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ABSTRACT

In this paper, we study an underexplored, yet important and challenging problem:
counting the number of distinct sound in raw audio characterized by a high degree
of polyphonicity. We do so by systematically proposing a novel end-to-end train-
able neural network (we call DyDecNet, comprising of a dyadic decomposition
front-end and backbone network), and quantifying the difficulty level of counting
depending on sound polyphonicity. Unlike existing audio-processing methods
that uniformly apply a set of frequency-selective filters on the raw waveform in a
one-stage manner to get time-frequency (TF) representation, our dyadic decompo-
sition front-end progressively decomposes the raw waveform dyadically along the
frequency axis to obtain TF representation in multi-stage, coarse-to-fine manner.
Each intermediate waveform convolved by a parent filter is further processed by a
pair of child filters that evenly split the parent filter’s carried frequency response,
with the higher-half child filter encoding the detail and lower-half child filter en-
coding the approximation. We further introduce an energy gain normalization
to normalize sound loudness variance and spectrum overlap, and apply it each
intermediate parent waveform before feeding it to the two child filters. We argue
that such dyadic decomposition front-end better characterizes sound polyphonicity
and concurrency that commonly exist in sound counting task, while introducing
negligible extra computational cost. To better quantify sound counting difficulty
level, we further design three polyphony-aware metrics: polyphony ratio, max
polyphony andmean polyphony. We test DyDecNet on three main sound datasets
from different domains: bioacoustic sound (both synthetic and real-world sound),
telephone-ring sound and music sound. Comprehensive experiment results show
our method outperforms existing sound event detection (SED) methods signifi-
cantly. The dyadic decomposition front-end can be used as a general front-end by
existing methods to improve their performance accordingly.

1 INTRODUCTION

Suppose you went to the seaside and heard a cacophony of seagulls, squawking and squabbling.
An interesting question that naturally arises is whether you can tell the number of seagulls flocking
around you from the sound you heard? Although a trivial example, this sound “crowd counting”
problem has a number of important applications. For example, passive acoustic monitoring (PAM) is
widely used to record sounds in natural habitats, which provides measures of ecosystem diversity
and density [2, 15, 12]. Sound counting helps to quantify and map sound pollution by counting the
number of individual polluting events [4]. It can also be used in music content analysis [24]. Despite
its importance, research on sound counting has far lagged behind than its well-established crowd
counting counterparts from either images [49, 46], video [29] or joint audio-visual [22].

We conjecture that the lack of exploration stems from three main factors. First, sound counting has
long been thought of as an over-solved problem by sound event detection (SED) methods [35, 9, 1, 19],
in which SED goes further to identify each sound event’s (e.g. a bird call) start time, end time and
semantic identity. Sound counting number then becomes easily accessible by simply adding up all
detected events. Secondly, current SED only tags whether a class of sound event is present within
a window, regardless of the number of concurrent sound sources of the same class like a series of
baby crying or multiple bird calls [41]. Thirdly, labelling acoustic data is technically-harder and more
time-consuming than labelling images, due to the overlap of concurrent and diverse sources. The lack
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of well-labelled sound data in crowded sound scenes naturally hampers research progress. Existing
SED sound datasets [1, 20] capture simple acoustic scenarios with low polyphony and where the
event variance is small. The simplified acoustic scenario in turn makes sound counting task by SED
methods tackleable. But when the sound scene becomes much more complex with highly concurrent
sound events, SED methods soon lose their capability in discriminating different sound events [38, 9].
Therefore, a study specific for sound counting problem is desirable and overdue.

In this paper, we study the general sound counting problem under highly polyphonic, cluttered and
concurrent situation. Whilst the challenges of image-based crowd counting mainly lie in spatial
density, occlusion and view perspective distortion, the sound counting challenges are two-fold. Firstly,
acoustic scenes are additive mixtures of sound along both time and frequency axes, making counting
overlapping sounds difficult (temporal concurrence and spectrum-overlap). Secondly, there is a large
variance in event loudness due to spherical signal attenuation with distance (loudness variance).
Tackling these challenges require a more elegant method to process sound raw waveform so as to
better localize sound in time-frequency domain.

In this paper, we propose a novel dyadic decomposition neural network to learn a sound density
representation capable of estimating cardinality directly from raw sound waveform. Unlike existing
sound waveform processing methods that all apply frequency-selective filters on the raw waveform in
single stage [19, 10, 48, 18, 14], our network progressively decomposes raw sound waveform in a
dyadic manner, where the intermediate waveform convolved by each parent filter is further processed
by its two child filters. The two child filters evenly split the parent filter’s frequency response,
with one child filter encoding the waveform approximation (the one with the lower-half frequency
response) and the other one encoding the waveform details (the one with the higher-half frequency
response). To accommodate sound loudness variance, spectrum-overlap and time-concurrence, we
further propose an energy gain normalization module to regularize each intermediate parent waveform
before feeding it to two child filters for further processing. This hierarchical dyadic decomposition
front-end enables the neural network to learn a robust TF representation in multi-stage coarse-to-fine
manner, while introducing negligible extra computation cost. By setting each filter’s frequency cutoff
parameters to be learnable and self-adjustable during optimization in data-driven way, the final learned
TF representation can better characterize sound existence in time and frequency domain. Following
the front-end, we add a backbone network to continue to learn a time framewise representation. Such
representation can be used to derive the final sound count number by either directly regressing the
count number, regressing density map (the one we choose) or following SED pipeline.

Apart from the network, we further propose three polyphony-aware metrics to quantify sound
counting task difficulty level: polyphony ratio, maximum polyphony and mean polyphony. We will
give detailed discussion to show the feasibility of three metrics.

We run experiments on four cross-domain sound datasets: a bird sound set (both real-world and
synthetic), a telephone-ring sound set (synthetic), and music sound [24] (real-world). Experimental
results show our method (DyDecNet) outperforms exiting SED-based methods significantly on both
real-world and synthetic dataset. Replacing existing methods’ one-stage sound raw waveform pro-
cessing front-end with our dyadic decomposition front-end dramatically improves their performance
accordingly. Since the real-world datasets contain relatively small polyphony level, we specially
synthesize a bird sound dataset that contain much higher sound polyphonic level and spectral overlap.
The synthesized sound dataset has two sub-sets: one involves four kinds of bird sound (exhibits het-
erophony); the other has just one kind of sound (this encapsulates homophonic scenario). Experiment
on such synthetic dataset helps to test performance under highly polyphonic situation.

In summary, we make three main contributions: First, propose dyadic decomposition front-end to
decompose the raw waveform in a multi-stage, coarse-to-fine manner, which better handles loudness
variance, spectrum-overlap and time-concurrence. Second, propose a new set of polyphony-aware
evaluation metrics to comprehensively and objectively quantify sound counting difficulty level. Third,
Show the efficiency and generalization of DyDecNet on sound datasets across different domains.
2 RELATED WORK

Crowd counting from images or audio-visual has been thoroughly studied in recent years [49, 22], the
target of which is to estimate the instance number from very crowded scenes (e.g. pedestrian in train
station) that cannot be efficiently handled by object detection methods. The methods approaching
image crowd counting chronically evolve from the early detection-based [26] to the later regression-

2



Under review as a conference paper at ICLR 2023

Figure 1: DyDecNet pipeline. We first feed the input raw sound waveform to the dyadic decomposition
front-end to learn a time-frequency representation, which is further fed to a backbone neural network
to continue to learn framewise representation. Such representation retains time information, so it is
general enough to get count number by either regression or SED method. The dyadic decomposition
front-end consists of a set of parameterized learnable band-pass filters. Each intermediate waveform
processed by a parent filter is further processed by two child filters, with lower-half filter (red color)
encoding approximation and higher-half filter (light-blue) encoding details.

based [11] and density map estimation [27] methods. Accompanying these methods, various neural
network architectures have been designed to achieve higher performance.

The counterpart task purely in sound, however, has been nearly ignored. Existing research mainly
focus on sound event detection, including spatio-temporal sound event detection (SELD) [19, 18, 1,
10] from a microphone array and temporal sound event detection [7, 39] and high-frequency time
series analysis [36]. They often combine convolutional neural networks (CNN) [8] and reccurent
neural network [1] to separate sound sources. The datasets they work on are relatively simple, in
which the sound scenes are relatively simple and contain few overlapping sound events.

The common way to process raw sound waveform is to first convert the 1D waveform into 2D
time-frequency representation so that sound events’ frequency property and their variation along
time axis are explicitly split out. Most existing methods [10, 1, 7, 39] adopt Fourier transform [14]
or Wavelet transform [33] to obtain such 2D representation, in which the whole conversion process
is fixed. Some recent work [19, 48, 42, 45, 37] re-parameterize the conversion frequency-selective
filters to be learnable so that the whole neural network is able to directly learn from raw sound
waveform. Experimental results show enabling the neural network to learn from the raw waveform
can often achieve better performance than traditional fixed conversion. These methods, however,
convert the raw waveform in a one-stage manner. Our proposed dyadic decomposition neural network
instead processes the raw waveform in a dyadic multi-stage manner.

Dyadic Network Dyadic representation idea has been initially proposed to represent signal hierarchi-
cally [6, 3], in multi-scale manner. Its core idea is to construct a bank of filters (either learnable or
fixed) so that different filter extracts different feature at a certain scale or resolution. Summarizing
them together leads to more comprehensive and complete analysis. Similar idea has been widely used
in computer vision community, including pyramid feature representation for object detection [30]
and semantic segmentation [43, 28].

3 DYADIC DECOMPOSITION NEURAL NETWORK

Different sound classes typically exhibit different spectral properties. A canonical way to process
raw sound waveform is to apply a frequency-selective filter bank Ff = {fi}ki=1 to project the
raw sound waveform onto different frequency bins. Traditional Fourier transform [14] or Wavelet
transform [33] construct fixed filter banks in which all filter-construction relevant hyperparameters
are empirically chosen and thus may not be optimal for a particular task. Recent methods [19, 48]
relax some hyperparameters to be trainable so that the filter bank can be optimized in a data-driven
way. A learnable filter bank often leads to better performance than fixed filters. However, all
existing methods apply all filters, either learnable or fixed, on the raw waveform in a one-stage
manner. Such shallow and one-stage processing may fail to learn powerful and robust representation
for sound counting task where large loudness variance and heavy spectrum overlap exist. In our
dyadic decomposition framework, we instead adopt a progressive pairwise decomposition strategy to
obtain the time-frequency (TF) representation. It learns a TF representation from coarse-grained to
fine-grained granularity. Particularly, it consists of a dyadic frontend and a backbone.

3



Under review as a conference paper at ICLR 2023

3.1 DYADIC FREQUENCY DECOMPOSITION FRONTEND

In dyadic frequency decomposition frontend, we construct a set of D hierarchical filter banks
FD

dyadic = {F1
21 ,F2

22 , · · · ,FD
2D}. The d-th filter bank has 2d filters, each filter is parameterized by

a learnable high freuqney-cutoff parameter and a low frequency-cutoff parameter. By cascading these
filter banks, we consecutively decompose the raw waveform in frequency domain dyadically, leading
to coarse-grained to fine-grained TF representation. Specifically, we denote the dyadic filter banks
depth by D, in the depth d filter bank Fd

2d , we have 2d filters evenly divide the waveform sampling
frequency Fs. Therefore, each single filter’s frequency response length is Fs

2d
, the i-th filter fd

i high
frequency cutoff Fh and low frequency cutoff Fl are initialized as,

Fh(f
d
i ) =

Fs

2d
· (i+ 1), Fl(f

d
i ) =

Fs

2d
· i (1)

From Eqn. (1) we can see that dyadic decomposition frontend forms a complete binary-tree-like
structure, in which the filter number doubles and each filter’s frequency response length halves as the
tree’s depth increases by one. The intermediate waveform processed by a “parent” filter is just further
processed by its two “childre” filters. The frequency responses of the two children filters evenly split
their parent filter’s frequency response. The child filter carrying the higher half frequency response
encode the parent’s processed intermediate waveform’s detail while the other one carrying the lower
half frequency response instead encodes the approximation. For example, for the filter fd

i in the d-th
filter bank, its frequency response lies in [Fs

2d
· i, Fs

2d
· (i+ 1)], its two children filters fd+1

2i and fd+1
2i+1

in the depth d+1 evenly divide its frequency range, so fd+1
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2d
· i, Fs

2d
(i+ 1

2 )]. f
d+1
2i+1 carries

[Fs

2d
(i+ 1

2 ),
Fs

2d
· (i+ 1)].

With the pre-constructed dyadic decomposition filter banks, we cascade them together to process
the raw sound waveform, progressively learning the final TF representation. In our implementation,
each filter in dyadic filter banks is a learnable band-pass filter. We adopt rectangular band-pass in
frequency domain filter which comprises of a learnable high frequency cutoff parameter Fh and a
learnable low frequency cutoff parameter Fl. Converting it to time domain through inverse Fourier
transform, we get sinc(·) function like filter that is used to convolve with the waveform. For example,
the filter fd

i in Eqn. (1) can be represented as,

fd
i [t, Fh, Fl] = 2Fhsinc(2πFht)− 2Flsinc(2πFlt) (2)

where sinc(x) = sin(x)/x, t indicates the filter’s representation at time t. Fh and Fl are initialized
according to Eqn. (1), but they can be further adjusted during training process. sinc(·) filters have
been successfully used in speech recognition [42] and sound event detection and localization [19]. In
our dyadic decomposition frontend, each filter from different depth has separate and independent
learnable parameters (high frequency cutoff and low frequency cutoff). Moreover, our constructed
filter is much longer (1025 in our case) than traditional 1D/2D Conv filters (3 or 5). Its wide length
characteristic enables the filter to have wide field-of-view on the raw waveform. Cascading them
together allows the filters in later layers (larger depth) to have even wider field-of-view on the input
raw waveform. With this advantage, we do not have to model sound event temporal dependency
explicitly with RNN network. As a result, the whole dyadic frequency decomposition frontend is
fully convolutional and parametrically learnable, it is parameter-frugal and computationally efficient.
In practice, the dyadic decomposition frontend depth is 8, so the output TF representation has 256
frequency bins. At the same time, we downsample the intermediate waveform by 2 before feeding it
to its two children filters in the initial 5 dyadic filter banks to reduce the memory cost.

3.2 ENERGY GAIN NORMALIZATION

We further design an energy gain normalization module to regularize each intermediate waveform
before feeding them to the next dyadic filter bank. The motivation of introducing energy gain
normalization is two-fold: first, to reduce sound event loudness variance led by sound events’
different spatial locations; Second, to reinforce the frontend to learn to better tackle spectrum overlap
challenge led by intra-class sound events in the sound scene. Specifically, for the intermediate
waveform Wfd

i
processed by a dyadic filter fd

i , we first smooth it with a learnable 1D Gaussian kernel
gdi parameterized by learnable width σ to get the corresponding smoothed waveform Wgd

i
which just
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Figure 2: Three counting methods illustration. For density map (sub-fig. C), the sum (or integral) of
the density map equals to the count number. We can also direct regress the final count number (sub-
fig. D), or use SED method (sub-fig. E). Detailed illustration is in Appendix Fig. V.

contains loudness. We then introduce a learnable automatic gain control parameter α to mitigate
sound loudness impact. Furthermore, another two learnable compression parameters δ and γ are
introduced to further compress Wfd

i
. The overall energy gain normalization can be represented as,

Wfd
i
= (

Wfd
i

(Wgd
i
)α

+ δ)γ − δγ (3)

where α, δ and γ are learnable parameters. As a result, the energy gain normalization eg-Norm is
fully learnable and parametersized by four learnable parameters eg-Norm(σ, α, δ, γ). Practically,
each filter in dyadic filter banks is associated with an independent eg-Norm module. Similar energy
normalization has been successfully used in tasks like keyword spotting [47, 31]. The difference
lies in the fact that they apply exponential moving average operation to get smoothed waveform
representation, so the computation is very slow because it iterates along the time axis to compute the
averaged value step by step. Our proposed energy gain normalized strategy instead adopts a Gaussian
kernel to get the smoothed waveform, in which it can be easily implemented as 1D convolution. The
dyadic filter visualization and energy normalization module is shown in Fig. 3.

3.3 BACKBONE NEURAL NETWORK

We add a lightweight backbone neural network to the frontend neural network to further learn a
representation useful for call counting . The backbone network consists of two parts: per-channel
pooling and inter-channel 1D convolution. Unlike existing methods [9, 1] that first convert 1D
sound waveform into 2D map with fixed FFT-like transform, then learns from the 2D map with 2D
Conv. operations, our method directly learn from sound raw waveform with learnable 1D Conv..
Specifically, we downsample each channel separately by assigning each channel with an independent
frequency-sensitive learnable filter. We call such learnable downsampling per-channel pooling. It
helps to learn sound event’s frequency variance along time axis individually. Moreover, we add
normal 1D Conv. to achieve inter-channel communication, which enhances the neural network to
learn concurrent sound events interaction. Detailed illustration is given in Appendix Table IV. The
backbone serves as as the backend to learn framewise representation for counting.

3.4 DENSITY MAP AND LOSS FUNCTION

The backbone network discussed above learns a framewise representation [Tb, Fb], where Tb indicates
the time steps and Fb indicates feature size. There are three potential ways to derive final sound count
number fromthe learned representation: 1. directly regress the count number; 2.SED method: detect
sound events first and then aggregate results to get final count; 3. predict the density map. For a sound
event with time location [t1, t2], its density map is a 1D vector with value 1

t2−t1
during its occurrence

time, otherwise is 0. So the count number equals to the vector integral. We show regressing density
map produces the best result (see Table 6). We thus adopt the mean squared error (MSE) loss during
training to directly regress the density map. The comparison of three methods is shown in Fig. 2.

4 EVALUATION METRIC DISCUSSION

Mean absolute error (MAE) and mean squared error (MSE) are two widely used metrics in crowd
counting [32, 49]. Specifically, denote the ground truth count and predicted count by yi and ŷi
respectively, for the i-th sound clip. MAE is defined as MAE = 1

N

∑N
i=1 |yi − ŷi|, MSE is defined
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as MSE =
√

1
N

∑N
i=1(yi − ŷi)2. We also involve accuracy rate (AccuRate) to show the ratio of

accurately predicted count. We introduce a tolerance term p, where p = 0 means predicted count
number has to be exactly the same with ground truth number in order to be treated as an accurate
counting; p = 1 relaxes the constraint so there can be one count mismatch for an accurate counting.

4.1 POLYPHONY-AWARE DIFFICULTY QUANTIFICATION

The aforementioned three general metrics do not reflect the impact of sound scene nature on algo-
rithms. We introduce three polyphony-aware metrics to quantify sound counting difficulty level
reflected by sound scene nature. The three metrics are time-window invariant so they can be used as
general metrics to quantify difficulty level of sound scene of various lengths.

Polyphony Ratio (ratio-polyp) describes the ratio of polyphony (at least two sound events happen
at the same time) over a period of time. It binarizes each time step as either polyphonic or non-
polyphonic (monophoinc or silent) so the value lies between [0, 1].

Maximum Polyphony (max-polyp) focuses on the maximum polyphony level over a time period.
It is motivated by the fact that human’s capability in discriminating different sound events reduces
seriously when the number of temporal-overlapping sound event number increases. It is a positive
integer and helps us to understand an algorithm’s capability in tackling polyphony peak.

Mean Polyphony (mean-polyp) instead focuses on the averaging level of polyphony involved within
a time period. It is designed to reflect algorithm’s capability in tackling the average polyphony level
over an arbitrary time window.

Given Tn time steps sound vector [p1, p2, · · · , pTn
], where pi ≥ 0 is the sound event number

happening at time step Ti. The three metrics are defined as,

ratio−polyp =

∑n
i=1 12(pi)

n
; max−polyp = max

i=1,··· ,n
pi; mean−polyp =

∑n
i=1 max(pi − 1, 0)

Tn
(4)

where 12(pi) is an indicator function, it is 1 if pi ≥ 2, otherwise 0. With the three quantifying
metrics, we can report the general metrics (MAE, MSE) against various difficulty levels.

5 EXPERIMENT

We run experiments on six sound datasets derive from four commonly seen domains.
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1. Bioacoustic Sound. We focus on bird sound as bird sound is ubiquitous is most terrestrial
environment with distinctive vocal acoustic properties. Specifically, we test three datasets: one real-
world NorthEastUS_Bird [12] dataset and other two synthesized datasets: Polyphony4Birds (for
heterophony test) and Polyphony1Bird (for homophony test). NorthEastUS_Bird data is recorded
in nature reserve in northeastern of United States. It encompasses 385 minutes of dawn chorus
recordings collected in July 2018, with a total of 48 bird species. The average bird sound temporal
length is very short (less than 1s) and the polyphony level (max-polyp and mean-polyp) is small.
To test performance under highly polyphonic situation, we synthesize two bird sound datasets.
Specifically, The first dataset contains four sounds: junco, American redhead, eagle, and rooster
from copyright-free website findsounds.com. We call it Polyphony4Birds (heterophony test).
The second dataset contains one sound: rooster. We call it Polyphony1Bird (homophony test).

2. Indoor Sound. We count telephone ring sound, the telephone ring seed sound comes from the
same copyright-free website. We follow Polyphony1Bird synthesis procedure except synthesize in
a much smaller room (10m× 10m× 3m) to reflect room reverberation effect.

3. Outdoor Sound. We count car engine sound, as it is widely heard in outdoor urban scenario.
The car engine seed sound also comes from the same copyright-free website. We also follow
Polyphony1Bird synthesis procedure to create car engine dataset.

4. Music Sound. We use OpenMic2018 dataset [24]. The target is to count the musical instrument
class number being played in the audio clip, regardless of the number of times each single musical
instrument class being played in the audio clip. This dataset contains 20 musical instrument
categories, but we do not know each instrument’s playing start time and end time, but instead the
total sound count number within each clip. Therefore, we directly regress the number.

Table 1: The comparison on the six datasets, in terms of data size, sound event class number and
polyphony level.

Data Size Class mean-poly max-poly

NorthEastUS [12] 6.41 h 48 0.1 4
Polyphony4Birds 55.56 h 4 1.244 9
Polyphony1Bird 55.56 h 1 1.975 9
Telephone Ring 55.6 h 1 1.975 9
Car Engine 55.6 h 1 1.975 9
OpenMic [24] 55.6 h 20 n/a n/a

The direct comparison between the six datasets is given in Table 1. We highly refer to Appendix
Sec. B for more discussion about the data synthesis process.

Comparing Methods: We compare our framework with two main method categories: 1) traditional
deterministic signal processing methods, including Librosa-onset and Aubio-onset; 2) SED-based
Methods. Librosa-onset [34] provides an onset/offset detection method for music note detection.
It measures the uplift or shift of spectral energy to decide the starting time of a note. We use its
onset/offset detection ability to count sound event number. Aubio-onset [5] achieves pitch tracking
by aligning period and phase of the Mel spectrogram. We use its pitch tracking to count.

SED-based methods build on traditional fixed TF representation, such as short time Fourier trans-
form (STFT) and LogMel. The TF representation is treated as a 2D image to be processed by a
sequence of 2D Conv. operators. GRU [13] and LSTM [21] are often adopted to model temporal
dependency. we compare three typical SED methods: 1) CRNNNet [9] consists of 2D Conv. to learn
multiple compressed TF representations from the input TF map. Then it concatenates them together
along the frequency dimension and further feed it to LSTM [21] to learn framewise representation.
2) DND-SED [16] instead adopts depthwise 2D convolution and dilated convolution to avoid using
RNN. 3) SELDNet [1] is originally used for joint sound event detection and localization. It adopts
2D Conv. to convolve the 2D TF map, and bidirectional GRU to model temporal dependency. The
three comparing methods’ network architectures are slightly adjusted to fit our dataset. We call our
method Dyadic Decomposition Network (DyDecNet).

Implementation Detail and Experiment Configuration For all the six datasets, all input audios are
segmented into 5 second long clips, with sampling rate 24 k Hz. So the input waveform has 120,000
data points and is normalized into [−1, 1]. We train the models with Pytorch [40] on TITAN RTX
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Table 2: MSE and MAE results on the six datasets. We leave the Accuracy Rate metric in the
Appendix due to space limitation.

Method
Dataset OpenMIC NorthEastUS Polyphony4Birds Polyphony1Bird TelephoneRing CarEngine

MSE↓ MAE↓ MSE↓ MAE↓ MSE↓ MAE↓ MSE↓ MAE↓ MSE↓ MAE↓ MSE↓ MAE↓
Librosa-onset 25.3 4.00 2.31 1.65 28.3 4.09 37.63 5.5 30.03 4.50 33.13 4.51
Aubio-onset 7.40 1.72 4.91 1.74 8.43 1.91 35.33 5.27 33.20 4.22 35.13 4.76
SELDNet [17] 0.90 1.37 1.35 1.79 0.92 1.41 0.89 1.19 0.97 1.30 0.92 1.23
CRNNNet [9] 0.71 1.00 1.33 1.77 0.74 1.10 0.87 1.16 0.92 1.31 0.86 1.15
DND-SED [16] 0.93 1.27 1.19 1.64 0.95 1.34 1.04 1.27 1.23 1.34 1.00 1.21
DyDecNet 0.32 0.72 0.85 1.19 0.46 0.92 0.54 0.85 0.58 0.89 0.54 0.87

GPU. Network architecture of DyDecNet is shown in Appendix Table IV. To train the neural network,
we adopt Adam optimizer [25] with an initial learning rate 0.001 which decays every 20 epochs with
a decaying rate 0.5. Overall, we train 60 epochs. We train each method 10 times independently and
report the mean value and standard deviation. We do not report the standard deviation explicitly in the
table because we find them very small (about 0.03). We first train the comparing SED methods with
both their suggested training strategy and our training strategy, then choose the one with the better
performance as the final result. For the energy gain normalization we initialize them as α = 0.96,
δ = 2., γ = 0.5, σ = 0.5. The batchsize is 128.

5.1 EXPERIMENTAL RESULT

The quantitative result on MSE MAE and is is given in Table 2, and the accuracy rate result is given
in Table II in Appendix Material. From the two tables we can learn that our proposed DyDecNet
outperforms both classic signal processing deterministic methods and existing SED methods by a
large margin. Our framework is better than the baselines discussed in this paper in both real-world
and synthesized sound scenes. It is capable of learning powerful representation from both weak
sound signals (NorthEastUS_Bird dataset), highly polyphonic (Our synthesized four datasets) and
heavy spectrum-overlapping, loudness-varying sound events.

At the same time, we also observe that the two signal processing deterministic methods (Librosa-onset
and Aubio-onset) generate the worst result over both SED based methods and DyDecNet. The higher
of the polyphony level of the dataset, the worse performance the two deterministic methods lead to.
For example, in NorthEastUS_Bird dataset with a relatively smaller polyphony level, Librosa-onset
and Aubio-onset generate relatively good performance with accuracy rate (p = 1) reaching 0.58.
In our synthesized two datasets with much higher polyphony levels, however, their accuracy drops
significantly to near zeros. It thus shows traditional signal processing methods do not fit for sound
event counting from crowded acoustic scenes.
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Figure 5: MSE and MAE variation against max-polyp,
ratio-polyp and mean-polyp on NorthEastUS_Bird
dataset. More results are in Appendix.

Among the three datasets, SED-based
methods and DyDecNet produce decreas-
ing performance on Polyphony4Birds,
Polyphony1Bird and NorthEas-
tUS_Birds dataset, respectively. The
largest performance drop is observed on
real-world NorthEastUS_Birds dataset,
which shows counting from real-world
dataset is a tough task that desires more
future attention. Spectrum-overlap led
by intra-class sound events is another po-
tential challenge (better performance on
Polyphony4Birds than Polyphony1Bird)
that may need more work to tackle it.

The MSE and MAE variation against
max-polyp, ratio-polyp and mean-
polyp difficulty level on NorthEas-
tUS_Bird are shown in Fig. 5. We can
observe that our proposed three metrics
max-polyp, ratio-polyp and mean-polyp are effective ways to accurately quantify sound counting
tasks difficulty level. The three metrics has observed dramatic performance drop as their the difficulty
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Table 3: Ablation study
on dyadic decomposition ef-
ficiency discussion: we com-
pare existing methods with
and without dyadic decompo-
sition frontend.

Method MSE↓ MAE↓

SELDNet [17] 1.35 1.79
SELDNet_Dydec 1.05 1.43

CRNNNet [9] 1.33 1.77
CRNNNet_Dydec 1.20 1.51

DND-SED [16] 1.19 1.64
DND-SED_Dydec 0.89 1.40

Table 4: Ablation study on tra-
ditional T-F feature for count-
ing task: DyDecNet’s dyadic
decompostion frontend is re-
placed by various classic T-F
features extractors, such STFT,
LogMel, MFCC and Gabor.

Method MSE↓ MAE↓

DyDecNet_STFT 1.35 1.51
DyDecNet_LogMel 1.33 1.50
DyDecNet_MFCC 1.32 1.49
DyDecNet_Gabor 1.33 1.48

DyDecNet 0.85 1.19

Table 5: Ablation study on var-
ious DyDecNet variants.

Method MSE↓ MAE↓

DyDecNet_SingScale 1.22 1.43
DyDecNet_BN 1.07 1.25
DyDecNet_noNorm 1.15 1.37

DyDecNet 0.85 1.19

Table 6: Ablation study on var-
ious counting method.

Method MSE↓ MAE↓

DyDecNet_RegCount 1.03 1.39
DyDecNet_SED 2.09 3.06

DyDecNet 0.85 1.19

level increases. Nevertheless, DyDecNet remains as the best one among all the three difficulty levels,
showing DyDecNet outperforms the comparing methods under difficult levels discussed in this paper.

5.2 ABLATION STUDY

We do ablation study on NorthEastUS_Bird data.

First, disentangling our proposed framework’s dyadic decomposition frontend and backbone network
so as to figure out their individual contribution. To this end, on the one hand, we concatenate
dyadic decomposition frontend to the three SED methods backbone networks so that they can
learn TF representation from raw waveform. We call them SELDNet_dydec, CRNNNet_dydec
and DND-SED_dydec respectively. On the other hand, we feed our backbone neural network with
fixed pre-extracted TF features, including short time Fourier transform (STFT), LogMel, MFCC and
Gabor Wavelet filter. We call them DyDecNet_STFT, DyDecNet_LogMel and DyDecNet_MFCC,
DyDecNet_Gabor, respectively. The results are in Table 3 and 4. We can observe that: 1) replacing
traditional fixed TF feature with dyadic decomposition frontend significantly improves the perfor-
mance (Table 3). The gain stems from two-fold: our dyadic decomposition frontend enables the
network to directly learn from the raw waveform so that all frequency-selective filters are adjustable
during training process. Second, the dyadic progressive decomposition enables the neural network to
learn robust representation for sound counting. Similarly, a huge performance drop is observed if
we let our proposed backbone neural network to learn from traditional fixed TF features (Table 4).
Therefore, it shows that both the dyadic decomposition frontend and backbone neural networks are
important for sound counting task.

Second, we want to figure out if the dyadic decomposition is essential for sound counting, and the
importance of energy normalization block. We test three variants: our network with simply single
scale decomposition which means applying all filters on the raw waveform (DyDecNet_SingScale)
which helps validate necessity of hierarchical dyadically decomposition framework; replacing Energy-
normalization module with traditional batch normalization [23] (DyDecNet_BN); without any nor-
malization (DyDecNet_noNorm). The result is in Table 5, from which we can clearly observe that
either removing energy normalization or replacing it with batch normalization significantly reduces
the performance. It thus shows the importance of energy normalization.

Lastly To show the effectiveness of density map, we run two ablation studies to directly regress the
final count number or to firstly detect the sound events. From the result in Table 6, we can conclude
that directly regressing sound event count number leads to inferior performance than estimating
density map. Treating it as a sound event detection problem leads to the worst performance.

Another ablation study on the impact of energy gain normalization on traditional TF feature is
presented in Appendix Sec. D.5. We refer reader to this section for more details.

Limitation Discussion and Conclusion We do not discuss using microphone-array for enhanced
counting, nor test our dyadic decomposition front-end for other acoustic tasks (e.g. source separation).
Another limitation is that we just used one instance for each sound category in our synthetic dataset,
which does not reflect the real scenario. A more convincing dataset is to involve as many diverse
instances for each sound as possible, it also remains as future work.
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APPENDIX

A SOUND COUNTING PROBLEM DEFINITION

Given a mono-channel T seconds raw sound waveform x(t) sampled at a fixed sampling rate Fs,
the sound recording has recorded N independent sound events E = {Ei = (ts, te)}Ni=1, each single
sound event freely undergoes either stationary or moving motion in the open area. The target is to
design a neural network N parameterized by θ to predict sound event number N from raw sound
waveform N = N (θ|x(t)). In our formulation, the counting process is class-agnostic, so all sound
events are treated as instances to count, regardless of their classes.

Three challenges make it a challenging task: 1) Large Datasize: microphone usually records sound
at a high frequency rate (i.e. 24 kHz), resulting in large data size in the raw waveform. It thus
requires more accessible filters with few parameters and computation cost to process the raw sound
waveform. 2) Concurrent Sound Events (polyphony): sound events freely overlap both spatially
and temporally, resulting highly polyphonic sound recording. It is a tough task to separate them apart
from compressed 1D waveform. 3) Loudness Variance and Spectrum Overlap: sound events of
the same class but different spatial location have large variance in their received loudness. They also
have heavy spectrum overlap in the frequency domain. The above issues make counting a tough task.

B MORE DISCUSSION ON DATASET CREATION

B.1 MOTIVATION OF POLYPHONY4BIRDS AND POLYPHONY1BIRD DATASET CREATION

Our motivation of synthesizing Polyphony4Birds and Polyphony1Birds are three-fold:

1. NorthEastUS_Bird dataset has as many as 48 different kind of bird categories. It helps to test
various methods’ capability in tackling high bird diversity challenge.

2. Polyphony4Birds dataset contains 4 kinds of bird sounds, but in much higher polyphony level (in
terms of ratio-polyp, max−polyp and mean-polyp). It helps us to test various methods’ capabil-
ity in tackling limited bird categories but high polyphony level (heterophony test).

3. Polyphony1Bird dataset contains 1 bird sound class in much higher polyphony level. This dataset
involves heavy spectrum-overlap (due to the temporal inter-category bird sounds overlap), so it
helps to test various methods’ capability in tackling high spectrum-overlap and high-polyphony
challenge (homophony test).

In Polyphony4Birds dataset, 4 is an arbitrary number. We experimentally find involving 4 bird
sounds is representative enough for heterophony test. We note that there are some other relevant
public bird sound dataset [44, 20, 9], but we find they are not suitable for our study. For example, in
TUT-SED 2009 data [20], the polyphony-level is small and the involved bird sound usually lasts too
long (not temporally separable and countable). Similarly, the Bird Audio Detection challenge (BAD
challenge) [44] contains highly-sparse bird chirps (very small polyphony-level sound). Moreover, the
two real-world bird sound datasets [20, 44] do not provide bird sound start time and end time label,
so they are suitable for our study. The other synthesized dataset TUT-SED Synthetic 2016 [9] also
contains very limited samples of high polyphony. The direct comparison between these datasets is
given in Table I, from which we can see our created two datasets enjoy much higher polyphony-level,
making them more suitable for our sound counting task.

Table I: Comparison between various sound dataset, where “n/a” means not available.

Dataset Data Source Size Event Classes mean-polyp max-polyp
BAD Challenge [44] Natural 23 h 2 n/a 3
TUT-SED 2009 [20] Natural 18.9 h 61 n/a 6

TUT-SED Synthetic 2016 [9] Synthetic 9.3 h 16 0.659 5
NorthEastUS_Bird [12] Natural 6.41 h 48 0.1 4
Ours Polyphony4Birds Synthetic 55.56 h 4 1.244 9
Ours Polyphony1Bird Synthetic 55.56 h 1 1.975 9
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Table II: Accuracy Rate results on the six datasets.

Method
Dataset OpenMIC NorthEastUS Polyphony4Birds Polyphony1Bird TelephoneRing CarEngine

Accu. Rate Accu. Rate Accu. Rate Accu. Rate Accu. Rate Accu. Rate
p = 0 p = 1 p = 0 p = 1 p = 0 p = 1 p = 0 p = 1 p = 0 p = 1 p = 0 p = 1

Librosa-onset 0.05 0.03 0.20 0.58 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01
Aubio-onset 0.09 0.22 0.12 0.32 0.08 0.21 0.01 0.09 0.01 0.02 0.01 0.08
SELDNet [17] 0.49 0.75 0.25 0.62 0.48 0.71 0.33 0.81 0.28 0.69 0.31 0.78
CRNNNet [9] 0.49 0.85 0.26 0.64 0.47 0.82 0.35 0.81 0.27 0.76 0.30 0.80
DND-SED [16] 0.47 0.70 0.28 0.67 0.43 0.68 0.24 0.71 0.18 0.63 0.20 0.68
DyDecNet 0.68 0.92 0.40 0.82 0.70 0.88 0.55 0.92 0.53 0.89 0.57 0.94

Table III: Comparison of Various Methods. The network block column labels are: 1. 1D Conv, 2.
2D Conv, 3. GRU, 4. LSTM, 5. Depthwise Conv, 6. Dilated Conv. 7. FC, 8. Bi-LSTM, 9. Bi-GRU.
The inference time in tested on Intel(R) Core(TM) i9-7920X CPU, we report the average time of 100
independent tests with one 5s waveform.

Method Name Input Param Size Network Block Inf. Time end2end trainable?
Librosa-onset Raw Waveform - - 0.1s %

Aubio-onset Raw Waveform - - 0.1s %

DND-SED [16] STFT/LogMel 6.9 M 2, 5, 6, 7 3.0 s %

CRNNNet [9] STFT 4.1 M 2, 3, 8 3.3 s %

SELDNet [17] LogMel 0.8 M 2, 3, 7, 9 1.2s %

DyDecNet Raw Waveform 3.9 M 1, 7 2.7 s "

B.2 HOW TO SIMULATE OPEN AREA ENVIRONMENT

We collect 4 seed sounds from copyright-free website 1: junco, American redhead, eagle, and
rooster. To maximally reflect outdoor scenario, we simulate a large openarea environment
[100m, 100m, 100m] with one microphone at [50m, 50m, 1m]. The wall is associated with high
sound absorption coefficient, so the reverberation is negligible so as to resemble outdoor open area
scenario. We introduce a random SNR (Signal-to-Noise Ratio) at two Gaussian means (−33 decibels
and −20 decibels) at the microphone receiver. We put each seed sound at a random 3D spatial
location and a random start time to imitate natural bird sounds that emit sound from a random location
and random start time. A post-processing step is added to keep dataset balance between various
polyphony-level metrics.

C MORE DISCUSSION ON COMPARING METHODS

More detailed comparison between various methods is given in table III. We can see that our proposed
DyDecNet is lightweight and directly learns from sound raw waveform (so it is end-to-end trainable).
It thus strikes a good balance between model performance and model efficiency (inference time).

D MORE EXPERIMENT RESULT DISCUSSION

D.1 EXPERIMENT ON NORTHEASTUS_BIRD DATASET AND TELEPHONE RING DATASET

More detailed experimental result (MAE variation) on NorthEastUS_Bird is given in Fig. 5, from
which we can observe that with the increasing of max-polyp, ratio-polyp and mean-polyp,
all methods (including our DyDecNet) reduces their performances. The three comparing meth-
ods (CRNNNet [9],DND-SED [16], and SELDNet [17]) have observed sharp performance drop when
the our proposed three sound counting difficulty levels increases, whereas our proposed DyDecNet
largely mitigates the challenge caused by higher counting difficulty level (the blue line increases
slightly as the counting difficulty level increases). It thus shows 1) our proposed max-polyp, ratio-
polyp and mean-polyp are capable of accurately measuring sound counting task difficulty level from
different perspectives; 2) our proposed DyDecNet is capable of mitigating these sound counting
difficulties.

1see https://www.findsounds.com/
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Figure I: MAE variation against max-polyp, ratio-polyp and mean-polyp on NorthEastUS_Bird
Dataset.

D.2 MORE RESULT ON POLYPHONY1BIRD AND POLYPHONY4BIRDS DATASETS

We also provide the detailed results for Polyphony1Bird and Polyphony4Birds in Fig. II and Fig. III,
respectively. They contain the accuracy rate, MSE and MAE variation against max-polyp, ratio-
polyp and mean-polyp. From the two figures, we can get similar conclusion as of NorthEastUS_Bird
dataset (Fig. I): with the increasing of max-polyp, ratio-polyp and mean-polyp, all methods’
performance gradually reduces. Our proposed DyDecNet stays as the best-performing one under all
sound counting difficulty level metrics. Specifically, we can see that:

• All methods give the best performance on Polyphony4Birds dataset, second best performance
on Polyphony1Bird dataset, and the worst performance on NorthEastUS_Bird dataset. It thus
shows 1) spectrum-overlap due to high inter-class sound overlap temporally (represented by
Polyphony1Bird dataset) remains as a challenge for sound counting task. 2) sound counting
in open area where noise pollution, high sound diversity (in our case, diversity means bird
categories, we have 48 bird classes in NorthEastUS_Bird dataset), and small labelled data
availability exist remains as another challenge for sound counting task. We hope to attract
more researchers to consider sound counting task in more challenging scenario.

• We do not observe such sharp performance drop (as we observed on NorthEastUS_Bird
dataset) on our two synthetic datasets, which is in contrast with the real-world dataset
NorthEastUS_Bird. It thus shows real-world sound counting task becomes increasingly
challenging when our proposed three sound counting difficulty level metrics increase. We
guess the large model and large training dataset are needed to achieve better performance,
which can be treated as a future research direction.

D.3 COUNTING ON MORE BIRDS CLASSES

In the main paper, our two synthetic datasets Polyphony4Birds and Polyphony1Bird have just
involved limited bird classes (up to 4). We naturally want to figure out the performance of all
methods (including DyDecNet and the other three comparing methods) under more bird classes
situation. We thus follow more the same data creation procedure to synthesize four extra datasets.
They contain 2/6/8/10 bird classes, respectively. The extra bird seed sound classes are collected from
findsound.com too. The quantitative result is given in table V, from which we can learn that all
comparing methods have observed performance increasing when the bird classes reach to 6 (values
in bold font), then performance decline when bird classes increase to 8 or 10; DyDecNet reaches
the best performance around 8 bird classes, then begin to decline. It thus shows: 1) all methods can
successfully handle a reasonable amount of bird classes (in our case, maximum bird classes are 8),
given the model parameter size budget (less than 10 M) discussed in this paper. When we have to
handle much larger bird diverse classes, we might need much larger model (which remains as a future
research topic to figure out the relationship between model size and sound counting class diversity);
2) Our proposed DyDecNet exhibits strong capability sound counting in diverse bird classes than the
three comparing methods (it reaches the best performance at a higher bird classes (8 bird class)).

15



Under review as a conference paper at ICLR 2023

0.5 0.6 0.7 0.8 0.9
Ratio−polyp

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

0.5 0.6 0.7 0.8 0.9
Ratio−polyp

0.0

0.5

1.0

1.5

2.0

2.5

M
SE

0.5 0.6 0.7 0.8 0.9
Ratio−polyp

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
AE

CRNNNet DND-SED SELDNet DyDecNet

2.0 2.5 3.0 3.5
Mean−polyp

0.2

0.3

0.4

0.5

0.6

Ac
cu
ra
cy

2.0 2.5 3.0 3.5
Mean−polyp

0.0

0.5

1.0

1.5

2.0

2.5
M
SE

2.0 2.5 3.0 3.5
Mean−polyp

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
AE

CRNNNet DND-SED SELDNet DyDecNet

5 6 7 8 9
Max−polyp

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

5 6 7 8 9
Max−polyp

0.0

0.5

1.0

1.5

2.0

2.5

M
SE

5 6 7 8 9
Max−polyp

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
AE

CRNNNet DND-SED SELDNet DyDecNet
Figure II: AccuRate/MSE/MAE variation against max-polyp, ratio-polyp and mean-polyp on
Polyphony1Bird Dataset.

D.4 NOISE DISCUSSION

In order to show DyDecNet and other comparing methods’ performance under different noise inter-
ference level, we show the performance on Polyphony4Birds dataset under various noise level (SNR,
Signal-to-Noise Ratio) in Fig. IV). We can clearly see from this figure that DyDecNet exhibits better
robustness to noise than the three comparing methods. Its dyadic decomposition strategy (differentiat-
ing between approximation and detail explicitly) and the proposed energy normalization help reduce
noise interference.
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Figure III: AccuRate/MSE/MAE variation against max-polyp, ratio-polyp and mean-polyp on
Polyphony4Birds Dataset.

D.5 LEARNABLE ENERGY NORMALIZATION WITH TRADITIONAL T-F FEATURE

To test the efficiency of our proposed energy normalization module, especially combining them with
traditional one-stage T-F features, we explicitly add one learnable energy normalization module
just after the T-F feature extracted by traditional time frequency feature extractors. The comparison
is given in Table VI and Table VII, from which we can observe that performance of traditional
T-F feature slightly increases after introducing the energy normalization module. It thus shows the
necessity of energy normalization for sound counting task in high-polyphonic situation. However, they
still lead to inferior performance than DyDecNet, which shows hierarchically dyadic decomposition
with energy normalization is essential for sound counting task.
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Table IV: Dyadic Decomposition Neural Network Architecture Illustration. Input audio is
5 s long, sampling rate is 24 k Hz. The input waveform and intermediate features are in
[channelnum, height, width] format. In the dyadic decomposition front-end, the constructed
filters’ initialized trainable frequency cutoffs (high frequency cutoff and low frequency cutoff) evenly
divide the frequency range of the input sound waveform (half of sampling rate). In our design, the
filter number doubles as the “Depth” increases by 1. So each filter in the preceding depth associates
with two child filters in the next depth, in which the two child filters carried frequency cutoffs evenly
divide the frequency cutoff of their parent filter (see Fig. 1 in the main paper). In our implementation,
we just connect a filter in the preceding depth with its two child filters in the next depth. We organize
filters in channel dimension. In the dyadic decomposition front-end, each filter is instantiated as
Sinc(·) filter, which comprises of a learnable high frequency cutoff and a low learnable frequency
cutoff.

Layer Name Filter Num Output Size
Input Size: 5 s audio waveform: [1, 1, 24000× 5]

Dyadic Decomposition Front-End
Dyadic Decomp. Depth 1 filter num = 21, 2x downsampple [2, 1, 12000× 5]
Dyadic Decomp. Depth 2 filter num = 22, 2x downsampple [4, 1, 6000× 5]
Dyadic Decomp. Depth 3 filter num = 23, 2x downsampple [8, 1, 3000× 5]
Dyadic Decomp. Depth 4 filter num = 24, 2x downsampple [16, 1, 1500× 5]
Dyadic Decomp. Depth 5 filter num = 25, 2x downsampple [32, 1, 750× 5]
Dyadic Decomp. Depth 6 filter num = 26 [64, 1, 750× 5]
Dyadic Decomp. Depth 7 filter num = 27 [128, 1, 750× 5]
Dyadic Decomp. Depth 8 filter num = 28 [256, 1, 750× 5]

Backbone Network
Per-channel Pool SincLowPass Filters, stride = 5 [256, 1, 750× 1]

Cross-channel Conv. 1D Conv., filter num = 512 [512, 1, 750× 1]
Per-channel Pool SincLowPass Filters, stride = 5 [512, 1, 150× 1]

Cross-channel Conv. 1D Conv., filter num = 1024 [1024, 1, 150× 1]
Per-channel Pool SincLowPass Filters, stride = 3 [1024, 1, 50× 1]

Cross-channel Conv. 1D Conv., filter num = 512 [512, 1, 50× 1]
Cross-channel Conv. 1D Conv., filter num = 256 [256, 1, 50× 1]

FC FC, output_feat = 1 [50, 1]

Table V: MSE/MAE/AccuRate results on Multiple Bird Classes. The three values split by ‘/’ in each
entry indicate MSE, MAE and AccuRate, respectively. For the AccuRate, we just report the accuracy
rate under p = 0. Following the experiment setting in the main paper, we run each model 10 times
independently. We do not report the standard deviation, they are all within 0.003.

Bird Classes SELDNet [17] CRNNNet [9] DND-SED [16] DyDecNet

1 Bird 0.89 / 1.19 / 0.33 0.87 / 1.16 / 0.35 1.04 / 1.27 / 0.24 0.54 / 0.85 / 0.55
4 Birds 0.92 / 1.41 / 0.48 0.74 / 1.10 / 0.47 0.95 / 1.34 / 0.43 0.46 / 0.92 / 0.70
6 Birds 0.88 / 1.40 / 0.49 0.72 / 1.09 / 0.49 0.93 / 1.26 / 0.48 0.43 / 0.90 / 0.74
8 Birds 0.93 / 1.45 / 0.40 0.75 / 1.13 / 0.44 0.95 / 1.37 / 0.42 0.41 / 0.88 / 0.77
10 Birds 0.95 / 1.49 / 0.37 0.78 / 1.17 / 0.39 0.97 / 1.40 / 0.37 0.44 / 0.82 / 0.72

E NETWORK ARCHITECTURE

The DyDecNet architecture is shown in Table IV.

F DENSITY MAP EXPLANATION

We provide more detailed illustration about density map in Fig. V. Specifically, the dyadic decomposi-
tion front-end and backbone network learn a 2D time-frequency feature representation (sub-figure A),
in which the time dimension size is 50 (equals to 5 s audio length, each feature has a time resolution
of 100 milliseconds). Such representation can be used to either regress the density map (as we
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Table VI: DyDecNet with Traditional T-F feature
and learnable energy normalization module

Method MSE↓ MAE↓
DyDecNet_STFT 1.30 1.46
DyDecNet_LogMel 1.27 1.47
DyDecNet_MFCC 1.26 1.44
DyDecNet_Gabor 1.30 1.43

DyDecNet 0.85 1.19

Table VII: DyDecNet with Traditional T-F fea-
ture

Method MSE↓ MAE↓
DyDecNet_STFT 1.35 1.51
DyDecNet_LogMel 1.33 1.50
DyDecNet_MFCC 1.32 1.49
DyDecNet_Gabor 1.33 1.48

DyDecNet 0.85 1.19

do, sub-figure C) or classify the event class for each time frame (as sound event detection methods
do, sub-figure E), by adding a full-connection layer (FC) to reduce the feature dimension size (can
also be treated as frequency dimension) to 1. At the same time, we can use two full-connection
layers to reduce the 2D representation to a scalar value, so as to directly regress the sound count
number (sub-figure D).

The process of constructing density map is shown in sub-figure B. Please note that since we use
supervised learning, we know each sound event start time and end time. So the density map can be
easily constructed by setting the same value to the range between the start time and end time so that
they are added up sound count number. Adopting density map for counting problem is widely used
vision-based crowd counting tasks [49, 26], they show predicting density map usually give superior
performance than object detection methods (in our case, SED method), and direct regressing count
number. Their conclusion in vision-based crowd counting tasks matches our experimental result in
sound-based counting tasks.

The reason why density map based method outperforms SED and direct regression lie two fold (ac-
cording to our understanding): 1) unlike SED methods that try to discriminate different sound
event class from temporally overlapping sound input, density map based method ignores sound
event class but instead treat all sound events as an instance spanning their active time range. The
reduced difficulty enables the neural network (DyDecNet) to learn expressive representations. 2)
One characteristic of sound events is that each sound event has a certain start time and end time in
the time dimension. The 2D time-frequency representation learned by the backbone network and
dyadic decomposition front-end naturally maintain such characteristic. Using the 2D time-frequency
representation to regress density map internally exploits the temporal location of various sound events,
which helps sound counting task.
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Figure V: Density map illustration. Each single sound event corresponds to an individual density
map, which is a vector spans from the input audio length. The density value covers the whole
event (connects its start time and end time) and sums to 1. For example, for the “Event1” with start
time 0.3 s and end time 2.6 s in sub-figure B, its density map is a vector of 50, the values lie in [3, 26]
are 1

23 . Finally, the overall density map for an input audio is obtained by summarizing all events’
density map together. The sum (or integral) of the overall density map equals to the sound count
number involved in the audio (in this case, 2). The comparison between three count methods are
shown in sub-figure C, D and E, respectively. Given the feature representation learned by dyadic
decomposition front-end and backbone network, we further use 1) a full-connection layers (FC) to
reduce the channel dimension to 1 but keep the time dimension, so we can obtain a vector of the
same density map size. We can either regress the density map (sub-figure C) or classify the event for
each time step (SED method, it is multi-label classification, sub-figure E); 2) two full-connection
layers (FC) to consecutively reduce both channel dimension and time dimension to 1, so that can
directly predict the count number (sub-figure D).
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