
Transformers Can Learn Meta-skills
for Task Generalization in In-Context Learning

Ying Fan1, Steve Yadlowsky2, Dimitris Papailiopoulos1, Kangwook Lee1
1University of Wisconsin-Madison 2Google DeepMind

Abstract

This study investigates the task generalization exhibited by Transformer models.
We hypothesize that Transformers exhibit generalization to unseen tasks by learning
“meta-skills", high-level skills that enable models to develop new skills through
composition. To test our hypothesis, we conduct extensive in-context learning
(ICL) experiments, viewing ICL of a function class as a skill. Our experiments
demonstrate that Transformers have high task generalization abilities, as they can
effectively in-context learn unseen function classes. This provides strong evidence
for our hypothesis, as such generalization cannot occur without the learning of meta-
skills. Furthermore, our results suggest that Transformers learn these meta-skills
in a sample-efficient and unsupervised manner. Lastly, we show that the learned
meta-skills generalize variadically, meaning they can be applied to compositions of
an unseen number of skills. This hints at the possibility that Transformers possess
strong weak-to-strong generalization abilities, enabling them to perform a greater
number of reasoning or composition steps than they have been explicitly taught.

1 Introduction

Large Language Models (LLMs) have shown remarkable ability to generalize to unseen tasks, which
is believed to be possible because LLMs can “flexibly combine, as needed, the basic skills it has
learned” [29]. We refer to this high-level skill required for skill composition as a “meta-skill”
and hypothesize that LLMs and Transformer models can learn such meta-skills from data in an
unsupervised and sample-efficient manner.

In this work, we empirically study our hypothesis through the lens of in-context learning (ICL) in
Transformer models [5, 9]. While there have been a lot of studies studying how ICL works, the ability
of Transformers to generalize ICL to unseen function classes is rather underexplored in the literature
[15, 21, 4, 3, 18, 16]. A notable exception is the work by [27], in which the authors reported a setting
where Transformer models fail at task generalization in in-context learning. Specifically, they found
that even after the models successfully learned to perform ICL on individual tasks, they struggled
to extend this learning to a simple composition of individual tasks. More specifically, let A,B be
two function classes, and define A+ B := {f |f = f1 + f2, f1 ∈ A, f2 ∈ B}. The model trained to
perform ICL on both A and B could not perform ICL on A+ B.

This result suggests that the meta-skills required for skill composition are not learned through the
standard pretraining setup. In the context of ICL, a meta-skill would involve (1) identifying if
in-context samples come from a composite function that cannot be fit by any basic ICL skills, (2)
identifying the needed combination of basic ICL skills, and (3) applying a composite ICL skill
on-the-fly: See Figure 1.

How to teach Transformers meta-skills? One approach is to provide demonstrations of skill composi-
tions as part of the training data. However, if a model is trained on A,B,A+ B and can fit functions
from A+B, it is unclear whether it learned a meta-skill or simply treated A+B as another base skill.
NeurIPS 2024 Workshop on Compositional Learning: Perspectives, Methods, and Paths Forward.



Composite skillsBasic skills

ICL 
ICL ICL 

Meta Skill

Figure 1: Illustration of basic skills, composite
skills and meta-skills.

Let us consider a scenario where a model is trained
on A,B, C,D,A+B,B+ C. If the model trained
this way can perform ICL on various unseen com-
plex function classes, e.g., A+ C or A+D, there
is strong evidence of meta-skill learning for the
following reasons: Instead of simply learning how
to fit complex functions A+ B,B + C, the model
must have learned that these functions are compos-
ite functions from two function classes, and learns how to in-context compose basic skills to fit such
composite functions. Otherwise, the model cannot fit unseen combinations such as A+ C,A+D.

In this paper, we empirically show such trained models can perform ICL on unseen complex function
classes with various training and test set designs. Furthermore, while the meta-skill is learned only
with two input base skills, we show that the model can successfully fit composite functions involving
more than two functions, e.g., A+B+C. This implies the learned meta-skill generalizes to an unseen
number of input arguments, hinting at the possibility that Transformers possess strong weak-to-strong
generalization abilities [6], performing a larger number of composition steps than explicitly taught.

Additionally, we show Transformers can identify the input and output to the skill composition in an
unsupervised manner by not providing the model with any extra labels indicating basic or composite
function classes. Mathematically, this can be viewed as – the model learns a meta-skill from an
unpaired set of inputs and labels by self-identifying the underlying associations between inputs and
outputs and then learning the mapping, resembling unsupervised learning of data transformation [31].

Our contributions include: (1) We formalize the concept of meta-skills via the lens of ICL: We
investigate how to teach the Transformer model meta-skills with compositional operations like
addition, maximum and multiplexing. (2) We provide empirical evidence that Transformers can
learn meta-skills from data in an unsupervised and sample-efficient manner (with a small number of
composite function classes). (3) We show that weak-to-strong task generalization is possible for ICL
if the model both learns ICL on orthogonal bases as basic skills and a meta-skill to fit a weighted sum
of limited seen function classes, which uncovers a new possibility of improving ICL.

2 Related work

In-context learning. Recent work has shown great promise that in-context learning can solve
classical learning tasks like classification, regression, and reinforcement learning [17, 13, 11]. Why
such in-context learning ability emerges has also been explored from different perspectives, such as
implicit Bayesian inference [25] and gradient descent [24].

Compositional generalization in ICL and LLMs. Recent studies have been conducted on the
compositional generalization properties of ICL. In ICL, wxample-level compositional generalization
ability, i.e., how in-context examples help to infer the label of the unseen query, has been extensively
explored [14, 1, 10, 28, 26]. In the more general LLM domain, there has also been a line of work
focusing on multi-stage prompting or modular design to help the model solve complex tasks that
might require decomposing to simpler problems [12, 8, 30, 22, 20, 23]. To our best knowledge,
compositional generalization from a view of specific “meta-skills” remains under-explored. [18]
studied the compositional generalization ability of ICL through the Bayesian Prism, but they have not
test compositions of more basic classes, but we highlight the ability of weak-to-strong generalization.
Besides, they only tests on linear mixtures, while we test beyond the scheme of linear mixtures like
maximum.

Skill learning in ICL. [2] explored how to choose few-shot examples using skill-based descriptions
to solve the test case. [7] provide examples for both basic skills and how to compose the skills in
the prompt to help LLMs solve unseen test questions that requires composing skills. We want to
emphasize that their works focus on example-level generalization which only changes how to prompt
the model, while our setup focuses on pre-training task distribution. To our best knowledge, teaching
the model to compose basic skills in pre-training is yet to be explored in ICL. The most related work
is [21], where they only show that a diverse distribution of pre-training tasks is beneficial for such

2



0.0 0.2 0.4 0.6 0.8 1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0 In-context examples
Pretrained on extra examples
Baseline
Only with sine+linear
Ground truth

(a) Test class: sine+quad.

0.0 0.2 0.4 0.6 0.8 1.0

3.0

2.5

2.0

1.5

1.0

0.5

0.0 In-context examples
Pretrained on extra examples
Baseline
Only with sine+sqrt
Ground truth

(b) Test class: sine+heaviside.

Figure 2: Visualizations for generalization to unseen addition compositions. Base function classes
for 2a: {sine,sqrt, linear,quad}; 2b: {sine,sqrt,heaviside, quad}. “Pretrained on
extra examples” indicates the training set “Ours”: for 2a we add composite training examples from
sine+sqrt and sine+linear, and for 2b we add sine+sqrt and heaviside+ quad.“Only
with xxx” indicates the best approximation defined in Section 4.1. The best approximation still tries
to fit the seen function class during training, but ours can generalize to the pattern that is not within
any seen function class, showing the evidence that it acquires the “meta-skill”.

generalization, without exploring specific structures for the pre-training and test tasks in terms of
meta-skills and compositional generalization.

3 Preliminaries

3.1 In-context learning and basic function classes

For ICL, we follow the tranditional setup in [9]: Given a function class F with a distribution
of functions DF and a distribution of inputs DX ,X ⊂ R, we create random training prompts
Pi = (x1, f(x1), .., xi+1) where f : R → R, f ∼ DF , xi ∼ DX . Then we train the transformer
model Mθ to minimize the loss below:

EP [

H∑
i=0

l(Mθ(P
i), f(xi+1))], (1)

where l(·, ·) is L2 loss. Specific training and evaluation details for all experiments are in Appendix A.

For basic function classes, we consider basic functions: linear, quad, sqrt, heaviside,
sine. See detailed definitions in Appendix B.1.1.

3.2 Meta-skills and function composition operations

We view the ability to generalize to unseen combinations with specific function composition
operations as the corresponding meta-skill.

For function composition operations, we consider manipulations in the y space to composite function,
specifically, addition, maximum, and multiplexing in this section: For Addition, we perform addition
in the y space; For Maximum, we perform maximum operation in the y space; For Multiplexing,
we perform the local combination of two functions in the y space by dividing the input space into
halves. For example, for the composition function class (linear,sine), we first sample functions
in linear and sine respectively, and composite y value to is from linear if x ∈ [0, 0.5) and
from sine if x ∈ [0.5, 1].

3



4 Exploring the meta-skill learning ability

4.1 Different training sets

We consider different training settings: (1) Baseline: We train only with the base function classes
A,B, C,D; (2) Ours: We train with both base function classes and extra composite function classes
(defined separately for each setup).; (3) Lower bound: We train on the target function class as a
reference of the lower bound of the error; (4) Best approximation: We only train with each single
composite function class in Ours, presenting the results with the lowest errors when tested against
the target function class, and treat it as the “best approximation” from all single function classes in
the training set. If the error from the Best approximation is still larger than Ours, then the improved
performance in Ours is not simply from containing some “closer” function class to the test one
during training: To outperform “best approximation”, the model needs to acquire the “meta-skill”
rather than only choosing the best approximation in seen function classes in a Bayesian way.

We include the detailed setup of the compositional training and test splits in Appendix B.1.2.

4.2 Compositional generalization test

The model trained with compositional examples outperforms other training setups. As the
test errors shown in Table 1,2 for addition and Table 5,6 for maximum, we observe consistent
improvement compared with baseline training which does not contain training with any composite
examples. Moreover, it also outperforms the best approximation of the training function classes,
where their patterns are quite distinct in the visualizations (see the discussion below).

The model trained with extra compositional examples learns the meta-skill. In Figure 2 and 4,
we can observe that given a new composite function class, the “best approximation” in the training
set still tries to fit the original function class it has been trained on, but ours can generalize better to
the unseen composition, sometimes near-perfectly. This suggests that when presented with both basic
and composite function classes, the model does not only learn the basic skills of fitting each single
function class (either basic or composite) but also discovers the meta-skill and applies it to unseen
combinations.

Training set sine+quad
baseline 0.6238
sine+linear 0.1198
sine+sqrt 0.4245
ours 0.0704
lower bound 0.0025

Table 1: Test errors from Partial Composition
Setup 1 (Appendix B.1.2) on addition.

Training set sine+quad sine+heaviside
baseline 0.5473 0.5334
sine+sqrt 0.4245 0.0965
ours 0.2517 0.0822
lower bound 0.0025 0.0185

Table 2: Test errors from Cross Composition
Setup 1 (Appendix B.1.2) on addition.

Transformers are not good at local combination without explicit training on local combination
examples; Local combination can also be meta-learned. From visualizations in Figure 5 and the
test error in Table 17 and 18, we can see that without adding extra examples, the model is not very
good at doing multiplexing/local combinations. However, when we add local combination examples
in the training set, the model can generalize nearly perfectly to the unseen combinations, which
means it learns such meta-skill very well once presented with such examples.

We present more results from more training and test setups in Appendix B.2, the ablation study on
different training function classes in Appendix B.3, more results from multiplexing in Appendix B.4,
and more visualizations in Appendix D, which all align with the claims above.

5 Weak-to-strong generalization
In this section, we consider the addition operation and use functional bases such as Fourier and
Legendre bases as the basic function classes, and test whether transformers can generalize to the
span of the base in the function space by only training with combinations of two classes. This setup
could be viewed as weak-to-strong generalization. We include detailed definition of the base and
compositional function classes, training and test splits in Appendix C.1 and C.2.

Weak-to-strong generalization is possible with Fourier and Legendre bases. As shown in
Table 3 and Figure 6 for Fourier bases, and Table 4 and Figure 7 for Legendre bases, our training

4



0.0 0.2 0.4 0.6 0.8 1.0
4

3

2

1

0

1

2

In-context examples
Pretrained on extra examples
Baseline
Only with sin(20x)+cos(30x)
Ground truth

(a)

0.0 0.2 0.4 0.6 0.8 1.0
3

2

1

0

1

2

In-context examples
Pretrained on extra examples
Baseline
Only with sin(20x)+cos(30x)
Ground truth

(b)

0.0 0.2 0.4 0.6 0.8 1.0
3

2

1

0

1

2

In-context examples
Pretrained on extra examples
Baseline
Only with sin(20x)+cos(30x)
Ground truth

(c)

0.0 0.2 0.4 0.6 0.8 1.0

3

2

1

0

1

2

3

In-context examples
Pretrained on extra examples
Baseline
Only with sin(20x)+cos(30x)
Ground truth

(d)

Figure 3: Visualization of Fourier Setup 1, test on All sine.

enables the model to generalize to higher-order compositions in the span of the functional bases. In
Figure 6 and 7, the predictions align much better with the ground truth patterns compared with the
baselines, which shows the evidence of acquiring meta-skills.

Training set Random sine All sine
baseline 1.3764 1.1307
sin-20+cos-40 0.6880 1.9298
sin-10+cos-20 0.7060 1.7311
sin-10+cos-40 0.7102 2.3908
sin-40+cos-40 0.7533 2.0551
sin-20+cos-30 0.6974 1.7272
ours 0.3858 0.5001
lower bound 0.0312 0.0470

Table 3: Test errors from Fourier bases.

Training set Random poly ++--+ +--++ +++++
baseline 0.3085 0.4368 0.3291 0.3630
Poly-2+Poly-3 0.5246 0.3889 0.3578 0.4706
Poly-2+Poly-4 0.7580 0.7077 0.7242 0.7785
Poly-1+Poly-4 0.5538 0.4658 0.5272 0.5682
Poly-3+Poly-5 0.7875 0.7801 0.7217 0.8051
Poly-3+Poly-4 0.3629 0.2909 0.2794 0.4286
ours 0.1086 0.2351 0.1925 0.2169
lower bound 0.0038 0.0054 0.0063 0.0046

Table 4: Test errors from Legendre bases.

We include results and visualizations from more training and test setups in Appendix C and more
visualizations in Appendix E.

6 Discussion and conclusion

Although showing promising results, our study has several key limitations. While we demonstrate
meta-skill learning and generalization capabilities on one-dimensional function classes using sim-
ulated data, evaluating these approaches on higher-dimensional datasets across diverse domains
remains open. Besides, we explored only a limited set of compositional operations like addition,
max, and multiplexing; the vast space of possible compositions requires further investigation, though
addition with orthogonal bases already has pretty good expressive power in the function spaces. Our
findings highlight new possibilities for enhancing ICL capabilities of large language models through
strategic training on skill compositions. Further studies in this direction could unlock systematic
generalization to novel tasks.

5



References
[1] Shengnan An, Zeqi Lin, Qiang Fu, Bei Chen, Nanning Zheng, Jian-Guang Lou, and Dongmei

Zhang. How do in-context examples affect compositional generalization? arXiv preprint
arXiv:2305.04835, 2023. 2

[2] Shengnan An, Bo Zhou, Zeqi Lin, Qiang Fu, Bei Chen, Nanning Zheng, Weizhu Chen,
and Jian-Guang Lou. Skill-based few-shot selection for in-context learning. arXiv preprint
arXiv:2305.14210, 2023. 2

[3] Sanjeev Arora and Anirudh Goyal. A theory for emergence of complex skills in language
models. arXiv preprint arXiv:2307.15936, 2023. 1

[4] Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisti-
cians: Provable in-context learning with in-context algorithm selection. Advances in Neural
Information Processing Systems, 36, 2024. 1

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020. 1

[6] Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschen-
brenner, Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, Ilya Sutskever, and Jeff Wu.
Weak-to-strong generalization: Eliciting strong capabilities with weak supervision, 2023. 2

[7] Jiaao Chen, Xiaoman Pan, Dian Yu, Kaiqiang Song, Xiaoyang Wang, Dong Yu, and Jianshu
Chen. Skills-in-context prompting: Unlocking compositionality in large language models. arXiv
preprint arXiv:2308.00304, 2023. 2

[8] Dheeru Dua, Shivanshu Gupta, Sameer Singh, and Matt Gardner. Successive prompting for
decomposing complex questions. arXiv preprint arXiv:2212.04092, 2022. 2

[9] Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers
learn in-context? a case study of simple function classes. Advances in Neural Information
Processing Systems, 35:30583–30598, 2022. 1, 3, 8

[10] Shivanshu Gupta, Sameer Singh, and Matt Gardner. Coverage-based example selection for
in-context learning. arXiv preprint arXiv:2305.14907, 2023. 2

[11] Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and
David Sontag. Tabllm: Few-shot classification of tabular data with large language models. In
International Conference on Artificial Intelligence and Statistics, pages 5549–5581. PMLR,
2023. 2

[12] Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and
Ashish Sabharwal. Decomposed prompting: A modular approach for solving complex tasks.
arXiv preprint arXiv:2210.02406, 2022. 2

[13] Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steiger-
wald, DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks, et al. In-context reinforcement
learning with algorithm distillation. arXiv preprint arXiv:2210.14215, 2022. 2

[14] Itay Levy, Ben Bogin, and Jonathan Berant. Diverse demonstrations improve in-context
compositional generalization. arXiv preprint arXiv:2212.06800, 2022. 2

[15] Hongkang Li, Meng Wang, Songtao Lu, Hui Wan, Xiaodong Cui, and Pin-Yu Chen. Transform-
ers as multi-task feature selectors: Generalization analysis of in-context learning. In NeurIPS
2023 Workshop on Mathematics of Modern Machine Learning, 2023. 1

[16] Ziqian Lin and Kangwook Lee. Dual operating modes of in-context learning, 2024. 1

[17] Lovre. Who models the models that model models? an exploration of gpt-3’s in-context model
fitting ability. 2022. 2

6



[18] Madhur Panwar, Kabir Ahuja, and Navin Goyal. In-context learning through the bayesian prism.
arXiv preprint arXiv:2306.04891, 2023. 1, 2

[19] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. 8

[20] Rahul Ramesh, Mikail Khona, Robert P Dick, Hidenori Tanaka, and Ekdeep Singh Lubana.
How capable can a transformer become? a study on synthetic, interpretable tasks. arXiv preprint
arXiv:2311.12997, 2023. 2

[21] Allan Raventós, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity
and the emergence of non-bayesian in-context learning for regression. Advances in Neural
Information Processing Systems, 36, 2024. 1, 2

[22] Simon Schug, Seijin Kobayashi, Yassir Akram, Maciej Wołczyk, Alexandra Proca, Johannes
Von Oswald, Razvan Pascanu, João Sacramento, and Angelika Steger. Discovering modular
solutions that generalize compositionally. arXiv preprint arXiv:2312.15001, 2023. 2

[23] Jonathan Thomm, Aleksandar Terzic, Geethan Karunaratne, Giacomo Camposampiero, Bern-
hard Schölkopf, and Abbas Rahimi. Limits of transformer language models on algorithmic
learning. arXiv preprint arXiv:2402.05785, 2024. 2

[24] Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander
Mordvintsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by
gradient descent. In International Conference on Machine Learning, pages 35151–35174.
PMLR, 2023. 2

[25] Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of
in-context learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021. 2

[26] Zhuoyan Xu, Zhenmei Shi, and Yingyu Liang. Do large language models have composi-
tional ability? an investigation into limitations and scalability. In ICLR 2024 Workshop on
Mathematical and Empirical Understanding of Foundation Models, 2024. 2

[27] Steve Yadlowsky, Lyric Doshi, and Nilesh Tripuraneni. Pretraining data mixtures enable narrow
model selection capabilities in transformer models. arXiv preprint arXiv:2311.00871, 2023. 1

[28] Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and Lingpeng Kong. Compositional exem-
plars for in-context learning. arXiv preprint arXiv:2302.05698, 2023. 2

[29] Dingli Yu, Simran Kaur, Arushi Gupta, Jonah Brown-Cohen, Anirudh Goyal, and Sanjeev
Arora. Skill-mix: A flexible and expandable family of evaluations for ai models. arXiv preprint
arXiv:2310.17567, 2023. 1

[30] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables
complex reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022. 2

[31] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks, 2020. 2

7



A Training and evaluation details

Training. We use GPT-2 [19] for the transformer backbone following [9]. We use 12 layers, 8
heads, and an embedding space with 256 dimensions. During training, we use Adam optimizer with
learning rate of 10−4 and batch size of 256, and train the model for 100K steps for convergence. We
consider H up to 19 where H is defined in Section 3.1. When training with multiple function classes,
we equally sample from them in each batch without any curriculum learning.

Evaluation. During evaluation we use 15 in-context examples for each function class, with all x
randomly sampled from the uniform distribution. For each evaluation, we test on 500 random query
positions given 15 random ICL examples from the test function class. Then we average over 1000
evaluations to calculate the final test error for each setup.

B Details for compositional generalizaition tests in Section 4

B.1 Setup

B.1.1 Basic function classes

We consider the following basic function classes for the experiments in Section 4, where we use no
label noise: y = f(x) and x ∈ [0, 1].

• linear: f(x) = wx+ b, where w ∼ N (0, 1), b ∼ N (0, 1).
• quad: f(x) = 5(x− h)2 + b, where h ∼ N (0.5, 0.01), b ∼ N (0, 1).

• sqrt: f(x) =
√
min(5x+ h, 0) + b, where h ∼ N (0.1, 0.01), b ∼ N (0, 1).

• heaviside: f(x) = 0.5 + 0.5sgn(x+ h) + b, where h ∼ N (−0.5, 0.01), b ∼ N (0, 1).

• sine: f(x) = sin(40x+ h), h ∼ N (0, 1).

B.1.2 Compositional training and test splits

Here we explore two setups of training and test splits where ⊕ could be addition, maximum or
multiplexing:

• (Partial Composition) Train with A,B, C,D,A⊕ B,A⊕ C, and test with A⊕D.
• (Cross Composition) Train with A,B, C,D,A⊕ B, C ⊕ D, and test with: A⊕ C,A⊕D.

Instantiations . We test two instantiations for each setup with compositional operation ⊕:

For Partial Composition, we provide Setup 1: A:sine, B:sqrt, C:linear, D:quad; and Setup
2: A:sine, B:sqrt, C:heaviside, D:quad;

For Cross Composition, we provide Setup 1: A:sine, B:sqrt, C:heaviside, D:quad; and
Setup 2: A:sine, B:quad, C:heaviside, D:linear.

B.2 Compositional generalization performance for addition and maximum

We already presented the test errors from Partial Composition & Cross Composition for addition
from Setup 1 in Table 1, 2 and Figure 2. Below we present the test errors for maximum from the
same setting in Tble 5 and 6, and visualizations in Figure 4, which shows that our training setup
outperforms the baseline setups and indicates the acquisition of the meta skill.

Training set max(sine,quad)
baseline 0.0611
max(sine,linear) 0.0381
max(sine,sqrt) 0.3193
ours 0.0219
lower bound 0.0023

Table 5: Test errors from Partial Composition
Setup 1 on maximum.

Training set sine+quad sine+heaviside
baseline 0.0488 0.0507
sqrt+sine 0.3193 0.1018
ours 0.0321 0.0439
lower bound 0.0023 0.0129

Table 6: Test errors from Cross Composition
Setup 1 on maximum.

8



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0
In-context examples
Pretrained on extra examples
Baseline
Only with max(sine,linear)
Ground truth

(a) Partial Composition Setup 1, tested on max(sine,
quad).

0.0 0.2 0.4 0.6 0.8 1.0
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

In-context examples
Pretrained on extra examples
Baseline
Only with max(sine,sqrt)
Ground truth

(b) Cross Composition Setup 1, tested on max(sine,
heaviside).

Figure 4: Visualizations for generalization to unseen maximum compositions: max(sine, quad)
for 4a and max(sine, heaviside) for 4b.

We also present other missing tables for Setup 2 in all generalization tests in Section 4: Table 7, 8 for
addition, Table 9, 10 for maximum, and Table 11, 12 for multiplexing.

Training set sine+quad
baseline 0.5473
sine+heaviside 0.2216
sine+sqrt 0.4245
ours 0.1540
lower bound 0.0025

Table 7: Test errors from Partial Composition
2 on addition.

Training set sine+heaviside sine+linear
baseline 0.5295 0.4173
sine+quad 0.1770 0.0935
ours 0.1306 0.0610
lower bound 0.0185 0.0011

Table 8: Test errors from Cross Composition
2 on addition.

Training set max(sine,quad)
baseline 0.0488
max(sine,heaviside) 0.1262
max(sine,sqrt) 0.3193
ours 0.0359
lower bound 0.0023

Table 9: Test errors from Partial Composition
2 on maximum.

Training set sine+heaviside sine+linear
baseline 0.0669 0.0263
sine+quad 0.1426 0.0372
ours 0.0448 0.0166
lower bound 0.0129 0.0034

Table 10: Test errors from Cross Composition
2 on maximum.

Training set (sine, quad)
baseline 0.2214
(sine, heaviside) 0.0244
(sine, sqrt) 0.0464
ours 0.0121
lower bound 0.0030

Table 11: Test errors from Partial Composition 2
on multiplexing.

Training set (sine, heaviside) (sine, linear)
baseline 0.2180 0.2347
(sine, quad) 0.0319 0.0068
ours 0.0264 0.0080
lower bound 0.0084 0.0011

Table 12: Test errors from Cross Composition 2
on multiplexing.

B.3 Effect of the basic function classes

In this section, we investigate whether exposure to the basic function classes also facilitates the
acquisition of meta-level skills. Specifically, we probe whether exemplars including both the basic
components and the target meta-level skill are necessary for successful generalization, using the
operation of addition as an illustrative case study.

9



Exposure to both basic and composite examples are beneficial. As shown in Table 13 and 14,
training with both the basic and composite examples outperforms training with basic or compositional
examples only, suggesting that exposure to both are beneficial for meta-skill learning.

Training set sine+quad
baseline 0.6238
sine+linear,sine+sqrt 0.1044
ours 0.0704
lower bound 0.0025

Table 13: Test errors from Partial Composition.

Training set sine+quad sine+heaviside
baseline 0.5473 0.5334
sine+sqrt, heaviside+quad 0.3066 0.0948
ours 0.2517 0.0822
lower bound 0.0025 0.0185

Table 14: Test errors from Cross Composition.

Test errors from Setup 1.

We also present results from Setup 2 in Table 15 and 16 which convey the similar message.

Training set sine+quad
baseline 0.5473
sine+sqrt, sine+heaviside 0.1785
ours 0.1540
lower bound 0.0025

Table 15: Test errors from Partial Composition.

Training set sine+heaviside sine+linear
baseline 0.5295 0.4173
sine+quad, linear+heaviside 0.1733 0.1022
ours 0.1306 0.0610
lower bound 0.0185 0.0011

Table 16: Test errors from Cross Composition.

Test errors from Setup 2.

B.4 Local combination (multiplexing)

Another important question to ask is whether the better approximation on the unseen test compositions
comes from local approximation with seen function classes (for example, the multiplexing operation
introduced in Section 3.2) or actually learning the meta-skill. To answer that, we also explore whether
transformers are naturally good at doing localizations of learned function classes without explicit
training.

Transformers are not good at local combinations without explicit training. From the test error
in Table 17 and 18 and visualizations in Figure 5, we can see that without adding extra examples, the
model is not very good at doing local combinations.

Training set (sine, quad)
baseline 0.2524
(sine, linear) 0.0114
(sine, sqrt) 0.0464
ours 0.0057
lower bound 0.0030

Table 17: Test errors from Partial Composition
Setup 1 on multiplexing.

Training set (sine, quad) (sine, heaviside)
baseline 0.2214 0.2571
(sine, sqrt) 0.0464 0.0448
ours 0.0170 0.0343
lower bound 0.0030 0.0084

Table 18: Test errors from Cross Composition
Setup 1 on multiplexing.

Local combination can also be meta-learned. When we add local combination examples in the
training set, the model can generalize nearly perfectly to the unseen combinations, which means it
learns such meta-skill very well once presented with such examples. However, we should notice that
unlike addition and maximum, such composition also depends on the order of the input variables and
also how to divide the localization areas.

We include more visualizations in Appendix D.

C Full detail from weak-to-strong generalization in Section 5

In this section, we consider the addition operation and replace the basic function classes with func-
tional bases in function analysis such as Fourier and Legendre bases, and test whether transformers

10



0.0 0.2 0.4 0.6 0.8 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 In-context examples
Pretrained on extra examples
Baseline
Only with (sine,linear)
Ground truth

(a) Partial Composition Setup 1

0.0 0.2 0.4 0.6 0.8 1.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0 In-context examples
Pretrained on extra examples
Baseline
Only with (sine,sqrt)
Ground truth

(b) Cross Composition Setup 1

Figure 5: Visualizations for generalization to unseen multiplexing compositions (sine, quad) and
(sine, heaviside).

can generalize to the span of the base in the function space by only training with combinations of two
classes, which could be viewed as weak-to-strong generalization.

C.1 Generalization tests with Fourier bases

In this section, we explore whether models trained on sum of up to two Fourier basic classes can
generalize to sum of up to five basic classes.

C.1.1 Training classes

• Basic classes: sin-k: f(x) = wsin(kx) + b and f(x) = wcos(kx) + b„ where k =
10, 20, 30, 40, w ∼ N (0, 1), b ∼ N (0, 1).

• Composite classes sin-k1+cos-k2: f(x) = w1sin(k1x) + w2cos(k2x) + b1 + b2,
wi ∼ N (0, 1), bi ∼ N (0, 1).

• Baseline: All basic classes sin-k and cos-k for k = 10, 20, 30, 40.

• Ours: All base function classes and composite classes. For composite classes, we consider
Setup 1: (k1, k2) ∈ {(20, 40), (10, 20), (10, 40), (40, 40), (20, 30)}; Setup 2: (k1, k2) ∈
{(40, 20), (20, 10), (40, 10), (10, 30), (30, 20)}.

C.1.2 Test classes

• Random sine: f(x) = w1sin(10x+ ϕ1) + ...+w4sin(40x+ ϕ4) + b1 + b2 + b3 + b4,
where wi ∼ N (0, 1), bi ∼ N (0, 1), ϕi ∼ N (0, 1).

• All sine: f(x) = sin(10x + ϕ1) + ... + sin(40x + ϕ4), where ϕi ∼ N (0, 1). It is a
harder function class than the random one, enforcing nonzero components of each basic
class.

Notice that there is no label noise in all functions, x ∈ [0, 1].

C.1.3 Results

Weak-to-strong generalization is possible with Fourier bases. As shown in Table 3 for Setup 1,
and Table 19 for Setup 2, our training improves the model’s generalization ability to higher-order
compositions in the span of the Fourier bases. The predictions align surprisingly well with the ground
truth in the visualizations (see Figure 6 for visualizations)1.

1We also present more visualizations in Appendix E.

11



0.0 0.2 0.4 0.6 0.8 1.0

3

2

1

0

1

2

3

In-context examples
Pretrained on extra examples
Baseline
Only with sin(20x)+cos(30x)
Ground truth

(a)

0.0 0.2 0.4 0.6 0.8 1.0

3

2

1

0

1

2

In-context examples
Pretrained on extra examples
Baseline
Only with sin(20x)+cos(30x)
Ground truth

(b)

Figure 6: Visualization of Fourier Setup 1, test on all sine.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5 In-context examples
Pretrained on extra examples
Baseline
Only with P3 + P4
Ground truth

(a)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

In-context examples
Pretrained on extra examples
Baseline
Only with P3 + P4
Ground truth

(b)

Figure 7: Visualization of Legendre Setup 1, test on P1 + P2 − P3 − P4 + P5.

Training set Random sine All sine
baseline 1.3764 1.1307
sin-40+cos-20 0.7196 1.7974
sin-20+cos-10 0.7106 1.5048
sin-40+cos-10 0.6599 1.3525
sin-10+cos-30 0.7371 1.3149
sin-30+cos-20 0.6626 1.5824
ours 0.5379 0.5661
lower bound 0.0312 0.0470

Table 19: Test errors from Fourier.

Training set Random poly ++--+ +--++ +++++
baseline 0.2479 0.3947 0.3919 0.3769
Poly-1+Poly-2 0.3685 0.2133 0.1894 0.3634
Poly-1+Poly-5 0.4272 0.3299 0.3252 0.5212
Poly-4+Poly-5 0.7008 0.7730 0.7903 0.6579
Poly-2+Poly-5 0.5504 0.5664 0.5522 0.7329
Poly-1+Poly-3 0.3125 0.2907 0.2913 0.3479
ours 0.0692 0.1092 0.1350 0.1216
lower bound 0.0038 0.0054 0.0063 0.0046

Table 20: Test errors from Legendre.

Test errors from Setup 2.

C.2 Generalization with Legendre Polynomials

In this section, we explore whether models trained on sum of up to two Legendre basic classes can
generalize to sum of up to five basic classes.

C.2.1 Training classes

• Basic classes: Poly-k: f(x) = wPk(x) + b, where k = 1, 2, 3, 4, 5, w ∼ N (0, 1), b ∼
N (0, 1), Pk is a Legendre polynomial of degree k.

• Composite classes: Poly-k1+Poly-k2: f(x) = w1Pk1
(x) + w2Pk2

(x) + b1 + b2,
wi ∼ N (0, 1), bi ∼ N (0, 1).

12



• Baseline: combination of Poly-k for k = 1, 2, 3, 4, 5.

• Ours: All base function classes and composite classes. For composite classes:
Setup 1: (k1, k2) ∈ {(2, 3), (2, 4), (1, 4), (3, 5), (3, 4)}. Setup 2: (k1, k2) ∈
{(1, 2), (1, 5), (4, 5), (2, 5), (1, 3)}.

C.2.2 Test classes

• Random poly: f(x) = w1P1(x) +w2P2(x) +w3P3(x) +w4P4(x) +w5P5(x) + b1 +
b2 + b3 + b4 + b5, wi ∼ N (0, 1), bi ∼ N (0, 1).

• P1 +P2 −P3 −P4 +P5 (++−−+): f(x) = P1(x)+P2(x)−P3(x)−P4(x)+P5(x).

• P1 −P2 −P3 +P4 +P5 (+−−++): f(x) = P1(x)−P2(x)−P3(x)+P4(x)+P5(x).

• P1 +P2 +P3 +P4 +P5 (+++++): f(x) = P1(x)+P2(x)+P3(x)+P4(x)+P5(x).

Notice that there is no label noise in all functions, x ∈ [−1, 1].

C.2.3 Results

Weak-to-strong generalization is possible with Legendre bases. Our experimental results in
Table 4 for Setup 1 and Table 20 for Setup 2 demonstrated improved weak-to-strong generalization
capabilities. By training the model on examples combining pairs of Legendre polynomial bases
through addition, it could generalize to predict sums involving five distinct basis function classes
pretty accurately that are never encountered during training in Figure 72. This weak-to-strong
generalization from sums of two bases to higher-order sums of multiple bases highlights the model’s
ability to leverage the additive meta-skill in a compositional way.

D More visualizations from Section B

We present more visualizations from generalization tests in Setup 2 in Section B in Figure 8, 11 for
addition, Figure 9, 12 for maximum, and Figure 10, 13 for multiplexing.

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 In-context examples
Pretrained on extra examples
Baseline
Only with sine+heaviside
Ground truth

(a)

0.0 0.2 0.4 0.6 0.8 1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5
In-context examples
Pretrained on extra examples
Baseline
Only with sine+heaviside
Ground truth

(b)

Figure 8: Visualization of Partial Composition Setup 2, test on sine+quad.

2We also present more visualizations in Appendix E

13



0.0 0.2 0.4 0.6 0.8 1.0
0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50
In-context examples
Pretrained on extra examples
Baseline
Only with max(sine,heaviside)
Ground truth

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0
In-context examples
Pretrained on extra examples
Baseline
Only with max(sine,heaviside)
Ground truth

(b)

Figure 9: Visualization of Partial Composition Setup 2, test on max(sine, quad).

0.0 0.2 0.4 0.6 0.8 1.0

1

0

1

2

3

4
In-context examples
Pretrained on extra examples
Baseline
Only with (sine,hearviside)
Ground truth

(a)

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.5

0.0

0.5

1.0

1.5

2.0

In-context examples
Pretrained on extra examples
Baseline
Only with (sine,hearviside)
Ground truth

(b)

Figure 10: Visualization of Partial Composition Setup 2, test on multiplexing: (sine, quad).

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
In-context examples
Pretrained on extra examples
Baseline
Only with sine+quad
Ground truth

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 In-context examples
Pretrained on extra examples
Baseline
Only with sine+quad
Ground truth

(b)

Figure 11: Visualization of Cross Composition Setup 2, test on sine+heaviside.

14



0.0 0.2 0.4 0.6 0.8 1.0

0.25

0.00

0.25

0.50

0.75

1.00

1.25

In-context examples
Pretrained on extra examples
Baseline
Only with max(sine,quad)
Ground truth

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

In-context examples
Pretrained on extra examples
Baseline
Only with max(sine,quad)
Ground truth

(b)

Figure 12: Visualization of Cross Composition Setup 2, test on max(sine, heaviside).

0.0 0.2 0.4 0.6 0.8 1.0

1

0

1

2

3

In-context examples
Pretrained on extra examples
Baseline
Only with (sine,quad)
Ground truth

(a)

0.0 0.2 0.4 0.6 0.8 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

In-context examples
Pretrained on extra examples
Baseline
Only with (sine,quad)
Ground truth

(b)

Figure 13: Visualization of Cross Composition Setup 2, test on multiplexing: (sine, heaviside).

E More visualizations from Section C

We present more visualizations for Fourier generalization tests in Figure 3, and Legendre generaliza-
tion tests in Figure 14 and Figure 15.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5 In-context examples
Pretrained on extra examples
Baseline
Only with P3 + P4
Ground truth

(a)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0 In-context examples
Pretrained on extra examples
Baseline
Only with P3 + P4
Ground truth

(b)

Figure 14: Visualization of Legendre Setup 1, test on P1 − P2 − P3 + P4 + P5.

15



1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1

0

1

2

3

4

In-context examples
Pretrained on extra examples
Baseline
Only with P3 + P4
Ground truth

(a)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
2

1

0

1

2

3

4

5 In-context examples
Pretrained on extra examples
Baseline
Only with P3 + P4
Ground truth

(b)

Figure 15: Visualization of Legendre Setup 1, test on P1 + P2 + P3 + P4 + P5.

16


	Introduction
	Related work
	Preliminaries
	In-context learning and basic function classes
	Meta-skills and function composition operations

	Exploring the meta-skill learning ability
	Different training sets
	Compositional generalization test

	Weak-to-strong generalization
	Discussion and conclusion
	Training and evaluation details
	Details for compositional generalizaition tests in Section 4
	Setup
	Basic function classes
	Compositional training and test splits

	Compositional generalization performance for addition and maximum
	Effect of the basic function classes
	Local combination (multiplexing)

	Full detail from weak-to-strong generalization in Section 5
	Generalization tests with Fourier bases
	Training classes
	Test classes
	Results

	Generalization with Legendre Polynomials
	Training classes
	Test classes
	Results


	More visualizations from Section B
	More visualizations from Section C

