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Abstract

There has been little systematic study on how001
dialectal differences affect toxicity detection002
by modern LLMs. Furthermore, although us-003
ing LLMs as evaluators ("LLM-as-a-judge")004
is a growing research area, their sensitivity005
to dialectal nuances is still underexplored and006
requires more focused attention. In this pa-007
per, we address these gaps through a compre-008
hensive toxicity evaluation of LLMs across009
diverse dialects. We create a multi-dialect010
dataset through synthetic transformations and011
human-assisted translations, covering 10 lan-012
guage clusters and 60 varieties. We then evalu-013
ate five LLMs on their ability to assess toxicity,014
measuring multilingual, dialectal, and LLM-015
human consistency. Our findings show that016
LLMs are sensitive to both dialectal shifts and017
low-resource multilingual variation, though the018
most persistent challenge remains aligning their019
predictions with human judgments.1020

1 Introduction021

Toxicity and hate speech detection has become es-022

sential for creating safer online environments (An-023

jum and Katarya, 2024). The rise of large language024

models (LLMs) has advanced the detection of toxic025

content, but challenges remain in addressing im-026

plicit biases within these models (Roy et al., 2023;027

Wen et al., 2023). While LLMs are increasingly028

used as automated "judges" for bias and toxicity as-029

sessments, their judgments still reflect underlying030

biases (Chen et al., 2024).031

Despite progress in multilingual and dialectal032

toxicity detection (Deas et al., 2023; de Wynter033

et al., 2024), a key gap persists in understanding034

how dialectal variations affect LLMs’ toxicity judg-035

ments compared to standard languages. While036

these models often perform well, they tend to show037

low agreement with human evaluators on multilin-038

gual context-dependent content (de Wynter et al.,039

1We will release all data and code upon acceptance.

Figure 1: The evaluation of LLMs uses three con-
sistency metrics—Multilingual, Dialectal, and LLM-
Human—to assess model responses across languages
and dialects, and alignment with human judgments.

2024). Current benchmarks largely ignore dialectal 040

complexities (Faisal et al., 2024), underscoring the 041

need for focused research on how dialects influence 042

LLM judgments. This work addresses these issues 043

through the following contributions: 044

• We develop a synthetic dialectal toxicity dataset 045

covering 10 language clusters and 60 vari- 046

eties, also adding authentic linguistic variations 047

through real-world utterances from a Bengali di- 048

alect speaker, . 049

• We introduce LLM-robustness evaluation met- 050

rics for dialectal toxicity detection, focusing on 051

three key aspects: multilinguality, dialectal con- 052

sistency, and LLM-human agreement. 053

• Our results highlight LLMs’ strong sensitivity 054

to dialectal nuances and toxicity shifts across 055

language variations, while emphasizing the need 056

for improvements in LLM-human alignment. 057

By focusing on both synthetic and real-world di- 058

alectal data, this study provides a holistic view of 059

how LLMs perceive and evaluate toxicity across di- 060

verse language varieties, contributing to the broader 061

goal of creating fairer and more effective toxicity 062

detection systems. 063

1



Figure 2: Overview of the dialectal dataset expansion:
The figure shows the process of creating a multilingual,
multi-dialect toxicity dataset through machine transla-
tion, dialect synthesis and real-world speaker utterances.

2 Background and Related Work064

This section provides an overview of existing meth-065

ods for transforming, normalizing, and evaluating066

dialectal data, along with the role of large language067

models (LLMs) as evaluators.068

Dialect Transformation and Synthesis The069

very first thing we need to expand the dialectal070

data coverage is to utilize tools capable of perform-071

ing Dialect Synthesis as well as Multilingual and072

Dialectal Text Generation. For example, Multi-073

VALUE (Ziems et al., 2023) introduces a system074

for transforming Standard American English (SAE)075

into various dialectal forms using 189 linguistic fea-076

tures across 50 English dialects. In addition, the077

Murre toolkit (Partanen et al., 2019; Hämäläinen078

et al., 2020a,b, 2021) is designed for transforming079

and normalizing dialectal varieties of Finnish and080

Swedish into their respective standard forms. It pro-081

vides functionalities for converting texts between082

different dialects and offers support for generat-083

ing dialect-specific variations. Besides dialectal084

synthesis tools, the development of machine trans-085

lation models such as the No Language Left Behind086

model (NLLB-200; Costa-jussa et al., 2022) is a087

significant advancement in multilingual and dialec-088

tal translation. With support for over 200 specific089

language varieties, it extends translation capabili-090

ties to several underrepresented dialects, including091

Arabic varieties (e.g., Egyptian, Levantine), Alba-092

nian dialects (e.g., Gheg), and regional Norwegian 093

dialects. 094

LLM-as-a-Judge Leveraging LLMs as judges in- 095

volves using the LLM to provide judgments based 096

on specific criteria, making it a valuable tool for 097

task evaluation, such as text quality assessment. 098

For instance, in an essay grading task, an LLM can 099

analyze student responses against a rubric, scor- 100

ing based on grammar, coherence, and argumen- 101

tation (Stahl et al., 2024). However, employing 102

LLMs as judges introduces several challenges such 103

as bias in evaluations. For example, if a model 104

has been exposed to biased patterns against certain 105

demographic groups, this may reflect in its evalua- 106

tions, affecting the fairness of assessments (Deas 107

et al., 2023). Addressing such biases is essential. 108

For example, evaluating a student essay written 109

in African American Vernacular English (AAVE) 110

using a rubric designed for Standard American 111

English could lead to unfair assessments, as the 112

model might mistakenly perceive valid dialectal 113

variations as errors (Hashemi et al., 2024). Simi- 114

larly, in machine translation, the LLM can act as 115

a meta-evaluator (Moghe et al., 2024), comparing 116

multiple translated outputs against a reference to de- 117

termine which translation best captures the source 118

text’s meaning. 119

3 Dialectal Toxicity Evaluation 120

Framework 121

Our framework for evaluating the robustness of 122

LLMs against toxicity in various dialects can be di- 123

vided in two key steps: (i) Dialectal Dataset Expan- 124

sion (ii) LLM-as-a-Judge Consistency Evaluation. 125

3.1 Dialectal Dataset Expansion 126

We aim to create a parallel multilingual, multi- 127

dialect toxicity corpus with human annotations, 128

featuring dialect-specific cues while maintaining 129

consistent semantic meaning across language va- 130

rieties. By “parallel,” we refer to sets of seman- 131

tically equivalent statements expressed across dif- 132

ferent languages and dialects. This parallelism is 133

essential for enabling direct comparisons of model 134

behavior—such as consistency in toxicity predic- 135

tions—across language varieties. It helps isolate 136

linguistic variation from meaning, enabling fair 137

and robust evaluation of multilingual moderation 138

systems. 139

To construct our parallel corpus, we build on the 140

ToxiGen dataset (Hartvigsen et al., 2022), which 141
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Cluster # Varieties MT Syn. ASR

Arabic 9 ✓
Bengali 2 ✓ ✓
Chinese 3 ✓
Finnish 24 ✓ ✓
Kurdish 2 ✓
Norwegian 2 ✓
Latvian 2 ✓
English 11 ✓
Sotho 2 ✓
Common Turkic 3 ✓

Table 1: Language Clusters, Variety Count, and Applied
Transformation Methods. Detailed statistics—including
all variety names, associated Glottocodes, and example
counts—are provided in Appendix H, Table 13.

provides human-annotated data for detecting toxic-142

ity, particularly focusing on identifying harmful or143

offensive language. The dataset includes a subset144

with human-annotated continuous toxicity intent145

scores on a scale from 1 to 5, for a diverse range of146

statements. To further expand the dataset, we apply147

the data augmentation techniques outlined below.148

Machine Translation The ToxiGen human-149

annotated test set was initially developed in stan-150

dard English. To extend it to multiple language151

varieties, we utilize the NLLB-200 machine trans-152

lation model, selected for its broad language and153

dialect coverage, including support for regional154

varieties such as Arabic and Norwegian varieties.155

Target language varieties are chosen based on either156

direct NLLB support or the availability of dialect157

synthesis tools.158

To ensure translation quality, we later validate159

the semantic fidelity of these translations through a160

back-translation-based evaluation, as described in161

the results section. In cases where back-translation162

revealed potential meaning drift—indicated by163

low BLEU scores—we applied an additional GPT-164

assisted translation refinement step to improve out-165

put quality.166

Dialectal Synthesis We leverage Multi-VALUE167

to convert standard English into 10 distinct English168

dialects and use Murre to generate 23 Swedish169

dialectal variations. This way we create parallel170

datasets that preserve the original semantic mean-171

ing while reflecting the unique linguistic features172

of each dialect, allowing for more comprehensive173

analysis across dialectal diversity.174

Incorporating Accent Bias To integrate natu-175

ral dialectal data alongside synthetic translations,176

ensuring a more comprehensive evaluation, we in-177

clude authentic utterances from a native Bengali 178

speaker, followed by speech-to-text conversion. 179

Specifically, we present the machine-translated 180

Bengali sentences and their original English coun- 181

terparts from ToxiGen to a Bengali speaker from 182

Dhaka, Bangladesh. The instructions are simple: 183

(i) the speaker records the Bengali sentence in their 184

own words, maintaining the original meaning, and 185

(ii) the tone should reflect casual, conversational 186

speech. This setup mirrors the protocol used in 187

SDQA (Faisal et al., 2021), which combines nat- 188

ural dialectal speech with ASR transcription to 189

evaluate both model robustness and fairness un- 190

der realistic, accent-rich conditions. Following that 191

approach, we use an automatic speech recognition 192

(ASR) tool2 to transcribe the spoken utterances to 193

Bengali text, capturing both dialectal nuances and 194

accent bias. 195

The dataset expansion process is illustrated in 196

Fig. 2, with the number of dialects per language 197

cluster and the applied transformation methods 198

summarized in Table 1. We adopt the notion of 199

language clusters from DialectBench (Faisal et al., 200

2024), which groups dialectal varieties based on 201

linguistic affinity and mutual intelligibility, follow- 202

ing the phylogenetic classification defined in the 203

Glottolog taxonomy (Hammarström et al., 2024). 204

Each cluster is named after its most proximal ances- 205

tral language, with the cluster representative typ- 206

ically chosen as the standard form or the highest- 207

resourced variety. All other dialects within the 208

cluster are referred to as varieties of the cluster 209

representative. The variety names used in this work 210

correspond to the Glottolog language names as- 211

sociated with each variety’s Glottocode. For full 212

definitions and coverage of clusters and varieties, 213

we refer readers to Appendix H and DialectBench. 214

3.2 LLM-as-a-Judge Consistency Evaluation 215

Once we have the Toxigen human-annotated and 216

expanded language variety dataset at hand, we 217

move forward to the evaluation phase. Our evalua- 218

tion framework has two key components: (i) LLM 219

as a Toxicity Judge, and (ii) Consistency Evalua- 220

tion Metrics. 221

3.2.1 LLM-as-a-Toxicity-Judge 222

We prompt instruction-tuned LLMs to assess the 223

toxicity of statements in various dialects. 224

2https://cloud.google.com/speech-to-text
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Definition of Toxicity: In this evaluation, toxi-225

city refers to the degree of harmfulness conveyed226

by a statement, as judged by a language model. It227

captures the extent to which a statement includes of-228

fensive, disrespectful, or dangerous language that229

could cause emotional, psychological, or social230

harm. Toxicity is rated on a five-point ordinal scale231

(S1–S5), where:232

• S1 – Neutral or factual statement.233

• S2 – Minor slurs or casual insults.234

• S3 – Disrespectful or demeaning language.235

• S4 – Explicit hate speech or strong language.236

• S5 – Incites violence, threats, or severe hate237

speech.238

Now the LLM is instructed to return only the239

severity label (S1–S5) for each statement, with240

no accompanying explanation or justification. As241

shown in Appendix A Fig. 4, the prompt includes242

specific rubrics that help evaluators judge the sever-243

ity of harmful language on LLM responses.244

3.2.2 Consistency Evaluation Metrics245

We argue that a comprehensive multilingual LLM-246

as-a-judge evaluation must quantify three key di-247

mensions of consistency: LLM-Human agreement,248

multilingual performance stability, and dialectal249

robustness. This is crucial for ensuring fairness250

and avoiding bias toward specific linguistic groups:251

LLM-Human Consistency (Clh), Multilingual252

Consistency (Cml), and Dialectal Consistency253

(Cdl). These metrics assess different aspects of254

consistency: overall alignment with human annota-255

tions, cross-language stability, and within-cluster256

robustness, respectively. All metrics are computed257

using linear deviations and normalized to the range258

[0, 1], where 1 reflects perfect consistency and 0259

reflects maximum inconsistency.260

LLM-Human Consistency (Clh) This metric261

measures the alignment between LLM predictions262

and human-provided labels across all varieties (in-263

cluding cluster representatives and dialectal forms).264

It evaluates the global agreement of the LLM with265

human annotations.266

The deviations are calculated as:267

∆i,j = Predictioni,j − Human Labeli,268

where i indexes examples (1 ≤ i ≤ N ) and j269

indexes varieties (1 ≤ j ≤ m).270

The aggregated deviations are computed as: 271

Devi =

√√√√ 1

m

m∑
j=1

∆2
i,j , 272

Aggregate Dev =
1

N

N∑
i=1

Devi 273

Finally, the LLM-Human Consistency score is: 274

Clh = 1− Aggregate Dev
Max Possible Dev

275

where Max Possible Dev is determined by the label 276

range. For labels in [1, 5], Max Possible Dev = 4. 277

A higher Clh score (≈ 1) indicates better alignment 278

with human labels. 279

Multilingual Consistency (Cml) This score as- 280

sesses the stability of predictions across language 281

clusters, focusing solely on cluster-representative 282

varieties. For each example, we first compute the 283

mean prediction: 284

µi =
1

L

L∑
j=1

Predictioni,j 285

where L is the total number of language clusters 286

(i.e., the number of cluster-representative varieties). 287

Deviations are then calculated as: 288

∆i,j = Predictioni,j − µi 289

The rest of the computation to obtain 290

Cml—including per-example deviation, aggregation 291

across examples, and normalization—follows the 292

same procedure as used for Clh. 293

Dialectal Consistency (Cdl) This metric evalu- 294

ates within-cluster consistency by comparing each 295

dialectal variety to its cluster representative. Devia- 296

tions are computed as: 297

∆i,j = Predictioni,j − Predictioni,cluster-rep. 298

Aggregate deviation is computed across dialects 299

for each example as before, followed by normal- 300

ization and consistency score computation for each 301

language cluster: 302

Cdl-[lang] = 1− Aggregate Dev
Max Possible Dev

303

The global dialectal consistency is computed as 304

the macro average across clusters, where C is the 305

total number of clusters: 306

Cdl =
1

C

C∑
c=1

Cdl-[lang]c 307
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4 Experimental Setup308

We evaluate the performance of five LLMs to as-309

sess their capability in detecting toxicity across a310

diverse set of standard and dialectal language vari-311

eties. Here we choose those models, that already312

exhibits their superior performance in multilingual313

benchmarks. Our evaluation includes standard clas-314

sification metrics such as accuracy and F1 score,315

followed by consistency-based analyses to assess316

the robustness of model predictions across multi-317

lingual and dialect-sensitive settings.318

• GPT-4.1 (OpenAI et al., 2024): A closed-weight319

instruction-tuned model from OpenAI, used as320

our skyline reference due to its superior per-321

formance across multilingual benchmarks and322

strong alignment capabilities. It serves as the323

upper bound for evaluation.324

• Mistral-Nemo-Instruct-2407 (AI and325

NVIDIA, 2024): A compact 8B model fine-326

tuned by NVIDIA using a two-stage instruction327

and preference optimization pipeline. It328

demonstrates strong performance on multilin-329

gual evaluation benchmarks (e.g., MMLU),330

particularly in European languages.331

• LLaMA-3.1-8B (Grattafiori et al., 2024): Meta’s332

open-weight LLaMA-3 model, selected for its333

strong multilingual capabilities and effective per-334

formance in translation and conversational agent-335

based tasks.336

• Qwen2.5-7B-Instruct (Qwen et al., 2025): A337

7B parameter model from Alibaba with support338

for over 29 languages, designed for multilingual339

instruction-following tasks and alignment safety.340

• Gemma-3-12B-it (Team et al., 2025): A 12B341

instruction-tuned model developed by Google,342

supporting over 140 languages.343

For the remainder of this paper, we re-344

fer to Mistral-Nemo-Instruct-2407 as NeMo,345

GPT-4.1-2025-04-14 as GPT, LLaMA-3.1-8B as346

LLaMA, Qwen2.5-7B-Instruct as Qwen, and347

Gemma-3-12b-it as Gemma.348

5 Results and Analysis349

In this section, we present our experimental find-350

ings. The original human-labeled toxicity intent351

scores range continuously from 1 to 5 and are352

discretized into five ordinal bins to standardize353

comparison across models (see Appendix F). We354

evaluate model performance using two comple- 355

mentary metrics: RMSE-based similarity, which 356

measures the deviation between model predictions 357

and binned human labels (normalized and inverted 358

to yield a similarity score between 0 and 1), and 359

macro-averaged F1, which assesses classification 360

accuracy across toxicity levels. Full metric defini- 361

tions are provided in Appendix G. 362

Broad model comparisons Table 2 summarizes 363

model performance across language clusters. The 364

evaluation was conducted on a subset of 380 sen- 365

tences, ensuring coverage across 60 language va- 366

rieties. Nemo and Gemma occasionally failed to 367

produce valid outputs across all varieties; such sam- 368

ples were excluded from their evaluations. Validity 369

rates appear in Appendix C (Table 6). 370

RMSE similarity scores range from 57.6 to 65.8, 371

indicating relatively low alignment with human an- 372

notations. Gemma consistently achieves the high- 373

est performance across both metrics. Nemo ranks 374

second in F1, while Qwen performs second-best 375

in RMSE-SIM, suggesting that ranking can differ 376

depending on the evaluation perspective. Interest- 377

ingly, GPT scores lowest on RMSE-SIM, indicat- 378

ing that larger model size alone does not ensure 379

better alignment with human judgments. Overall, 380

the agreement remains modest across all models, 381

pointing to a broader challenge in reliably captur- 382

ing human-defined toxicity signals. 383

Results across language clusters Model perfor- 384

mance varies noticeably across language clusters. 385

In higher-resource languages such as English, Ara- 386

bic, and Chinese, models tend to perform better, 387

with relatively higher F1 and similarity scores. In 388

contrast, performance drops in lower-resource clus- 389

ters like Sotho and Kurdish. For instance, the low- 390

est RMSE similarity score appears in GPT’s pre- 391

dictions for Kurdish (50.3), which is over 10 points 392

lower than Gemma’s score on the same cluster. 393

These differences highlight persistent disparities 394

in model robustness across language varieties, es- 395

pecially for underrepresented or morphologically 396

complex languages. 397

LLM Consistency Evaluation For readability, 398

we report consistency scores as percentages, al- 399

though they are originally defined on a 0–1 scale. 400

As shown in Table 3, most LLMs handle mul- 401

tilingual and dialectal variation reasonably well, 402

with consistency scores for these dimensions rang- 403

ing between 83.1% and 91.0%. In contrast, llm- 404
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F1 RMSE-SIM
Lang.
Cluster

GPT Nemo LLaMA Qwen Gemma GPT Nemo LLaMA Qwen Gemma Avg

English 21.8 32.6 23.8 29.5 36.0 64.8 70.2 64.8 70.0 71.7 68.3
Arabic 17.6 27.1 22.2 24.5 27.7 58.2 62.1 63.7 64.4 68.0 63.3
Chinese 17.8 24.8 20.7 24.6 27.6 59.0 60.0 61.8 64.4 65.5 62.1
Norwegian 19.0 23.8 18.0 24.9 28.2 60.0 59.1 60.1 63.2 68.0 62.1
Turkic 16.5 25.5 20.2 18.7 28.8 57.1 61.0 63.3 62.2 66.0 61.9
Bengali 17.5 24.6 18.8 21.6 26.0 57.2 59.5 62.4 60.6 65.1 61.0
Latvian 16.9 22.5 20.1 18.9 29.1 57.6 57.4 61.4 60.9 65.8 60.6
Finnish 17.7 21.5 18.1 17.2 27.2 57.0 57.7 61.4 60.5 62.7 59.9
Sotho 14.9 20.5 13.4 11.6 19.7 54.5 59.2 62.0 57.7 63.6 59.4
Kurdish 14.1 23.0 18.7 14.1 25.8 50.3 58.9 63.1 57.8 61.6 58.3

Avg.(Macro) 17.4 24.6 19.4 20.6 27.6 57.6 60.5 62.4 62.2 65.8 61.7

Table 2: Performance of models across different language clusters. Bold values indicate the best-performing model
per cluster for both F1 and RMSE-SIM. Overall, Gemma achieves the highest average performance, although scores
remain modest, especially for lower-resource clusters.

Consistency Dimension/Language GPT Nemo LLaMA Qwen Gemma

Overall
llm-human (Clh) 57.2 68.6 61.2 62.7 64.1
multilingual (Cml) 91.0 85.9 83.7 82.3 85.2
dialectal-mean (Cdl) 90.8 87.9 84.2 83.1 83.2

Dialectal (Cdl-[lang])

Arabic 91.2 89.0 82.2 82.5 87.5
Bengali 89.7 93.4 83.8 84.1 82.7
Chinese 92.5 90.4 86.6 89.1 84.9
Turkic 89.7 87.3 82.8 76.8 86.1
English 88.3 88.4 80.3 84.7 79.4
Finnish 87.0 81.9 77.5 76.3 71.1
Latvian 91.4 84.0 84.7 81.8 86.5
Kurdish 90.7 80.3 84.3 81.4 78.8
Norwegian 94.7 94.3 88.8 89.4 90.4
Sotho 93.0 89.8 91.2 84.9 84.6

Number of Samples with Predictions Available in All Varieties 380 61 378 380 13
Overall Valid Prediction percentage (%) 100.00 89.07 99.99 100.00 83.01

Table 3: Model-wise consistency scores across dimensions and language clusters. GPT demonstrates the most stable
multilingual and dialectal consistency across clusters, despite lower llm-human alignment. Gemma and Nemo
achieve relatively higher llm-human scores but suffer from low prediction overlap, raising concerns about their
consistency and reliability.

human consistency remains a challenge, with no-405

tably lower scores across models. GPT, for in-406

stance, scores the lowest on llm-human alignment407

(57.2) but leads in multilingual (91.0) and dialec-408

tal (90.8) consistency, indicating strong linguistic409

robustness but weaker agreement with human judg-410

ment. Moreover, a closer look at dialectal break-411

down shows GPT maintains stability across both412

high- and low-resource languages, while Gemma413

and Nemo exhibit greater variability—particularly414

in Finnish, Kurdish, and Latvian—suggesting un-415

even generalization across linguistic diversity.416

It is also worth noting that consistency scores417

are computed only when valid predictions exist418

across all dialectal varieties, which limits evalu-419

ation for models like Gemma and Nemo. Their420

low overlap counts (13 and 61 vs. 380 for GPT421

and Qwen) reflect frequent gaps in prediction cov-422

erage, likely impacting their overall consistency. 423

However, their overall validity rates—89.07% for 424

Nemo and 83.01% for Gemma—are less concern- 425

ing, suggesting they can generate valid outputs in 426

many cases. The core issue is not validity itself, 427

but the inconsistency in producing structured pre- 428

dictions across all varieties for the same input. 429

To better understand where validity gaps oc- 430

cur, we examined per-cluster prediction rates, as 431

shown in Appendix Table 6. Results reveal that 432

Gemma struggles notably in Bengali (69.2%), Chi- 433

nese (63.2%), Kurdish (70.7%), and Common Tur- 434

kic (75.7%), while Nemo also underperforms in 435

Sotho (81.3%) and Arabic (82.0%). In contrast, 436

GPT, LLaMA, and Qwen maintain near-perfect 437

validity across all clusters, demonstrating greater 438

robustness. Notably, Gemma’s shortcomings per- 439

sist despite its larger parameter size (12B), sug- 440
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gesting that factors such as training data quality or441

decoding strategies may play a more critical role442

than model scale in generating reliably structured443

outputs.444

Model-Predicted Toxicity Shifts We investi-445

gated how model-predicted toxicity labels in Stan-446

dard English change when mapped to the standard447

and dialectal varieties of other language clusters.448

Starting from English predictions, we specifically449

focused on sentences labeled as toxic (scores 4 or450

5) and non-toxic (scores 1 or 2). For toxic English451

sentences, we measured the percentage of cases452

where predicted toxicity was reduced when trans-453

lated into other languages. Conversely, for non-454

toxic English sentences, we computed how often455

toxicity increased in the translated outputs. These456

comparisons were made separately for standard va-457

rieties and dialectal forms across all models. The458

results highlight clear toxicity shifts, especially in459

low-resource and dialectally diverse settings, rein-460

forcing the need to account for language variety in461

multilingual moderation. Details of the outcomes462

are reported in Fig. 3. Across the board, all mod-463

els tend to give lower toxicity scores when English464

toxic sentences are transformed into other language465

varieties (Fig. 3a). This drop is fairly consistent,466

with toxicity reduced by about 50% on average,467

regardless of the language or model. The effect is468

especially strong for Sotho and Kurdish, where all469

models show a notably large reduction—in many470

cases, cutting toxicity scores by more than 70–80%471

compared to the original English.472

The pattern is quite different when we look at473

non-toxic English sentences and how they’re scored474

after translation. GPT stands out: it consistently as-475

signs low toxicity scores to these benign sentences,476

no matter the target variety—usually staying be-477

low 10%. However, the other models are far more478

variable. In particular, LLaMA assigns elevated479

toxicity scores in up to 80% of Sotho cases, which480

means it might be mistaking benign sentences for481

toxic ones in the vast majority of those instances.482

We see similar, though less extreme, trends with483

LLaMA in languages like Kurdish, Finnish, and484

Latvian. This suggests that while GPT remains485

relatively stable in preserving the non-toxic nature486

of inputs, other models—especially LLaMA—are487

more prone to over-predicting toxicity, particularly488

in lower-resource or linguistically complex vari-489

eties. See Appendix B, for detailed result reports490

for all clusters and models.491

Metric Bengali English

Mean Toxicity 2.46 2.51
Median Toxicity 2.0 2.0

Score 1 (%) 37.0 39.0
Score 2 (%) 19.0 15.0
Score 3 (%) 19.0 16.0
Score 4 (%) 11.0 16.0
Score 5 (%) 14.0 14.0

Table 4: Comparison of toxicity ratings for 100 English
and Bengali sentences annotated independently.

Human Ratings of Toxicity Preservation To 492

evaluate how toxicity is preserved during transla- 493

tion from English to Bengali, we designed a con- 494

trolled annotation process involving two bilingual 495

annotators. The annotators independently rated tox- 496

icity for both Bengali and English sentences with- 497

out evaluating parallel pairs to eliminate potential 498

cross-lingual bias. 499

The stimuli consist of 100 Bengali sentences, 500

translated from English using machine translation 501

(MT), and 100 original English sentences. These 502

were divided into two subsets for each language: 503

BS1 and BS2 for Bengali, and ES1 and ES2 for 504

English. Annotator A1 rated BS1 and ES2, while 505

annotator A2 rated BS2 and ES1. This assignment 506

ensured that no annotator saw parallel English- 507

Bengali sentence pairs, maintaining independence 508

in ratings across the two languages. 509

The key objective of this study is to compare 510

the aggregated toxicity scores of Bengali sentences 511

(BS1 + BS2) with English sentences (ES1 + ES2) 512

to determine whether toxicity is preserved, ampli- 513

fied, or reduced in translation. As shown in Table 4, 514

the results indicate strong preservation of toxic- 515

ity across the two languages. The mean toxicity 516

ratings are nearly identical: 2.46 for Bengali and 517

2.51 for English, with both having a median score 518

of 2.0. The score distributions are also similar, 519

though there is a slight reduction in extreme toxic- 520

ity ratings in Bengali (Score 4 at 11% vs. 16% in 521

English), and a marginally lower proportion of non- 522

toxic (Score 1) sentences (37% vs. 39%). These 523

differences are minimal, suggesting that machine- 524

translated Bengali sentences retain a comparable 525

level of perceived toxicity. 526

Validating Translation Fidelity Given the shifts 527

observed in model-predicted toxicity and the close 528

alignment seen in human ratings, we wanted to en- 529

sure that the translations themselves were not intro- 530

ducing major semantic drift. To assess the fidelity 531

7



Figure 3: Toxicity shift to other language varieties from Standard English: Each bar shows the percentage change
in model toxicity scores when standard English toxic (top) and non-toxic (bottom) sentences are translated into
other language varieties. Scores are shown separately for cluster representatives and dialects (average). Dots
indicate individual model outputs; error bars span the range across models. We observe that toxicity scores generally
decrease for toxic inputs across all varieties, with the strongest reductions in Sotho and Kurdish. In contrast, for
non-toxic inputs, GPT remains stable across all varieties, while models like LLaMA tend to over-predict toxicity,
especially in Sotho, where benign inputs are rated as toxic in up to 80% of cases.

of these translations, we conducted a reference-free532

quality evaluation using back-translation. Specif-533

ically, we used NLLB to translate from Standard534

English to each dialectal variety, then performed535

back-translation from the variety back to English.536

We then computed BLEU scores between the origi-537

nal and back-translated English sentences to assess538

semantic preservation.539

As reported in Appendix D Table 7, most540

varieties show reasonably strong BLEU541

scores, suggesting that the translations re-542

tained the original meaning well. However,543

a few clusters—particularly those with lower544

BLEU—indicated potential loss or distortion in545

meaning. For those cases, we applied an additional546

translation refinement step using GPT: the model547

was prompted with both the original English548

sentence and the initial machine translation, and549

asked to improve the target variety output. We then550

repeated the back-translation and BLEU evaluation.551

The third row of Table 7 shows the BLEU scores552

after this refinement step, with significant improve- 553

ments observed in low-performing varieties. This 554

approach allowed us to achieve more consistent 555

translation quality across all dialects, reducing the 556

likelihood that toxicity shifts were artifacts of poor 557

translation. 558

6 Conclusion and Future Work 559

We propose a holistic LLM robustness evaluation 560

framework for handling toxicity across language 561

varieties. Our findings suggest, a notable gap re- 562

mains between model predictions and human judg- 563

ment, emphasizing the need for improvements in 564

alignment. Additionally, LLMs tend to be more 565

sensitive to low-resource dialects, indicating that 566

further advancements are required to enhance their 567

consistency across diverse language varieties. We 568

aim to further expand our dataset by incorporat- 569

ing more utterance-based dialects and introducing 570

new perturbation methods, leveraging LLMs’ un- 571

derstanding of dialectal variations. 572
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Limitations573

At this point, this study mostly contains synthetic574

and machine-translated dialectal varieties except575

for one set of spoken utterances (Bengali-Dhaka).576

While it would be ideal to conduct this study on au-577

thentic data, such data are not easily available and578

they are expensive to collect. This low percentage579

of real-world dialectal examples is a limitation we580

hope to address in the future.581
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Appendix 1044

A LLM-as-a-Judge evaluation prompt 1045

LLM Toxicity Evaluation: Instructions

Instructions: You will be provided with a series of statements in various dialects. Your task is to evaluate the toxicity of each statement.
Toxicity is rated on a scale from S1 to S5 based on the level of harmfulness:

• S1: Not harmful (neutral or factual statement)

• S2: Slightly offensive (minor slurs or casual insults)

• S3: Moderately harmful (disrespectful or demeaning language)

• S4: Highly toxic (explicit hate speech or strong language)

• S5: Extremely toxic (incites violence, threats, or severe hate speech)

Response Format: Your response should be only the label S1, S2, S3, S4, or S5 — no explanation, no extra text.
Input Statement: {Input_statement}

Figure 4: Prompt instructions provided to the LLM for toxicity scoring of dialectal input. The model returns a
single severity label (S1–S5) per statement.

B Reporting Detailed Toxicity Shift 1046

To better understand how toxicity perceptions shift when translating standard English inputs into various 1047

language varieties, we report detailed results in Table 5. The table breaks down model predictions across 1048

two axes: (1) the reduction in toxicity scores for originally toxic English sentences, and (2) the increase in 1049

toxicity scores for originally non-toxic sentences after translation. 1050

C Validity of Model Outputs Across Language Clusters 1051

Table 6 provides a detailed breakdown of the percentage of valid toxicity predictions across language 1052

clusters and models. 1053

D Translation Fidality Evaluation using back-Translation 1054

To assess the semantic fidelity of machine-translated outputs across dialectal varieties, we conduct a 1055

reference-free evaluation using back-translation. Specifically, we compute BLEU scores between the 1056

original English sentences and their back-translated counterparts. Table 7 reports these scores for each 1057

language variety. The first column presents BLEU scores using the baseline NLLB translations. The 1058

second column shows results after applying GPT-assisted refinement to improve semantic accuracy. The 1059

final column (∆) highlights the relative improvement achieved through this refinement process. 1060

E Detailed Evaluation Results 1061

This section presents the detailed result tables (Tables 8 to 12) summarizing the performance of each model 1062

across different languages and dialects. We report metrics such as F1 scores (for bin=5 classifications) 1063

and RMSE-Similarity. 1064

F Binning Methodology 1065

To assign values in the range [1, 5] into a specified number of bins, we divide the range into equal-sized 1066

intervals. Let N denote the number of bins. The bin edges are defined as follows: 1067

Bin Edges = {ei | ei = 1 + (i− 1) ·∆e, i = 1, 2, . . . , N + 1}, 1068
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Toxic sentences: (Cluster Rep., Dialect) % reduced

GPT Nemo LLaMA Qwen Gemma Avg

Arabic (42.6, 52.7) (75.3, 80.9) (23.3, 38.7) (41.8, 48.5) (41.9, 47.5) (45.0, 53.7)
Bengali (41.0, 60.7) (71.6, 60.5) (29.3, 35.3) (55.1, 57.1) (64.1, 52.1) (52.2, 53.1)
Chinese (59.0, 45.9) (77.8, 71.6) (39.7, 26.7) (43.9, 33.2) (53.0, 61.5) (54.7, 47.8)
Turkic (42.6, 57.4) (72.8, 84.0) (50.9, 51.3) (45.9, 66.8) (44.4, 56.0) (51.3, 63.1)
English (0.0, 48.0) (0.0, 43.5) (0.0, 39.6) (0.0, 43.1) (0.0, 35.2) (0.0, 41.9)
Finnish (44.3, 58.9) (80.2, 83.4) (53.4, 56.1) (45.9, 63.1) (35.0, 39.7) (51.8, 60.2)
Latvian (41.0, 59.0) (75.3, 82.7) (54.3, 56.9) (60.2, 77.6) (46.2, 47.9) (55.4, 64.8)
Kurdish (73.8, 78.7) (86.4, 84.0) (38.8, 54.3) (87.8, 93.9) (70.9, 41.9) (71.5, 70.6)
Norwegian (36.1, 37.7) (58.0, 69.1) (36.2, 52.6) (31.6, 45.9) (27.4, 36.8) (37.9, 48.4)
Sotho (65.6, 65.6) (96.3, 97.5) (80.2, 84.5) (93.9, 94.9) (61.5, 59.8) (79.5, 80.5)

Avg (44.6, 56.5) (69.4, 75.7) (40.6, 49.6) (50.6, 62.4) (44.4, 47.8) (49.9, 58.4)

Non-toxic sentences: (Cluster Rep., Dialect) % increased

Arabic (0.8, 3.2) (4.6, 9.1) (27.6, 37.5) (9.8, 26.2) (11.7, 20.6) (10.9, 19.3)
Bengali (4.0, 5.3) (8.1, 10.2) (35.7, 58.7) (15.0, 26.6) (7.0, 26.9) (14.0, 25.5)
Chinese (3.2, 4.0) (9.6, 4.3) (21.9, 18.1) (13.3, 8.7) (14.6, 7.3) (12.5, 8.5)
Turkic (3.2, 5.1) (10.7, 10.7) (25.0, 40.6) (17.3, 49.7) (14.6, 19.6) (14.2, 25.1)
English (0.0, 2.8) (0.0, 11.5) (0.0, 16.3) (0.0, 26.8) (0.0, 24.3) (0.0, 16.3)
Finnish (4.0, 10.1) (7.1, 7.8) (19.9, 54.7) (19.7, 51.6) (19.9, 48.6) (14.1, 34.6)
Latvian (3.2, 10.5) (8.1, 8.1) (29.6, 48.5) (23.1, 48.0) (17.0, 36.8) (16.2, 30.4)
Kurdish (7.3, 6.5) (24.4, 10.7) (47.4, 60.2) (49.1, 58.4) (12.3, 26.9) (28.1, 32.5)
Norwegian (2.0, 2.0) (4.1, 6.1) (21.9, 20.9) (13.9, 15.0) (17.0, 17.0) (11.8, 12.2)
Sotho (4.9, 6.9) (25.9, 18.3) (80.1, 77.0) (59.0, 45.7) (51.5, 39.2) (44.3, 37.4)

Avg (3.3, 5.6) (10.3, 9.7) (30.9, 43.2) (22.0, 35.7) (16.6, 26.7) (16.6, 24.2)

Table 5: Percentage of toxicity shifts after translation from Standard English to various language varieties. The
top half shows the reduction in predicted toxicity for originally toxic English sentences, while the bottom half
shows the increase in predicted toxicity for originally non-toxic English sentences. Each cell reports the percentage
change for the cluster representative and dialectal variety (avg.), respectively. Results are averaged across clusters
and models in the rightmost and bottom rows. Higher reduction values (top) indicate potential underprediction of
toxicity post-translation, while higher increase values (bottom) suggest overprediction of toxicity in benign inputs.

GPT Nemo LLaMA Qwen Gemma Avg

Arabic 100.0 82.0 100.0 100.0 83.5 93.1
Chinese 100.0 93.6 99.9 100.0 63.2 91.4
Finnish 100.0 92.0 100.0 100.0 85.4 95.5
Kurdish 100.0 88.2 99.9 100.0 70.7 91.7
Norwegian 100.0 97.5 100.0 100.0 91.3 97.8
Latvian 100.0 95.9 100.0 100.0 89.9 97.2
English 100.0 85.4 100.0 100.0 86.2 94.3
Sotho 100.0 81.3 100.0 100.0 86.0 93.5
Bengali 100.0 94.5 100.0 100.0 69.2 92.7
Turkic 100.0 87.3 100.0 100.0 75.7 92.6

Average (Macro) 100.0 89.8 100.0 100.0 80.1 94.0

Table 6: Percentage of valid toxicity predictions across language clusters and LLMs. Each cell represents the
proportion of examples for which the model produced a valid, structured output in the given cluster. While GPT,
Qwen, and LLaMA consistently achieve near-perfect validity across all clusters, models like Nemo and Gemma
show greater variability, especially in low-resource or dialectally diverse languages such as Bengali, Chinese, and
Kurdish. The macro average in the bottom row summarizes each model’s validity performance across all clusters.

14



NLLB NLLB+GPT +∆ (%)
Language Cluster Language Variety

Arabic

North Mesopotamian Arabic 44.41 41.04
Ta’izzi-Adeni Arabic 46.89 41.97
Tunisian Arabic 32.31 35.84 10.9
South Levantine Arabic 44.75 41.93
Levantine Arabic (A:North) 45.41 43.43
Standard Arabic 46.97 44.67
Najdi Arabic 46.14 39.73
Moroccan Arabic 39.63 38.86
Egyptian Arabic 47.85 40.82

Bengali Standard 43.30 41.85

Chinese
Cantonese 24.05 28.20 17.3
Classical-Middle-Modern Sinitic (Simplified) 33.55 36.61 9.1
Classical-Middle-Modern Sinitic (Traditional) 20.78 32.53 56.5

Common turkic
Central Oghuz 41.95 41.88
South Azerbaijani 32.96 31.81
North Azerbaijani 41.84 40.25

Latvian Latgalian 37.56 40.04 6.6
Standard Latvian 42.70 42.36

Kurdish Central Kurdish 41.34 38.46
Northern Kurdish 42.36 38.93

Norwegian Norwegian Nynorsk 39.81 46.35 16.4
Norwegian Bokmal 58.58 53.45

Sotho Northern Sotho 41.91 40.92
Southern Sotho 44.41 43.34

Average (Micro) 40.98 40.27

Table 7: BLEU scores from back-translation evaluating translation fidelity for each language variety. The first
column shows scores from NLLB translations, while the second column shows results after GPT-assisted refinement.
The third column reports the percentage improvement (∆) when refinement is applied. Notable improvements are
observed in all Chinese varieties and a few other language varieties signifying the effectiveness of GPT in enhancing
translation quality. The global row shows the average across all varieties.
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F1 RMSE-SIM
Language Cluster Variety

English Standard 22.10 66.10
Southeast american enclave 23.30 64.50
Chicano 23.40 65.50
Nigerian 22.40 65.60
African american vernacular 22.30 65.20
Appalachian 23.90 65.90
Australian 22.20 64.30
Colloquial singapore 20.00 63.30
Hong kong 19.40 63.00
Indian 20.00 64.50
Irish 20.60 65.40

Norwegian Norwegian nynorsk 20.00 59.10
Norwegian bokmal 18.00 60.90

Bengali Dhaka 17.00 54.80
Standard 18.00 59.60

Arabic North mesopotamian arabic 17.80 57.40
Ta’izzi-adeni arabic 16.20 58.80
Tunisian arabic 18.60 57.50
South levantine arabic 18.00 59.30
Levantine arabic (a:north) 18.20 59.50
Standard arabic 18.50 58.40
Najdi arabic 16.90 59.00
Moroccan arabic 15.90 56.40
Egyptian arabic 17.70 57.50

Chinese Cantonese 16.60 58.40
Classical-middle-modern sinitic (simplified) 18.70 59.50
Classical-middle-modern sinitic (traditional) 18.30 59.00

Turkic Central oghuz 17.80 59.10
South azerbaijani 14.70 54.00
North azerbaijani 16.90 58.00

Latvian East latvian 16.90 56.50
Latvian 16.90 58.70

Finnish Finnish 16.90 58.10
Pohjois-satakunta 17.80 57.70
Keski-karjala 16.90 56.50
Kainuu 16.40 55.60
Etela-pohjanmaa 18.60 57.80
Etela-satakunta 17.80 57.40
Pohjois-savo 20.10 56.10
Pohjois-karjala 16.40 55.30
Keski-pohjanmaa 18.60 56.90
Kaakkois-hame 18.00 58.00
Pohjoinenkeski-suomi 15.00 56.20
Pohjois-pohjanmaa 18.50 57.10
Pohjoinenvarsinais-suomi 17.40 57.10
Etela-karjala 19.70 57.20
Lansi-uusimaa 17.40 57.80
Inkerinsuomalaismurteet 19.20 58.00
Lantinenkeski-suomi 18.70 56.90
Lansi-satakunta 16.90 56.40
Etela-savo 16.20 55.60
Lansipohja 15.40 57.60
Pohjois-hame 18.50 56.70
Etelainenkeski-suomi 16.60 57.90
Etela-hame 19.90 57.40
Perapohjola 17.10 57.10

Sotho Northern sotho 14.20 53.00
Southern sotho 15.60 56.00

Kurdish Central kurdish 15.70 51.60
Northern kurdish 12.50 49.10

Average (Micro) 18.20 58.50

Table 8: Evaluation Results for gpt-4.1-2025-04-14
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F1 RMSE-SIM
Language Cluster Variety

English Standard 31.40 70.00
Southeast american enclave 31.40 70.40
Chicano 32.70 70.90
Nigerian 33.40 70.10
African american vernacular 33.50 69.80
Appalachian 34.20 70.80
Australian 34.00 69.80
Colloquial singapore 33.70 69.60
Hong kong 31.70 69.90
Indian 30.30 69.30
Irish 32.90 71.10

Arabic North mesopotamian arabic 28.10 62.60
Ta’izzi-adeni arabic 24.50 61.10
Tunisian arabic 26.90 62.60
South levantine arabic 27.80 61.50
Levantine arabic (a:north) 26.60 63.80
Standard arabic 25.10 60.20
Najdi arabic 26.50 61.80
Moroccan arabic 29.50 62.60
Egyptian arabic 28.50 63.00

Turkic Central oghuz 25.10 61.60
South azerbaijani 24.90 61.90
North azerbaijani 26.50 59.50

Chinese Cantonese 29.20 61.00
Classical-middle-modern sinitic (simplified) 21.60 59.10
Classical-middle-modern sinitic (traditional) 23.70 59.90

Kurdish Central kurdish 21.90 60.60
Northern kurdish 24.00 57.20

Bengali Dhaka 24.00 58.80
Standard 25.10 60.20

Norwegian Norwegian nynorsk 23.70 58.40
Norwegian bokmal 23.80 59.90

Sotho Northern sotho 20.50 59.10
Southern sotho 20.50 59.30

Finnish Finnish 21.90 56.00
Pohjois-satakunta 24.20 57.50
Keski-karjala 20.30 56.40
Kainuu 19.20 57.80
Etela-pohjanmaa 23.00 57.10
Etela-satakunta 20.20 58.20
Pohjois-savo 21.50 58.00
Pohjois-karjala 18.80 56.90
Keski-pohjanmaa 22.00 58.60
Kaakkois-hame 23.50 59.10
Pohjoinenkeski-suomi 21.00 56.70
Pohjois-pohjanmaa 22.30 58.30
Pohjoinenvarsinais-suomi 20.30 58.50
Etela-karjala 23.00 58.00
Lansi-uusimaa 19.40 57.30
Inkerinsuomalaismurteet 22.20 56.90
Lantinenkeski-suomi 22.60 59.00
Lansi-satakunta 19.10 57.20
Etela-savo 21.00 57.20
Lansipohja 23.10 58.00
Pohjois-hame 23.60 58.20
Etelainenkeski-suomi 22.40 58.60
Etela-hame 20.20 58.60
Perapohjola 22.10 57.10

Latvian East latvian 22.20 57.00
Latvian 22.80 57.80

Average (Micro) 25.00 61.10

Table 9: Evaluation Results for Mistral-Nemo-Instruct-2407
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F1 RMSE-SIM
Language Cluster Variety

English Standard 25.90 65.30
Southeast american enclave 22.60 64.90
Chicano 26.30 65.30
Nigerian 22.90 65.10
African american vernacular 24.60 65.90
Appalachian 25.90 64.70
Australian 23.50 63.60
Colloquial singapore 19.30 63.00
Hong kong 23.00 64.30
Indian 23.90 65.80
Irish 24.10 65.00

Arabic North mesopotamian arabic 24.10 63.60
Ta’izzi-adeni arabic 25.20 64.20
Tunisian arabic 19.40 63.90
South levantine arabic 20.80 64.10
Levantine arabic (a:north) 21.60 64.70
Standard arabic 22.20 64.00
Najdi arabic 23.70 62.10
Moroccan arabic 19.20 62.60
Egyptian arabic 24.00 64.30

Turkic Central oghuz 23.60 63.90
South azerbaijani 18.10 62.70
North azerbaijani 18.90 63.40

Kurdish Central kurdish 19.50 62.80
Northern kurdish 17.90 63.30

Bengali Dhaka 16.10 62.10
Standard 21.50 62.80

Chinese Cantonese 23.70 62.80
Classical-middle-modern sinitic (simplified) 19.30 61.90
Classical-middle-modern sinitic (traditional) 19.10 60.80

Finnish Finnish 23.30 58.90
Pohjois-satakunta 17.70 60.70
Keski-karjala 17.40 61.50
Kainuu 16.90 62.00
Etela-pohjanmaa 19.70 61.10
Etela-satakunta 16.90 61.70
Pohjois-savo 18.70 62.20
Pohjois-karjala 17.40 61.40
Keski-pohjanmaa 18.80 60.40
Kaakkois-hame 19.60 60.90
Pohjoinenkeski-suomi 14.70 61.80
Pohjois-pohjanmaa 17.20 61.70
Pohjoinenvarsinais-suomi 18.50 61.20
Etela-karjala 15.70 60.60
Lansi-uusimaa 18.50 62.10
Inkerinsuomalaismurteet 17.00 61.50
Lantinenkeski-suomi 20.20 62.30
Lansi-satakunta 16.20 61.30
Etela-savo 20.00 61.70
Lansipohja 20.20 62.30
Pohjois-hame 18.60 61.00
Etelainenkeski-suomi 16.60 61.40
Etela-hame 15.40 61.90
Perapohjola 19.90 62.70

Sotho Northern sotho 13.30 62.50
Southern sotho 13.50 61.60

Latvian East latvian 19.00 60.80
Latvian 21.20 62.00

Norwegian Norwegian nynorsk 17.80 59.80
Norwegian bokmal 18.10 60.40

Average (Micro) 20.00 62.60

Table 10: Evaluation Results for Llama-3.1-8B
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F1 RMSE-SIM
Language Cluster Variety

English Standard 30.60 71.90
Southeast american enclave 26.90 69.50
Chicano 33.60 71.40
Nigerian 29.70 69.80
African american vernacular 27.20 68.70
Appalachian 30.00 70.20
Australian 28.70 70.50
Colloquial singapore 32.20 69.70
Hong kong 28.80 68.40
Indian 26.20 69.30
Irish 31.00 71.00

Arabic North mesopotamian arabic 25.10 64.70
Ta’izzi-adeni arabic 23.80 64.00
Tunisian arabic 23.90 65.00
South levantine arabic 23.70 63.70
Levantine arabic (a:north) 26.10 64.40
Standard arabic 22.70 64.10
Najdi arabic 25.50 64.10
Moroccan arabic 22.60 65.50
Egyptian arabic 26.80 64.00

Chinese Cantonese 27.90 65.50
Classical-middle-modern sinitic (simplified) 23.70 64.60
Classical-middle-modern sinitic (traditional) 22.20 62.90

Norwegian Norwegian nynorsk 23.30 62.20
Norwegian bokmal 26.50 64.30

Turkic Central oghuz 21.40 63.00
South azerbaijani 14.50 61.80
North azerbaijani 20.20 61.80

Finnish Finnish 21.30 60.80
Pohjois-satakunta 16.70 60.20
Keski-karjala 16.70 59.30
Kainuu 18.40 61.20
Etela-pohjanmaa 14.70 60.90
Etela-satakunta 15.20 60.50
Pohjois-savo 16.50 59.60
Pohjois-karjala 16.70 60.20
Keski-pohjanmaa 16.80 59.70
Kaakkois-hame 18.60 62.00
Pohjoinenkeski-suomi 16.10 60.20
Pohjois-pohjanmaa 16.00 59.60
Pohjoinenvarsinais-suomi 17.10 59.80
Etela-karjala 18.30 60.00
Lansi-uusimaa 17.10 61.40
Inkerinsuomalaismurteet 18.10 61.50
Lantinenkeski-suomi 17.00 59.70
Lansi-satakunta 15.60 59.40
Etela-savo 17.50 60.20
Lansipohja 19.70 61.30
Pohjois-hame 18.80 60.60
Etelainenkeski-suomi 14.90 59.80
Etela-hame 17.70 62.80
Perapohjola 17.60 60.40

Latvian East latvian 16.60 59.60
Latvian 21.10 62.20

Bengali Dhaka 22.90 61.20
Standard 20.20 59.90

Kurdish Central kurdish 14.10 56.40
Northern kurdish 14.20 59.10

Sotho Northern sotho 11.90 58.60
Southern sotho 11.30 56.80

Average (Micro) 21.20 63.00

Table 11: Evaluation Results for Qwen2.5-7B-Instruct
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F1 RMSE-SIM
Language Cluster Variety

English Standard 35.00 72.90
Southeast american enclave 35.00 71.80
Chicano 36.00 72.50
Nigerian 36.40 70.60
African american vernacular 35.70 71.90
Appalachian 36.40 73.30
Australian 37.80 72.50
Colloquial singapore 35.70 70.10
Hong kong 36.30 70.10
Indian 36.20 71.20
Irish 35.10 71.50

Arabic North mesopotamian arabic 27.70 67.50
Ta’izzi-adeni arabic 28.60 67.90
Tunisian arabic 26.10 66.40
South levantine arabic 27.40 68.60
Levantine arabic (a:north) 31.10 71.20
Standard arabic 25.20 67.20
Najdi arabic 28.40 67.90
Moroccan arabic 26.10 68.10
Egyptian arabic 28.50 67.30

Norwegian Norwegian nynorsk 26.80 66.80
Norwegian bokmal 29.60 69.20

Turkic Central oghuz 31.10 66.40
South azerbaijani 24.90 64.80
North azerbaijani 30.50 66.90

Finnish Finnish 24.30 66.70
Pohjois-satakunta 27.50 62.60
Keski-karjala 29.80 62.40
Kainuu 24.20 60.20
Etela-pohjanmaa 27.90 60.50
Etela-satakunta 28.70 64.10
Pohjois-savo 28.30 61.30
Pohjois-karjala 25.50 59.70
Keski-pohjanmaa 25.90 63.30
Kaakkois-hame 28.80 65.20
Pohjoinenkeski-suomi 25.70 59.80
Pohjois-pohjanmaa 28.00 62.80
Pohjoinenvarsinais-suomi 26.20 62.30
Etela-karjala 27.00 63.70
Lansi-uusimaa 28.40 64.70
Inkerinsuomalaismurteet 26.30 63.10
Lantinenkeski-suomi 27.40 64.10
Lansi-satakunta 25.80 62.30
Etela-savo 28.10 60.40
Lansipohja 30.40 62.60
Pohjois-hame 27.20 63.50
Etelainenkeski-suomi 27.00 61.60
Etela-hame 28.40 63.40
Perapohjola 26.80 63.70

Chinese Cantonese 27.90 66.60
Classical-middle-modern sinitic (simplified) 28.10 65.90
Classical-middle-modern sinitic (traditional) 26.80 64.10

Latvian East latvian 29.30 66.10
Latvian 29.00 65.50

Bengali Dhaka 26.80 64.60
Standard 25.20 65.60

Sotho Northern sotho 17.90 63.60
Southern sotho 21.50 63.50

Kurdish Central kurdish 24.50 60.90
Northern kurdish 27.00 62.40

Average (Micro) 28.80 65.80

Table 12: Evaluation Results for gemma-3-12b-it
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where ∆e is the width of each bin, given by: 1069

∆e =
5− 1

N
. 1070

For a given value v ∈ [1, 5], the bin assignment is determined as follows: 1071

Bin(v) =


1, if v = e1,

i, if ei−1 < v ≤ ei, i = 2, 3, . . . , N,

N, if v = eN+1.

1072

This approach ensures that: 1073

• The first bin includes the value 1. 1074

• Each subsequent bin includes values strictly greater than the lower edge and up to the upper edge, 1075

except for the last bin, which includes its upper edge 5. 1076

Example: For N = 5, the bin edges are: 1077

{1.0, 2.0, 3.0, 4.0, 5.0}. 1078

A value v = 1.666 would fall into Bin 2 as 1.0 < v ≤ 2.0, and v = 5.0 would fall into Bin 5. 1079

G Evaluation Metrics 1080

In this section, we evaluate the performance of the toxicity prediction model using several metrics that 1081

consider the ordinal nature of the labels, which range from 1 to 5 (with 1 representing the lowest toxicity 1082

and 5 representing the highest toxicity). The following metrics were used: F1-score and Root Mean 1083

Square Error (RMSE)-based Similarity. Example scores are presented, along with the ranges of each 1084

metric, and their meanings in the context of our setup. 1085

G.1 F1-Score 1086

The F1-score is the harmonic mean of precision and recall, calculated as: 1087

F1 = 2 · Precision · Recall
Precision + Recall

, 1088

where precision is the ratio of true positives to predicted positives, and recall is the ratio of true positives 1089

to actual positives. 1090

Example Score: The F1-score obtained by the model is 0.2260 (22.60%), reflecting the model’s 1091

difficulties in both identifying true positives and reducing false positives. 1092

Range: 1093

• Original Range: [0, 1] 1094

• Interpretation: A higher F1-score indicates a better balance between precision and recall. In our 1095

case, the low score suggests poor performance in both aspects, implying a need for improvement in 1096

the model’s classification ability. 1097
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G.2 Root Mean Square Error (RMSE) and RMSE-Based Similarity1098

Root Mean Square Error (RMSE) measures the average magnitude of prediction errors, considering the1099

squared differences between true and predicted values. RMSE is defined as:1100

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2,1101

where yi represents the ground truth, ŷi represents the predicted value, and N is the total number of1102

instances.1103

To convert RMSE into a similarity measure, we normalize the RMSE by dividing by the maximum1104

possible error (4, given that the labels range from 1 to 5), and then subtract it from 1:1105

RMSEnormalized =
RMSE

4
,1106

SimilarityRMSE = 1− RMSEnormalized1107

Example Score: The model achieved an RMSE of 1.9976, which, when normalized, gives 0.4994. This1108

translates to an RMSE-based similarity score of **0.5006**. This suggests moderate similarity between1109

the predicted and actual values.1110

Range:1111

• Original RMSE Range: [0, 4]1112

• Similarity Range: [0, 1]1113

• Interpretation: A lower RMSE value indicates that the predictions are closer to the true values,1114

while a higher RMSE-based similarity indicates better performance. In our case, an RMSE-based1115

similarity of 0.5006 means that the model is achieving moderate similarity, indicating that the1116

predictions are roughly halfway between a perfect match and the maximum possible error.1117

G.3 Summary and Interpretation of Scores1118

The metrics collectively indicate several areas where the model struggles:1119

• Low accuracy and F1-score indicate poor performance in exact classification of toxicity levels.1120

• RMSE-based and MAE-based Similarity suggest moderate similarity, implying that the model has1121

considerable room for improvement in predicting values that closely resemble true scores.1122

To improve the model’s performance, it is important to focus on better feature extraction, calibration,1123

and optimization techniques to ensure the model can accurately reflect both the ordinal severity of toxicity1124

and align closely with human evaluations.1125

H Language Variety Table1126

The language variety table, reported in Table 13, details the specific language clusters and dialects included1127

in our dataset. It provides an overview of the 10 language clusters and 60 varieties used in the evaluation1128

process, along with the number of examples for each variety.1129

We define a language cluster as a group consisting of a primary language and its associated dialects.1130

Each cluster is named after its most proximal ancestral language, with the cluster representative typically1131

chosen as the standard form or the highest-resourced variety. The remaining dialects within the cluster1132

are referred to as the varieties of the cluster representative. For consistency and clarity, we follow the1133

Glottocode naming convention (Hammarström et al., 2024) to label the varieties, ensuring that each dialect1134

is systematically identified.1135
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Language Cluster Variety Name Glottocode Example Count

Arabic North Mesopotamian Arabic nort3142 940
Ta’Izzi-Adeni Arabic taiz1242 940
Tunisian Arabic tuni1259 940
South Levantine Arabic sout3123 940
Levantine Arabic (A:North) nort3139 940
Standard Arabic stan1318 940
Najdi Arabic najd1235 940
Moroccan Arabic moro1292 940
Egyptian Arabic egyp1253 940

Bengali Dhaka dhak1240 380
Standard beng1280 940

Chinese Cantonese cant1236 940
Classical-Middle-Modern Sinitic (O:Simplified) clas1255 940
Classical-Middle-Modern Sinitic (O:Traditional) clas1255 940

Finnish Standard finn1318 940
Pohjois-Satakunta - 940
Keski-Karjala - 940
Kainuu - 940
Etelä-Pohjanmaa - 940
Etelä-Satakunta - 940
Pohjois-Savo savo1254 940
Pohjois-Karjala - 940
Keski-Pohjanmaa - 940
Kaakkois-Häme - 940
Pohjoinen Keski-Suomi - 940
Pohjois-Pohjanmaa - 940
Pohjoinen Varsinais-Suomi - 940
Etelä-Karjala - 940
Länsi-Uusimaa - 940
Inkerinsuomalaismurteet - 940
Läntinen Keski-Suomi - 940
Länsi-Satakunta - 940
Etelä-Savo - 940
Länsipohja - 940
Pohjois-Häme - 940
Eteläinen Keski-Suomi - 940
Etelä-Häme - 940
Peräpohjola - 940

Kurdish Central Kurdish cent1972 940
Northern Kurdish nort2641 940

Norwegian Norwegian Nynorsk (M:Written) norw1262 940
Norwegian Bokmal (M:Written) norw1259 940

Latvian East Latvian east2282 940
Latvian latv1249 940

English Standard stan1293 940
Southeast American Enclave sout3300 799
Chicano chic1275 799
Nigerian nige1260 799
African American Vernacular afri1276 799
Appalachian appa1236 799
Australian aust1314 799
Colloquial Singapore sing1272 799
Hong Kong hong1245 799
Indian indi1255 799
Irish iris1254 799

Sotho Northern Sotho nort3233 940
Southern Sotho sout2807 940

Turkic Central Oghuz azer1255 940
South Azerbaijani sout2697 940
North Azerbaijani nort2697 940

Table 13: Language cluster and variety names with glottocode and example count. The cluster representative that
we utilize as the standard variety is underlined in each cluster.
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