Conditional
density for the input x = 5 (under y = 130, NLL≈ 3.59). Bottom panel center left: Conditional density for the input
x = −5 (under y = 120, NLL≈ 3.59). Bottom panel center right: Conditional density for vanilla mixup (under ỹ = 80,
NLL≈ 49.05).Bottom panel far right: Conditional density for ProbMix (under ỹ = 80, NLL≈ 3.59).

Taking a perturbation of β → 0 for the latent observations, we can consider that both mixup and ProbMix evaluate the
likelihood function of the model parameters for an observation of ỹ = λy1 + (1− λ)y2 = 80. The negative log-likelihood
of the model parameters in this setting is given by:

− log pMix(ỹ = 80|x1, x2, λ = 0.8) ≈ 49.05 (76)
− log pProbMix(ỹ = 80|x1, x2, λ = 0.8) ≈ 3.59 (77)

Since the value of the interpolated observation lies in the right tail of pMix, gradient updates based on mixup will substantially
alter the model parameters, despite the fact that µθ(x) and σ2

θ(x) are already the ground truth functions. In contrast,
ProbMix’s fused density is better calibrated to the interpolated observation ỹ = 80, leading to more stable and appropriate
gradient updates. This demonstrates that mixup enforces a strong linear bias on the mean and variance functions, which
becomes problematic when the true relationship is nonlinear or when the input features being mixed are relatively far apart.
By mixing on a statistical manifold rather than the input space of the features, ProbMix avoids over-biasing the model. We
provide plots of the data generating process, along with the conditional densities of both mixup and ProbMix in Figure 3.

E THEORETICAL INSIGHTS

This section lists the proofs for the theorems in Section 4. We first include the form of the expected risk for mixup, manifold
mixup, ProbMix and M-ProbMix for completeness.

Mixup:

R̃mix
α,G (θ) = −

∑
(i,j)∈E

wi,jEλ [log pθ(yi,j,λ|xi,j,λ)] ,

where yi,j,λ = λyi + (1− λ)yj and xi,j,λ = λxi + (1− λ)xj .

Manifold Mixup:

R̃M
α,Lmix

(θ) = −
∑

(i,j)∈E

wi,jEλ [log pθ1(yi,j,λ|zi,j,λ)] ,

where yi,j,λ = λyi + (1− λ)yj and zi,j,λ = λhθ0(xi) + (1− λ)hθ0(xj).



ProbMix:

R̃P
α,G(θ) = −

∑
(i,j)∈E

wi,jEλ[Eyi,j
[log pθ(yi,j |xi, xj , λ)]]

where pθ(yi,j |xi, xj , λ) = gxλ(pθ(yi,j |xi), pθ(yi,j |xj))

M-ProbMix

R̃P,M
α,G (θ) = −

∑
(i,j)∈E

wi,jEλ[Eyi,j
[log pθ(yi,j |xi, xj , λ)]]

where pθ(yi,j |xi, xj , λ) is given by:

pθ(yi,j |xi, xj , λ) =

∫
pθ1(yi,j |zi,j)qθ0(zi,j |xi, xj , λ)dzi,j

and qθ0(zi,j |xi, xj , λ) = gzλ(qθ0(zi|xi), qθ0(zj |xj)) for some fusion function gzλ.

Proof of Theorem 4.3. We show the likelihoods of the two approaches are proportional to the same quantity, hence equivalent.
Without loss of generality, consider the likelihood for the kth class. For ProbMix, the likelihood is proportional to:

log pkθ(y|xi,j,λ) = log gxλ(p
k
θ(y|xi), p

k
θ(y|xj))

= λ log(pkθ(y|xi)) + (1− λ) log(pkθ(y|xj)

= λ log

[
e−fk

θ (xi)∑
l e

−f l
θ(xi)

]
+ (1− λ) log

[
e−fk

θ (xj)∑
l e

−f l
θ(xj)

]
∝ λ log

(
e−fk

θ (xi)
)
+ (1− λ) log

(
e−fk

θ (xj)
)

Now, considering mixup on the logits, we obtain:

log pθ(y|xi,j,λ) = log pθ(y|λfθ(xi) + (1− λ)fθ(xj))

= log

(
e−λfk

θ (xi)−(1−λ)fk
θ (xj)∑

l e
−λf l

θ(xi)−(1−λ)f l
θ(xj)

)

∝ log

[(
e−fk

θ (xi)
)λ]

+ log

[(
e−fk

θ (xj)
)(1−λ)

]
= λ log

(
e−fk

θ (xi)
)
+ (1− λ) log

(
e−fk

θ (xj)
)

Proof of Theorem 4.4. The key is to show the likelihood of both settings is equivalent. Considering ProbMix under log-linear
fusion of homoscedastic Gaussian likelihoods, we have:

log pθ(y|xi,j,λ) = log gxλ(pθ(y|xi), pθ(y|xj))

= log
(
N (y|fθ(xi), σ

2Idy
)λ · N (y|fθ(xj), σ

2Idy
)(1−λ)

)
∝ −λ

(y − fθ(xi))
T (y − fθ(xi))

2σ2
− (1− λ)

(y − fθ(xj))
T (y − fθ(xj))

2σ2

∝ yT y − 2yT (λfθ(xi) + (1− λ)fθ(xj))



Now, considering the likelihood for traditional mixup when interpolating the output layer:

log pθ(y|xi,j,λ) = log pθ(y|λfθ(xi) + (1− λ)fθ(xj))

= Cdy
σ −

[ (y − λfθ(xi)− (1− λ)fθ(xj))
T (y − λfθ(xi)− (1− λ)fθ(xj))

2σ2

]
∝ yT y − 2yT (λfθ(xi) + (1− λ)fθ(xj))

Proof of Theorem 4.5. Consider fθ = h1 ◦ hθ, where h1(z) =

[
e−z1∑dy

j=1 e−zj
, . . . , e

−zdy∑dy
j=1 e−zj

]⊺
is the softmax function and

hθ(x) = Ax + b is a linear function with A = [a1, . . . , ay]
⊺ ∈ Rdy×dx and b ∈ Rdy . For two inputs xi and xj , the

probability of the kth class, denoted by pi,k and pj,k, respectively, can readily be determined as:

pi,k =
e−(a⊺

kxi+bk)∑dy

k′=1 e
−(a⊺

k′xi+bk′ )
(78)

pj,k =
e−(a⊺

kxj+bk)∑dy

k′=1 e
−(a⊺

k′xj+bk′ )
(79)

For the mixup approach, consider the mixed input xi,j,λ = λxi + (1− λ)xj . The output of fθ is given by:

fθ(xi,j,λ) = h1(hθ(xi,j,λ)) (80)
= h1 (Axi,j,λ + b) (81)
= h1(λAxi + (1− λ)Axj + b︸ ︷︷ ︸

zi,j,λ

) (82)

For each dimension k = 1, . . . , dy of zi,j,λ, denoted by zi,j,λ,k = λa⊺kxi + (1− λ)a⊺kxj + bk we have that the output of h1,
which is the probability of class k, is given by:

pmix
k = h1(zi,j,λ,k) (83)

∝ e−zi,j,λ,k (84)

= e−(λa⊺
kxi+(1−λ)a⊺

kxj+bk) (85)

= e−λa⊺
kxie−(1−λ)a⊺

kxje−bk (86)

= e−λ(a⊺
kxi+bk)e−(1−λ)(a⊺

kxj+bk) (87)

=
[
e−(a⊺

kxi+bk)
]λ [

e−(a⊺
kxj+bk)

]1−λ

(88)

∝ [h1(zi,k)]
λ
[h1(zj,k)]

1−λ (89)

= pλi,kp
1−λ
j,k (90)

Clearly pmix
k ∝ pλi,kp

1−λ
j,k . Therefore, in this model setting, mixup and ProbMix (under log-linear pooling) are equivalent.

Proof of Theorem 4.6. Consider that fθ(x) = Ax + b, where A ∈ Rdy×dx and b ∈ Rdy . For two inputs xi and xj , the
log-likelihood function of θ based on an observed label y is given by:

log pθ(y|xi) = logN (y|fθ(xi), σ
2Idy ) (91)

log pθ(y|xj) = logN (y|fθ(xj), σ
2Idy

) (92)

where so we have that:

log pθ(y|x) = Cdy
σ − (y − fθ(x))

⊺
(y − fθ(x))

2σ2
, (93)



where Cdy
σ = −dy

2 log 2πσ2. For mixup, consider mixed input xi,j,λ = λxi + (1− λ)xj . Then, the log-likelihood function
of an observation y is given by:

log pθ(y|xi,j,λ) = log pθ(y|λxi + (1− λ)xj) (94)

= Cdy
σ − (y − fθ(xi,j,λ))

⊺
(y − fθ(xi,j,λ))

2σ2
(95)

We can expand the quadratic as:

(y − fθ(xi,j,λ))
⊺
(y − fθ(xi,j,λ)) =y⊺y − 2 y⊺f(xi,j,λ)︸ ︷︷ ︸

y⊺Axi,j,λ+y⊺b

+ f(xi,j,λ)
⊺f(xi,j,λ)︸ ︷︷ ︸

x⊺
i,j,λA

⊺Axi,j,λ+2b⊺Axi,j,λ+b⊺b

= y⊺y − 2y⊺A(λxi + (1− λ)xj) + · · ·
...
= λ (y − fθ(xi))

⊺
(y − fθ(xi)) + (1− λ) (y − fθ(xj))

⊺
(y − fθ(xj))

Therefore, one can readily show that:

log pθ(y|xi,j,λ) = Z + λ log pθ(y|xi) + (1− λ) log pθ(y|xj) (96)

or equivalently that:
pθ(y|xi,j,λ) ∝ [pθ(y|xi)]

λ
[pθ(y|xj)]

1−λ (97)

Therefore, in this model setting, mixup and ProbMix (under log-linear pooling) are equivalent.

Proof of Theorem 4.7. As noted in Section 3.2.2 and Appendix C, log-linear fusion of homoscedastic Gaussian embeddings
results in a Gaussian distribution with the same variance σ and mean µθ equal to:

µθ(xi, xj) = λhθ(xi) + (1− λ)hθ(xj).

If the mean is propagated during training and inference, this implies that the log-likelihood for M-ProbMix is:

log p(y|xi,j,k) = log p (y|dϕ(λhθ(xi) + (1− λ)hθ(xj))) ,

which is equal to the manifold mixup log-likelihood.

F EXPERIMENTAL RESULTS

F.1 TOY DATASETS

Here, we include additional results related to the toy regression and toy classification datasets.

F.1.1 Toy Regression Ablations

Figure 4 shows the a plot of the conditional density estimator obtain via each of the baseline methods (Mix, M-Mix, and
LocKMix, and LocKM-Mix) as compared to the proposed appraoches (ProbMix, M-ProbMix, and LocKProbMix, and LocKM-
ProbMix). We can see that methods like Mix and M-Mix actually attenuate uncertainty in the out-of-sample region, which
can be problematic for risk-sensitive applications. ProbMix also performs poorly on out-of-sample data; we attribute this to
the fact that fusing the log-likelihoods during training imposes a large bias for non-neighboring samples in a regression
task. This flaw is resolved in all other variants of probabilistic mixup as the density plots in Fig. 4 show that M-ProbMix,
LocKProbMix, and LocKM-ProbMix perform best in terms of capturing uncertainty on out-of-sample data.
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Figure 4: Visual example of different approaches for toy regression. LocKProbMix, and LocKM-ProbMix have widest
uncertainty bounds on out-of-sample inputs, indicaitng that these variants are best calibrated in terms of uncertainty.

As an ablation study, we tested a grid of hyperparameter values defined by α ∈ {0.01, 0.05, 0.10, 0.5, 1.0} and β ∈ {0, 0.01}.
We show a series of box plots comparing the MSE and the NLL across different methods. Results show that in the case
of the regression experiment, manifold probabilistic mixup approaches (M-ProbMix and LocKM-ProbMix) achieve best
performance in terms of both MSE and NLL. Please refer to Figures 5-14 for more details on the results.
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Figure 5: Toy regression results for α = 0.01 and β = 0.

F.1.2 Toy Regression: Linear vs. Log-Linear Pooling

Here, we provide an additional ablation study comparing the performance of linear and log-linear pooling in ProbMix in the
context of the Gaussian regression toy example. For linear pooling, the fusion functions gxλ and gyλ are assumed to be the
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Figure 6: Toy regression results for α = 0.05 and β = 0.
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Figure 7: Toy regression results for α = 0.1 and β = 0.
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Figure 8: Toy regression results for α = 0.5 and β = 0.
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Figure 9: Toy regression results for α = 1 and β = 0.
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Figure 10: Toy regression results for α = 0.01 and β = 0.01.
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Figure 11: Toy regression results for α = 0.05 and β = 0.01.
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Figure 12: Toy regression results for α = 0.1 and β = 0.01.
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Figure 13: Toy regression results for α = 0.5 and β = 0.01.
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Figure 14: Toy regression results for α = 1.0 and β = 0.01.

following:

p̃θ(y|xi, xj , λ) = gxλ(pθ(y|xi), pθ(y|xj)) = λpθ(y|xi) + (1− λ)pθ(y|xj) (98)
pβ(ỹ|yi, yj , λ) = gyλ(sβ(ỹ|yi), sβ(ỹ|yj)) = λsβ(ỹ|yi) + (1− λ)sβ(ỹ|yj) (99)

We summarize the results in the ablation on the fusion function in terms of the average NLL for in distribution (ID) data and
out-of-distribution (OOD) data in Tables 3 and 4, respectively. Based on the results, our findings are as follows:

1. For M-ProbMix and LocKM-ProbMix, linear pooling actually achieves better OOD performance than log-linear pooling.
We can see in Table 4, for example with α = 0.5, that M-ProbMix with linear pooling achieves an average NLL of 6.1,
while the best performing ProbMix variant with log-linear pooling (LocKM-ProbMix) only achieves an average NLL of
16.9.

2. Improvement of the model in terms of OOD performance comes at a cost of ID performance. We can see that across
all settings of α, M-ProbMix with linear pooling achieves much higher NLL than its log-linear counterpart (e.g., for
α = 0.5. 0.432 vs. -0.285) due to overcoverage of the quantified uncertainty.

α ProbMix. LocKProbMix. M-ProbMix. LocKM-ProbMix. ProbMix. LocKProbMix. M-ProbMix. LocKM-ProbMix.
(Linear) (Linear) (Linear) (Linear) (Log-Linear) (Log-Linear) (Log-Linear) (Log-Linear)

1e−32 -0.76±0.01 -0.66±0.02 -0.38±0.01 -0.30±0.01 -0.78±0.01 -0.62±0.02 -0.38±0.01 -0.28±0.03
0.01 -0.77±0.01 -0.66±0.01 -0.33±0.01 -0.30±0.02 -0.72±0.01 -0.67±0.01 -0.39±0.02 -0.33±0.01
0.05 -0.76±0.01 -0.62±0.02 -0.01±0.02 -0.30±0.01 -0.71±0.01 -0.65±0.01 -0.36±0.01 -0.29±0.01
0.10 -0.74±0.01 -0.66±0.02 0.11±0.04 -0.31±0.02 -0.66±0.01 -0.67±0.01 -0.35±0.01 -0.32±0.01
0.50 -0.76±0.01 -0.65±0.02 0.43±0.04 -0.29±0.02 -0.65±0.01 -0.64±0.01 -0.28±0.01 -0.30±0.01

1 -0.74±0.01 -0.66±0.02 0.36±0.03 -0.25±0.01 -0.51±0.02 -0.51±0.02 -0.25±0.01 -0.33±0.01

Table 3: Linear vs. Log-linear, changing hyper-parameter α, in-distribution NLL.

F.1.3 Toy Regression: Latent Variable Modeling

We further present results comparing mixup methods and ProbMix variants across different values of α. The goal of this
ablation is to understand whether or not latent variable modeling (i.e., mapping to a statistical manifold in the latent space) is



α ProbMix. LocKProbMix. M-ProbMix. LocKM-ProbMix. ProbMix. LocKProbMix. M-ProbMix. LocKM-ProbMix.
(Linear) (Linear) (Linear) (Linear) (Log-Linear) (Log-Linear) (Log-Linear) (Log-Linear)

1e−32 94.9±11.8 157.1±40.8 21.3±3.3 16.0±3.2 92.6±12.9 229.4±133.6 29.5±6.6 78.6±62.5
0.01 103.5±15.0 171.1±41.0 28.4±8.8 22.7±4.3 78.1±8.1 132.7±38.7 27.5±6.2 18.6±6.3
0.1 90.2±12.7 180.7±30.0 6.6±0.9 17.4±3.0 117.8±27.0 157.2±18.1 31.0±5.4 17.0±2.2
0.1 85.3±13.5 206.9±30.6 12.3±3.6 24.4±6.4 173.1±27.3 258.4±52.7 25.9±6.1 32.8±8.1
0.5 83.4±10.17 149.2±35.5 6.1±1.4 22.0±3.9 313.6±59.6 176.2±55.0 47.7±12.2 16.9±3.0
1 91.8±7.1 104.5±22.9 7.8±0.7 14.8±4.8 370.2±54.3 117.4±18.6 37.2±13.5 23.8±5.6

Table 4: Linear vs. Log-linear, changing hyper-parameter α, OOD NLL.

the main cause of the strong performance of M-ProbMix and LocKM-ProbMix in the toy regression experiment. To that end,
we fix β = 10−32 and run all baselines across different values of α ∈ {10−32, 0.01, 0.05, 0.1, 0.25, 0.5, 1}. By varying the
value of α, we can understand whether or not mixing is providing additional boost in performance on the OOD distribution
NLL. We provide the OOD NLL for all baselines considered in Table 5. From the table, we observe that latent variable
modeling alone (α = 10−32) provides a huge benefit on this toy experiment, improving the negative log-likelihood by nearly
an order of magnitude (in comparison to mixup variants, ProbMix and LocKProbMix). Interestingly enough, we can see that
in addition to the benefits gained from latent variable modeling, performance can be further improved by incorporating
ProbMix, as we get the best performance in the case of M-ProbMix when α = 0.25 (22.9± 6.6) and LocKM-ProbMix when
α = 0.5 (16.9± 3.0).

Mixup Methods ProbMixup Methods

α Mix. LocKMix. M-Mix. LocKM-Mix. ProbMix. LocKProbMix. M-ProbMix. LocKM-ProbMix.

1e−32 87.1±10.5 143.2±31.7 87.1±10.5 143.2±31.7 92.6±13.0 229.4±133.6 29.5±6.5 78.6±62.4

0.01 98.6±24.2 110.7±11.0 162.5±47.9 152.3±45.4 78.1±8.1 132.7±38.7 27.5±6.2 18.6±6.3
0.05 176.3±45.5 167.1 ± 52.8 136.2±33.5 147.1±25.8 117.8±27.0 157.2±18.1 31.0±5.4 16.9±2.2
0.1 258.92±51.1 202.1±41.7 148.5 ±29.9 177.8±26.7 173.1±27.3 258.4±52.7 25.9 ±6.0 32.8±8.1
0.25 270.3±62.2 207.5±44.5 140.3±33.5 204.3±58.1 302.0±30.8 120.2±18.4 22.9 ± 6.7 19.1±3.9
0.5 306.0±38.9 219.1±57.7 136.4±23.8 202.4±34.3 313.6±59.6 176.2±55.0 47.7±12.2 16.9 ± 3.0
1 310.3±52.3 256.7±85.0 134.1±34.0 186.3±42.7 370.1±54.3 117.4±18.6 37.1±13.4 23.8±5.6

Table 5: Changing hyper-parameter α, latent variable modeling.

F.1.4 Toy Classification

Figure 15 shows the a plot of the decision boundaries of each network obtain via each of the baseline methods (Mix, M-Mix,
and LocKMix, and LocKM-Mix) as compared to the proposed approaches (ProbMix, M-ProbMix, and LocKProbMix, and
LocKM-ProbMix). Base on the plot of the decision boundaries, we can see that for this example ProbMix and LocKProbMix
yield the most reasonable decision boundaries, where LocKMix and LocKM-Mix are close (but less noisy competitor). We can
see that Mix and M-Mix suffer from the manifold intrusion issue, since the decision boundaries for the red and yellow class
are mixed and deviate more from the ground truth data generating process. We observe a similar problem in the M-ProbMix
and LocKM-ProbMix methods, showing that in the case of this dataset fusing at the logit level gives better generalization
results than fusing on some embedding.

Similar to the case of the toy regression dataset, we conduct an ablation study for the α and β parameters for the
toy classification dataset. We tested a grid of hyperparameter values defined by α ∈ {0.01, 0.05, 0.10, 0.5, 1.0} and
β ∈ {0, 0.01}. We show a series of box plots comparing the test set accuracy and the NLL across different methods. Results
show that in the case of the classification experiment, probabilistic mixup approaches without manifold augmentation
(ProbMix and LocKProbMix) achieve best performance in terms of both accuracy and NLL as compared to their manifold-
based counterparts. Please refer to the results as shown in Figures 16-25 for more details on the results and the ablation
studies

F.2 UCI

We include details of dataset and feature sizes below:
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Figure 15: Visual example of different approaches for toy classification.

• bostonHousing: n = 506, d = 13;

• concrete: n = 1030, d = 8;

• energy: n = 768, d = 8;

• kin8nm: n = 8192, d = 8;

• naval-propulsion-plant: n = 11934, d = 16;

• power-plant: n = 9568, d = 4;

• power-plant: n = 1599, d = 11;

• yacht: n = 308, d = 6.

Mixup Methods ProbMixup Methods

Dataset ERM Mix. LocKMix. M-Mix. LocKM-Mix. ProbMix. LocKProbMix. M-ProbMix. LocKM-ProbMix. M-ProbMix.⋆ LocKM-ProbMix.⋆

bostonHousing 5.77 ± 3.23 4.68 ± 3.00 5.25 ± 3.33 4.65 ± 2.67 4.72 ± 2.86 4.27 ± 2.75 5.00 ± 3.18 4.54 ± 2.84 3.93 ± 2.52 3.27 ± 0.97 3.23 ± 1.03
energy 0.44 ± 0.09 0.51 ± 0.10 0.45 ± 0.07 0.46 ± 0.08 0.45 ± 0.08 0.47 ± 0.09 0.48 ± 0.08 0.48 ± 0.07 0.49 ± 0.08 1.04 ± 0.46 0.76 ± 0.16

wine-quality-red 0.76 ± 0.10 0.72 ± 0.10 0.72 ± 0.10 0.77 ± 0.09 0.71 ± 0.09 0.75 ± 0.10 0.74 ± 0.10 0.77 ± 0.10 0.72 ± 0.10 0.66 ± 0.08 0.66 ± 0.08
concrete 5.88 ± 2.67 5.10 ± 0.58 5.19 ± 0.59 5.76 ± 2.73 5.73 ± 2.45 5.47 ± 2.76 5.08 ± 0.75 5.90 ± 2.50 5.88 ± 2.41 5.48 ± 0.67 5.43 ± 0.54

power-plant 3.91 ± 0.18 3.93 ± 0.17 3.96 ± 0.15 3.93 ± 0.17 3.97 ± 0.15 3.85 ± 0.14 3.96 ± 0.19 4.09 ± 0.22 4.13 ± 0.21 4.21 ± 0.20 4.24 ± 0.20
yacht 1.26 ± 2.71 1.96 ± 0.59 1.37 ± 0.37 0.70 ± 0.26 0.73 ± 0.30 0.92 ± 0.35 1.21 ± 0.58 0.68 ± 0.29 0.70 ± 0.31 1.41 ± 0.65 1.73 ± 0.74

kin8nm† 7.41 ± 0.34 7.73 ± 0.34 7.53 ± 0.37 7.28 ± 0.26 7.62 ± 0.42 7.52 ± 0.36 7.54 ± 0.42 7.66 ± 0.52 7.73 ± 0.35 8.01 ± 0.43 8.12 ± 0.51
naval-propulsion-plant† 0.21 ± 0.33 0.06 ± 0.01 0.09 ± 0.21 0.05 ± 0.03 0.04 ± 0.03 0.04 ± 0.07 0.09 ± 0.13 0.06 ± 0.02 0.17 ± 0.16 0.12 ± 0.01 0.13 ± 0.02

Table 6: RMSE for UCI regression datasets. †: normalized to a single integer digit. ⋆: implements separate variance networks,
for details see text. In a majority of the datasets, probabilistic mixup methods outperform ERM and mixup methods in terms
of RMSE.

F.3 FINANCIAL FORECASTING

Here, we provide additional tables showing the performance of each method on the stock datasets in terms of average RMSE
on the test set (please see Table 7). We also provide the average NLL and average RMSE on the training set (please see
Tables 8 and 9). Finally, to understand the performance of the regularization techniques across the GME and NVDA stocks,
we provide plots of the conditional density estimates corresponding to the best and worst NLL on both the training and test
set. In particular, Figure 26 shows the conditional density estimates for the GME dataset using the LSTM predictor for the
following regularization techniques: Mix, M-Mix, and LocKM-ProbMix. Figure 28 shows the conditional density estimates
for the GME dataset using the Transformer predictor for the following regularization techniques: Mix and M-ProbMix.
Finally, Figure 27 shows the conditional density estimates for the NVDA dataset using the LSTM predictor for the following
techniques: ERM, ProbMix, and M-ProbMix. All in all, we find that methods that perform well in terms of NLL tend to
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Figure 16: Toy classification results for α = 0.01 and β = 0.
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Figure 17: Toy classification results for α = 0.05 and β = 0.
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Figure 18: Toy classification results for α = 0.1 and β = 0.
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Figure 19: Toy classification results for α = 0.5 and β = 0.
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Figure 20: Toy classification results for α = 1 and β = 0.
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Figure 21: Toy classification results for α = 0.01 and β = 0.01.
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Figure 22: Toy classification results for α = 0.05 and β = 0.01.

ERM Mixup Local Mixup Manifold Mixup Local Manifold Mixup ProbMixup Local ProbMixup Manifold ProbMixup Local Manifold ProbMixup
Method

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Ac
cu

ra
cy

Test Accuracy: ( =  0.1, =  0.01)

(a) Average accuracy.

ERM Mixup Local Mixup Manifold Mixup Local Manifold Mixup ProbMixup Local ProbMixup Manifold ProbMixup Local Manifold ProbMixup
Method

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

NL
L

Test NLL: ( =  0.1, =  0.01)

(b) Average negative log-likelihood.

Figure 23: Toy classification results for α = 0.1 and β = 0.01.
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Figure 24: Toy classification results for α = 0.5 and β = 0.01.
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Figure 25: Toy classification results for α = 1 and β = 0.01.



have more conservative estimates of the variance of the conditional density, while models that performed poorly had both
inaccurate means and variances.

LSTM Mixup Methods ProbMixup Methods

Dataset ERM Mix LocKMix M-Mix LocKM-Mix ProbMix LocKProbMix M-ProbMix LocKM-ProbMix

GME 1.64± 0.02 1.48± 0.02 1.60± 0.02 1.65± 0.01 1.62± 0.03 1.71± 0.03 1.65± 0.04 1.57± 0.01 1.57± 0.02
GOOG 2.06± 0.10 2.13± 0.05 1.87± 0.11 2.12± 0.09 1.98± 0.13 1.72± 0.16 1.68± 0.12 1.76± 0.10 1.81± 0.08
NVDA 0.25± 0.02 0.33± 0.04 0.42± 0.04 0.31± 0.03 0.44± 0.04 0.24± 0.02 0.39± 0.04 0.55± 0.02 0.40± 0.01
RCL 0.59± 0.02 0.31± 0.01 0.58± 0.02 0.65± 0.02 0.54± 0.01 0.62± 0.01 0.57± 0.02 0.49± 0.02 0.59± 0.02

Transformer Mixup Methods ProbMixup Methods

Dataset ERM Mix LocKMix M-Mix LocKM-Mix ProbMix LocKProbMix M-ProbMix LocKM-ProbMix

GME 1.82± 0.03 1.86± 0.01 1.85± 0.01 1.86± 0.01 1.79± 0.02 1.78± 0.02 1.84± 0.01 1.81± 0.01 1.82± 0.02
GOOG 2.24± 0.06 2.46± 0.03 1.68± 0.10 1.99± 0.09 2.06± 0.07 2.14± 0.10 1.79± 0.09 1.83± 0.13 2.00± 0.12
NVDA 0.36± 0.02 0.28± 0.01 0.42± 0.02 0.36± 0.01 0.35± 0.01 0.29± 0.01 0.36± 0.01 0.35± 0.02 0.37± 0.01
RCL 0.43± 0.01 0.23± 0.01 0.45± 0.01 0.42± 0.01 0.44± 0.01 0.42± 0.01 0.41± 0.01 0.40± 0.01 0.41± 0.01

Table 7: RMSE for LSTM and Transformer models in the time series datasets. Results show that probabilistic mixup
techniques do not lead to improvement in performance in terms of RMSE, as ERM and Mix outperform it on most of
the datasets. This implies that while ProbMix may offer benefits in terms of calibrated uncertainty, its performance on
uncertainty agnostic metrics like RMSE may not be up to par to ERM and other regularization schemes.

LSTM Mixup Methods ProbMixup Methods

Dataset ERM Mix LocKMix M-Mix LocKM-Mix ProbMix LocKProbMix M-ProbMix LocKM-ProbMix

GME −1.39± 0.06 −1.25± 0.03 −1.74± 0.03 −1.42± 0.03 −1.79± 0.02 −1.46± 0.03 −1.70± 0.04 −0.94± 0.03 −1.26± 0.06
GOOG −0.80± 0.06 −0.81± 0.02 −1.19± 0.03 −0.97± 0.04 −0.91± 0.04 −0.88± 0.04 −1.02± 0.03 −0.51± 0.03 −0.91± 0.04
NVDA −1.56± 0.04 −1.23± 0.04 −1.76± 0.07 −1.57± 0.03 −1.84± 0.03 −1.50± 0.02 −1.92± 0.07 −0.94± 0.03 −1.30± 0.03
RCL −1.29± 0.03 −0.98± 0.01 −1.54± 0.01 −1.31± 0.02 −1.47± 0.03 −1.11± 0.01 −1.52± 0.03 −0.56± 0.06 −1.08± 0.04

Transformer Mixup Methods ProbMixup Methods

Dataset ERM Mix LocKMix M-Mix LocKM-Mix ProbMix LocKProbMix M-ProbMix LocKM-ProbMix

GME −1.41± 0.02 −1.28± 0.02 −1.59± 0.01 −1.44± 0.02 −1.51± 0.03 −1.34± 0.03 −1.52± 0.03 −1.42± 0.02 −1.49± 0.01
GOOG −0.99± 0.04 −0.85± 0.02 −1.07± 0.02 −1.11± 0.02 −1.05± 0.01 −0.96± 0.03 −1.11± 0.01 −1.08± 0.01 −1.15± 0.01
NVDA −1.62± 0.01 −1.52± 0.02 −1.72± 0.01 −1.47± 0.04 −1.69± 0.02 −1.48± 0.03 −1.73± 0.03 −1.49± 0.05 −1.71± 0.01
RCL −1.24± 0.02 −0.88± 0.01 −1.39± 0.03 −1.20± 0.01 −1.31± 0.02 −1.00± 0.02 −1.32± 0.02 −1.19± 0.01 −1.26± 0.02

Table 8: NLL for LSTM and Transformer models in the time series datasets (in-sample performance).

LSTM Mixup Methods ProbMixup Methods

Dataset ERM Mix LocKMix M-Mix LocKM-Mix ProbMix LocKProbMix M-ProbMix LocKM-ProbMix

GME 0.09± 0.01 0.08± 0.00 0.07± 0.00 0.09± 0.01 0.05± 0.00 0.07± 0.00 0.06± 0.00 0.12± 0.00 0.08± 0.01
GOOG 0.18± 0.01 0.11± 0.00 0.10± 0.00 0.19± 0.02 0.13± 0.00 0.16± 0.02 0.11± 0.00 0.31± 0.02 0.22± 0.02
NVDA 0.07± 0.00 0.10± 0.01 0.06± 0.00 0.06± 0.00 0.05± 0.00 0.06± 0.00 0.05± 0.00 0.10± 0.00 0.08± 0.00
RCL 0.09± 0.00 0.09± 0.00 0.06± 0.00 0.08± 0.00 0.07± 0.00 0.09± 0.00 0.07± 0.00 0.15± 0.01 0.10± 0.00

Transformer Mixup Methods ProbMixup Methods

Dataset ERM Mix LocKMix M-Mix LocKM-Mix ProbMix LocKProbMix M-ProbMix LocKM-ProbMix

GME 0.08± 0.00 0.08± 0.00 0.07± 0.00 0.07± 0.00 0.07± 0.00 0.07± 0.00 0.07± 0.00 0.07± 0.00 0.07± 0.00
GOOG 0.15± 0.02 0.12± 0.00 0.14± 0.02 0.10± 0.00 0.16± 0.01 0.14± 0.02 0.12± 0.01 0.10± 0.00 0.11± 0.00
NVDA 0.06± 0.00 0.06± 0.00 0.05± 0.00 0.07± 0.00 0.05± 0.00 0.06± 0.00 0.06± 0.00 0.06± 0.00 0.05± 0.00
RCL 0.10± 0.00 0.12± 0.00 0.08± 0.00 0.10± 0.00 0.09± 0.00 0.10± 0.00 0.09± 0.00 0.10± 0.00 0.10± 0.00

Table 9: RMSE for LSTM and Transformer models in the time series datasets (in-sample performance).
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Figure 26: Predicted conditional densities with best and worst NLL values for LSTM model on GME dataset



1.0 0.8 0.6 0.4 0.2
y

0

2

4

6

8

10

12

p(
y|

x)

Training - Best Prediction (NLL: -2.563)
=-0.574, 

 =0.030
y = -0.567

0.6 0.4 0.2 0.0 0.2
y

0

2

4

6

8

10

p(
y|

x)

Training - Worst Prediction (NLL: 2.516)
=-0.122, 

 =0.038
y = -0.241

1.0 1.2 1.4 1.6 1.8 2.0
y

0

1

2

3

4

5

p(
y|

x)

Test - Best Prediction (NLL: -1.576)
=1.460, 

 =0.082
y = 1.452

1.2 1.4 1.6 1.8 2.0 2.2 2.4
y

0

1

2

3

4

5

p(
y|

x)

Test - Worst Prediction (NLL: 17.482)
=1.441, 

 =0.082
y = 1.948

(a) ERM.

0.8 0.6 0.4 0.2 0.0
y

0

1

2

3

4

5

6

7

p(
y|

x)

Training - Best Prediction (NLL: -1.982)
=-0.434, 

 =0.055
y = -0.431

0.8 0.6 0.4 0.2 0.0
y

0

1

2

3

4

5

6

p(
y|

x)
Training - Worst Prediction (NLL: 2.150)
=-0.239, 

 =0.062
y = -0.414

1.2 1.4 1.6 1.8 2.0
y

0

1

2

3

4

5

p(
y|

x)

Test - Best Prediction (NLL: -1.722)
=1.561, 

 =0.071
y = 1.558

1.2 1.4 1.6 1.8 2.0 2.2 2.4
y

0

1

2

3

4

5

p(
y|

x)

Test - Worst Prediction (NLL: 17.527)
=1.504, 

 =0.072
y = 1.948

(b) ProbMix.

1.0 0.8 0.6 0.4 0.2 0.0
y

0

1

2

3

4

5

6

7

p(
y|

x)

Training - Best Prediction (NLL: -1.956)
=-0.472, 

 =0.055
y = -0.487

1.6 1.4 1.2 1.0 0.8 0.6 0.4
y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

p(
y|

x)

Training - Worst Prediction (NLL: 0.770)
=-0.877, 

 =0.116
y = -1.109

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
y

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

p(
y|

x)

Test - Best Prediction (NLL: -0.556)
=1.253, 

 =0.229
y = 1.248

0.5 1.0 1.5 2.0 2.5
y

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

p(
y|

x)

Test - Worst Prediction (NLL: 4.141)
=1.249, 

 =0.228
y = 1.948

(c) Manifold probabilistic mixup.

Figure 27: Predicted conditional densities with best and worst NLL values for LSTM model on NVDA dataset
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Figure 28: Predicted conditional densities with best and worst NLL values for Transformer model on GME dataset
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