
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MITIGATING GRADIENT INTERFERENCE FOR EFFI-
CIENT SPARSE FINE-TUNING OF LARGE LANGUAGE
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Model (LLM) sparsification plays a crucial role in model com-
pression. Among various methods, training-free approaches are highly efficient
but often result in accuracy loss, while full fine-tuning requires substantial compu-
tational resources. Recent works have begun exploring sparse Parameter-Efficient
Fine-Tuning (PEFT) methods, but lack theoretical guidance. This study presents
the first comprehensive theoretical framework for efficient sparse fine-tuning, ad-
dressing a critical gap in the literature. Specifically, we identify gradient conflict
as the primary issue in PEFT sparse methods, wherein masked pretrained weights
and corresponding PEFT weights exhibit competing optimization objectives dur-
ing fine-tuning, potentially compromising model performance. We theoretically
model this phenomenon and identify three key factors influencing the efficacy of
fine-tuning in sparsified LLMs: (1) error introduced by weight norms, (2) error
composition from PEFT structures, and (3) error accumulation during fine-tuning.
Leveraging these theoretical insights, we propose a novel iterative sparse fine-
tuning scheme that systematically addresses each identified factor. We implement
an iterative process alternating between sparsity and fine-tuning to mitigate ac-
cumulated error in single turn of finetuning. We employ pooling instead of low-
rank decomposition to reduce error composition from PEFT structures. We apply
normalization to PEFT modules during fine-tuning, constraining error values by
limiting weight norms while preserving representational capacity. Additionally,
we utilize Centered Kernel Alignment based information similarity assessment for
adaptive allocation of layer-level sparsity and PEFT parameter quantities, address-
ing layer-specific redundancy. Empirical evaluation on a 50% sparse LLaMA-2
7B model demonstrates the superiority of our approach, achieving lossless com-
pression.

1 INTRODUCTION

The field of deep learning has witnessed an unprecedented surge in model sizes (Zhang et al., 2022;
Chiang et al., 2023; Touvron et al., 2023b; Achiam et al., 2023) , leading to significant advance-
ments in various domains(Ma et al., 2023; Xia et al., 2023; Zhang et al., 2023a; Guo et al., 2023;
Frantar & Alistarh, 2023; Sun et al., 2023; Zhang et al., 2023c). However, this growth has also
introduced substantial challenges in terms of storage requirements and computational demands. As
models continue to expand, the need for efficient optimization techniques has become increasingly
critical. Sparsification techniques (Frantar & Alistarh, 2023; Sun et al., 2023; Ma et al., 2023; Xia
et al., 2023; Zhang et al., 2023c) have shown promise in reducing model size and computational
complexity by eliminating redundant or less important parameters. Concurrently, PEFT methods
(Houlsby et al., 2019; Lester et al., 2021; Hu et al., 2021) have emerged as effective strategies for
adapting pre-trained models to specific tasks with minimal parameter updates. The integration of
these approaches presents a compelling opportunity to simultaneously achieve model compression
and task adaptation, potentially revolutionizing the deployment of large-scale deep learning models
across diverse applications.

The direct application of iterative sparsification followed by parameter-efficient module fine-tuning
faces significant limitations, primarily due to the emergence of the ”Sparse Weight Gradient Interfer-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

ence” phenomenon. This issue manifests when ∆W exhibits gradients corresponding to zero-valued
pre-trained weights, leading to interference with gradients at other positions. The root cause of this
phenomenon lies in the nature of the fine-tuning process. While pre-trained model weights are
frozen and sparsified, subsequent fine-tuning of ∆W continues to generate gradients in areas where
original weights were set to zero. This results in PEFT module parameters corresponding to sparse
zero-weight positions computing gradients, causing interference between these gradients, affecting
optimization direction, and increasing loss error.

To rigorously understand this phenomenon, we conducted a theoretical analysis of the impact of
sparse ∆W on model fine-tuning loss, deriving loss error bounds. Our analysis suggests three
primary directions for error reduction: (1) Implementation of iterative sparsification and fine-tuning
to avoid introducing excessive errors at once, (2) Structural improvements on PEFT modules to
reduce the interference impact on other parameters, and (3) Introduction of regularization constraints
on PEFT module parameters. These insights provide a foundation for developing more effective
sparse fine-tuning methods for large language models.

Based on our observations and theoretical analysis, we propose an efficient sparse adaptation method
designed to mitigate gradient conflict issues. Our method addresses the limitations of existing meth-
ods by incorporating several key innovations. At the core of our method is a parameterizable small
square weight matrix that serves as the PEFT module, operating in linear projection, applyling sim-
ple pooling operations to the input. This process involves linear mapping of pooled inputs followed
by inverse pooling, effectively reducing the impact of gradients from sparsified positions on other
PEFT model parameter positions. We implement an iterative sparsification and fine-tuning process,
gradually increasing sparsity rates. This approach minimizes the total error introduced in each fine-
tuning round. Consistent with previous work, we employ a cubic schedule for increasing sparsity
ratios. Following the final sparsification round, we apply extended fine-tuning steps to fully lever-
age the fine-tuning process and enhance model capabilities. During the fine-tuning phase, we apply
regularization to weights. This process constrains the parameter matrix norm, thereby reducing
gradient errors. The combination of these techniques allows our method to effectively address the
”Sparse Weight Gradient Interference” phenomenon while maintaining model performance. This
work contributes in three key ways:

• We provide an in-depth investigation of post-sparsification fine-tuning issues, identifying
and analyzing the ”Sparse Weight Gradient Interference” phenomenon. Our theoretical
analysis offers both loose and tight bounds on its impact on model fine-tuning loss, provid-
ing valuable insights for future improvements.

• We propose a novel method combining iterative sparsification, pooling based PEFT mod-
ule, and regularization, which effectively addresses gradient conflict issues and utilizes
CKA metrics for adaptive computation of MoRA rank and layer-wise sparsity.

• Our experimental results demonstrate our method’s significant improvements over baseline
methods in model effectiveness, computational efficiency, and parameter utilization rate.
These advancements offer a comprehensive solution to the challenges of model compres-
sion and task adaptation in deep learning.

2 MODELING THE SPARSE FINE-TUNING PROCESS

Building upon the framework introduced by former work like SparseGPT (Frantar & Alistarh, 2023),
we formulate the problem as a layer-wise reconstruction task, aiming to minimize the discrepancy
between sparse and dense LLM layers. Consider an LLM with L layers, where Wi ∈ RCout×Cin

denotes the weight matrix of the i-th layer, and Xi ∈ RCin×D represents the input feature maps. Cin,
Cout, and D correspond to the number of input channels, output channels, and hidden dimension,
respectively. Sparsity is introduced through a binary mask Mi ∈ {0, 1}Cout×Cin applied to Wi. We
extend this framework by incorporating paradigm of PEFT (∆Wi). Let P = (p1, . . . , pL) represent
the ranks across all layers, and S = (s1, . . . , sL) denote the corresponding sparsity rates. The PEFT
adaptation problem can then be formulated as:

min
M,W

L∑
i=1

∥Wi∗Xi−(Mi⊙(Wi+∆Wi))∗Xi∥22 , s.t. 1− ∥Mi∥0
Cout · Cin

= si, T (S) = Θ, T (P) = Ω.

(1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where, ∗ denotes matrix multiplication,⊙ represents element-wise multiplication, and ∥·∥2 signifies
the ℓ2 norm. T (S) = Θ constrains the average sparsity rate across layers to Θ, while T (P) = Ω
limits the parameter budget during fine-tuning to Ω. The optimization process requires determin-
ing three key parameters: the sparsity mask M, how ∆Wi is composed, and layer-wise budgets
allocations R,S.

To effectively solve the joint optimization problem, we reformulate it as a bi-level optimization
task. This approach allows us to leverage existing techniques for sparsity mask optimization while
incorporating PEFT weight optimization. The bi-level optimization is structured as followed:

Upper-level. Sparsity mask optimization Mi for each layer i, which formulated as:

min
M

L∑
i=1

∥Wi ∗Xi − (Mi ⊙Wi) ∗Xi∥22 , s.t. 1− ∥Mi∥0
Cout · Cin

= si, T (S) = Θ. (2)

Lower-level. PEFT weight ∆W optimization using calibration data to minimize the Next Token
Prediction Loss, which is formulated as:

min
∆W
LNTP(M⊙W +∆W,D) , s.t. T (P) = Ω. (3)

where LNTP represents the Next Token Prediction Loss, D is the calibration dataset, and the con-
straint T (P) = Ω ensures the parameter budget during fine-tuning is limited to Ω.

The intuitively optimal solution is naive integration of the sparsity mask directly with PEFT weights
through dot production (M ⊙ ∆W). However, this solution introduces critical challenges that
undermine the core benefits of Parameter-Efficient Fine-tuning:

1. Dimensional Expansion: This approach forces ∆W to match the dimensionality of the
original weight matrix W, negating the compactness advantage of PEFT methods.

2. Memory Inefficiency: The expansion of ∆W significantly increases memory require-
ments, rendering the approach impractical for large-scale LLMs on standard hardware.

3. Computational Overhead: Element-wise multiplication between large matrices intro-
duces additional computational steps, degrading performance and increasing latency.

The proposed low-level approach that do not impose mask to ∆W , while avoiding above pitfalls,
still presents a significant challenge in the context of sparsed pre-trained weights and dense PEFT
weights. This challenge is a phenomenon termed ”Sparse Weight Gradient Interference” (SWGI).

SWGI arises from the mismatch between the sparse structure of the pre-trained weights and the
dense nature of the PEFT module weights. In the current formulation, the PEFT module weights
(∆W) are applied uniformly across all positions, including those where the pre-trained weights
are masked out (i.e., set to zero) by the sparsity mask M. This incongruence leads to suboptimal
utilization of the fine-tuning capacity and potentially introduces noise into the model.

Specifically, SWGI occurs when PEFT module weights at positions corresponding to masked pre-
trained weights continue to calculate and propagate gradients during the fine-tuning process. To
address SWGI and its implications, we conduct a comprehensive theoretical analysis in the follow-
ing section. This analysis aims to provide a deeper understanding of the phenomenon and lay the
groundwork for more effective solutions.

3 ANALYSIS FOR SPARSE WEIGHT GRADIENT INTERFERENCE

In this section, we analyze the phenomenon named ”Sparse Weight Gradient Interference” in theo-
retical and experimental ways. We firstly give the preliminaries and basic format of loss errors for
general reparameterizable PEFT methods, summarize the key factor(1) ”error introduced by weight
norms”. Then we analysis the error of LoRA(Hu et al., 2021) and our method, come to the key
factor(2) ”error composition from PEFT structures”. Finally, we prove the key factor(3) ”error ac-
cumulation during fine-tuning”.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 PRELIMINARIES

For simplicity, let W ∈ RD×D be the original weight matrix of a LLM. The sparsification mask is
M ∈ {0, 1}D×D, where elements set to 0 indicate sparse positions. Without considering effects in
actual implementation, the optimal loss in the ideal case is:

Lideal = L(M⊙ (W +∆W)) (4)

We aim to analyze the discrepancy between the loss computed using M⊙W+∆W and the ideal
loss that would be obtained in M ⊙ (W + ∆W) where ∆W were zero at sparse positions. We
denote the set of sparse positions as Z, using it to indicate operations or values specific to these
positions. Furthermore, we denote M ⊙ (W + ∆W) as Wideal. The loss function we actually
optimize and its Taylor expansion can be expressed as:

Lactual = L(Wideal +∆WZ)

≈ L(Wideal) +∇WZ
L(Wideal) ·∆WZ +

1

2
∆W⊤

Z HZ∆WZ

(5)

where∇WZ
L(Wideal) represents the gradient of the loss function at positions Z, and ∆WZ denotes

weights of ∆W at these positions.

Based on the loss function presented in Equation 5, we can proceed to analyze three key factors
that significantly influence the manifestation and impact of Sparse Weight Gradient Interference.
These factors, which will be examined in detail in the subsequent sections, provide a comprehensive
framework for understanding the complex interactions between sparse pre-trained weights and dense
PEFT modules.

3.2 UPPER BOUND OF ERROR INTRODUCED BY ∆W NORMS

Theorem 3.1 (Loss Error Bound). The loss error of ∆L introduced by SWGI is bounded as follows:

|∆L| ≤ ||∇WZ
L(Wideal)|| · ||∆WZ ||+

1

2
||HZ || · ||∆WZ ||2 (6)

where: HZ is the Hessian matrix restricted to the sparse positions Z, ∥ ·∥ represents an appropriate
matrix or vector norm (e.g., Euclidean norm for vectors and spectral norm for matrices).

Proof. For the specific proof process, please refer to Appendix.A.

This theorem provides a theoretical foundation for understanding the error introduced by weight
norms in PEFT sparse methods, specifically addressing factor (1) from our identified key factors.
The analysis reveals:

1. Direct Relationship with Weight Norms: Theorem3.1 shows that the error bound is di-
rectly related to ∥∆WZ∥, the norm of the weight adjustments. This demonstrates that the
magnitude of weight changes directly influences the potential error.

2. Weight Gradient Influence: The term ∥∇WZ
L(Wideal)∥ in bound indicates that the error

is also dependent on the gradient magnitude at the sparse positions. This suggests that areas
of the loss landscape with steeper gradients are more susceptible to larger errors.

3. Trade-off Between Adjustment and Error: These bounds illustrate the fundamental
trade-off in PEFT methods: larger weight adjustments may allow for more significant
model changes but at the cost of potentially larger errors.

Furthermore, Theorem3.1 also point to the potential influence of the specific structure of the PEFT
module that we will discuss in next subsetion.

3.3 ERROR BOUND FROM STRUCTURE OF LORA AND OUR METHOD

In this subsection, we firstly give the loss error bound for LoRA, then we give bound for our method,
lastly we compare these bounds and prove that our method has more strict bound than LoRA, show-
ing the superior of our method.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.3.1 ERROR BOUND FROM STRUCTURE OF LORA

LoRA modifies the weight matrix W by introducing a low-rank update ∆W , which is decomposed
into the product of two low-rank matrices A and B: ∆W = AB , where:A ∈ RD×r and B ∈ Rr×D

are low-rank matrices with rank r ≪ D. The adjustment ∆W is thus a rank-r matrix, enabling
efficient storage and computation. We start with first-order approximation in case of simplicity.
Lemma 3.2 (Loss Error Bound for LoRA). The absolute value of the loss error ∆L introduced by
the LoRA adjustment is bounded as follows:

|∆L| ≤ ∥∇WZ
L(Wideal)∥ · ∥M ⊙ (AB)∥ (7)

Building upon this lemma, we can further refine the error bound by analyzing the norms of A and
B, and the sparsity in M .
Theorem 3.3 (Refined Loss Error Bound). The absolute loss error introduced by the LoRA adjust-
ment in a sparse neural network is bounded as follows:

|∆L| ≤ ∥∇WZ
L(Wideal)∥ ·

√
k∥A∥2∥B∥2 (8)

where k is the number of non-zero elements in M , ∥ · ∥2 denotes the spectral norm.

Proof. For the specific proof process, please refer to Appendix.B.

3.3.2 ERROR BOUND ANALYSIS FOR OUR METHOD

We present a PEFT method that operates on input vector X ∈ RD with three main steps:

1. Pooling Operation: We partition X into g equal-sized blocks, each of size n, such that
D = g × n. The pooling operation computes:

X1 =
1

n
X⊤

reshaped1n ∈ Rg (9)

where Xreshaped ∈ Rn×m and 1n ∈ Rn is a vector of ones. Note: To facilitate our analysis,
we only consider the case where D is divisible by g.

2. Linear Transformation: We transform the pooled vector using weight G ∈ Rg×g:

Y1 = G ·X1 ∈ Rg (10)

3. Expansion Operation: We expand Y1 back to the original dimension D:

Y = Expand(Y1) = Y1 ⊗ 1n ∈ RD (11)

where ⊗ denotes the Kronecker product.

Thus, the corresponding adjustment matrix ∆W ∈ RD×D is:

∆W =
1

n
M⊙ (G⊗ 1n) ∈ RD×D (12)

where ⊙ denotes the Hadamard product, and 1n ∈ Rn×n is a matrix of ones.

We now present a theorem bounding the loss discrepancy ∆L introduced by our PEFT adjustments.
Theorem 3.4 (Loss Error Bound from PEFT Structure). Let Z denote the set of sparse positions in
W . The absolute value of the loss error ∆L introduced by our method is bounded by:

|∆L| ≤ ∥∇WZ
L(Wideal)∥ ·

√
k

n
∥G∥ (13)

where k is the number of non-zero elements in M , and G is the trainable transformation matrix.

Proof. For the specific proof process, please refer to Appendix.B.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.3.3 ERROR BOUND COMPARISON BETWEEN LORA AND OUR METHOD

In this section, we provide a rigorous comparison of the loss error bounds derived for Low-Rank
Adaptation (LoRA) and our proposed method under constraints of actual implementation. Accord-
ing to our experiment settings, the matrix dimensions and the constraint r×D = g×g. We proceed
to relate the norms of the respective adjustment matrices.

Assume that the spectral norms of A and B in LoRA, and G in our method, are bounded by the
same constant C:

∥A∥2 ≤ C, ∥B∥2 ≤ C, ∥G∥2 ≤ C (14)
Under this assumption, we can refine the error bounds:
Corollary 3.4.1 (Refined Bound of LoRA and our method). Error bounds can be expressed as:

|∆LLoRA| ≤ ∥∇WZ
L(Wideal)∥ ·

√
k · C2

|∆Lour| ≤ ∥∇WZ
L(Wideal)∥ ·

√
k

n
C

(15)

Corollary 3.4.2 (Superiority of our method). For sufficiently large k and a reasonable constant C,
the loss error bound for our method is significantly smaller than that of LoRA:

|∆LBound
our | ≤

1√
nC
|∆LBound

LoRA | (16)

This inequality demonstrates that the loss error bound for our method is inversely proportional to√
n and scaled by 1

C relative to LoRA’s bound. Consequently, for sufficiently n and a reasonable
constant C, |∆Lour| is significantly smaller than |∆LLoRA|.
Note: The above comparison assumes that the spectral norms of the adjustment matrices are bounded
by the same constant C. In practice, the specific values of these norms may vary, and additional
factors such as the choice of hyperparameters could influence the actual error bounds.

3.4 ERROR ACCUMULATION DURING FINE-TUNING

In the context of PEFT applied to sparsified Large Language Models (LLMs), error accumulation
during fine-tuning poses a significant challenge. Specifically, each fine-tuning step introduces a
small adjustment ∆W at the sparse positions Z, which can accumulate over multiple iterations, lead-
ing to a substantial deviation from the ideal weight configuration. The following theorem formalizes
this phenomenon by providing an upper bound on the accumulated loss error after T fine-tuning
steps.
Theorem 3.5 (Error Accumulation During Fine-Tuning). During fine-tuning, at each step t =

1, 2, . . . , T , an adjustment ∆W
(t)
Z is applied to the sparse positions, resulting in an adjusted weight:

W (t) = Wideal +

t∑
k=1

∆W
(k)
Z (17)

Assume that for each step t, the loss function L satisfies the following conditions at W (t−1):

1. The gradient∇WZ
L(W

(t−1)
ideal) is bounded by ∥∇WZ

L(W
(t−1)
ideal)∥ ≤ G.

2. The adjustment norm is bounded by ∥∆W
(t)
Z ∥ ≤ δ.

3. The Hessian H
(t)
Z satisfies ∥H(t)

Z ∥ ≤ Hmax.

Then, the accumulated loss error ∆LT after T fine-tuning steps satisfies:

|∆LT | ≤ T ·G · δ + T (T − 1)

2
· δ2 ·Hmax (18)

Proof. For the specific proof process, please refer to Appendix.C.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 METHODOLOGY

4.1 POOLING-BASED PEFT STRUCTURE

To facilitate efficient fine-tuning of sparsified large language models (LLMs), we introduce a
pooling-based Parameter-Efficient Fine-Tuning (PEFT) structure. This approach integrates pooling,
linear transformation, and expansion operations into a single adjustment mechanism, thereby reduc-
ing computational overhead and mitigating gradient interference. The theoretical underpinnings of
this structure are examined in Section 3.3.2.

4.2 NORMALIZATION OF PEFT MODULES

Normalization plays a pivotal role in stabilizing the fine-tuning process of Parameter-Efficient Fine-
Tuning (PEFT) modules, particularly within sparsified large language models (LLMs). Building
upon the theoretical insights discussed in Section 3.2, we employ established normalization tech-
niques like weight-decay or drop-out to limit the magnitude of weight adjustments. This approach
mitigates errors introduced by weight norms and helps preserve the model’s representational capac-
ity.

4.3 ADAPTIVE LAYER-WISE SPARSITY AND PEFT PARAMETER ALLOCATION

In this part, we firstly discuss how to get sparsity rate for each layer via CKA. Next, we introduce
adaptive allocation of PEFT parameters based on reconstruction loss from sparsity stage.

4.3.1 INFORMATION THEORY GUIDED SPARSITY RATE SETTING

The generalized Information Bottleneck (IB) (Tishby et al., 2000; Zheng et al., 2021) principle
provides a framework for balancing the compression of input representations with the retention of
task-relevant information during the sparsification of Large Language Models (LLMs). Let X and
Y denote the input and output feature maps of a dense model, while X̃ represents the feature maps
of a sparse model. The goal of sparsification is to identify a sparse X̃ that minimizes informa-
tion redundancy while maintaining the essential relevant information, which can be formalized as
follows:

min
p(Xi|X)

L∑
i=1

L∑
j=i+1

(
I
(
X; X̃i

)
+ I

(
X̃j ; X̃i

))
− βI

(
X̃i;Y

)
(19)

where β balances information compression and task relevance. However, IB are hard to compute in
practice. Hence we employ the normalized Hilbert-Schmidt Independence Criterion (HSIC)(Gretton
et al., 2005; Zheng et al., 2021; Kornblith et al., 2019) as an approximation:1

I(X,Y) ≈ n · HSIClinear(X,Y) =
∥Y ⊤X∥2F

∥X⊤X∥F ∥Y ⊤Y ∥F
(20)

Based on above formulations and work, the optimization for layer-wise sparisity rates S ∈ RL with
importance score I ∈ RL can be defined as the following linear programming problem:

max
S

I⊤S, Il = e−β
∑L

i=1,i ̸=l I(Xl,Xi), s.t. T (S) = Θ. (21)

This approximation significantly reduces computational overhead, allowing the linear programming
problem in Equation equation 21 to be solved within seconds on a CPU. Consequently, determining
the layer-wise sparsity rates for an LLM becomes efficient, completing in minutes on a single GPU.

1Normalized HSIC is also known as CKA (Kornblith et al., 2019), RV coefficient (Robert & Escoufier,
1976), and Tucker’s congruence coefficient (Lorenzo-Seva & Ten Berge, 2006).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.3.2 RECONSTRUCTION-BASED PARAMETERS ALLOCATION

Research has shown that layers in Large Language Models (LLMs) vary significantly in their in-
trinsic dimensions(Zhang et al., 2023b; Pfeiffer et al., 2020) and reconstruction losses during spar-
sification(Frantar & Alistarh, 2023; Xu et al., 2024). Uniform allocation of fine-tuning parameters
is thus suboptimal, as layers with higher reconstruction losses may be under-parameterized. To ad-
dress this, we propose using reconstruction loss as a guide for parameter allocation, ensuring layers
needing more reconstruction effort receive proportionally more fine-tuning resources.

The allocation process begins by assigning an average number of parameters, Pavg, to each layer.
After sparsification, we compute the reconstruction loss for each layer Ll and determine the average
loss Lavg. For each layer, we calculate the loss ratio and allocate parameters accordingly:

rl =
Ll

Lavg
, Pl = Pavg · rl, P ′

l =
⌊√

Pl

⌋2
(22)

This adjustment ensures that P ′
l is a perfect square, facilitating the formation of square adjustment

matrices required for PEFT modules. To fully utilize parameter and ensure compatibility between
the hidden dimension D and the allocated parameters P ′

l , we apply zero-padding to D as follows:

D′ = D + zD, where zD = P ′
l − (D mod P ′

l) (23)

Here, zD is the minimal padding added to D to make it divisible by P ′
l .

4.4 ITERATIVE SPARSE FINE-TUNING SCHEME

Addressing the challenge of error accumulation during fine-tuning, we propose an Iterative Sparse
Fine-Tuning Scheme (ISFT) that systematically mitigates the accumulation of errors across multiple
fine-tuning iterations. This scheme leverages the theoretical insights from Section 3.4 to ensure
stable and efficient adaptation of sparsified large language models (LLMs). Following previous
work (Zhu & Gupta, 2017), we utilize the cubic sparsity schedule within T iterations of sparsity and
fine-tuning:

Θt = Θf +
(
Θi −Θf

)(
1− t

T

)3

, t = 1, 2, . . . , T (24)

The full details of the algorithm are outlined in Algorithm1

Algorithm 1 Iterative Sparse Fine-Tuning Scheme (ISFT)

Require: Calibration Dataset D, Pretrained Weight W , Total Iterations T , Expect Sparsity Θf ,
Average PEFT Size budget g, CKA Threshold β, batch number B.

Ensure: Fine-tuned Sparse Weight Matrix Wfinal
1: for each iteration t = 1 to T do
2: Update Sparsity Schedule through Eq.24;
3: Get layer-wise sparsityS based on CKA using Eq.21 with input from D.
4: Update sparsity mask M t via SparseGPT or WANDA.
5: Reconstruction-Based Parameters Allocation via Eq.22 and Eq.23.
6: for each batch i = 1 to B do
7: Apply Pooling-Based PEFT Adjustments through process in 3.3.2
8: Udpate G using gradient descent or an appropriate optimizer.
9: end for

10: end for
11: Final Output: Wfinal ←M ⊙ (W +∆W)

5 EXPERIMENTS

This section presents a comprehensive evaluation of our proposed sparse fine-tuning method. We
conduct extensive experiments on various large language models (LLMs) to demonstrate the efficacy
of our method in enhancing the performance of sparse LLMs.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Zero-shot accuracy results of our method for sparse LLaMA-V2-7B/13B at 70% sparsity

Model Method HellaSw WinoGr ARC e ARC c OBQA PIQA BoolQ Mean

V2-7B

Dense 57.15 69.06 76.30 43.52 31.40 78.07 77.74 61.89
SparseGPT 33.08 58.41 43.22 22.01 17.40 62.46 64.89 43.07
w. LoRA 39.60 60.22 55.97 24.65 19.80 67.79 63.33 47.34
w. ours 43.61 60.22 56.39 26.53 22.80 69.85 65.93 49.33
Wanda 27.92 49.33 30.60 18.69 12.60 55.33 52.87 35.33

w. LoRA 39.86 60.53 56.01 27.74 22.20 68.00 63.02 47.71
w. ours 42.18 51.19 55.85 26.10 22.80 69.26 64.18 48.51

V2-13B

Dense 60.06 72.22 79.42 48.46 35.20 79.11 80.55 65.00
SparseGPT 36.90 61.64 52.61 25.94 21.00 67.57 66.02 47.38
w. LoRA 45.55 63.85 64.60 30.71 25.40 72.41 69.96 53.21
w. ours 49.63 64.48 65.23 31.74 27.20 73.44 71.43 54.73
Wanda 29.60 51.70 37.21 19.11 13.60 58.65 62.32 38.88

w. LoRA 45.42 64.40 65.15 31.14 25.00 72.30 70.73 53.45
w. ours 47.61 62.98 63.72 30.71 26.40 72.85 68.40 53.24

5.1 EXPERIMENTAL SETTINGS

We evaluate on LLaMA-V2(Touvron et al., 2023a;b), with model sizes ranging from 7B to 13B
parameters. To establish a robust baseline, we compare our method against state-of-the-art sparsifi-
cation methods, namely Wanda(Sun et al., 2023) and SparseGPT(Frantar & Alistarh, 2023), as well
as the low-rank adaptation technique LoRA (Hu et al., 2021).

Our evaluation metrics include perplexity on the WikiText-2 (Merity et al., 2016) dataset and zero-
shot accuracy on a suite of downstream tasks, assessed using the lm-eval-harness (Gao et al.,
2021) framework. These tasks encompass HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi
et al., 2021), BoolQ (Clark et al., 2019), OpenBookQA (Mihaylov et al., 2018), PIQA (Bisk et al.,
2020), ARC-Easy, and ARC-Challenge (Clark et al., 2018), providing a comprehensive view of
model performance across various linguistic capabilities.

The experimental framework is implemented using PyTorch (Paszke et al., 2019) and HuggingFace
Transformers (Wolf et al., 2019), with all experiments conducted on NVIDIA A100 80GB GPUs.
For fine-tuning, we utilize a subset of 400 samples from the C4(Raffel et al., 2020) dataset, each
containing 2048 tokens. Layer-wise sparsity rates and rank allocations are calibrated using a separate
set of 32 samples.

Key hyperparameters include β = 1 for controlling inter-layer independence in sparsity rate calcula-
tions, a fine-tuning process comprising 10 steps with 20 iterations each, an initial parameter number
equivalent to LoRA parameter number with rank r.

5.2 RESULTS AND ANALYSIS

Performance at 70% Sparsity. Our results, summarized in Table1, demonstrate that Our method
consistently outperforms SparseGPT, Wanda, and often LoRA across both LLaMA-V2 models. It
significantly reduces accuracy loss from 70% sparsification, especially in complex tasks and larger
models. This demonstrates its effectiveness in maintaining performance under high sparsity, offering
an improved approach to model compression compared to existing techniques.

Impact of Varying Sparsity Rates. Table2 presents the performance of our method on LLaMA-
V2-7B models across sparsity rates ranging from 50% to 90%. Your method consistently outper-
forms SparseGPT and Wanda across all sparsity levels, often surpassing LoRA as well. It’s par-
ticularly effective at higher sparsities (70-90%), where it maintains significantly lower perplexity
compared to other methods, demonstrating its robustness and effectiveness in maintaining model
performance under extreme sparsification.

5.3 ABLATION EXPERIMENTS

Ablation study on L2 normalization In line with our theoretical analysis in Section 3.2, we con-
ducted an ablation study on L2 regularization (Table 3), which confirm that constraining weight

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: WikiText-2 perplexity of LoSA for sparse
LLaMA-V2-7B/13B at different sparsity rate.

LLaMA-V2-7B
Sparsity 50% 60% 70% 80% 90%

SparseGPT 7.02 10.55 27.42 115.5 1439.35
w.LoRA 6.89 8.71 13.13 26.69 102.72
w.ours 6.78 8.20 12.17 23.15 87.15
Wanda 6.92 10.96 79.67 1980.85 17151.30

w.LoRA 6.74 8.19 12.38 41.58 500.22
w.ours 6.77 8.30 11.85 28.02 150.25

Table 3: Ablation study for different L2
constraint on LLaMA2-7B, WANDA

L2 λ Average Wikitext (ppl)
0 48.16 12.13

1E-06 48.80 11.78
1E-05 49.13 11.22
1E-04 49.43 11.19
1E-03 49.59 11.27
1E-02 49.01 11.45

norms effectively mitigates errors in sparse fine-tuning. Performance improves as λ increases from
0 to 1E-03, with optimal results at λ=1E-03. This empirical evidence supports our theoretical pre-
diction that limiting weight norms can enhance model performance in sparse fine-tuning contexts.

Analysis of parameters and fine-tuning bud-
get on model performance for LLaMA2-7B us-
ing the WANDA method. A lower rank (r=8)
with fewer batches (20) demonstrates competi-
tive performance, particularly in terms of Wiki-
text perplexity. The increase in training budget
does not improve model performance. These
results support the theoritical analysis of Sec-
tion3.4, single turn of fine-tuning will accumu-
late too much error, drawing back effectiveness
of more budget.

Table 4: Ablation study for parameters and fine-
tuning budget on LLaMA2-7B, WANDA

r batch num Average Wikitext (ppl)
8 20 49.48 11.21
8 40 49.50 11.22
32 100 48.74 25.02
32 200 48.80 24.32
32 400 48.81 24.30

128 200 48.71 25.06

6 RELATED WORK

LLM Sparsity. State-of-the-art methods like SparseGPT (Frantar & Alistarh, 2023) and Wanda
(Sun et al., 2023) enable training-free sparsity in LLMs, effectively removing non-essential weights.
However, high sparsity ratios can lead to significant accuracy loss, partly due to uniform layer-wise
sparsity rates that ignore varying redundancy across layers. The OWL method (Robert & Escoufier,
1976) addresses this by employing heuristic metrics to establish non-uniform sparsity rates based on
observed activation outliers in each layer, offering a more nuanced approach to LLM sparsification.

Joint Sparsity and PEFT modules. Several methods (Li et al., 2024b;a; Zhao et al., 2024) have
been developed to leverage related synergy. For example, LLM-Pruner(Ma et al., 2023) employs a
two-step process: it first executes a one-shot structured pruning of LLMs, followed by fine-tuning
using LoRA. Another innovative approach, LoRAPrune(Zhang et al., 2023a), implements an iter-
ative structured pruning method. In this technique, weight importance is determined by replacing
gradients on full weights with those calculated via LoRA, offering a more nuanced pruning strat-
egy. These studies primarily focus on applying LoRA to fine-tune structurally pruned LLMs. In the
context of structural pruning, the process of adjusting the input/output dimensions of the two low-
rank adaptations in PEFT modules and integrating them into the structural pruning weights (Zhao
et al., 2024; Guo et al., 2023) is relatively straightforward. However, this approach faces significant
challenges when applied to unstructured pruning, also known as network sparsity.

7 CONCLUSION

This paper introduces a novel theoretical framework for efficient sparse fine-tuning of Large Lan-
guage Models, analyzing the ”Sparse Weight Gradient Interference” phenomenon and proposing
a method that combines iterative sparsification, modular PEFT, and regularization. Our approach
significantly improves model effectiveness and efficiency over baselines, with potential for future
exploration in other architectures and long-term impacts on model robustness and generalization.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality, march 2023. URL https://lmsys. org/blog/2023-03-
30-vicuna, 3(5), 2023.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot
language model evaluation. Version v0. 0.1. Sept, 2021.

Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. Measuring statistical de-
pendence with hilbert-schmidt norms. In International conference on algorithmic learning theory,
pp. 63–77. Springer, 2005.

Song Guo, Jiahang Xu, Li Lyna Zhang, and Mao Yang. Compresso: Structured pruning with col-
laborative prompting learns compact large language models. arXiv preprint arXiv:2310.05015,
2023.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pp. 3519–
3529. PMLR, 2019.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Guangyan Li, Yongqiang Tang, and Wensheng Zhang. Lorap: Transformer sub-layers deserve dif-
ferentiated structured compression for large language models. arXiv preprint arXiv:2404.09695,
2024a.

Shengrui Li, Xueting Han, and Jing Bai. Nuteprune: Efficient progressive pruning with numerous
teachers for large language models. arXiv preprint arXiv:2402.09773, 2024b.

Urbano Lorenzo-Seva and Jos MF Ten Berge. Tucker’s congruence coefficient as a meaningful
index of factor similarity. Methodology, 2(2):57–64, 2006.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
fusion: Non-destructive task composition for transfer learning. arXiv preprint arXiv:2005.00247,
2020.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Paul Robert and Yves Escoufier. A unifying tool for linear multivariate statistical methods: the rv-
coefficient. Journal of the Royal Statistical Society Series C: Applied Statistics, 25(3):257–265,
1976.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv
preprint physics/0004057, 2000.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang, Kaipeng Zhang, Peng Gao, Fengwei An,
Yu Qiao, and Ping Luo. Besa: Pruning large language models with blockwise parameter-efficient
sparsity allocation. arXiv preprint arXiv:2402.16880, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Mingyang Zhang, Chunhua Shen, Zhen Yang, Linlin Ou, Xinyi Yu, Bohan Zhuang, et al. Pruning
meets low-rank parameter-efficient fine-tuning. arXiv preprint arXiv:2305.18403, 2023a.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh Inter-
national Conference on Learning Representations, 2023b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Yuxin Zhang, Lirui Zhao, Mingbao Lin, Yunyun Sun, Yiwu Yao, Xingjia Han, Jared Tanner, Shiwei
Liu, and Rongrong Ji. Dynamic sparse no training: Training-free fine-tuning for sparse llms.
arXiv preprint arXiv:2310.08915, 2023c.

Bowen Zhao, Hannaneh Hajishirzi, and Qingqing Cao. Apt: Adaptive pruning and tuning pretrained
language models for efficient training and inference. arXiv preprint arXiv:2401.12200, 2024.

Xiawu Zheng, Yuexiao Ma, Teng Xi, Gang Zhang, Errui Ding, Yuchao Li, Jie Chen, Yonghong Tian,
and Rongrong Ji. An information theory-inspired strategy for automatic network pruning. arXiv
preprint arXiv:2108.08532, 2021.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. arXiv preprint arXiv:1710.01878, 2017.

A PROOF OF UPPER BOUND OF ERROR INTRODUCED BY ∆W NORMS

Proof. We begin by recall the statement of Theorem ??: [Loss Error Bound] The loss error of ∆L
introduced by SWGI is bounded as follows:

|∆L| ≤ ||∇WZ
L(Wideal)|| · ||∆WZ ||+

1

2
||HZ || · ||∆WZ ||2

where: HZ is the Hessian matrix restricted to the sparse positions Z, ∥ · ∥ represents an appropriate
matrix or vector norm (e.g., Euclidean norm for vectors and spectral norm for matrices).

We considering the Taylor expansion of the loss function L around the point Wideal. For simplicity,
we focus on the sparse positions Z where modifications are applied. Let ∆WZ represent the per-
turbation in the weights at these positions. The second-order Taylor expansion of the loss function
is given by:

L(Wideal +∆WZ) ≈ L(Wideal) +∇WZ
L(Wideal)

⊤∆WZ +
1

2
∆W⊤

ZHZ∆WZ (25)

Here, ∇WZ
L(Wideal) is the gradient of the loss with respect to the weights at positions Z, and HZ

is the Hessian matrix of second derivatives with respect to these weights.

The error introduced by the perturbation ∆WZ is defined as the difference between the actual loss
and the ideal loss:

∆L = L(Wideal +∆WZ)− L(Wideal) (26)

Substituting the Taylor expansion into the above equation, we obtain:

∆L ≈ ∇WZ
L(Wideal)

⊤∆WZ +
1

2
∆W⊤

ZHZ∆WZ (27)

Taking the absolute value of both sides, we get:

|∆L| ≤
∣∣∇WZ

L(Wideal)
⊤∆WZ

∣∣+ 1

2

∣∣∆W⊤
ZHZ∆WZ

∣∣ (28)

Applying the Cauchy-Schwarz inequality to the first term:

∣∣∇WZ
L(Wideal)

⊤∆WZ

∣∣ ≤ ∥∇WZ
L(Wideal)∥ · ∥∆WZ∥ (29)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

For the second term, we utilize the property of the spectral norm (induced 2-norm) of matrices,
which satisfies:

∣∣∆W⊤
ZHZ∆WZ

∣∣ ≤ ∥HZ∥ · ∥∆WZ∥2 (30)

Combining the inequalities, we obtain the upper bound on the loss error:

|∆L| ≤ ∥∇WZ
L(Wideal)∥ · ∥∆WZ∥+

1

2
∥HZ∥ · ∥∆WZ∥2 (31)

This completes the proof of Theorem 3.1.

B PROOF OF ERROR BOUND FROM STRUCTURE OF LORA AND OUR METHOD

B.1 PROOF OF THEOREM 3.3

Proof. We aim to establish the refined loss error bound for the LoRA adjustment in a sparse neural
network. Recall the statement of Theorem 3.3:

Theorem [Refined Loss Error Bound]: The absolute loss error introduced by the LoRA adjustment
in a sparse neural network is bounded as follows:

|∆L| ≤ ∥∇WZ
L(Wideal)∥ ·

√
k∥A∥2∥B∥2

where:

• k is the number of non-zero elements in the sparsification mask M ,

• ∥ · ∥2 denotes the spectral norm.

Proof:

Step 1: Starting from the Lemma

From the Lemma [Loss Error Bound for LoRA], we have:

|∆L| ≤ ∥∇WZ
L(Wideal)∥ · ∥M ⊙ (AB)∥

Our goal is to bound the term ∥M ⊙ (AB)∥ in terms of the spectral norms of A and B, and the
sparsity level k.

Step 2: Bounding ∥M ⊙ (AB)∥
The operator M ⊙ (AB) applies the sparsification mask M to the matrix product AB, effectively
zeroing out all elements not in the support of M . To bound ∥M ⊙ (AB)∥, we proceed as follows:

1. Spectral Norm and Frobenius Norm Relationship:

The spectral norm of a matrix is the largest singular value, while the Frobenius norm is the square
root of the sum of the squares of all elements. Importantly, for any matrix X:

∥X∥2 ≤ ∥X∥F ≤
√
r∥X∥2

where r is the rank of X . However, in the context of sparsity, we can utilize the fact that the
Frobenius norm can also be bounded by the number of non-zero elements.

2. Applying Sparsity:

Let k be the number of non-zero elements in M . Since M ⊙ (AB) retains only k elements of AB,
we can bound the Frobenius norm as:

∥M ⊙ (AB)∥F ≤ ∥AB∥F
However, considering sparsity, each non-zero element can contribute to the norm. Therefore:

∥M ⊙ (AB)∥F ≤
√
k ·max

i,j
|(AB)ij |

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

But this bound can be further refined using the properties of spectral norms.

3. Bounding with Spectral Norms:

The product of two matrices has a spectral norm bounded by the product of their spectral norms:

∥AB∥2 ≤ ∥A∥2 · ∥B∥2
Since M is a binary mask, applying it does not increase the spectral norm. However, sparsity affects
the number of non-zero elements, leading to:

∥M ⊙ (AB)∥2 ≤
√
k · ∥A∥2 · ∥B∥2

This inequality leverages the fact that each non-zero element can contribute to the overall norm,
and with k such elements, the

√
k factor emerges from the aggregation of these contributions in the

spectral norm.

Step 3: Combining the Bounds

Substituting the bound on ∥M ⊙ (AB)∥ back into the initial inequality from the lemma:

|∆L| ≤ ∥∇WZ
L(Wideal)∥ · ∥M ⊙ (AB)∥ ≤ ∥∇WZ

L(Wideal)∥ ·
√
k · ∥A∥2 · ∥B∥2

Thus, we arrive at the refined loss error bound:

|∆L| ≤ ∥∇WZ
L(Wideal)∥ ·

√
k · ∥A∥2 · ∥B∥2

Therefore, the theorem is proved.

PROOF OF THEOREM 3.4

Proof. We aim to establish an upper bound on the loss discrepancy ∆L introduced by our proposed
Parameter-Efficient Fine-Tuning (PEFT) method. Specifically, we will demonstrate that:

|∆L| ≤ ∥∇WZ
L(Wideal)∥ ·

√
k

n
∥G∥

where:

• Z is the set of sparse positions in W ,

• k is the number of non-zero elements in the sparsification mask M ,

• n is the size of each block in the pooling operation,

• G is the trainable transformation matrix,

• ∇WZ
L(Wideal) is the gradient of the loss with respect to the weights at the sparse positions

Z.

Step 1: Understanding the Adjustment Matrix ∆W

Our PEFT method introduces an adjustment matrix ∆W defined as:

∆W =
1

n
M ⊙ (G⊗ 1n)

where:

• M ∈ {0, 1}D×D is the sparsification mask,

• G ∈ Rg×g is the trainable transformation matrix,

• ⊗ denotes the Kronecker product,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

• 1n ∈ Rn×n is a matrix of ones,

• D = g × n.

Step 2: Relating ∆WZ to G

The adjustment ∆W affects only the sparse positions Z. Therefore, ∆WZ can be expressed as:

∆WZ =
1

n
MZ ⊙ (G⊗ 1n)

where MZ is the submatrix of M corresponding to the sparse positions Z.

Step 3: Bounding the Norm ∥∆WZ∥
Our goal is to bound ∥∆WZ∥, where ∥·∥ denotes an appropriate matrix or vector norm (specifically,
the spectral norm ∥ · ∥2).

∥∆WZ∥ =
∥∥∥∥ 1n MZ ⊙ (G⊗ 1n)

∥∥∥∥
=

1

n
∥MZ ⊙ (G⊗ 1n)∥

To bound this, we utilize the following properties:

1. Submultiplicative Property of the Spectral Norm:

∥A⊗B∥2 = ∥A∥2 · ∥B∥2
where A ∈ Rm×m, B ∈ Rn×n.

2. Bound on the Spectral Norm of MZ ⊙X: For a binary mask MZ with k non-zero elements and
any matrix X , the spectral norm satisfies:

∥MZ ⊙X∥2 ≤ ∥X∥2 ·
√

k

n

This arises from the fact that applying a sparsification mask can at most scale the spectral norm by
the square root of the sparsity ratio.

Applying these properties:

∥MZ ⊙ (G⊗ 1n) ∥2 ≤ ∥G⊗ 1n∥2 ·
√

k

n

Using the Kronecker product property:

∥G⊗ 1n∥2 = ∥G∥2 · ∥1n∥2

Since 1n is an n × n matrix of ones, its spectral norm is n (as all rows are identical and the largest
singular value corresponds to the sum of each row).

Therefore:

∥G⊗ 1n∥2 = ∥G∥2 · n

Substituting back:

∥MZ ⊙ (G⊗ 1n) ∥2 ≤ ∥G∥2 · n ·
√

k

n
= ∥G∥2 ·

√
kn

Now, substituting into the expression for ∥∆WZ∥:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

∥∆WZ∥ ≤
1

n
· ∥G∥2 ·

√
kn = ∥G∥2 ·

√
k

n

Step 4: Applying the General Loss Error Bound

From Theorem 3.1, the loss error |∆L| is bounded by:

|∆L| ≤ ∥∇WZ
L(Wideal)∥ · ∥∆WZ∥+

1

2
∥HZ∥ · ∥∆WZ∥2

Substituting the bound for ∥∆WZ∥:

|∆L| ≤ ∥∇WZ
L(Wideal)∥ ·

(
∥G∥2 ·

√
k

n

)
+

1

2
∥HZ∥ ·

(
∥G∥2 ·

√
k

n

)2

Simplifying the quadratic term:

1

2
∥HZ∥ ·

(
∥G∥2 ·

√
k

n

)2

=
1

2
∥HZ∥ · ∥G∥22 ·

k

n

Therefore:

|∆L| ≤ ∥∇WZ
L(Wideal)∥ · ∥G∥2 ·

√
k

n
+

1

2
∥HZ∥ · ∥G∥22 ·

k

n

Step 5: Neglecting the Quadratic Term for Small Adjustments

In practical scenarios, especially when the weight adjustments ∆WZ are small, the quadratic term
1
2∥HZ∥ · ∥G∥22 · kn is negligible compared to the linear term ∥∇WZ

L(Wideal)∥ · ∥G∥2 ·
√

k
n .

Therefore, the dominant term governing the loss error is:

|∆L| ≤ ∥∇WZ
L(Wideal)∥ · ∥G∥2 ·

√
k

n

This yields the desired bound:

|∆L| ≤ ∥∇WZ
L(Wideal)∥ ·

√
k

n
∥G∥

Therefore, the theorem is proved.

C PROOF OF ERROR ACCUMULATION DURING FINE-TUNING

Proof. We aim to establish an upper bound on the accumulated loss error ∆LT after T fine-tuning
steps in the presence of Sparse Weight Gradient Interference (SWGI). The proof leverages the Taylor
expansion of the loss function and the provided boundedness assumptions.

Step 1: Taylor Expansion of the Loss Function

At each fine-tuning step t, the loss function L can be approximated using the second-order Taylor
expansion around the current ideal weight configuration Wideal:

L(Wideal +∆W
(t)
Z) ≈ L(Wideal) +∇WZ

L(Wideal)
⊤∆W

(t)
Z +

1

2
∆W

(t)
Z

⊤H
(t)
Z ∆W

(t)
Z

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Here:

• ∆W
(t)
Z is the weight adjustment at sparse positions Z during step t.

• ∇WZ
L(Wideal) is the gradient of the loss with respect to the weights at positions Z.

• H
(t)
Z is the Hessian matrix of second derivatives with respect to the weights at positions Z

during step t.

The error introduced at step t, denoted as ∆L(t), is the difference between the actual loss after
adjustment and the ideal loss:

∆L(t) = L(Wideal +∆W
(t)
Z)− L(Wideal)

Substituting the Taylor expansion:

∆L(t) ≈ ∇WZ
L(Wideal)

⊤∆W
(t)
Z +

1

2
∆W

(t)
Z

⊤H
(t)
Z ∆W

(t)
Z

Step 2: Bounding the Error at Each Step

Taking the absolute value and applying the triangle inequality:

|∆L(t)| ≤
∣∣∣∇WZ

L(Wideal)
⊤∆W

(t)
Z

∣∣∣+ 1

2

∣∣∣∆W
(t)
Z

⊤H
(t)
Z ∆W

(t)
Z

∣∣∣
Applying the Cauchy-Schwarz inequality to the first term:∣∣∣∇WZ

L(Wideal)
⊤∆W

(t)
Z

∣∣∣ ≤ ∥∇WZ
L(Wideal)∥ · ∥∆W

(t)
Z ∥

For the second term, using the property of the spectral norm:∣∣∣∆W
(t)
Z

⊤H
(t)
Z ∆W

(t)
Z

∣∣∣ ≤ ∥H(t)
Z ∥ · ∥∆W

(t)
Z ∥

2

Combining these:

|∆L(t)| ≤ ∥∇WZ
L(Wideal)∥ · ∥∆W

(t)
Z ∥+

1

2
∥H(t)

Z ∥ · ∥∆W
(t)
Z ∥

2

Step 3: Accumulating Errors Over T Steps

Assuming that each step introduces an independent error, the accumulated loss error ∆LT after T
steps is the sum of the individual errors:

|∆LT | ≤
T∑

t=1

|∆L(t)|

Substituting the bound from Step 2:

|∆LT | ≤
T∑

t=1

(
∥∇WZ

L(Wideal)∥ · ∥∆W
(t)
Z ∥+

1

2
∥H(t)

Z ∥ · ∥∆W
(t)
Z ∥

2

)
Given the assumptions:

• ∥∇WZ
L(W (t−1)

ideal)∥ ≤ G for all t.

• ∥∆W
(t)
Z ∥ ≤ δ for all t.

• ∥H(t)
Z ∥ ≤ Hmax for all t.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Substituting these bounds:

|∆LT | ≤
T∑

t=1

(
G · δ + 1

2
Hmax · δ2

)
= T ·G · δ + 1

2
Hmax · δ2 · T

However, this linear accumulation of the quadratic term over T steps does not account for the inter-
action between different adjustment steps. To refine this, we consider that each new adjustment not
only introduces its own quadratic error but also interacts with previous adjustments.

Thus, the more accurate accumulation for the quadratic terms across T steps is given by:

T∑
t=1

1

2
Hmax · δ2 · (t− 1)

This summation results in:

1

2
Hmax · δ2 ·

T∑
t=1

(t− 1) =
1

2
Hmax · δ2 ·

T (T − 1)

2
=

T (T − 1)

2
· δ2 ·Hmax

Step 4: Combining the Bounds

Combining the linear and refined quadratic accumulations:

|∆LT | ≤ T ·G · δ + T (T − 1)

2
· δ2 ·Hmax

This establishes the upper bound on the accumulated loss error after T fine-tuning steps.

Therefore, the theorem is proved.

19

	Introduction
	Modeling the Sparse Fine-tuning Process
	Analysis for Sparse Weight Gradient Interference
	Preliminaries
	Upper Bound of Error introduced by W norms
	Error Bound from structure of LoRA and our method
	Error Bound from structure of LoRA
	Error Bound Analysis for Our Method
	Error Bound Comparison between LoRA and Our Method

	Error Accumulation During Fine-Tuning

	Methodology
	Pooling-Based PEFT Structure
	Normalization of PEFT Modules
	Adaptive Layer-wise Sparsity and PEFT Parameter Allocation
	Information theory guided sparsity rate setting
	Reconstruction-Based Parameters Allocation

	Iterative Sparse Fine-Tuning Scheme

	Experiments
	Experimental Settings
	Results and Analysis
	Ablation Experiments

	Related Work
	Conclusion
	Proof of Upper Bound of Error introduced by W norms
	Proof of Error Bound from structure of LoRA and our method
	Proof of Theorem 3.3

	Proof of Error Accumulation During Fine-Tuning

