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ABSTRACT

Time series forecasting is challenging as it is subject to a lot of noise, and the
predictions often depend on external events. Still, recent deep learning techniques
advanced the state-of-the-art on specific datasets, while they keep failing on other
noisy datasets. This paper studies the case of financial time series forecasting, a
problem that exhibits both a high noise and many unknown dependencies. We
will show that the current evaluation pipelines are imperfect and forget a trivial
baseline that can beat most models. We propose a new evaluation pipeline that is
better suited for our task, and we run this pipeline on recent models. This pipeline
is based on deciding which assets to buy and sell rather than predicting exact
prices. Next, as the small datasets used in current approaches limit the models’
size, we train a general model on a massive dataset (containing a hundred times
more data points than existing datasets) and show this model can be finetuned
to improve the performance on small datasets. All our code and models will be
published to help the community bootstrap and evaluate their future models.

1 INTRODUCTION

Financial markets play a significant role in our modern world as they regulate the global economy
and are directly interlinked with our daily life: Any important event (pandemic, war) disturb the
stock prices, and, vice-versa, changes in stock prices also lead to observable real-life consequences
(sub-prime crisis, inflation). Therefore, it is crucial for the public interest to understand and regulate
how these markets work.

Yet, the financial world is secret: Almost no data is available to the general audience, and only big
firms can get insights. This observation makes academic research (particularly in data science) ex-
tremely difficult and forces us to rely on small public datasets, limiting the models we can construct.

These datasets are generally used to predict the future in one way or another. Given a price history,
we try to predict future prices (forecasting) or price directions (classification). These tasks raise
many challenges typical of time series that are emphasized in the case of finance.

First, the amount of noise is significant, and understanding this noise is hard in itself (Black, 1986).
This noise comes from many sources, mainly program trading (i.e., automatic trading) (Li et al.,
2020). It makes predictions, notably short-term predictions, extremely hard as the signal is barely
visible.

Second, real-life events, such as political news, financial reports, or scientific discoveries, impact
price movements (Yang et al., 2015; Mo et al., 2016). This impact can also be observed with fake
news (Kogan et al., 2019). Such exogenous variables make the prediction using solely price history
extremely difficult, especially with few data. However, this is a common task tackled by state-of-
the-art models.

Third, financial markets are highly dynamic systems with many actors: A new model with an edge
(i.e., a way to outperform the market) will be slowly arbitraged away, i.e., it will lose its edge
with time (Krauss et al., 2017). Many reasons explain this fading: The actors change with time,
competitors adapt, new algorithms appear, models are reverse-engineered, etc. This means that
having a model that performed well in the past will not necessarily have an advantage in the future.
Besides, using old data for training can be useless as they come from a very different ecosystem.
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Despite all these challenges and the area’s competitiveness, we regularly observe that new papers
claim to improve the state-of-the-art. In this article, we try to understand how it is possible with so
few data and many unknowns. We will show that the evaluation pipeline is imperfect and forgets a
trivial baseline that beats the most complex models on usual metrics. Then, we will propose a new
evaluation pipeline better suited for forecasting financial time series.

Next, we will show that it is possible to build a large dataset using web scrapping tools. We will use
this dataset to train and evaluate large models with our new pipeline. In addition, we will show that
these models can be a general building block that can be finetuned to solve specific tasks on smaller
datasets like it is done for natural language processing. These models will be publicly available.

Overall, our contributions are the following:

1. We introduce a new evaluation pipeline better suited for financial time series.
2. We compare state-of-the-art deep learning methods for financial time series forecasting.
3. We train large models on a large dataset.
4. We show that these models can be used to solve more specific tasks.

2 PREVIOUS WORK

Datasets Most of the time, financial time series are mixed with other time series and evaluated
together or separately. We found four primary datasets used to train publicly available models.
Some models were trained on datasets we cannot access. For each dataset, we report in Table 1
the number of data points, the number of time series, the time span of the data, and the granularity
(i.e., the interval between two consecutive data points). Note that the number of time series can be
artificially high because longer series were cut into smaller ones.

The oldest dataset is M3 (Makridakis & Hibon, 2000) and was succeeded by M4 (Makridakis et al.,
2020). These datasets contain a mix of time series, among which financial time series. On these
datasets, the data can be very old and has no constant granularity, but it is a monthly granularity on
average. The Exchange Rate dataset (Wu et al., 2021) contains eight time series representing the
exchange rate between pairs of currencies. It is often used with other datasets (electricity, traffic,
illness). The NASDAQ 100 dataset (Qin et al., 2017) contains companies’ stock prices in this index
over a short period. Some works used a similar dataset for S&P500 but without publishing the
data, and therefore, no comparisons are possible with newer models. We reported these datasets in
Table 1, in addition to our new dataset (see Section 4).

We will not directly use the datasets presented here as they do not contain timestamps and little or no
alignment between the time series. However, these are crucial properties for time series forecasting
as we cannot predict past values with training data from the future. Besides, an investment strategy
decides what to buy or sell at a given time, given the current market’s state (i.e., the value of all the
assets simultaneously, see Section 4). We will extract similar datasets from our new dataset.

Dataset #points #time series time span granularity
M3 (Makridakis & Hibon, 2000) 28k 308 1947-1989 ∼month
M4 (Makridakis et al., 2020) 8.3M 25k 1944-2019 ∼month
Exchange Rate (Wu et al., 2021) 60k 8 1990-2016 ∼daily
NASDAQ 100 (Qin et al., 2017) 40k 80 2016-2017 ∼minute
Ours (uncut, uncleaned) 12B 118k 2010-2023 ∼minute
Ours (72) 992M 14M (22k∗) 2010-2023 ∼minute
Ours (360) 486M 1.3M (15k∗) 2010-2023 ∼minute
Ours-S&P500 (72) 116M 1.6M(500∗) 2010-2023 ∼minute
Ours-CAC40 (72) 1.7M 24k (40∗) 2010-2023 ∼minute

Table 1: Comparison of the datasets in the state-of-the-art. ∗: We cut long time series.

Financial Time Series Forecasting There are several financial time series forecasting types. First,
most approaches differentiate short-term predictions (a few steps in the future) from long-term fore-
casts (many steps in the future). In the literature, we observed horizons (distance of the prediction)
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ranging from one step to around 700 steps, which at the granularity of one hour is about two months.
Some approaches consider univariate and multivariate forecasting, in which more than one time se-
ries is given as input (for example, to predict the price of an index (Qin et al., 2017)). Then, many
models were proposed. Most are based on convolutional neural networks, recurrent neural networks,
or Transformers (Vaswani et al., 2017). These standard networks are often used as baselines (Wang
et al., 2022; Xu et al., 2023).

N-BEATS (Oreshkin et al., 2019) tries to decompose the input into several signals using specific
blocks and residual connections. Later, N-HITS (Challu et al., 2022) improves this architecture by
adding pooling and hierarchical interpolation to have a multi-scale approach. Autoformer (Wu et al.,
2021) is a variation of Transformers that decomposes the input into a trend and a seasonal compo-
nent. The traditional attention mechanism is replaced by an autocorrelation block that compares the
time series with a shifted version of the time series. SciNet (Liu et al., 2021) also tries to have a
multi-scale approach. It is a network that progressively downsamples the input and creates high-
level features. DA-RNN (Qin et al., 2017) uses a combination of attention and Recurrent Neural
Networks (RNN) to learn meaningful representations. DSTP-RNN (Lahmiri, 2016) is a variation
on DA-RNN that separates spatial and temporal representations. DSANet (Huang et al., 2019) is
another variation that uses convolutions and attention.

3 PROBLEM AND DEFINITIONS

Let X = (X1, X2, ..., XN ) a time series of N steps where Xi ∈ Rd, with d the dimension of each
point in X . We are interested in forecasting a single point at a horizon H given a context of size C,
i.e., for k < N − C − H and given Xk, ..., Xk+C , we want to predict Xk+C+H . In practice, we
will focus on predicting a single dimension of Xk+C+H , the stock closing price.

Some previous works predict all the points Xk+C+1, ..., Xk+C+H between the end of the context
and the horizon. This task is more challenging because short-term forecasting is more subject to
noise, whereas long-term forecasting might allow a trend to appear. The existence of these two
problems created confusion in the literature. For example, SciNet (Liu et al., 2021) predicts a single
point but copies the results from previous papers that predict multiple points (without rerunning the
experiments), making the comparison irrelevant.

In practice, Xi is almost always composed of a single value, the closing price at the given time i.
In this paper, we also investigate the addition of open, low, and high prices on the interval ]i− 1; i],
i.e., the first price, the lowest price, and the highest price in the interval, as well as the volume (i.e.,
the number) of transactions on the interval.

As pointed out in the introduction, recent time periods are more complex to predict than older peri-
ods. Therefore, creating the training, validation, and testing data splits using the time components
is essential. This was not always done in previous works (time and order are missing from M3 and
M4, for example).

Finally, we introduce the notion of portfolio. A static portfolio P is a pair of assets (represented
as time series) X1, ..., XK and weights w1, ..., wK where each weight i is the number of asset i in
the portfolio. We only consider positive weights in this paper. The value of a portfolio at time t is:
Pt =

∑K
i=1(x

i
k ∗ wi). Note that some portfolios are dynamic, i.e., their assets and weights might

change through time.

4 METHODOLOGY

4.1 DATASET CONSTRUCTION

Our goal was to construct a large dataset of financial time series. To do so, we cleverly used web
scrapping tools. Although this is not new in itself (Hajizadeh et al., 2012; Jagwani et al., 2018;
Budiharto, 2021), we did it at scale and for a diversity of instruments (stocks, futures, indexes, ETF,
options) that is missing in the literature. That allowed us to create a large and diverse dataset with
a small granularity (5 minutes) and focus on recent time periods. The statistics of our dataset are
presented in Table 1 in three versions: One with uncleaned and raw data, one where large time series
are cut into smaller time series of 72 points (one day), and one where they are cut into 360 points
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(one week). When we cut the dataset, we only keep the clean parts where the granularity is small
enough, no data is missing, and there are no apparent outliers (return above a certain threshold).
This explains the difference in size between the different versions.

To test our data on smaller and more used assets, we extract from our new dataset subsets for several
indexes with the last known components in August 2023: S&P500 and CAC40. We get several
markets (US and French) with different sizes (see Table 1).

4.2 BASELINES

This paper will compare and retrain several baselines: DA-RNN, SciNet, Transformers, and a trivial
baseline that always predicts the last known point or no price movement (we call it LAST). This
baseline is surprisingly hard to beat and was totally forgotten in previous works. Therefore, we
reran several experiments from the state-of-the-art using the code and data provided by the authors
when available (to be sure we use the same evaluation setting). We were astonished that no model
beat LAST, which shows that (1) the claimed improvements are just noise and (2) the traditional
metrics used for the evaluation might not be adapted for financial time series forecasting. In this
paper, we will rerun these baselines (for uniformity) and observe the same problems.

If we look in detail, the LAST baseline is, in fact, very bad from an investor point of view: It makes
no decision to sell or buy assets (and therefore would perform poorly as a classifier) and makes no
difference between all assets and all price histories. An investor would like to know which assets
will perform best and worst to construct a profitable portfolio (see Section 4.5).

During the general pretraining, we want to predict yt+1 given y0, ..., yt for each baseline. For Trans-
formers, we can predict y1, ..., yt+1 by carefully making the prediction solely using previous values.
This has the advantage of producing more training data and having a flexible context size. Most
models only take a predefined context length as input, whereas the context of Transformers is flexi-
ble. It can, therefore, adapt to new problems better.

4.3 FORECASTING METRICS

For the evaluation, we will use the standard metrics for forecasting: the Root Mean Square Error
(RMSE) and the Mean Absolute Percentage Error (MAPE). For a target variable y = y1, ..., yn and
a predicted value ŷ = ŷ1, ..., ŷn, we have:

RMSE(y, ŷ) =

√∑n
t=1(yt − ŷt)2

n
and MAPE(y, ŷ) =

100

n

n∑
t=1

∣∣∣∣yt − ŷt
yt

∣∣∣∣
4.4 PORTFOLIO EVALUATION ALGORITHM

This section presents our new evaluation algorithm to evaluate forecasting models for financial time
series. This algorithm is inspired by the evaluation of financial strategies that must decide when
to sell and buy instruments (Aragon et al., 2007; Strong, 2006). In this paper, we move beyond
forecasting and focus more on determining the best choice (buy or sell) at a given time solely using
a forecasting model. We aim to evaluate forecasting models that can later be used or finetuned by
more advanced models, for example using reinforcement learning. Concretely, the new evaluation
emphasizes ranking: We decide which assets are the best and the worst among a set of assets.

We proceed as follows. We split long time series (some contain 13 years of data) into smaller ones
and align them in pools. A pool is a set of aligned assets that start and finish simultaneously. It
represents a moment in time when we need to decide which assets to buy or sell. Then, we can
compute the performance of our metric on each pool and take average metrics.

Our algorithm takes as input: Time series X0, ..., XN containing T points (also works if the time
series are of different lengths as soon as we can construct pools), a context size C, a horizon H , a
pool number K, and a forecasting model M . It is composed of the following steps:
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1. Select the set of start indexes Spool = s1, ..., sK for the construction of the pools. This can
be done randomly or with a rolling window strategy. In this paper, we take Spool = {k∗C |
0 ≤ k < T/C}.

2. For each index si, create a pool Pooli of all the sub-assets starting at si and finishing at
si + C. Also, take the horizon point at si + C +H .

3. For each pool Pooli, create a portfolio using the assets in the pool and the model M (see
Section 4.5). Then, compute the return of this portfolio after the horizon. Concretely, if
we call Pt the value of the portfolio at any time step (i.e., the weighted sum of the closing
price of all the components), we compute Ri

j =
Psi+C+H

Psi+C
− 1.

4. We call R = {Ri
j}. We can compute the metrics:

(a) Expected Return: E[R]

(b) Risk (standard deviation): σ(R)

(c) Sharpe Ratio: E[R]
σ(R) . We ignore the risk-free rate here as it is the same for all the

models. This rate is generally equal to the rate of the American Treasury Bonds.

An extreme case is interesting to study. If we have K = T , we evaluate our model on all available
points. This is interesting if we have a few training data points. However, with larger datasets, only
evaluating a sample is often enough to get statistically significant results, and the computations are
faster.

Later, we will present an annualized version of the expected return, risk, and Sharpe ratio to have
more standard numbers. This annualization is done by multiplying by the number of trades in a year
(or its square root). Besides, for the Sharpe ratio, we report the 95% confidence interval as given
in (Lo, 2002).

4.5 FROM FORECASTING TO PORTFOLIO

We suppose we have a forecasting model MH for a horizon H . We aim to build a strategy using
solely MH , i.e., to construct a portfolio P from a set of assets X1, ..., XN (we do not need to use
all of them).

Suppose we want to buy one unit of assets at a time t (i.e., the sum of the weights is one; we suppose
they are all positive here) and take our profit or loss after the horizon H at t+H . Our model predicts
the returns of all the assets R̂1

t+H , ..., R̂N
t+H . If we want to maximize our expected profit, we could

buy one unit of the asset with the maximum predicted return. However, this strategy is hazardous
as our portfolio is not diversified and has a high variance. Therefore, we want to include risk in our
objective function. This paper will focus on optimizing the Sharpe ratio (Best, 2010).

Let w1, ..., wN be the weights we want to compute for all the assets at time t. Using only data from
our context, we need to estimate the expected return and volatility to calculate the local Sharpe ratio.
The expected return is obtained using the predicted returns:

∑N
i=1 wi ∗R̂i

t+H . For the volatility (i.e.,
the standard deviation), we have to estimate it based on the assets in the portfolio and the previous
values. More precisely, we use the values in the context given to MH . This standard deviation is
derived from the covariances of the assets and is given by the formula:

√∑
i

∑
j wi ∗ wj ∗ σij ,

where σij is the covariance of Xi and Xj during the context.

In the end, when we have to choose the weights, we solve the following problem using traditional
optimization techniques (sequential least squares programming in our experiments):


maximize

∑N
i=1 wi∗R̂i

t+H√∑
i

∑
j wi∗wj∗σij

subject to
∑N

i=1 wi = 1

∀i, 0 ≤ wi ≤ 1

(1)

Note that we must normalize the return by the size of the horizon H.
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4.6 FINAL EVALUATION PIPELINE

Finally, this entire evaluation pipeline is the following:

1. Data preprocessing: We clean the data (remove missing values and outliers) and cut large
time series into smaller ones that can be taken as input by the models. We also format the
data correctly (see Section 5.2).

2. Data split: We split the data chronologically to create a train, validation, and testing dataset
(the proportions are 80%, 10%, 10%).

3. Model training: We train each model. The parameters and output might be different be-
tween each model.

4. Forecasting evaluation: We use the standard forecasting metrics for the evaluation pre-
sented in Section 4.3.

5. Portfolio evaluation: We follow our newly introduced method in Section 4.4.

4.7 FINETUNING

During the pretraining of our models, we used our new large dataset. Our goal now is to check if
what was learned can be transferred to other smaller datasets. To do so, we finetuned our pretrained
models (i.e., we continued the training) on the index datasets S&P500 and CAC40 (Table 1). For
the evaluation, we use the same pipeline as previously.

Our approach is inspired by what is done in the natural language processing community: They learn
a large model in an unsupervised way (e.g. BERT (Devlin et al., 2018), GPT (Radford et al., 2019))
and reuse it for a specialized problem (e.g., sentiment classification (Gao et al., 2019), information
extraction (Kolluru et al., 2020)). Likewise, we pretrained general models on a diversified market
and specialized them on many stocks (500) from the US economy (S&P500) and a few stocks (40)
from the French economy (CAC40).

5 EXPERIMENT SETUP

5.1 IMPLEMENTATION

We implemented the algorithms using Python, PyTorch (Paszke et al., 2019), and the code provided
by the original authors for the baselines. Our models were trained on machines with two Intel
Xeon at 2.40 GHz, 128 GB of RAM, and an Nvidia RTX A6000 with 48GiB of GDDR6. The
training time was between 5 days for the smallest models and one month for the biggest ones. For
the hyperparameters, we followed the ones given in the literature. We made them vary slightly at
the beginning of the training to check they were working well, but we could not run an exhaustive
hyperparameters search due to the computational cost. In particular, the learning rate was set at
10−4 during the initial training on our new dataset and then to 10−4 during the finetuning. We ran
five epochs for each baseline and used an early stop strategy for the finetuning. The code and trained
models are or will be provided as additional materials.

For Transformers, we used three configurations. FinTrans312 has a latent dimension of 312, 12
layers, 24 heads, and 21.7M parameters. FinTrans1248 has a latent dimension of 1248, 24 layers, 24
heads, and 284M parameters. FinTrans2048 has a latent dimension of 2048, 32 layers, 32 heads, and
831M parameters. In comparison, SciNet has 105k parameters, and DARNN has 242k parameters.

5.2 INPUT REPRESENTATION

In the literature, the points of each time series contain only one dimension: the closing price at a
given time t, Ct. It is the last price on the interval ]t− 1, t]. However, financial data generally come
with four other dimensions: the open price Ot (the first price on the interval ]t− 1, t]), the low price
(the lowest price on the interval ]t− 1, t]), the high price (the highest price on the interval ]t− 1, t]),
and the volume (the number of transactions on the interval ]t− 1, t]).

We are only interested in open, low, high, and close price variations, not their absolute value. For the
volume (i.e., the number of transactions), as it can vary by several orders from one asset to another,
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we take its log value (we add an ϵ to prevent problems with Vt = 0). Therefore, we transform them
as follows (X = O, H , L, or C):

X ′
t =

Xt

Ct−1
and V ′

t = log(Vt + ϵ) (2)

6 RESULTS

We first pretrain our models with a horizon of one and a context size of 72 (one day) or 360 (one
week) on our large dataset and report the forecasting metrics in Table 2. Then, we finetune the
models on S&P500 and CAC40 for three horizons for a context of 72 (the horizons are 1 = 5 minutes,
72 = one day, and 360 = one week) and four horizons for a context size of 360 (the horizons are
1, 72, 360, and 720=one month). For a context of 360, we do not have FinTrans2048 as the model
becomes too big to fit on a single GPU. We report the forecasting metrics in Table 2 and the portfolio
metrics in Table 3. The rest of this section goes more profound in the analysis.

6.1 FORECASTING EVALUATION RESULTS

Dataset Model Horizon RMSE ↓ MAPE ↓
Ours (72) LAST 1 (pretraining) 0.0055 0.2226
Ours (72) Scinet 1 (pretraining) 0.0144 0.9055
Ours (72) DARNN 1 (pretraining) 0.0059 0.2873
Ours (72) FinTrans312 1 (pretraining) 0.0096 0.6346
Ours (72) FinTrans1248 1 (pretraining) 0.0080 0.5174
Ours (72) FinTrans2048 1 (pretraining) 0.0073 0.4548
Ours (360) LAST 1 (pretraining) 0.0053 0.2143
Ours (360) Scinet 1 (pretraining) 0.0211 1.4734
Ours (360) DARNN 1 (pretraining) 0.0126 0.9577
Ours (360) FinTrans312 1 (pretraining) 0.0097 0.6877
Ours (360) FinTrans1248 1 (pretraining) 0.0083 0.6039

S&P500 (72) LAST 1 | 72 | 360 0.00155 | 0.02181 | 0.04909 0.10772 | 1.54404 | 3.57943
S&P500 (72) Scinet 1 | 72 | 360 0.00346 | 0.02216 | 0.04917 0.25590 | 1.57256 | 3.59490
S&P500 (72) DARNN 1 | 72 | 360 0.00211 | 0.02186 | 0.04910 0.15861 | 1.54804 | 3.58026
S&P500 (72) FinTrans312 1 | 72 | 360 0.00157 | 0.02180 | 0.04911 0.11135 | 1.55086 | 3.58086
S&P500 (72) FinTrans1248 1 | 72 | 360 0.00162 | 0.02179 | 0.04909 0.11420 | 1.54960 | 3.58281
S&P500 (72) FinTrans2048 1 | 72 | 360 0.00155 | 0.02181 | 0.04910 0.10848 | 1.55215 | 3.58421
S&P500 (360) LAST 1 | 72 | 360 | 720 0.00167 | 0.02227 | 0.04903 | 0.06625 0.11077 | 1.55516 | 3.56412 | 4.93557
S&P500 (360) Scinet 1 | 72 | 360 | 720 0.00462 | 0.02266 | 0.04919 | 0.06645 0.34894 | 1.58616 | 3.58146 | 4.96633
S&P500 (360) DARNN 1 | 72 | 360 | 720 0.00235 | 0.02240 | 0.04909 | 0.06633 0.12642 | 1.56858 | 3.57438 | 4.95704
S&P500 (360) FinTrans312 1 | 72 | 360 | 720 0.00167 | 0.02235 | 0.04906 | 0.06669 0.11092 | 1.56171 | 3.56822 | 4.95191
S&P500 (360) FinTrans1248 1 | 72 | 360 | 720 0.00167 | 0.02234 | 0.04904 | 0.06671 0.11082 | 1.56315 | 3.56861 | 4.95335

CAC40 (72) LAST 1 | 72 | 360 0.00147 | 0.01756 | 0.03547 0.09939 | 1.23242 | 2.61247
CAC40 (72) Scinet 1 | 72 | 360 0.00351 | 0.01794 | 0.03612 0.26695 | 1.26915 | 2.67088
CAC40 (72) DARNN 1 | 72 | 360 0.00150 | 0.01755 | 0.03546 0.10340 | 1.23225 | 2.61285
CAC40 (72) FinTrans312 1 | 72 | 360 0.00150 | 0.01769 | 0.03553 0.10358 | 1.24465 | 2.61880
CAC40 (72) FinTrans1248 1 | 72 | 360 0.00146 | 0.01777 | 0.03572 0.09939 | 1.25333 | 2.63667
CAC40 (72) FinTrans2048 1 | 72 | 360 0.00148 | 0.01766 | 0.03549 0.10098 | 1.24182 | 2.61495
CAC40 (360) LAST 1 | 72 | 360 | 720 0.00107 | 0.01692 | 0.03345 | 0.04756 0.07428 | 1.17633 | 2.47349 | 3.56498
CAC40 (360) Scinet 1 | 72 | 360 | 720 0.00397 | 0.01779 | 0.03557 | 0.05221 0.30894 | 1.24968 | 2.66036 | 3.99164
CAC40 (360) DARNN 1 | 72 | 360 | 720 0.00282 | 0.01714 | 0.03340 | 0.04942 0.22090 | 1.19866 | 2.46954 | 3.73797
CAC40 (360) FinTrans312 1 | 72 | 360 | 720 0.00132 | 0.01689 | 0.03323 | 0.04743 0.10169 | 1.17434 | 2.45597 | 3.55058
CAC40 (360) FinTrans1248 1 | 72 | 360 | 720 0.00107 | 0.01719 | 0.03320 | 0.04718 0.07513 | 1.20249 | 2.45672 | 3.53021

Table 2: Comparison of the baselines for forecasting. Best in bold, second best underlined.

We present the results of our experiments in Table 2. For this table, we reran all the models to
ensure comparable results. As we already observed with the code and models from state-of-the-art
methods, we can see that the trivial LAST baseline gets the best results on the large-scale dataset.
There is an improvement with the finetuning, but no model is statistically significantly better than
LAST. This fact confirms that (1) all the models might just be learning noise, and (2) the metrics for
time series forecasting (RMSE, MAPE) might not be adapted for financial time series. Here, we do
not judge how the models perform on general time series forecasting (electricity, weather, traffic).
They generally get better results when clear patterns emerge.
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We tested two context sizes on the large dataset: 72 (one day, Ours (72)) and 360 (one week,
Ours(360)). Although the scores are similar for the baseline LAST, we can see that all the learned
deep models struggle to deal with the additional noise coming from the increased input size from 72
to 360. Only Transformers seems to be able to keep similar performance. In particular, DARNN is
the second-best baseline for a context size of 72, but not with a larger context.

Transformers (FinTrans312, FinTrans1248, FinTrans2048) get the second-best results for a context
of 360. This is surprising because most approaches claim they beat Transformers. This might be
explained by the small amount of data used in previous works that prevented Transformers from
being truly effective. In our experiments, we saw that we can increase the size of the Transformers
model without overfitting. As we have a large amount of data, we do not need to have a high
number of epochs to reach convergence (5 in our case). Some approaches claimed they required
over a hundred epochs to get good results.

By looking at the models’ predictions, we also observe that the models tend to collapse to the
baseline LAST, i.e., consistently predict the last known price or no price variation. This explains
why the results for LAST look like a threshold. This collapse improves the performance but makes
the network stuck to a local optimum. We observed that the smaller networks, particularly DARNN,
were more subject to this problem. This shows these models might be too simple.

The results after the finetuning are similar, although the gap between LAST and the other models
narrowed. That leads some models to overperform LAST, but rarely significantly. Only the Trans-
formers models for the CAC40 dataset and a context size of 360 show consistently better results,
especially when looking at the MAPE.

6.2 PORTFOLIO EVALUATION RESULTS

Dataset Model Horizon Expected Return (%) ↑ Risk (e−3) ↓ Sharpe Ratio ↑
S&P500 (72) LAST 1 | 72 | 360 -0.368 | -0.434 | 0.017 0.750 | 2.31 | 1.24 -4.905(± 0.55) | -1.878(± 0.36) | 0.133(± 0.16)
S&P500 (72) Scinet 1 | 72 | 360 -0.424 | -0.184 | 0.065 0.638 | 2.04 | 1.08 -6.648(± 0.73) | -0.904(± 0.26) | 0.601(± 0.17)
S&P500 (72) DARNN 1 | 72 | 360 -8.77e−3 | -0.167 | 0.035 0.512 | 1.63 | 1.09 -0.171(± 0.15) | -1.022(± 0.27) | 0.326(± 0.16)
S&P500 (72) Trans312 1 | 72 | 360 -4.744 | -3.821 | 0.019 3.75 | 17.7 | 1.35 -12.657(± 1.37) | -2.156(± 0.40) | 0.139(± 0.16)
S&P500 (72) Trans1248 1 | 72 | 360 0.424 | -3.754 | 0.029 0.510 | 17.8 | 1.02 8.328(± 0.91) | -2.106(± 0.39) | 0.284(± 0.16)
S&P500 (72) Trans2048 1 | 72 | 360 -0.292 | -3.885 | 0.040 0.570 | 18.6 | 1.04 -5.122(± 0.57) | -2.086(± 0.39) | 0.379(± 0.16)
S&P500 (360) LAST 1 | 72 | 360 | 720 0.478 | 0.033 | 5.90e−4 | 9.60e−4 0.595 | 1.25 | 1.27 | 1.23 8.042(± 0.89) | 0.262(± 0.16) | 4.64e−3(± 0.16) | 7.83e−3(± 0.16)
S&P500 (360) Scinet 1 | 72 | 360 | 720 0.364 | 0.032 | 0.011 | 0.023 0.448 | 1.10 | 1.12 | 1.05 8.130(± 0.90) | 0.291(± 0.16) | 0.096(± 0.16) | 0.221(± 0.16)
S&P500 (360) DARNN 1 | 72 | 360 | 720 0.288 | -2.29e−3 | -0.024 | 0.017 0.322 | 0.998 | 0.971 | 0.965 8.944(± 0.91) | -0.023(± 0.15) | -0.248(± 0.16) | 0.174(± 0.16)
S&P500 (360) Trans312 1 | 72 | 360 | 720 0.156 | 0.027 | 3.72e−3 | -0.060 0.273 | 0.985 | 1.10 | 3.69 5.714(± 0.64) | 0.269(± 0.16) | 0.034(± 0.16) | -0.163(± 0.16)
S&P500 (360) Trans1248 1 | 72 | 360 | 720 2.216 | -0.824 | 0.042 | -0.042 2.10 | 6.58 | 1.13 | 3.74 10.574(± 1.17) | -1.252(± 0.21) | 0.374(± 0.16) | -0.113(± 0.16)

CAC40 (72) LAST 1 | 72 | 360 1.421 | 0.128 | 0.131 0.782 | 1.06 | 1.00 18.159(± 1.97) | 1.209(± 0.20) | 1.311(± 0.21)
CAC40 (72) Scinet 1 | 72 | 360 0.755 | 0.128 | 0.126 0.929 | 1.05 | 1.44 8.127(± 0.89) | 1.221(± 0.20) | 0.874(± 0.18)
CAC40 (72) DARNN 1 | 72 | 360 1.258 | 0.155 | 0.119 0.594 | 0.889 | 0.984 21.170(± 2.30) | 1.749(± 0.24) | 1.206(± 0.20)
CAC40 (72) Trans312 1 | 72 | 360 3.521 | -0.111 | 0.143 1.76 | 2.30 | 1.03 19.993(± 2.16) | -4.84e−1(± 0.16) | 1.393(± 0.22)
CAC40 (72) Trans1248 1 | 72 | 360 0.821 | -0.138 | 0.178 0.460 | 2.29 | 1.40 17.838(± 1.93) | -6.02e−1(± 0.17) | 1.269(± 0.21)
CAC40 (72) Trans2048 1 | 72 | 360 3.177 | -0.126 | 0.131 1.75 | 2.21 | 1.00 18.170(± 1.97) | -5.72e−1(± 0.17) | 1.309(± 0.21)
CAC40 (360) LAST 1 | 72 | 360 | 720 -0.065 | 0.139 | 0.129 | 0.104 0.289 | 0.998 | 0.930 | 0.970 -2.259(± 0.29) | 1.394(± 0.22) | 1.386(± 0.22) | 1.069(± 0.20)
CAC40 (360) Scinet 1 | 72 | 360 | 720 -0.547 | 0.282 | 0.224 | 0.154 0.336 | 1.18 | 1.67 | 1.70 -16.268(± 1.78) | 2.385(± 0.30) | 1.338(± 0.21) | 0.906(± 0.19)
CAC40 (360) DARNN 1 | 72 | 360 | 720 -0.248 | 0.184 | 0.143 | 0.139 0.346 | 0.916 | 0.835 | 1.66 -7.187(± 0.80) | 2.006(± 0.27) | 1.706(± 0.24) | 0.839(± 0.18)
CAC40 (360) Trans312 1 | 72 | 360 | 720 -0.267 | 0.090 | 0.126 | 0.086 0.256 | 0.804 | 0.735 | 1.03 -10.437(± 1.15) | 1.124(± 0.20) | 1.712(± 0.24) | 0.843(± 0.18)
CAC40 (360) Trans1248 1 | 72 | 360 | 720 0.313 | 0.512 | 0.120 | 0.122 1.17 | 2.31 | 0.725 | 0.878 2.669(± 0.33) | 2.222(± 0.29) | 1.648(± 0.24) | 1.394(± 0.22)

Table 3: Comparison of the baselines for portfolio metrics. Best in bold. Confidence interval at 95%
for Sharpe Ratio.

We present the results of the portfolio evaluation in Table 3. We first notice that even though the
RMSE and MAPE metrics were close after finetuning, the portfolio metrics show larger and more
significant gaps. It proves we are now looking at the problem from a new angle, closer to real-life
scenarios. Besides, the new metrics are uncorrelated with the forecasting metrics. In particular,
LAST is very rarely the best model, showing that we trained models that can make better decisions.

However, we observe a high variance amongst the results, amplified on short horizons. In addition,
the results do not allow us to conclude whether one architecture is better. These two observations
have the same cause: all the models were trained to optimize an objective function similar to RMSE.
Therefore, they did not learn to make good and consistent decisions. Indeed, RMSE measures the
difference between the gold standard and the prediction and does not care if the prediction is above
or below the truth. Nevertheless, this information is crucial when deciding to buy or sell.
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Our results show the limitations of the current models when dealing with financial time series fore-
casting. By accepting the complexity and particularities of this problem, we can fully leverage the
power of deep models. This new research direction must rely on new metrics based on decision-
making and not absolute predictions. This is true for both the evaluation (as we show in this paper)
and the training objective.

6.3 LIMITATIONS

We reused similar parameters for the baselines as those provided in the original papers. We could
have finetuned them better and increased the size of the networks, but it would have taken much
more time because of the size of the dataset. Besides, the original authors ran an exhaustive search
on hyperparameters. We only trained large networks for Transformers as they have a well-known
architecture and can later be reused for tasks with different context sizes.

We focused on evaluating models trained only for the forecasting task, not for the ranking task
involved in portfolio construction. The paper explores more adapted financial time series forecasting
metrics, but specialized non-forecasting models might get better results. We also compared deep
learning models and did not consider simpler models. We decided to concentrate on the active
domain of deep learning and showed in this paper that simpler models are hard to beat, depending
on what we measure. Yet, deeper models are more scalable and can improve results if evaluated
correctly.

For the portfolio metrics, we ignored some parameters that usually reduce the performances but have
a limited impact on the relative comparison between the baselines. In particular, we did not consider
that one must pay a fee to make a trade, and we ignore the risk-free rate in the Sharpe ratio. This
last parameter allows traders to evaluate a strategy relative to a “risk-free” strategy.

Finally, the testing period of our models takes place in a historical moment when the financial market
faced post-Covid, Ukrainian war, and high inflation. These problems make the task of forecasting
and portfolio building even harder. The fact we mostly have positive Sharpe ratios is encouraging.

7 CONCLUSION

In this paper, we study the task of financial time series forecasting. We saw that the current deep
learning models have a blind spot: They often compare their results with each other, but they fail to
beat the trivial baseline that simply predicts the last known point. This fact was observable in their
limited datasets and the large-scale dataset we used in this article. From this observation, we noted
that our trivial baseline is, in fact, very bad at making decisions, which is crucial in finance when
constructing portfolios. Therefore, we proposed to use a new evaluation pipeline based on portfolio
construction: We mapped the predictions of each model to an investment strategy, and we evaluated
this strategy.

From this new set of experiments, we observed that deep models are better at making decisions in
some cases, but as they were not trained for this task, they have a high variance in their results.
Therefore, we suggested rethinking how we train models for financial time series forecasting: We
need to remember that the final goal is to make a decision. That must impact the training objectives
and evaluation metrics.

In this paper and many state-of-the-art papers, the forecasting solely relies on the values from the
time series. However, the price of assets is strongly impacted by external events (financial reports,
war, elections). The difficulties we observed might also indicate that we must include more semantic
information about the companies or the news in the predictions.

Although we cannot make our dataset public for legal reasons, we provide the code and the pre-
trained models used in our experiments. We hope that future works will be more critical regarding
financial time series forecasting, will adapt their evaluation framework, and will bootstrap their
models with our pre-trained models. This way, they should be able to advance the state-of-the-art,
even when working with limited datasets.
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