Under review as a conference paper at ICLR 2025

KNAPSACK SCHEMA LINKING AGENT FOR LLM-

BASED TEXT-TO-SQL GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Generating SQLs according to user queries (text-to-SQL) is a long-standing sequen-
tial challenge, where the accuracy of the initial schema linking significantly impacts
the subsequent SQL generation performance. However, existing models often focus
more on SQL generation and less on the schema linking task, leading to potential
missing or redundant schema linking and suboptimal SQL generation performance.
The underlying reason is that schema linking is not a simple selection problem but
a Knapsack problem, which should consider both the value of the schema linking
in terms of missing important information and the weight of the schema linking
in terms of providing redundant information. Motivated by this, we provide two
tailored SL benchmarks and two tailored metrics to train SL agents and to evaluate
the missing and redundant schema linking. In this paper, we propose the Knapsack
Schema Linking Agent (KaSLA), which can link the most valuable and least
redundant schema element subsets for both tables and columns. KaSLA introduces
an importance score function to predict each schema element’s importance score,
and then utilizes the importance score to estimate the value and the weight of each
schema. Then, by estimating the capacity, the maximum weight the knapsack can
hold, of a given user query from historical SQL records, KaSLA employs efficient
dynamic programming to select the most valuable schema element set within the
estimated capacity. Extensive experiments on two benchmark datasets demonstrate
the superior performance of KaSLA over 12 state-of-the-art baselines. Especially
on the popular and challenging BIRD benchmark, KaSLA can outperform the

baselines by over 5.72%.

1 INTRODUCTION

With the advent of large language models (LLMs) (Achiam et al.|
2023 Dubey et al., [2024), LLM-based text-to-SQL is emerging
as the next-generation interface for database users (Hong et al.}
2024b). Typically, text-to-SQL frameworks employ a two-step
process: first linking user queries to database schema, then gen-
erating the corresponding SQL statement. However, the accurate
SQL statement requires the linking to the correct schema elements
(tables and columns) meaning that fatal errors in earlier stages
inevitably propagate to later ones. For instance, inaccurate schema
linking—such as overlooking crucial tables or linking to irrelevant
tables or columns—will lead to incorrect SQL statements. As
illustrated in current text-to-SQL models still exhibit

Bird-dev

Full{_] .
CodeS-SLITnl < 15.75% >

DTS-SLT

TA-SL

KaSLA [Sm— < 11.13% >

Gold{

Schema Linking Method

0.52 0.56 0.60 0.64 0.68
Execution accuracy (EX) with CodeS-15B

Figure 1: The performance com-
parison of the schema linking
methods with a same text-to-
SQL backbone on BIRD-dev.

a significant performance gap (15.75%) in SQL generation compared with feeding gold standard
schema linking. Consequently, improving the accuracy of schema linking remains a critical challenge
with substantial research value, offering considerable potential for advancement in the field.

Recent state-of-the-art text-to-SQL models tend to focus primarily on final SQL generation while
employing relatively simplistic schema linking strategies. DIN-SQL (Pourreza & Rafiei, 2023)
pioneered the use of LLMs to generate schema linking by inputting the full schema. DAIL-SQL (Gao
et al., [2024) extended this approach by leveraging historical query-SQL pairs as evidence to improve
generative schema linking. DELLM (Hong et al.| 2024a) introduced a specialized data expert LLM

Under review as a conference paper at ICLR 2025

. . _

QUETY 1, the non-carcinogenic molecules, @) Previous Selection Schema Linking (© Knapsack Schema Linking i

E] how many contain chlorine atoms? S

Missing Link H (™ Canacity)
= o 1 apacity

Schema elements Query @ Query i Ka S L/'\ : C=6
,,,,,,,,,,,,,,,,,,,,,,, H
’ ~, 1 o L Y -ToT
! Tables Columns ' Schema elements @; Generate 1 molecule; Schema elements i Ir Vale ! 4 A N i
! [Catom] [atom id. molecute i, clement |1 [Catom |[] i [Caom 2] wias, |4 [mt00 |} ' [w2 atom
I , Redun. Link i | |:>
! [Coond] [oond i maeeue i bond se] [Tbona [] el] = = e
1 T 1
5 [imotecute] [T ol el [molecuie]] \ nd [motecute] [] ;

M 1 - - i T 1 H
ool Lo g som ol 1]} eomerie [} bomeend]}

Figure 2: Comparison of previous selection schema linking framework and knapsack schema linking
framework. We use table linking as an example. Selection models usually lead to either missing or
redundant items, while knapsack schema linking solves this issue by maximizing the total value of
objects while adhering to the total weight constraint.

to provide additional knowledge for schema linking. DTS-SQL (Pourreza & Rafieil 2024) fine-tunes
two LLMs for table linking and SQL generation, respectively. TA-SQL (Qu et al2024)) generates a
dummy SQL and then utilizes LLM to abstract the linked schema from it for the subsequent SQL
generation. In contrast to the above approach, which relies exclusively on the generative capabilities
of LLMs, CodeS (Li et al., [2024b) implemented a recall-based strategy to include semantically
matching schema elements in the input for SQL generation models, albeit at the cost of potentially
introducing un-matching elements. However, as illustrated in Figure|l} both generative and recalled
schema linking strategies have a significant gap against the gold schema linking.

The significant performance gap can be attributed to three key problems:

¢ Oversimplified Selection Modeling: Existing text-to-SQL models do not impose constraints on
the schema linking process. As shown in Figure 3] current schema linking processes suffer from
either high missing rates, high redundancy rates, or both. Such missing and redundant elements
negatively impact the overall SQL generation performance.

Missing & Redundancy Seesaw Problem: There exists a seesaw phenomenon between missing
and redundant elements in schema linking. Generative strategies tend to have high missing rates
and low redundancy rates, while recall-based models exhibit the opposite behavior. Reducing
both missing and redundant schema elements simultaneously poses a significant challenge.

Lack of Benchmarks and Metrics: The field currently lacks a formal definition of the schema
linking problem and standardized evaluation metrics for assessing missing and redundant
elements. This absence hinders consistent evaluation and comparison of different approaches,
impeding progress in the field.

Column Missing
50 % %0

From these observations, we highlight that schema linking is not a
simple selection problem but a Knapsack problem, which requires
maximizing total value (low missing rate) while satisfying total weight
constraints (low redundant rate). To address this, we design two tai-
lored schema linking benchmarks and introduce two schema linking
metrics: schema missing rate and schema redundancy rate to as-
sess schema linking performance. Based on these benchmarks, we
propose the Knapsack Schema Linking Agent (KaSLA), a dynamic
programming agent that links the most valuable and least redundant

o Column Redundancy

1

0% pA
@ P
o R

[

o v oo
@ 9 O
&

RS 40 % RS
& &

element sets according to user queries. KaSLA can be applied to both
table and column linking. It introduces a novel nomination-guaranteed
score function to predict the importance score of each element, which
simultaneously assigns high scores to highly confident elements while
ensuring all elements receive basic importance scores to prevent miss-

Figure 3: The comparison
of schema linking models
on missing and redundancy
on BIRD-dev.

ing. These importance scores are then used to estimate the value and weight of each element. By
estimating the capacity of a given user query from historical SQL records, KaSLA employs efficient
dynamic programming to select the most valuable element set within the predicted capacity. In
summary, our contributions are as follows:

Under review as a conference paper at ICLR 2025

* We formally define the schema linking problem as a Knapsack problem. Motivated by this
formulation, we propose the Knapsack Schema Linking Agent (KaSLA) to dynamically select
the least missing and redundant schema elements and enhance mainstream text-to-SQL models.

We introduce two well-organized benchmarks for schema linking training and evaluation, along
with two metrics. These contributions facilitate future research in schema linking and text-to-
SQL tasks. These benchmarks are anonymously published[ﬂ

* KaSLA offers a novel nomination-guaranteed score function to overcome the missing & re-
dundancy seesaw problems, and then estimate the value, weight, and capacity. This approach
provides a fundamental solution for improving schema linking and text-to-SQL performance.
Codes are public access available

Extensive experiments demonstrate that KaSLLA can enhance schema linking accuracy by
reducing missing and redundant information, as well as improve the final text-to-SQL generation
accuracy. Particularly on the highly challenging BIRD benchmarks, KaSLA surpasses baselines
by more than 5.72% .

2 PRELIMINARIES

Notations. Given a natural language query q and a database schema S = {s1,--- , 5|5/}, Where
s; represents either a table or a column in the database, conveying the structured representation of
the corresponding database. The database schema S can be further divided into two subsets: the set
of tables 7" = {t1,--- ,t7|} and the set of columns C = {c1,--- , ¢|¢|}, such that S = T U C. For
each table t € T, its corresponding set of columns is denoted as C; = {c1,- -+, ¢|c,|}-

Knapsack Problem of Schema Linking. As discussed in the introduction, schema linking perfor-
mance is negatively impacted by both missing and redundant elements, indicating that schema linking
is not a simple selection problem. For example, directly feeding all schemas into the text-to-SQL
models can capture all possible schemas but will suffer from heavy redundancy. On the other hand,
when the total number of schemas is limited, there is a higher possibility of missing important ones.

Motivated by this, schema linking can be defined as a knapsack problem (Frévillel, 2004)), where the
objective is to maximize the information contained in the schema linking set while controlling the
total weight of the set. Formally, we have the following definition:

Definition 2.1 (Knapsack Schema Linking Problem). For any given query g, let C; represent the total
weight capacity of schemas for this query. For each schema s, let V; , denote the value of the schema
element given user query ¢, and let W , denote the weight of the schema given the query.

The optimal schema linking can be achieved by solving the following optimization problem:

S* =argmax Y Vi, subjectto Y Wi, <Cj. (1)
SCS es ses

In this formulation, the objective is to maximize the total value of the selected schema elements while
ensuring that the total weight of the selected elements does not exceed the capacity C,. By solving
this knapsack problem, we can obtain the optimal schema linking set that balances the trade-off
between including relevant information and minimizing redundancy.

To solve the Knapsack Schema Linking Problem, we need to estimate the value V , and weight W, ,
of each schema element given the user query, as well as determine the capacity C, for each query. In
the following sections, we will first introduce the schema linking benchmark and then introduce our
proposed KaSLA.

3 SCHEMA LINKING BENCHMARKING

In this section, we first describe the construction of our benchmark dataset and then propose two
specially designed metrics for schema linking evaluation.

"https://anonymous.4open.science/r/iclr2025-SL-benchmark/
“https://anonymous.4open.science/r/iclr2025KaSLA/

Under review as a conference paper at ICLR 2025

3.1 BENCHMARK CONSTRUCTION

Our schema linking benchmark dataset is designed to facilitate the training and evaluation of schema
linking models, aiming to inspire further research in developing increasingly powerful schema
linking techniques. Each instance in the benchmark comprises a query, a full schema, and the
corresponding ground truth schema linking. Formally, the benchmark dataset can be expressed as

B=A{(g,S§S, Si)}ﬁ‘l, where g; represents the user query, S denotes the full schema, and S; is the
ground truth schema linking result for the ¢-th sample.

We have compiled two benchmarks based on the widely used Spider (Yu et al.,[2018) and BIRD (Li
et al.| 2023c) datasets, each containing over ten thousand records.

3.2 SCHEMA LINKING METRICS

Limitations of Previous Studies Previous text-to-SQL research usually overlooked the evaluation
of schema linking (Pourreza & Rafiei, [2023). Other works mentioned schema liking performance still
use classification metrics such as AUC (Li et al.,[2023a}; [2024b), Recall, Precision, and F1 scores (Qu
et al.;|2024). However, any missing of the necessary element will result in wrong SQL generation.
Besides, Recall, Precision, and F1 cannot quantitatively evaluate the actual linking results. AUC is
also not suitable because schema linking is an imbalanced classification task. To this end, we propose
two metrics that evaluate the missing and redundancy rates that directly impact the SQL generation
performance rather than traditional metrics. We provide a detailed discussion of the limitations of
traditional metrics and compare them with the proposed metrics in the Appendix

Schema Missing Rate Since the missing of even one necessary schema element will highly impact
the SQL generation performance, the R,,;ss 1s designed to be a strict metric. Specifically, for each
instance, if the ground truth schema linking is not included in the predicted schema linking, this
instance gets a fail score of 1. Conversely, if the ground truth schema linking is totally included,
the instance receives a success score of 0, indicating no missing. Formally, given the query g, the
predicted schema linking result S, and the ground truth schema linking result S, the Schema
Missing Rate R,,,;ss can be defined as:

1 ~
Rmiss = 5 Z]I(Sq ,(Z Sq)a (2)

|B| (¢,8,8)eB

where 1(-) is an indicator function that returns 1 if the condition inside is satisfied and 0 otherwise.
As defined above, any missing element in S, will result in a failure for that instance.

Schema Redundancy Rate Different from the missing condition, where even minor missing will
result in wrong SQL statements, for redundancy, the LLMs have certain but not much anti-interference
ability, where a slight redundancy will not impact the SQL statement. However, as shown in [Figure 1]
heavy redundancy, such as inputting full schema, will have far lower SQL generation performance
compared with inputting schema linkings. Motivated by this, Schema Redundancy Rate (R requn)
describes how many portions of schemas are redundant, where the formal definition is:

1 CAYAN 5
R'r‘edun = @ Z (|q‘§\|q|) , 0=]].(Sq Q Sq) . (3)
—_—
(@.5.8)eB v Non-missing Indicator
Redundancy Rate

Here, §q \ S| is the number of redundant elements which is predicted but not present in the
ground truth. Note that we only consider the redundancy rate of the non-missed prediction, and
the redundancy of the missed prediction will directly be treated as 1, which means a failure. Since
if the prediction is null set ®, the redundancy will be unreasonably computed as 0. Based on this
formulation, a lower R4y, indicates better schema linking performance with fewer redundancy.

By employing both R ;s and R,equn, We provide a more comprehensive and unbiased evaluation
of schema linking models, ensuring that both completeness and redundancy are adequately assessed.
This approach offers a nuanced understanding of model performance, directly applicable to the task
of SQL generation.

Under review as a conference paper at ICLR 2025

4 KNAPSACK SCHEMA LINKING AGENT (KASLA)

We first introduce the definition and training process of the nomination-guaranteed score function.
Then we discuss the estimation of key knapsack factors using the importance score. Finally, we
present the full hierarchical KaSLA schema linking process.

4.1 NOMINATION-GUARANTEED SCORE FUNCTION

Overview The key factor of KaSLA is evaluating the importance score for each given schema
element. We introduce a hybrid nomination-guaranteed score function to accomplish this task. The
nomination part identifies high-confidence elements using a heuristic approach, while the guaranteed
part provides a basic importance score for each element. Formally, the nomination-guaranteed
function can be expressed as:

Is,q = mln(I(s | q78)7 1)7 I(S | qu) = Inomi(S | q78) + aIguar(s ‘ Q7S)7 (4)

where Z,0mi(s | ¢, S) returns a {0, 1} value that directly nominates elements, Zgy,q, (s | ¢, S) assigns
a soft [0, 1] value to each element, and « controls the contribution of the guaranteed score. We set an
upper bound of 1 for I 4 to avoid introducing overly strong contrasting relationships between the
potentially matched elements.

Nomination Scoring Model The nomination scoring model effectively returns a subset given the
full schema, formally expressed as Sy,om: C S given the input (g, S). Thus, Z,omi(s | ¢,S) = 1 if
$ € Snomi and Zpomi(s | ¢,8) = 0if s & Spomi-

To best meet these requirements, we employ Large Language Models (LLMs) (Lozhkov et al., 2024)
as the nomination model. Specifically, we utilize StarCoder2, fine-tuning it on our benchmark using
the ground truth schema linking result S as the target for schema prediction. The loss function is
formulated as:
Lnomi = - Z IOgP(S ‘ q, S) (5)
(a,5,8)€|B]|

Guaranteed Scoring Model The guaranteed scoring model Zyyq-(s | ¢, S) = P(s € S) assigns
an importance value to any given element, representing the predicted probability of s € S.

We design the guaranteed scoring model from a semantic perspective. First, we use a ROBERTa-Large
model fe,,p(+) to obtain semantic embeddings of all schema elements fe,,5(s), where s € S, and the
query embedding fe,.,(¢). Then, following the approach of [Li et al.| (2023a}; 2024b), we employ a
cross-attention network f,4:(-) to jointly embed the semantic embeddings of tables and their columns
for each element s € S. The importance score is then predicted as (W - fait(fems(s)) +b) « femn(q),
where W and b are learnable parameters.

We train this guaranteed scoring model using our constructed benchmark. Specifically, we use the
presence of s in S as a training objective. The detailed loss function is defined as:

»Cguar = Z ZFL(IL(S € S)vzguar(s ‘ q, S))a (6)

(q,8,9)€|B| s€S

where FL(+) is the focal loss function (Ross & Dollar, [2017), designed to focus learning on hard
negative samples.

4.2 KNAPSACK FACTOR ESTIMATION

As formulated in Eq. (I), for a given schema element s and query ¢, KaSLA employs V; , and
W, q to represent the value and weight of s, respectively. For query ¢, KaSLA utilizes Cy to denote
the total weight capacity. Unlike traditional knapsack problems [Fréville (2004), KaSLA lacks
ground truth values for these factors. This section proposes three estimation functions to predict the
aforementioned factors, enabling KaSLA to select the most valuable element subsets while adhering
to the total weight capacity constraint.

Under review as a conference paper at ICLR 2025

Value Estimation Schemas with higher importance scores should be assigned higher values for
inclusion in KaSLA. Consequently, any positive correlation function can map the importance score
I, 4 to the value estimation XA/S,q. For simplicity, we employ an identity transformation as the most
straightforward mapping function:

‘/}s,q = fV(Saq) = Is,q- @)

While more sophisticated value estimation functions could be designed, this simple yet effective
solution proves powerful in practice.

Weight Estimation For weight estimation, elements with higher importance should be assigned
lower weights than those with lower importance scores. Thus, the weight estimation employs a
negative correlation function to map importance scores to weight estimations. Specifically, we define

the element weight W, , using a reciprocal power function of the importance I , to represent the
likelihood that introducing an element will add redundancy to the final schema linking results.

For schema element s € S, the prediction function of W is formulated as:

Weg = fw(s,9) = |(Ing — Er=+(S,q) + 1), ®)

where Er> (S,) is the expectation of element importance scores greater than a hyperparameter 7:

]EIZT(S7q) =E [{IS#Z ‘ IS#] Z T}SES} . (9)

The rounding operation in fyy (s, ¢) is designed to reduce the time and space complexity of subsequent
Knapsack optimization. We use E;>, (S, g) to denote the average importance of elements with high
importance scores. fy (s,q) computes the reciprocal of the difference between each element’s
importance I, , and an expected high importance score. A large negative difference indicates that the
element deviates significantly from other highly important ones, suggesting a higher likelihood of
redundancy.

Capacity Estimation To constrain redundancy in the schema linking process, we define weight
capacity C' as the maximum allowable weight for KaSLA. We begin by selecting a top-K ¢ similar
demonstration set D from the training dataset, based on the similarity between the user queries in the
training dataset and the given query ¢. For each sample d in D, we define a schema element set that
includes all ground truth elements as well as all elements with an estimated importance greater than
the ground truth ones. We denote this set as Knap(d) to represent an assumed full knapsack:

Knap(d) =8, + {5 ‘ Is,qd > min{IZ,Qd}zESd}SESd\Sd7 (10)

where S, is the ground truth linking set, and Sy is the original schema of d. We then calculate the
sum of the predicted weights of all elements in Knap(d) to represent the assumed capacity of d.
Accordingly, we define the prediction function of C' as follows:

Cy=folg)=v-max{ > Waglaen, (11)
s€Knap(d)

where v > 0 is a hyperparameter. The maximum capacity among all samples in the most similar
demonstrations of ¢ provides a robust prediction of the capacity.

4.3 HIERARCHICAL KASLA SCHEMA LINKING

Our KaSLA operates in a hierarchical manner to effectively address schema linking challenges.
The process unfolds in two stages: first, KaSLA performs table linking, and subsequently, for each
selected table, it simultaneously accomplishes column linking. This hierarchical approach enables
KaSLA to efficiently reduce the dimensionality of the schema space, thereby enhancing its capability
to handle large-scale and complex schema linking and text-to-SQL generation tasks encountered in
real-world applications.

Under review as a conference paper at ICLR 2025

KaSLA Agent Details The core of KaSLA’s schema linking process is formulated as an optimiza-
tion problem, which we solve using a tailored 1nteger 0-1 knapsack dynamic programming algorlthm
Given the estimated values Vg .q and weights VVq ¢ for all elements s, and the estimated capacity C
of the query ¢, we aim to solve:

S* = arg max VS , subject to WS <C’ (12)

This optimization problem is efﬁ01ently solved using dynamic programming, leveraging the discrete
nature of the weights and capacity. The algorithm systematically builds an optimal solution by
considering all possible element combinations within the capacity constraint, ensuring that KaSLA
selects the most valuable elements while respecting the query’s capacity limit. This approach not
only guarantees an optimal solution but also provides insights into the trade-offs between element
value and computational capacity, allowing for adaptable and efficient schema linking across diverse
query complexities.

Hierarchical KaSLA Strategy The hierarchical nature of KaSLA allows for a more efficient and
scalable approach to schema linking. This strategy is implemented in two distinct phases: table
linking and column linking. The full algorithm is provided in Appendix [C] Algorithm [T] and the
complexity analysis is provided in Appendix [D.1]

TABLE LINKING PHASE In the first phase, KaSLA focuses on identifying the relevant tables for
the given query. Let T be the set of all available tables and g be the input query. The table linking
optimization problem is formulated as:

T = argmaxz Viq, subject to ZWt . < @;, (13)
TCT ger teT

where ‘A/t,q and /V[7t7q are the estimated value and weight of table ¢ for query ¢, respectively, and 5}; is
the estimated capacity for tables in query g.

COLUMN LINKING PHASE Following the table linking, KaSL A proceeds to select relevant columns
for each chosen table. For each table t € T, let C; be the set of columns in table ¢. The column
linking optimization problem for each table is defined as:

C; = argmax Z Ve,q,t» subject to Z Weqt < C’ (14)

T'CTe e ceT’

where IA/C .q,t and WC ¢,t are the estimated value and weight of column c in table ¢ for query g,

respectively, and Cg + 1s the estimated capacity for columns of table ¢ in query g. The final schema
linking result S* is the union of all selected tables and the corresponding selected columns:

Sksta=T"U | J Cy. (15)
teT*

Final KaSLA Application In the deployment phase, both during training and inference, KaSLA can
integrate with any text-to-SQL model M. This flexibility allows KaSLA to enhance the performance
of existing state-of-the-art models while maintaining their underlying strengths. Given an input query

q, KaSLA’s predicted schema linking §KaSLA, and the ground truth schema linking result .S, the
training process of a SQL generation model is formulated as follows:

y = argmax P (ylq, Skasia U S), (16)
yey
where) represents the target SQL queries, and Pay(y|q, .§KaSLA U.S) denotes the probability assigned

by model M to token y in)V, conditioned on the input query ¢ and the unified schema information.
During the inference stage, only the schema linking results generated by KaSLA are used:

Y= M(q, Skasia), (17

where)A) represents the predicted SQL queries.

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

We conducted comprehensive experiments on two public text-to-SQL datasets to evaluate KaSLA
and address the following research questions: RQ1: Does KaSLA outperform existing text-to-SQL
baselines? RQ2: Can KaSLA enhance the performance of other text-to-SQL models? RQ3: Does
KaSLA demonstrate better schema linking performance? RQ4: Is KaSLA a solution for real-world
text-to-SQL applications without training data? (We addressed RQ4 in Appendix[D.2])

5.1 EXPERIMENT SETUP

In this section, we provide the experiment setup in the view of datasets, evaluation metrics, and
baselines. We also report the implementation details in Appendix[C] the used input and output format
of LLMs in Appendix Table[9] and and the inference cost in Appendix [D.5]

Datasets and Evaluation Metrics. We conducted experiments on two well-known large-scale
text-to-SQL datasets, BIRD (Li et al., 2023c) and Spider (Yu et al., 2018)). Both datasets feature
human-annotated queries and SQLs, complex database elements, and challenging cross-domain
scenarios meticulously. The statistics for BIRD and Spider are reported in Appendix [B] Table[d] For
evaluation, we evaluated our approach and baselines on both schema linking and text-to-SQL tasks.
For schema linking evaluation, we employed the metrics introduced in Section Schema Missing
Rate (R,;ss) and Schema Redundancy Rate (R;¢4un)- For text-to-SQL evaluation, we measured
performance using two well-established execution-based metrics: Execution Accuracy (EX) (Yu
et al.,[2018; |L1 et al., 2023c) and Valid Efficiency Score (VES) (Li et al., 2023c).

Baselines. To ensure a comprehensive and credible evaluation, we included multiple robust base-
lines from three categories: (i) LMs baselines: ResdSQL (Li et al.| 2023a)); (ii) LLMs + in-context
learning baselines: C3-SQL (Dong et al., |2023), DIN-SQL (Pourreza & Rafiei, 2023), MAC-
SQL (Wang et al., 2024), DAIL-SQL (Gao et al., 2024)), SuperSQL (Li et al., 2024a), Dubo-
SQL (Thorpe et al.|[2024)), TA-SQL (Qu et al.,2024), E-SQL (Caferoglu & Ulusoyl 2024)), CHESS (Ta{
lae1 et al., [2024); and (iii) LLMs + fine-tuning baselines: DTS-SQL (Pourreza & Rafiei, [2024),
CodeS (L1 et al., 2024b). We also involve PureSL, which means directly fine-tuning an LLM for
schema linking in our benchmarks without any tailored design. For DIN-SQL, TA-SQL, CodeS, and
DTS-SQL that include a schema linking process in their framework, we denoted them as DIN-SL,
TA-SL, CodeS-SL, and DTS-SL. We reported the overall text-to-SQL performance and schema
linking performance, respectively.

5.2 MAIN RESULTS OF SQL GENERATION

To address RQ1, we conduct experiments to evaluate the SQL generation ability of our KaSLA and
other baselines with Execution Accuracy (EX) and Valid Efficiency Score (VES) on the BIRD-dev
and Spider-dev datasets and report the results in Table[I]

KaSLA’s superior performance. Based on the experimental results, KaSLA demonstrates out-
standing performance across both BIRD-dev and Spider-dev. KaSLA achieves the highest overall
EX (63.75%) and VES (69.68%)on both BIRD-dev and Spider-dev datasets, clearly surpassing all
other approaches. While its scores on Spider-dev are 88.01% EX and 86.06% VES, significantly
outperforming other models.

Comparison with GPT-4 ICL baseline. In comparison to the best In-Context Learning (ICL)
baseline, which uses the powerful GPT-4, KaSLA shows remarkable improvements. On BIRD-dey,
KaSLA outperforms the best ICL baseline by 6.77% in EX and 5.56% in VES. On the Spider-
dev dataset, KaSLA’s EX improvement compared to GPT4-based methods is slightly lower, this
discrepancy can be attributed to the inherently simpler and more regular schema of the Spider-
dev dataset. A simpler schema can be processed well without specially designed linking methods,
thereby making advanced systems like KaSLA appear less dominant in terms of improvement
gains. Consequently, these improvements on BIRD-dev highlight KaSLA’s advanced capabilities,
particularly in more intricate database environments.

Performance across difficulty levels. When evaluating the models based on the difficulty levels,
KaSLA consistently excels across all difficulty levels—easy, medium, and hard. On BIRD-deyv,

Under review as a conference paper at ICLR 2025

KaSLA achieves significant EX improvements of 4.20%, 18.50%, and 1.58% over the best ICL
baselines and 2.54%, 12.55%, and 12.28% over the best ICL baselines on easy, medium, and hard
queries, respectively. On Spider-dev, while the overall improvement is smaller, KaSLA still shows
performance enhancements across hard and extra hard queries compared with the best SFT baseline.

In summary, KaSLA presents substantial advantages through exceptional EX and VES scores across
both datasets. Its superior performance is particularly notable on more complex database schema
elements, reinforcing KaSLA’s efficacy in handling real-world, challenging text-to-SQL tasks.

Table 1: The text-to-SQL performance of our KaSLA and three main types of baselines: regular
LMs, In-Context Learning (ICL) with LLMs, and Supervised Fine-Tuning (SFT) with LLMs, with
Execution Accuracy (EX) (%) and Valid Efficiency Score (VES) (%) on BIRD-dev and Spider-dev
datasets. The numbers in parentheses next to each method (e.g., 23°, 24’) represent the release year
of the respective models or methods. (SC) refers DAIL-SQL with self-consistency.

BIRD-dev Spider-dev
Type Method Tex&‘“(;leL EX VES EX VES
ode Easy Medium Hard Total Total Easy Medium Hard Extra Total Total
w» T5-Base 42.27 20.22 15.97 33.12 32.85 91.94 83.63 68.39 51.81 77.95 7771
E ResdSQL (23) TS5-Large | 46.49 2796 2292 | 38.66 | 40.62 | 9355 8543 7241 53.61 80.08 | 79.72
T5-3B 5351 3333 16.67 | 4394 | 4442 | 9476 87.67 7299 56.02 | 81.82 | 80.89
C3-SQL (23”) GPT-3.5 58.92 38.49 31.94 50.20 50.77 92.74 85.20 77.59 62.05 82.01 80.09
MAC-SQL (23%) - - - 57.56 58.76 - - - - 86.75 -
DIN-SQL (23°) - - - 5072 | 5879 | 9234 8744 7644 6265 | 8279 | 81.70
d DAIL-SQL (23) 62.49 43.44 38.19 54.43 55.74 91.53 89.24 77.01 60.24 83.08 83.11
= DAIL-SQL (SC) GPT-4 63.03 45.81 43.06 55.93 57.20 91.53 90.13 75.29 62.65 83.56 -
TA-SQL (247) 63.14 4882 36.81 56.32 - 93.50 90.80 77.60 64.50 | 85.00 -
SuperSQL (247) 66.92 46.67 43.75 58.60 | 60.62 | 9435 91.26 8333 68.67 | 87.04 | 85.92
Dubo-SQL (24) - - - 59.71 66.01 - - - - - -
Pure-SL(24") 56.65 43.23 31.94 50.26 57.09 93.15 87.89 74.71 59.04 82.30 80.63
DTS-SQL (24°) StarCoder2 63.03 46.02 3472 | 5522 | 64.17 | 9194 9058 78.74 66.87 | 85.11 | 8549
E TA-SL (24°) _15B 59.89 4538 3472 | 53.13 | 60.51 9556 9238 79.89 6325 | 86.36 | 85.03
CodeS (24°) 68.00 51.40 39.58 60.30 65.04 94.76 91.26 72.99 64.46 84.72 83.52
KaSLA (Ours) 69.73 5785 4444 | 63.75 | 69.68 | 96.77 9327 8276 6627 | 88.01 | 86.06
%Improv. vs. the best ICL baseline | +4.20% +18.50% +1.58% | +6.77% | +5.56% | +2.56% +2.20% -0.68% -3.49% | +1.11% | +0.16%
%Improv. vs. the best SFT baseline | +2.54% +12.55% +12.28%| +5.72% | +7.13% | +1.27% +0.96% +3.59% +2.81% | +1.91% | +3.04%

5.3 APPLY KASLA TO EXISTING TEXT-TO-SQL MODELS

To address RQ2, we evaluated the impact of integrating KaSLA as a plug-in model into existing
text-to-SQL methods and provided the results in Table[2] We specifically incorporated the schema
linked by KaSLA into two prominent baselines, DAIL-SQL and CodeS, for our analysis. Through
this integration, KaSLA’s enhanced schema linking capabilities are utilized as part of the model
inputs, promising improvements in both EX and VES.

Improvements with KaSLA. As shown in Table 2] integrating KaSLA leads to noticeable improve-
ments. For instance, the combination of CodeS-15B-SFT with KaSLA demonstrates an improvement
in overall EX on the BIRD-dev dataset from 58.08% to 60.95%, alongside a boost in VES from
59.87% to 66.11%. Similar enhancements are observed with DAIL-SQL , E-SQL, and CHESS when
augmented with KaSLA, notably improving EX and VES across various difficulty levels and datasets.

KaSLA'’s adaptability and robustness. These results underscore KaSLA’s flexibility and effective-
ness as a plug-in model. The performance uplift attributed to KaSLA supports its invaluable role in
improving complex text-to-SQL tasks, making it a versatile and powerful addition to any existing
system. This adaptability not only confirms KaSLA’s robustness but also promotes its universal
applicability across different models to achieve superior performance outcomes.

5.4 EXPERIMENTAL RESULTS OF SCHEMA LINKING

To answer the RQ3, we conduct the experiments and report the benchmark results of schema linking
methods on BIRD-dev in Table 3| and report the results on Spider-dev in Appendix Table[/| We
utilize the proposed evaluation metrics: Schema Redundancy Rate (R ,,;s5s) and Schema Redundancy
Rate (R edun)- We also involve a combined metric (Reorrect = 1 —(Rimiss + Reredun)/2) to evaluate
the comprehensive ability of schema linking model to avoid missing and redundancy.

Under review as a conference paper at ICLR 2025

Table 2: The text-to-SQL performance of adding KaSLA as a plug-in model dedicated to schema
linking to other text-to-SQL methods on BIRD-dev and Spider-dev.

BIRD-dev Spider-dev
Method Teeto-SQL EX VES EX VES
ode Easy Medium Hard | Total | Total | Easy Medium Hard Extra | Total | Total
CodeS CodeS-15B-SFT 65.62 49.68 36.81 | 58.08 | 59.87 | 95.97 89.01 7529 62.05 | 84.04 | 81.74
CodeS + KaSLA 68.54 52.04 40.97 | 60.95 | 66.11 | 9597 90.58 75.86 59.64 | 84.43 | 83.06
DTS-SQL StarCoder2-15B 63.03 46.02 3472 | 5522 | 64.17 | 91.94 90.58 7874 66.87 | 85.11 | 85.49
DTS-SQL + KaSLA i} 6595 4989 37.50 | 5841 | 65.56 | 96.37 9238 79.31 69.28 | 87.43 | 85.73
TA-SL StarCoder2-15B | 9289 4538 34721 53.13 | 60.51 [9556 9238 79.89 63.25 | 86.36 | 85.03
TA-SL + KaSLA 6530 4946 38.89 | 58.02 | 65.88 | 9597 92.83 80.46 64.46 | 86.94 | 85.58
DAIL-SQL GPT-4 6249 4344 3819 | 5443 [5574 [91.53 89.24 77.01 60.24 | 83.08 | 83.11
DAIL-SQL + KaSLA 64.86 49.89 38.89 | 57.89 | 59.39 | 9597 90.13 8448 66.87 | 86.85 | 85.51
CHESS GPT-4 69.51 5720 4097 | 63.10 | 67.23 | 9597 93.05 81.61 63.86 | 87.14 | 85.66
CHESS + KaSLA 69.84 5828 4375 | 63.89 | 68.72 | 97.18 93.50 82.18 66.87 | 88.20 | 86.12
E-SQL GPT-40 70.70 60.43 4583 | 65.25 | 70.01 | 97.18 9372 83.33 65.66 | 88.30 | 86.38
E-SQL + KaSLA 71.14 6129 4722 | 6591 | 70.86 | 97.58 93.72 83.91 66.87 | 88.68 | 86.82

Table 3: Schema linking benchmarks with R,,,;ss and R4, on BIRD-dev. We define a comprehen-
sive metric Reorrect = 1 — (Riniss + Rredun)/2 to evaluate the ability of schema linking model to
avoid element missing and redundancy.

3 Schema linking Method
& Metric CodeS-SL 10shot ICL-SL DIN-SL DTS-SL [Pure-SL | TA-SL | KaSLA
8 RoBERTa | SGPT | Gpr3s | Gpa | Gp1as | Gprea StarCoder2-15B (Qurs)
Base | Large | -1.3B
R 1 table | 1.56 | 0.85 | 3.59 33.57 31.23 49.61 36.83 35.01 35.01 21.32 5.21
3 s colmn | 15.00 | 12.53 | 1594 | 93.84 | 91.49 96.18 93.64 35.77 57.54 43.80 5.83
Z R 1 table | 57.43 | 56.97 | 58.48 | 42.8I 3574 52.31 39.78 39.71 39.71 2577 | 22.80
&, redun colmn | 81.50 | 80.83 | 82.13 | 95.29 92.18 96.49 94.13 83.04 61.75 46.25 42.24
@ R + table | 70.50 | 71.09 | 68.97 | 61.81 66.52 | 49.04 61.69 62.64 62.64 76.46 | 85.99
correct colmn | 51.75 | 53.32 | 50.96 5.44 8.16 3.66 6.12 40.60 40.36 54.97 75.97

KaSLA’s superior performance. The experimental results demonstrate that our KaSLA method
exhibits significantly lower missing rates and redundancy rates, resulting in higher overall correctness
rates, consistently achieving a superior performance compared to several other schema linking
methods. For instance, on the BIRD-dev dataset, KaSLA attains an impressive Rorrect Of 85.99%
(table) and 75.97% (column), far surpassing other methods such as CodeS-SL or DTS-SL.

Balancing metrics for effectiveness. Despite some methods achieving lower R,,;ss of Ryequn
individually, they fail to strike a balance between the two metrics. For example, CodeS-SL with a
RoBERTa-Large achieves the lowest R,,,;ss of 0.85% for table linking on BIRD-dev, yet its R,.cqun, 1S
quite high at 56.97%, leading to a lower R oy rect- In contrast, KaSLA not only maintains a low R,
but also substantially reduces R4, thus demonstrating its comprehensive capability in schema
linking. This ability to effectively avoid both element missing and redundancy verifies KaSLA’s
robustness and efficacy, making it a reliable choice for schema linking tasks in complex datasets.

6 CONCLUSION

This paper introduced the Knapsack Schema Linking Agent (KaSLA), a novel approach to address
the schema linking challenges in text-to-SQL tasks. By framing schema linking as a Knapsack
problem, KaSLA effectively balances the trade-off between missing and redundant schema linkages,
significantly enhancing the accuracy of SQL generation. Our proposed benchmarks and metrics
provide a new standard for evaluating schema linking performance, fostering further advancements
in the field. Extensive experiments demonstrate KaSLA’s superiority over existing methods.

These findings highlight KaSLLA’s potential to revolutionize schema linking and advance the broader
capabilities of text-to-SQL systems. By effectively reducing both missing and redundant information,
KaSLA not only improves schema linking accuracy but also enhances the overall performance of
SQL generation. The innovation of the nomination-guaranteed score function plays a crucial role
in overcoming the missing and redundancy seesaw problem, offering a robust solution that can be
integrated into mainstream text-to-SQL models. Our contributions pave the way for more precise and
efficient database interactions, underscoring the transformative impact of KaSLA in the field.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Hasan Alp Caferoglu and Ozgiir Ulusoy. E-sql: Direct schema linking via question enrichment in
text-to-sql. arXiv preprint arXiv:2409.16751, 2024.

Zhenbiao Cao, Yuanlei Zheng, Zhihao Fan, Xiaojin Zhang, and Wei Chen. Rsl-sql: Robust schema
linking in text-to-sql generation. arXiv preprint arXiv:2411.00073, 2024.

DongHyun Choi, Myeong Cheol Shin, EungGyun Kim, and Dong Ryeol Shin. Ryansql: Recursively
applying sketch-based slot fillings for complex text-to-sql in cross-domain databases. Computa-
tional Linguistics, 2021.

Xiang Deng, Ahmed Hassan Awadallah, Christopher Meek, Oleksandr Polozov, Huan Sun, and
Matthew Richardson. Structure-grounded pretraining for text-to-SQL. In North American Chapter
of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT),
2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), 2019.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao, Yunjun Gao, Jinshu Lin, Dongfang Lou, et al.
C3: Zero-shot text-to-sql with chatgpt. arXiv preprint arXiv:2307.07306, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Arnaud Fréville. The multidimensional O—1 knapsack problem: An overview. European Journal of
Operational Research, 2004.

Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew Purver, John R. Woodward, Jinxia Xie, and
Pengsheng Huang. Towards robustness of text-to-SQL models against synonym substitution.
In Association for Computational Linguistics and International Joint Conference on Natural
Language Processing (ACL-IJCNLP), 2021.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
Text-to-sql empowered by large language models: A benchmark evaluation. In International
Conference on Very Large Data Bases (VLDB), 2024.

Zijin Hong, Zheng Yuan, Hao Chen, Qinggang Zhang, Feiran Huang, and Xiao Huang. Knowledge-to-
sql: Enhancing sql generation with data expert llm. In Findings of Association for Computational
Linguistics (ACL), 2024a.

Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen, Junnan Dong, Feiran Huang, and Xiao
Huang. Next-generation database interfaces: A survey of llm-based text-to-sql. arXiv preprint
arXiv:2406.08426, 2024b.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

George Katsogiannis-Meimarakis and Georgia Koutrika. A survey on deep learning approaches for
text-to-sql. The VLDB Journal, 2023.

Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and Nan Tang. The dawn of natural language to
sql: Are we fully ready? arXiv preprint arXiv:2406.01265, 2024a.

Fei Li and Hosagrahar V Jagadish. Constructing an interactive natural language interface for relational
databases. In International Conference on Very Large Data Bases (VLDB), 2014.

11

Under review as a conference paper at ICLR 2025

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. Resdsql: Decoupling schema linking and
skeleton parsing for text-to-sql. In Conference on Artificial Intelligence (AAAI), 2023a.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie Wei, Hongyan
Pan, Cuiping Li, and Hong Chen. Codes: Towards building open-source language models for
text-to-sql. In Conference on Management of Data (SIGMOD), 2024b.

Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin, Chenhao Ma, Nan Huo, Fei Huang, Wenyu
Du, Luo Si, and Yongbin Li. Graphix-t5: Mixing pre-trained transformers with graph-aware layers
for text-to-sql parsing. In Conference on Artificial Intelligence (AAAI), 2023b.

Jinyang Li, Binyuan Hui, GE QU, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin Chang, Fei Huang,
Reynold Cheng, and Yongbin Li. Can LLM already serve as a database interface? a BIg bench
for large-scale database grounded text-to-SQLs. In Advances in Neural Information Processing
Systems (NeurIPS), 2023c.

Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S. Yu. A comprehensive evaluation of chatgpt’s
zero-shot text-to-sql capability. arXiv preprint arXiv:2303.13547, 2023.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173,2024.

Karime Maamari, Fadhil Abubaker, Daniel Jaroslawicz, and Amine Mhedhbi. The death of schema
linking? text-to-sql in the age of well-reasoned language models. arXiv preprint arXiv:2408.07702,
2024.

Tanzim Mahmud, KM Azharul Hasan, Mahtab Ahmed, and Thwoi Hla Ching Chak. A rule based
approach for nlp based query processing. In International Conference on Electrical Information
and Communication Technologies (EICT), 2015.

Mohammadreza Pourreza and Davood Rafiei. DIN-SQL: Decomposed in-context learning of text-
to-SQL with self-correction. In Advances in Neural Information Processing Systems (NeurIPS),
2023.

Mohammadreza Pourreza and Davood Rafiei. Dts-sql: Decomposed text-to-sql with small large
language models. arXiv preprint arXiv:2402.01117, 2024.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and Sercan O Arik. Chase-sql: Multi-path reasoning
and preference optimized candidate selection in text-to-sql. arXiv preprint arXiv:2410.01943,
2024.

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang, Jinyang Li, Binhua Li, Ruiying Geng, Rongyu
Cao, Jian Sun, Luo Si, et al. A survey on text-to-sql parsing: Concepts, methods, and future
directions. arXiv preprint arXiv:2208.13629, 2022.

Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo, Chenhao Ma, and Reynold Cheng. Before
generation, align it! a novel and effective strategy for mitigating hallucinations in text-to-sql
generation. arXiv preprint arXiv:2405.15307, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In Advances
in Neural Information Processing Systems (NeurIPS), 2023.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bahdanau. Evaluating the text-to-sql capabilities of
large language models. arXiv preprint arXiv:2204.00498, 2022.

12

Under review as a conference paper at ICLR 2025

Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond the
few-shot paradigm. In Conference on Human Factors in Computing Systems (CHI), 2021.

T-YLPG Ross and GKHP Dollar. Focal loss for dense object detection. In proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 2980-2988, 2017.

Ruoxi Sun, Sercan O. Arik, Hootan Nakhost, Hanjun Dai, Rajarishi Sinha, Pengcheng Yin, and
Tomas Pfister. Sql-palm: Improved large language model adaptation for text-to-sql. arXiv preprint
arXiv:2306.00739, 2023.

Chang-Yu Tai, Ziru Chen, Tianshu Zhang, Xiang Deng, and Huan Sun. Exploring chain of thought
style prompting for text-to-SQL. In Empirical Methods in Natural Language Processing (EMNLP),
2023.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini, and Amin Saberi.
Chess: Contextual harnessing for efficient sql synthesis. arXiv preprint arXiv:2405.16755, 2024.

Dayton G Thorpe, Andrew J Duberstein, and Ian A Kinsey. Dubo-sql: Diverse retrieval-augmented
generation and fine tuning for text-to-sql. arXiv preprint arXiv:2404.12560, 2024.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, Linzheng Chai, Zhao Yan, Qian-Wen
Zhang, Di Yin, Xing Sun, and Zhoujun Li. Mac-sql: A multi-agent collaborative framework for
text-to-sql. arXiv preprint arXiv:2312.11242, 2024.

Lihan Wang, Bowen Qin, Binyuan Hui, Bowen Li, Min Yang, Bailin Wang, Binhua Li, Jian Sun, Fei
Huang, Luo Si, and Yongbin Li. Proton: Probing schema linking information from pre-trained
language models for text-to-sql parsing. In Conference on Knowledge Discovery and Data Mining
(KDD), 2022.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In International Conference on Learning Representations (ICLR), 2023.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In Advances
in Neural Information Processing Systems (NeurIPS), 2022.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. Tabert: Pretraining for joint
understanding of textual and tabular data. arXiv preprint arXiv:2005.08314, 2020.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task. In
Empirical Methods in Natural Language Processing (EMNLP), 2018.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, bailin wang, Yi Chern Tan, Xinyi Yang, Dragomir Radev,
richard socher, and Caiming Xiong. Grappa: Grammar-augmented pre-training for table semantic
parsing. In International Conference on Learning Representations (ICLR), 2021.

A RELATED WORK

Text-to-SQL studies have witnessed significant advancements and development over the years in
natural language processing (NLP) research (Wang et al., [2022} |Qin et al.l [2022). The techniques
involved in text-to-SQL implementation have undergone a long period of evolution (Hong et al.,
2024b). Early methods in text-to-SQL research largely focused on template and rule-based human
engineering (Li & Jagadish, [2014; Mahmud et al.| 2015} [Yu et al.| 2021). Subsequently, with the
emergence of deep learning (Katsogiannis-Meimarakis & Koutrika, 2023)) and pre-trained language

13

Under review as a conference paper at ICLR 2025

models (PLMs) (Liu et al.,[2019; |Devlin et al.,|2019), text-to-SQL has further advanced along with
these developments (Yin et al., [2020; |Choi et al., 2021} [Li et al., [2023b)). Most recently, as LLMs
have gained prevalence in both research-oriented papers and industrial projects, text-to-SQL systems
integrating LLMs are now a research hotspot in the NLP and database communities. Our study
follows an LLM-based text-to-SQL paradigm, consisting of in-context learning and fine-tuning
techniques.

In-context Learning-based text-to-SQL. At the inception of LLMs, in-context learning (ICL) and
prompt engineering emerged as a core method driving advancements in the study of LLMs (Reynolds
& McDonell, 2021)). Early efforts in LLM-based text-to-SQL studied the effectiveness of ICL with
different prompt designs on various LLMs (Liu et al., 2023)). The natural language understanding
(NLU) capabilities empowered by numerous training corpora enable LLMs to perform well in SQL
generation with simple prompt engineering (Rajkumar et al.,[2022). With the success of well-designed
ICL methods in other NLU tasks (Wei et al.,2022; 2021)), the integration into the text-to-SQL task
has also achieved solid improvement (Tai et al., [2023)). Chain-of-Thought (CoT) prompting (Wei
et al., [2022)) shows great potential in natural language reasoning tasks. DIN-SQL (Pourreza &
Rafieil |2023) proposed a CoT-based decomposed ICL framework with self-correction; ACT-SQL ()
designed a method to generate automatic CoT exemplars to enhance SQL reasoning. To optimize
the prompt towards better quality, DAIL-SQL (Gao et al., 2024) introduces a few-shot sampling
strategy, providing related samples for LLMs to learn from, and the Knowledge-to-SQL (Hong
et al., 2024a) framework is proposed to generate helpful knowledge to assist SQL generation.
Self-consistency (Wang et al., [2023) for LLM-based text-to-SQL ensures accuracy based on the
execution result. The C3 (Dong et al.| [2023)) framework conducts a majority vote of consistency;
SQL-PalLM (Sun et al.| |2023) introduces an error-filtering-aided consistency decoding based on
execution for better SQL generation. Multi-stage decomposition is also popular in text-to-SQL
studies. MAC-SQL (Wang et al., [2024)) employs a multi-agent collaboration framework to generate
and refine SQL; TA-SQL (Qu et al.,|2024) introduces a two-stage generation framework incorporating
schema linking and logical synthesis. ICL-based methods are the mainstream paradigm of LLM-
based text-to-SQL, which have made significant progress and continue to be widely studied in the
most current work. CHASE-SQL (Pourreza et al.,|2024) proposes an in-context learning prompt for
question decomposition and involves a novel online synthetic example generation method to adapt
LLMs to test datasets. Our proposed method also follows the ICL paradigm for text-to-SQL. Firstly,
we generate a schema linking and then use adaptive evaluation to improve its quality, providing clear
guidance to understand the user query and the corresponding database schema. Then, the LLMs
incorporate the provided schema linking to generate accurate SQL queries.

Fine-tuning-based Text-to-SQL. Fine-tuning is an intuitive and widely recognized technique for
enabling LLMs to perform specific downstream tasks (Wei et al., 2021). The fine-tuning methods
for aligning LL.Ms with instructional tasks are gradually evolving towards better performance and
greater effectiveness (Rafailov et al., 2023). Even though code-specific LLMs are trained on massive
programming scenarios, they still struggle when facing challenging user queries and complex database
environments (Gan et al.,[2021; |Deng et al., [2021} |Li et al., 2023c)). As a straightforward method,
supervised fine-tuning (SFT) (Wei et al,, 2021) is utilized to adapt open-source LLMs for SQL
generation, which elicits a solid improvement (Gao et al., 2024). For well-designed methods,
CodeS (Li et al.| [2024b) proposes a two-stage training framework. First, a backbone code-LLM
is pre-trained on an incremental training corpus, followed by SFT on bi-directional augmented
query-SQL pairs, achieving impressive performance with open-source LLMs. Instead of fine-tuning
a single model, DTS-SQL (Pourreza & Rafieil [2024) fine-tunes two LLLMs separately for schema
linking generation and SQL generation. This two-stage generation process elicits higher accuracy.
Our work involves fine-tuning the LLMs and the PLMs based on the schema linking task, then
incorporating the generated schema linking to assist in accurate SQL generation.

Schema linking. Schema linking is a crucial step in text-to-SQL tasks, involving the identification
and association of natural language query elements with corresponding database schema components,
such as tables and columns. This process significantly influences the overall performance of SQL
generation and has been the focus of extensive research.

With the advent of Large Language Models (LLMs), schema linking has seen considerable innovation
and potential. DIN-SQL (Pourreza & Rafiei, 2023)) marked a significant advancement by using LLMs
to generate schema linkages, utilizing the entire schema as input to leverage the LLMs’ contextual
understanding. Building on this, DAIL-SQL (Gao et al.,|2024])) incorporated historical query-SQL

14

Under review as a conference paper at ICLR 2025

pairs as evidence, refining schema linking by utilizing past interactions. DELLM (Hong et al.,|2024a)
extended these capabilities with a specialized data expert LLM, providing additional knowledge
to improve schema linking in complex scenarios. Similarly, E-SQL (Caferoglu & Ulusoy, 2024)
introduced a query enrichment method that incorporates relevant database elements to enrich user
queries rather than simplifying the full schema. DTS-SQL (Pourreza & Rafiei, [2024)) fine-tuned
LLMs specifically for table linking and SQL generation, ensuring task-focused training at each
process stage. TA-SQL (Qu et al.l |2024) introduced the approach of generating a dummy SQL to
abstract linked schemas via an LLM, allowing for iterative refinement before the final SQL generation.
Conversely, CodeS (L1 et al., [2024b) implemented a retrieval-based strategy, recalling semantically
matching schema elements as inputs for SQL generation models. CHESS (Talaei et al., |2024)) treated
column linking as a binary classification task to eliminate obviously irrelevant columns and then
linked tables and columns from the filtered schema. To address the challenge of missing elements,
RSL-SQL (Cao et al.,[2024)) proposed bidirectional schema linking, with forward schema linking
identifying potential matching elements from the full schema and backward schema linking extracting
elements from preliminary SQL generated based on these potential matches. Distillery (Maamari
et al. |2024) explored schema linking performance with extremely large LLMs like GPT-40 and
Llama 3.1-405b, finding that these models can effectively process full schema without a schema
linking model, while moderately-sized models, like Llama 3.1-8B, still rely on schema linking.

Effective schema linking demands no missing elements and minimal redundant elements; any missing
schema element can cause SQL generation to fail directly, while redundant elements can confuse the
process and lead to incorrect outputs. This challenge aligns with the knapsack problem—maximizing
value while minimizing weight within constraints. Inspired by this, we formulated schema linking as
a knapsack problem and proposed KaSLA, which aims to link the most relevant and least redundant
schema element sets according to user queries.

B STATISTICS OF DATASET

We provide the statistics for the BIRD and Spider datasets in Table[d] and the imbalanced proportions
of matching versus non-matching schema elements are illustrated in Figure 4}

As illustrated in Figure[d] schema linking is inherently an imbalanced classification task, where a
small subset of elements matches the natural language query compared to the numerous non-matching
ones. Previous research has primarily utilized metrics such as AUC (Li et al., 2023aj 2024b) for
evaluating schema linking. In this imbalanced classification scenario, a schema linking model can
achieve high AUC scores by predicting mostly irrelevant schema elements, leading to results replete
with redundant elements. Additionally, missing any matching element directly results in incorrect
SQL generation despite causing only minor fluctuations in AUC.

Such biased evaluations lead to sub-optimal outcomes and hinder further advancements in schema
linking and SQL generation. This underscores the significance and potential value of our proposed
Schema Missing Rate (R,,;ss) and Schema Redundancy Rate (R .cqun), Which provide more accurate
and meaningful evaluations in the context of imbalanced schema element distributions.

Bird-dev . Spider-dev
Dataset \ N #DB #Table/ DB #Column/DB #Table/N #Column/N e — " T = viarching
\ Avg. Max Avg. Max Avg. Max Avg. Max o | T Nommatching = Norrmatchill
BIRD train | 9428 69 7.57 65 51.29 455 2.00 6 4.47 16
dev | 1534 11 6.82 13 7255 199 1.93 4 4.44 12
Spider train | 8659 146 543 26 27.79 352 1.71 6 3.35 13
P dev | 1034 20 400 11 2195 56 1.51 4 2.78 8

0% 0%
Table Column Table Column

Table 4: The statistics of datasets. ‘N’ is the total number of samples
in dataset. ‘#” denotes ‘The number of’. ‘Avg.’ and ‘Max’ represent Figure 4: The imbalanced
the average value and the maximum value, respectively. For example, proportion of matching
‘Avg. #Table / DB’ means the average number of tables per database, schema elements with the
‘Max. #Column / N’ means the maximum number of matching non-matching ones.
columns for instances in the dataset.

15

Under review as a conference paper at ICLR 2025

Algorithm 1: Hierarchical KaSLA Strategy
Input: user query ¢, schema S

Output: schema linking results §KaSLA, including a table linking set T'* and the corresponding
column linking set C} fort € T*

Tr = {Tiy = fit.0)},_ V= {Vig = fr(t.@)} _ Wr={Wis fwit.a)}

. te R te teT
C} + fc(q) for table linking, Cf , < fc(g) for column linking

T* + KDP(Vr, Wr, 6’;) // We present KDP in Algorithm
fort € T" do

Ic, = {fc,q,t « fi(e, Q)}Cect, Ve, = {vc,q,t « fvle, Q)}

We, = {Wc,q,t — fwle, CI)}

C; + KDP(Ve,, We,, CSy)
return §KaSLA =T*U UteT* Ct*

9
ceCy

ceC

C IMPLEMENTATION DETAILS.

We implemented the proposed KaSLA and baselines under the following settings: (i) Close-source
LLM-based experiments: We conducted all in-context learning experiments on GPT-4-turbo. For
baselines with publicly available SQL generation results, we directly evaluated them using our
evaluation settings. (ii) Open-source LLM-based experiments: We utilized LoRA (Hu et al., 2021)
for parameter-efficient fine-tuning. In KaSLA, we utilize StarCoder2-15B (Lozhkov et al.| 2024) as
the base model and use two LoRA networks: one for the nomination scoring model in the importance
evaluation component and one for the text-to-SQL model in the final SQL generation. The learning
rate was initialized to le — 4 with a cosine decay, the batch size was set to 16, and the training
epoch was 3. We used the same settings for all fine-tuning baselines. (iii) Open-source LM-based
experiments: We fine-tuned a RoBERTa-Large (Liu et al., 2019) following (Li et al.| 2024b) for the
guaranteed scoring model used in the importance prediction component.

For the knapsack factors prediction, we set the following parameters: For top- K- used in the filter of
the recall results, we set it to 5 for tables and 6 for columns, as recommended by |Li et al.| (2024b)).
For top-K ¢ used in demonstration conduction, we set it to 30. Weset « = 1,7 = 0.5, and vy = 1 in
the prediction of value, weight, and capacity, respectively.

We present the complete procedure of hierarchical KaSLA strategy in Algorithm[I]and illustrate the
details of the dynamic programming algorithm used in KaSLA in Algorithm 2]

D DISCUSSION

D.1 COMPLEXITY ANALYSIS

The efficiency of KaSLA stems from its hierarchical approach, strategic use of dynamic programming,
and inherent parallelism. KaSLA’s time complexity is determined by two main phases: table linking
and column linking within the linked tables.

For a database with n; tables and a table capacity of CY, the table linking phase has a time complexity
of O(n:Cy). KaSLA then links columns within the selected table. Let n. and C. represent the
number of columns and the column capacity of a selected table, respectively. The time complexity
of the column linking phase is O(n.C.). Consequently, the total time complexity of KaSLA is
O(n:Cy + n¢(n.C,)), indicating that the complexity of KaSLA scales sublinearly with the database
dimensions.

16

Under review as a conference paper at ICLR 2025

Algorithm 2: Dynamic Programming-based 0-1 Knapsack Problem Optimization

Input: value set V, corresponding weight set W, capacity C
Output: selection set H

n+ |V, H <+ {}

A « array of (n + 1) x (C + 1) initialized to 0

keep < array of (n + 1) x (C + 1) initialized to False

for i < 1tondo

for w <— 0 to C do
if W[i — 1] < w then
if (V[i — 1] + Ali — 1][w — Wi — 1]]) > Afi — 1][w] then
Alil[w] < V]i — 1] + Ali — 1][w = W]i — 1]]
keepli][w] < True
else
| Alil[w] « Ali — 1][w]
else
| Alil[w] « Ali — 1][w]
k < C for i < n downto 1 do
if keepli][k] then
H.add(i — 1)
k< k—W[i—1]
return
Model \ SuperSQL CodeS KaSLA KaSLA
Original BIRD-dev 52.60 6030 6375 Model SuperSQL CodeS KaSLA (Transfer) 9oImprove
Presented BIRD-dev 69.90 67.58 71.92 BIRD-dev 58.60 60.30 63.75 63.10 -1.02%
non-presented BIRD-dev 49.35 51.01 88.01 Spider-dev 87.40 84.72 88.01 ‘ 87.23 ‘ -0.89%

Table 5: Execution Accuracy (EX) (%) of text- Table 6: Execution Accuracy (EX) (%) of KaSLA
to-SQL models trained on whole BIRD-train trained on Spider-train but evaluated on BIRD-dev,
but evaluated on presented BIRD-dev and non- and vice versa, for cross-scenario transfer ability
presented BIRD-dev. evaluation.

D.2 TRANSFERABILITY OF KASLA

In real-world scenarios, databases often have different backgrounds and come from various domains,
leading to diverse database contents and user queries. This diversity poses challenges to the transfer-
ability of schema linking models, which are typically pre-trained on public datasets. We conducted
two experiments to evaluate KaSLLA’s performance in cross-scenario transfer.

We first selected databases from the BIRD dataset’s dev set with no similar scenarios to those in
the training dataset. We created a non-represented BIRD-dev dataset using the selected databases
whose background knowledge differs from the training dataset. The remaining data was treated as
the presented BIRD-dev dataset. The non-presented dataset helps in assessing the model’s transfer
capability. Since there are only two importance scoring models of KaSLA that need to be trained, we
pre-trained them on the whole BIRD-train data and evaluated the SQL generation performance on the
non-presented dataset and the presented dataset with the same SQL generation model. As shown in
Table 5] KaSLA demonstrates a clear advantage over baselines in dealing with both presented and
non-presented development data.

We also performed transfers between different datasets, such as the Spider and BIRD datasets. We
trained the two importance scoring models on the Spider training dataset and evaluated it on the BIRD
dev dataset, and vice versa, to explore its cross-scenario transfer ability. The results are provided
in Table[6] We can find that pre-training KaSLA on public datasets yields results that outperform
the baselines and are only slightly lower than what domain-specific fine-tuning would achieve. The
above results show that KaSLA demonstrates strong cross-scenario transferability.

17

Under review as a conference paper at ICLR 2025

D.3 COMPARISON WITH TRADITIONAL METRICS

Traditional metrics, recall, and precision, are also utilized widely in the schema linking evaluation.
However, they have drawbacks that hinder their usage in schema linking and cannot reflect the actual
schema linking performance.

D.3.1 LIMITATIONS OF TRADITIONAL METRICS

S.nS. . .
Recall, R,ccqu = % for each instance, can reflect the degree of an element missing, but such

continuous degree can not directly reflect the actual impact of schema linking to SQL generation. Any
missing element, whether more or less, will directly result in incorrect SQL generation. However, it
may not have a noticeable effect on recall cause recall can only measure a continuous degree instead
of a definitive judgment about whether this instance has an element missing or not. For example,
assume S, = {t1,t2,3,t4} and S, = {t1,ta,13,t4,t5} for table linking. This S, will result in
incorrect SQL generation because t5 is missing. However, R,...q;; Will be 80%, which unjustly gives
a positive evaluation.

15408,
. |54l o
there are no missing elements. However, element missing is still common for current schema
linking methods. Any missing element will directly result in incorrect SQL generation, but the
precision might still give a positive evaluation as long as the number of missing elements is small
compared to the total elements in the linking results. For example, assume S, = {t1,t2,¢3} and
Sy = {t1,t2,t3,t4,t5} for table linking. With tables ¢4 and t5 missing, the SQL generation will
always be incorrect. However, Ry ccision Will be 100%, a highly positive evaluation, which is
meaningless.

Precision, Rpyecision = for each instance, can reflect the degree of redundancy only if

AUC is also unsuitable because schema linking is an imbalanced classification task. As shown
in Figure [4] matching elements are only a small subset of all elements. A schema linking model
can achieve a high AUC score by predominantly predicting non-matching elements and ignoring
matching elements.

D.3.2 ADVANTAGES OF THE PROPOSED METRICS

Compared with Recall, our schema missing rate, R,,;ss in Eq. @I), for each instance, can reflect
the actual impact of schema linking results to SQL generation by a strict evaluation. It considers
an instance a failure if any element is missing, acknowledging success only when no elements are
missing. This aligns with the fact that any missing element leads to incorrect SQL generation.

Compared with Precision, Our schema redundancy rate, R4y in Eq. , can provide a meaningful
evaluation by only calculating redundancy only when all matching elements are present in the linking
results. The main difference between precision and our redundancy rate is the Non-missing indicator.
The prediction with element missing will be judged as failure because, in such cases, redundancy is
not the sole reason for incorrect SQL generation, thus making its evaluation meaningless.

Table 7: Schema linking benchmarks with R,,;ss, Rredun and Reorrect On Spider-dev.

5 Schema linking Method
& Metric CodeS-SL 10shot ICL-SL DIN-SL DTS-SL [Pure-SL | TA-SL | KaSLA
8 RoBERTa | SGPT | 135 | GPra | GPT35 | GPTa StarCoder2-15B (Qurs)
Base | Large | -1.3B
Romins | table | 0.00 | 0.00 | 29.00 [33.57 31.23 49.61 36.83 6.29 6.29 242 1.26
_q;) mies colmn | 081 | 030 | 2.12 93.84 | 9149 96.18 93.64 6.55 15.62 9.07 2.12
Il R 1 table | 55.96 | 55.96 | 56.13 | 42.81 3574 52.31 39.78 9.90 9.90 473 6.41
b=} redun colmn | 80.77 | 80.55 | 80.97 | 9529 | 92.18 96.49 94.13 69.50 19.23 11.24 12.44
& R table | 72.02 | 72.02 | 71.79 61.81 66.52 49.04 61.69 91.91 91.91 96.43 96.17
correet T colmn | 5921 | 59.57 | 5846 5.44 8.16 3.66 6.12 61.97 82.57 89.84 | 92.72

18

Under review as a conference paper at ICLR 2025

D.4 SCHEMA LINKING BENCHMARK

We provide the whole schema linking evaluation results with R,,;ss, Rredun and Reorrect 0n BIRD-
dev and Spider-dev. Similarly, on the Spider-dev dataset, KaSLA scores a high R.,;rect for column
linking, outperforming all other methods by a considerable margin.

D.5 INFERENCE DELAY

A limitation of KaSLA is the inference delay. KaSLA uses two importance scoring models to
obtain scores for each schema element, calculates the knapsack factor, and then employs a dynamic
programming-based hierarchical schema linking method to obtain linking results. Each of these
steps may lead to an inference delay. We analyzed the average processing time per instance for each
component on the BIRD and Spider datasets, as reported in Table[§] We found that while KaSLA
significantly improves accuracy, it introduces some inference delay. This delay occurs because we use
the StarCoder2-15B to generate nomination scores for the entire schema, aiming for better semantic
understanding, which adds to the time consumption. Reducing the inference time of LLM-based
nomination models for processing the full schema could be a potential research direction. Apart from
the StarCoder2-based nomination model, other components do not add significant time consumption.
We use the lightweight RoOBERTa-Large as the guaranteed model, and score and factor estimations
only involve basic computational operations. Our hierarchical knapsack optimization strategy in the
dynamic programming part, where table linking is performed first and then column linking from the
selected tables, helps reduce the selection space.

Table 8: Inference time cost of each component in KaSLA

Dataset Schema linking ~ Nomination model Guaranteed model Factor estimation and Text-to-SQL
atase model with StarCoder2-15B with RoBERTa-Large = dynamic programming ext-to-
Full Schema / / / 14.35s
BIRD ‘ KaSLA 12.87s 0.125s <001s 8.80s
Spider Full Schema / / / 9.69 s
P KaSLA 9.17s 0.06 s <0.01s 7.89s
Table 9: Input formats of generation with LLMs
Type | Input format
table department,
columns = [department_id (int | primary key|values: 1), name (text|values: State, Treasury),
ranking (int | values: 1, 2)]
table head,
Schema columns = [head_id (int | primary key | values: 1), name (text | values: Tiger Woods), age (real | values: 67.0)]
table management,
columns = [department_id (int | primary key | values: 2), head_id (int | primary key | values: 5),
temporary_acting (text | values: Yes)]
foreign keys: management.head_id = head.head_id, management.department_id = department.department_id
Question \ How many heads of the departments are older than 56?
Schema linking \ List the relevant columns in each table:
SQL generation \ Generate SQL to solve the above question:

19

	Introduction
	Preliminaries
	Schema Linking Benchmarking
	Benchmark Construction
	Schema Linking Metrics

	Knapsack Schema Linking Agent (KaSLA)
	Nomination-Guaranteed Score Function
	Knapsack Factor Estimation
	Hierarchical KaSLA Schema Linking

	Experiments
	Experiment Setup
	Main Results of SQL Generation
	Apply KaSLA to existing text-to-SQL models
	Experimental Results of Schema Linking

	Conclusion
	Related Work
	Statistics of Dataset
	Implementation Details.
	Discussion
	Complexity Analysis
	Transferability of KaSLA
	Comparison With Traditional Metrics
	Limitations of Traditional Metrics
	Advantages of the Proposed Metrics

	Schema Linking Benchmark
	Inference delay

