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Abstract
In-context learning (ICL) enables large language models (LLMs) to acquire new behaviors
from the input sequence alone without any parameter updates. Recent studies have
shown that ICL can surpass the original meaning learned in pretraining stage through
internalizing the structure of the data-generating process (DGP) of the prompt into the
hidden representations. However, the mechanisms by which LLMs achieve this ability
is left open. In this paper, we present the first rigorous explanation of such phenomena
by introducing a unified framework of double convergence, where hidden representations
converge both over context and across layers. This double convergence process leads to an
implicit bias towards smooth (low-frequency) representations, which we prove analytically
and verify empirically. Our theory explains several open empirical observations, including
why learned representations exhibit globally structured but locally distorted geometry, and
why their total energy decays without vanishing. Moreover, our theory predicts that ICL
has an intrinsic robustness towards high-frequency noise, which we empirically confirm.
These results provide new insights into the underlying mechanisms of ICL, and a theoretical
foundation to study it that hopefully extends to more general data distributions and settings.
Keywords: In-Context Learning, Inference Dynamics, Graph Spectral Methods

1. Introduction

It has become a major challenge for today’s machine learning community to understand how
large language models (LLMs) perform in-context learning (ICL), i.e. the ability to learn
patterns or tasks solely from input sequences without any gradient updates (Brown et al.,
2020; Min et al., 2022; Garg et al., 2022; Akyürek et al., 2022a). Empirical studies have
demonstrated that LLMs can carry out a variety of tasks, including logical reasoning (Wei
et al., 2022), programming (Gao et al., 2023), and solving mathematical problems (Hendrycks
et al., 2021); recent work also suggests that LLMs are able to stay robust against noisy
prompts (Cheng et al., 2025; Alazraki et al., 2025). However, the mechanisms underlying these
capabilities remain largely elusive. A particularly striking phenomenon, recently highlighted
by Park et al. (2024), shows that when a pre-trained LLM is fed a sequence generated by a
random walk on a planar graph, with each node corresponds to a word (see “Data Generating
Process” part of Figure 1), the model’s hidden representations converge to a state that reflects
the original graph structure, even though the graph itself was never explicitly provided. We
refer to this emergent behavior as In-Context Learning of Representations (ICLR).

The ICLR phenomenon suggests an important mechanism of ICL: the model (in-contextly)
learns to embed the information of the data-generating process (DGP) into the hidden
representations. Therefore, understanding the ICLR phenomenon is a crucial step towards a
deeper understanding of the mechanisms of ICL. Moreover, Park et al. (2024) also shows
that an energy function decays over the course of this process, suggesting there might be an
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underlying principle that drives the emergence of ICLR. However, it is left open what is the
nature of this principle and how does it applies to the representations.
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Figure 1: Overview of the DGP and the Double Convergence Process. The input
sequence is generated by a random walk over a graph defined on the vocabulary (top), and
then passed into a pre-trained Transformer model. Context-wise convergence occurs
within each layer: token representations associated with the same word converge into tight
clusters. Layer-wise convergence occurs across layers: the cluster centers gradually evolve
towards a structure aligned with the underlying graph.
In this paper, we present the first theoretical explanation of the ICLR phenomenon,

showing that it arises as a consequence of an intrinsic bias in LLMs towards low-frequency
hidden representations. The central idea of our theoretical framework is a process we call
Double Convergence, wherein hidden representations converge both along the context
length and across layers. Specifically, the low-frequency bias emerges from the interaction of
the the Context-wise Process and the Layer-wise Process.

1. Context-wise Process: If the attention map “reflects” a function that is depends
only on token identities (formally defined in Theorem 2 and Theorem 3), and the
representations converge to a set of latent representations as the context length increases

2



Extended Abstract Track
Provable Low-Frequency Bias of In-Context Learning of Representations

(formally defined in Theorem 1), then the attention effectively applies the reflected
function to the latent representations. This result is formally shown in Theorem 4;

2. Layer-wise Process: The latent representations across layers, and eventually converge
to a state that captures the distributional properties of the input sequence. Under
the specific DGP considered in Park et al. (2024), we prove that this convergence
exactly yields the representations characteristic of the ICLR phenomenon. This result
is formally stated in Theorem 7.

The concept of Double Convergence is illustrated in Figure 1. While our main analysis
focuses on the specific DGP used in Park et al. (2024), the techniques and theoretical insights
we develop are able to be extended beyond this particular setting. In Appendix I, we provide
a generalized framework that is decoupled from any specific DGP, highlighting the broader
applicability of our results.

Our theoretical framework provides a comprehensive explanation for several phenomena
and open questions raised in Park et al. (2024). Furthermore, as both a validation and appli-
cation of our theoretical results, we also demonstrate that ICL exhibits implicit robustness
against high-frequency noise in the input data, which is consistent with recent empirical
findings (Cheng et al., 2025; Alazraki et al., 2025).

In summary, our main contributions in this paper are as follows:
1. We identify the double convergence process, which serves as a general framework for

studying the evolution of the representation in ICL (Appendices D and E);

2. We provide theoretical explanations for several previously unexplained phenomena
in Park et al. (2024), including why ICL can suppress the original meaning of each
word learned in pre-training (Appendix B.1), why the learned representations form an
apparently regular yet slightly distorted structure (Appendices B.2 and B.3), and why
the energy decreases but does not converge to zero (Appendix B.4);

3. Our theory highlights an implicit low-frequency bias in ICL, and predicts that LLMs
are naturally robust to errors in the input prompts, which we have verified empirically
(Appendix B.5).

Due to space limit, we defer all the detailed theoretical results to appendix. Please see
Appendices C to E for the formal definitions and assumptions used in our theoretical proof
and the theoretical results. In the next section, we briefly discuss the implications of our
theory and defer the full discussion to Appendix B.

2. A Brief Discussion About the Theoretical Results
Due to space limitation, in this section, we only briefly discuss the implications of our theory,
and defer the full discussion to Appendix B.

Our main theoretical result (Theorem 7) predicts that hidden representations converge
to the top eigenvectors of the graph matrix M , which correspond to smooth, low-frequency
structures. This aligns with the classic literature on graph learning and spectral methods
(Kipf and Welling, 2016; Li et al., 2018; Wu et al., 2019; Yang et al., 2021; Spielman, 2019;
Trevisan, 2013), and explains why the ICL phenomenon captures global graph structure. Such
low-frequency embeddings are also known to match human intuition in graph visualization
(Tutte, 1963), naturally connecting theory with practice.
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Figure 2: Comparison between empirical observations and theoretical predictions.
(a): Idealized grid structure; (b): Theoretical prediction by Theorem 7; (c): Principal
components of hidden representations from Llama-3.1-8B. All panels show strong alignment.

We empirically validate this prediction by comparing the principal components of hidden
representations with the top eigenvectors of W , following the setup of Park et al. (2024).
As shown in Figure 5, the theoretical predictions closely align with the empirical results.
Interestingly, while the overall grid structure is preserved, distortions such as compression
at the periphery appear. This effect can be explained by the reweighting induced by the
stationary distribution of the attention process, rather than just uneven visitation frequency.

A surprising finding of Park et al. (2024) is that ICL can suppress the original semantic
meaning of words: embeddings align with the data-generating process rather than natural
semantics. Our perspective is that higher-frequency components, which often carry semantic
detail, are gradually attenuated as depth and context length grow, leaving only the low-
frequency structural signals.
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Figure 3: Normalized energy evolu-
tion across layers. Overall energy de-
creases, but low-frequency components
persist.
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Figure 4: Predicted robustness
against noise. Despite noisy inputs, ICL
restores the underlying structure.

Finally, our framework predicts LLM’s robustness against noise: since high-frequency
components decay naturally, ICL models should tolerate and correct moderate high-frequency
noise in the input. Experiments with noisy sequences confirm this, as shown in Figure 7,
where the model gradually restores the clean underlying graph structure. This observation is
consistent with earlier empirical findings that ICL can implicitly denoise input (Cheng et al.,
2025; Alazraki et al., 2025).
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Appendix A. Background

In this section, we briefly review the current theoretical understanding of the mechanisms
underlying ICL and the structure of hidden representations in Transformers. We highlight
the limitations and challenges faced by existing studies and explain how the perspective
adopted in this paper offers a potential path forward.

Mechanisms of In-Context Learning Understanding the mechanisms behind ICL has
become a central topic in deep learning research. However, progress has been limited by the
highly complex architecture and learning dynamics of neural networks. Existing theoretical
approaches can be broadly categorized into two lines of work: 1) Existential results : This line
of work constructs specific Transformer implementations that implement certain in-context
algorithms, hence proving the existence of Transformers capable of performing in-context
learning (Akyürek et al., 2022b; Dai et al., 2022; Von Oswald et al., 2023; Li et al., 2025).
2) Learning dynamics or loss landscape of simplified models: Another line of work studies
learning dynamics or the structure of the loss landscape in simplified Transformer settings,
typically with a small number of layers or restricted architectures. These studies show
that the models can converge to configurations that exhibit in-context learning behaviors.
However, due to the complexity of Transformer training dynamics, these analyses are usually
restricted to one-layer Transformers (Lu et al., 2024; Huang et al., 2023), linearized models
(Ahn et al., 2023), or two-layer models with controlled training setups (Wang et al., 2024).

Structure of Hidden Representations Another related line of theoretical researches
investigates how hidden representations evolve across layers during inference (this topic is
sometimes referred to as “inference dynamics”) (Ramsauer et al., 2020; Yang et al., 2022; Yu
et al., 2023; Geshkovski et al., 2023; Tomihari and Karakida, 2025; Hu et al., 2025). Despite
their insights, these studies also typically require simplifying or modifying the Transformer
architecture due to the non-linear and heterogeneous nature of Transformers. Yang et al.
(2022) outlined four major challenges in analyzing inference dynamics, many of which remain
unsolved.

Structure of Attention Maps Olsson et al. (2022), identified a specific attention mecha-
nism known as induction heads. Generally speaking, they are attention heads that implement
a form of token copying: they identify a previous occurrence of the current token and attend
to the token that follows it. Formally, let the input tokens be {xk}nk=1, generated by a
Markov process, and the attention layer be defined as uk =

∑k
j=1 ak,jvk, where {vk}nk=1

and {uk}nk=1 are input and output representations respectively, and {ak,j}k,j∈[n] denotes the
attention weights, then the induction heads can be defined as attention maps satisfying the
following condition:

ak,j > 0 =⇒ xj ∈ N (xk), (1)

where N (x) is the set of all possible next tokens of x.
A major challenge in existing methods when analyzing inference dynamics arises from

the interactive and heterogeneous structure of Transformer models: the attention map
depends on the hidden representations, which in turn evolve through both self-attention
and feedforward layers. This bidirectional dependency makes theoretical analysis extremely
difficult, as noted by Yang et al. (2022). In this paper, to overcome this difficulty, we adopt a
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more pragmatic approach: Rather than attempting to derive the structure of attention maps
from first principles, we posit a structured form for the attention map, that is strong enough
to enable meaningful theoretical results, yet general enough to be empirically validated and
extendable to broader settings. Our goal is not to explain why attention maps take this form,
but to demonstrate that, if they do, they can give rise to the observed structure in hidden
representations, and empirically verify the validity of these assumptions in practice.

Appendix B. Detailed Discussion About the Theoretical Results

In Theorem 7, we proved that the representations converge to the top eigenspace of M =
D−1/2WD−1/2. This matrix has been extensively studied in the literature on graph learning
and spectral methods (Kipf and Welling, 2016; Li et al., 2018; Wu et al., 2019; Yang et al.,
2021; Spielman, 2019; Trevisan, 2013). Specifically, since W is a symmetric matrix with
non-negative entries, it defines a (weighted) undirected graph. Let L̂ be the symmetrically
normalized Laplacian matrix of this graph (Spielman, 2019), it holds that M = I − L̂, i.e.
M and L̂ share the same set of eigenvectors, with the order of eigenvalues being reversed.
Thus, top eigenvectors of M corresponds to low eigenvalues of L̂, which is known
to encode the low-frequency (smooth) and low-energy signals on the graph, as they tends
to assign similar values to adjacent nodes. These low eigenvectors of L̂ are often used as
coordinates for graph visualization, as it is know that they form figures that match human
intuition (Tutte, 1963)1, and exactly explains why the ICLR phenomenon, where the hidden
representations encode global graph structure, emerges in such settings.

We confirm this theoretical prediction by reproducing the experiments in Park et al.
(2024) and compare the principal components of the actual hidden representations and the
analytical prediction, i.e. top eigenvectors of W . The result is shown in in Figure 5. It is
clear that the analytical predictions align closely with the empirical principle components.

B.1. How Does ICL Suppress Original Semantic Meaning?
One of the most surprising observations in Park et al. (2024) is that, under their proposed
DGP, ICL can produce word embeddings that no longer reflect the original semantic meaning
of each word, but instead align solely with the structure imposed by the DGP. Our theory
provides a natural explanation for this phenomenon: the “meaning” encoded in a word
representation can be seen as a combination of multiple frequency components. However,
as both the model depth and sequence length increase, higher-frequency components are
progressively suppressed through the double convergence process. As a result, the semantic
features associated with these higher-frequency components are effectively erased, and the
representation becomes increasingly dominated by the low-frequency structure induced by
the DGP.

B.2. Why Start From the 2nd Eigenvector?
In both Theorem 7 and Figure 5, we intentionally omit the first eigenvector of M . This
is due to the coincidental alignment between the Laplacian and PCA. In short, the 1st
eigenvector of M corresponds to a constant vector added to each z′

x; however, PCA involves
a centralization step that removes the mean component from the data. Specifically,

1. Likely because humans also have a low-frequency bias in visual processing.
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Figure 5: Comparison between empirical observations and theoretical predictions.
(a): The 2nd and 3rd eigenvectors of W̃ , illustrating the idealized grid structure hypothesized
in Park et al. (2024); (b): The 2nd and 3rd eigenvectors of M , as predicted by Theorem 7; (c):
The first two principal components of the actual hidden representations from a pre-trained
Transformer (Llama-3.1-8B), collected at context positions 2360-2560. In all subfigures,
each point represents the latent representation of a word in the vocabulary. The x- and
y-axes represent the values of the 2nd and 3rd eigenvectors (or the 1st and 2nd principal
components), respectively. A small rotation was applied to panels (a) and (b) to better
visually align them with (c). This is valid since the 2nd and 3rd eigenvalues of W are equal,
and their eigenspace is invariant under rotation.

it can proved that the first eigenvector of M is exactly d−1/2 (Spielman, 2019), and the
centralization operation is to projecting V

(L)
n onto the space orthogonal to 1, which is

equivalent to projecting V
(L)
n D1/2 onto the space orthogonal to d−1/2, effectively removing

the component aligned with the first eigenvector of M .

B.3. Why Are Peripheral Nodes Compressed?
In Park et al. (2024), the authors keenly observed that the empirical PCA results (say, for
the grid graph as in Figure 5(c)), despite roughly showing the underlying grid structure,
appears slightly compressed near the periphery, compared to the actual grid formed by the
eigenvectors of the original graph (as in Figure 5(a), or Figure 7 in Park et al. (2024)). The
authors attributed this distortion to uneven visitation frequencies in the random walk:

... due to lack of periodic boundary conditions, concepts that are present in the
inner 2×2 region of the grid are visited more frequently during a random walk on
the graph, while the periphery of the graph has a lower visitation frequency.

While there is indeed a difference in visitation frequency, we argue that it is not the
most fundamental explanation. The true cause lies in the context-wise process. As shown in
Theorem 4, the transformation applied by the attention map to the latent representations
is modulated by the stationary distribution π. As a result, the actual graph the model is
aware of is the reweighted graph W instead of the original one W̃ . The top eigenvectors are
twisted a little bit according to node degrees since it is reweighted by π.
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B.4. Why Energy Decreases but Doesn’t Vanish?

In Park et al. (2024), the authors hypothesized that the structure of the representation is a
consequence of energy minimization. While this observation aligns with empirical trends, we
argue that energy decay is not the fundamental cause, since 1) it doesn’t explain why the
model follows the principle of energy decaying, and 2) the energy does not actually converges
to 0, despite the 0-energy solutions are actually easy to find. Instead, both the energy decay
and the structured representations are consequences of the double convergence.

Formally, let Πi be the projection operator onto the i-th eigenspace of M , the energy of
the latent representation {zx}x∈[c] under the graph W can be decomposed as follows:∑

x,y∈[c]

wx,y ∥zx − zy∥2 =
c∑
i=1

∑
x,y∈[c]

wx,y ∥Πi(zx − zy)∥2 . (2)

As shown in Theorem 7, the projections of the latent representations onto the low eigenspaces
converges to 02, and thus ∥Πi(zx − zy)∥ converges to 0 for large i. The energy decay is thus
a consequence of the representation leaving corresponding eigenspace.

On the other hand, for the top eigenspaces of M (i.e. small i), the the projection
components persist or even grow. This explains why the total energy does not decay to
zero: the representation is leaving high-frequency eigenspaces, but accumulating energy in
low-frequency ones.

We validate this explanation empirically in Figure 6. While the overall energy decreases
across layers, the energy in low-frequency directions (e.g., Component 1 and 2) increases,
confirming our theoretical prediction: energy decay arises from the attenuation of high-
frequency components, whereas the persistence of low-frequency components prevents the
total energy from converging to 0.

B.5. Predicted Robustness Against Noise

Our theoretical framework predicts that high-frequency components in the hidden represen-
tations will naturally decay over context and layers. This implies that LLMs performing
ICL should be inherently robust to high-frequency noise. Since natural signals are typically
dominated by low-frequency structure (Field, 1987), this suggests that ICL should be able to
tolerate and even correct a moderate amount of errors in the input.

To test this prediction, we conduct an additional experiment under a noisy data-generating
process. Specifically, during the random walk over the graph G, we inject noise by allowing
the sequence to transition to a uniformly random token in [c] with 1% probability at each step,
rather than to a graph neighbor. This corruption can be viewed as temporarily replacing the
original graph with a complete graph, which introduces purely high-frequency components
into the sequence.

In Figure 7, we measure the number of non-neighbor transitions (i.e. token pairs that
do not correspond to valid edges in G) within a sliding window of the last 500 tokens. We
compare this quantity in both the input sequence and the output predicted by the ICL model.
While the input maintains a constant error rate due to the injected corruption, the ICL

2. In principle, Theorem 7 is a relative result. However, with a similar proof one can show that the numerator
also actually converge to 0 as long as the corresponding eigenvalues are significantly smaller than 1.
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Figure 6: The Normalized energy evo-
lution across layers. Each “Component”
curve shows the energy along a direction de-
fined by the k-th eigenvector of M . We only
show the first 5 components as an illustration.
The “Overall” curve represents the average en-
ergy across all directions. To eliminate scale
effects, the matrix Z(ℓ) is normalized to have
unit Frobenius norm at each layer.
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Figure 7: Predicted Robustness Against
Input Noise. We inject 1% random noise
into the input sequence and plot the number
of non-neighbor transitions within a sliding
window of the last 500 tokens.

output gradually eliminates these errors. Once the context becomes sufficiently long, the
model consistently produces transitions that respect the original graph structure, effectively
achieving 100% accuracy despite the noisy input.

This result provides further evidence that ICL dynamics favor low-frequency structure and
can suppress high-frequency perturbations. This result also explains previous observations
that ICL can implicitly denoise input data (Cheng et al., 2025; Alazraki et al., 2025).

Appendix C. Preliminaries

Throughout this paper, we use bold upper-case letters to represent matrices (e.g. A), bold
lower-case letters to represent vectors (e.g. x) and calligraphic upper-case letters to represent
sequences of vectors (e.g. V = {vk}nk=1). For a matrix or a vector, we use plain lower-case
letters to represent their entries (e.g. ai,j represents the i, j-th entry of A). For a number
n ∈ N, we denote {1, 2, · · · , n} by [n]. For a set S, we use 2S to represent its power set.
We use 1 to represent a vector with all-entries being 1, whose dimensionality is inferred

from context. For a logical statement ϕ, we define 1{ϕ} =

{
1 ϕ is true
0 ϕ is false

to be its indicator

function. Given a sequence of vectors Z = {zx}cx=1 ∈
(
Rd
)c, we define Z = matZ ∈ Rd×c

to be the matrix formed by column-wise stacking of the vectors in Z, i.e. the i-th column of
Z is zi. Given a matrix A ∈ Rn×n and a sequence of vectors V = {vk}nk=1 ∈

(
Rd
)n, let AV

to be a sequence defined as AV =
{∑n

j=1 ak,jvj

}n
k=1

. For a vector function σ : Rd → Rd

and a matrix Z ∈ Rc×d, we use σ(Z) to represent applying σ column-wisely to Z.

12
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C.1. Data Generation

Throughout this paper, we assume the input is a sequence of tokens X = {xk}nk=1 ∈ [c]n,
where n is the sequence length and c is the vocabulary size (each token is simply a number
in [c]). We assume that the sequence is sufficiently long, i.e., n > 10c.

Let G = ([c], E) be a connected undirected graph defined over the vocabulary (with
each node being a word). Let W̃ = {w̃x,y}x,y∈[c] denote the adjacency matrix of G, and let
π = {πx}x∈[c] ∈ Rc be the stationary distribution G (i.e. π is the L1 normalized Perron
vector of W̃ ).

We define the reweighted adjacency matrix W = {wx,y}x,y∈[c] as wx,y = w̃x,yπxπy.
Note that W is also a non-negative symmetric matrix, and can therefore be viewed as
the adjacency matrix of a reweighted version of G. Define the (reweighted) degree vector
d = {dx}x∈[c] ∈ Rc as dx =

∑
y∈[c]wx,y. Let D = diag(d) be the degree matrix of W .

We assume the input sequence X satisfies the following data-generating process: the first
c tokens are fixed as a traversal of the vocabulary (i.e. xk = k for k ∈ [c]), and starting
from xc+1, the remaining tokens are generated by a random walk on the graph G, with the
initial token xc+1 being sampled from the stationary distribution π (i.e. the probability of
xc+1 = y is πy)3.

Finally, for any word x ∈ [c] and position k ∈ [n], let Fx,k be the frequency of token x in
the first k elements of the sequence, i.e. Fx,k =

∑k
j=1 1{xj=x}.

C.2. Model Architecture

Throughout the paper, we consider a simplified yet deep and non-linear Transformer model,
as described in Algorithm 1, where d ∈ N is the hidden and input dimension, L ∈ N is the
number of layers, A(ℓ) =

{
a
(ℓ)
k,j

}
k,j∈[n]

is the (single-head) attention map at layer ℓ, and

σ(ℓ) : Rd → Rd is the neuron-wise transformations at layer ℓ (which may include feedforward
networks (FFNs), normalization layers, and other non-linearities).

As discussed in Appendix A, the most critical simplification in our model is that we treat
the attention maps as given, instead of generated from hidden representations. In exchange
for this simplification, we are able to explicitly characterize the structure of the hidden
representations in a deep and non-linear model, enabling us to rigorously explain multiple
in-context learning behaviors. This contrasts with prior works that remain entangled in the
complexity of layer-wise interactions in full Transformer architectures. Moreover, we validate
our assumption empirically on real models in Appendix K, finding that our assumptions on
self-attention effectively explains more than 70% of actual attention connections, indicating
its practical justifiability.

This model described in Algorithm 1 also omits several other standard components such
as normalizations and residual connections. We note that this is to not over-complicating
the theoretical results while still capturing the core mechanisms and challenges of the model.
There is flexibility in our analysis to include other components, but we choose to focus on a

3. This DGP is essentially the same as Park et al. (2024). We fix the first c tokens only to avoid trivial but
complicated edge cases in the analysis, and since we study the asymptotic behavior of the model, the
effect of the first a few tokens is negligible.
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minimal version in the main paper to clearly highlight the key ideas behind our theoretical
results. See Appendix J for further discussion on integrating additional components.

C.3. Methodology Outline Algorithm 1 Transformer forward process

input:
{
v
(1)
k

}n
k=1

∈
(
Rd
)n as v

(1)
k = bxk .

for ℓ = 1, 2 · · ·L− 1 do
for k = 1, 2 · · ·n do

u
(ℓ)
k =

k∑
j=1

a
(ℓ)
k,jv

(ℓ)
j ;

v
(ℓ+1)
k = σ(ℓ)

(
u
(ℓ)
k

)
.

end for
end for
output:

{
v
(L)
k

}n
k=1

.

As noted before, we treat the attention maps
in the Transformer as given, rather than dy-
namically generated from the hidden repre-
sentations. Specifically, we assume the at-
tention maps in the model are composed of a
class of structured maps we refer to as nice
attentions, formally defined in Theorem 3.
These are attention maps whose connectiv-
ity patterns are determined by a function
of the input tokens. This concept can be
viewed as a generalization of the notion of
induction heads (see eq. (1)), as illustrated
by the structural similarity between eq. (1)
and eq. (5).

Given this assumption, we are able to prove that the there is a double convergence
process in the inference dynamics: 1) within each layer, the hidden representations converge
to a set of “latent representations” that only encodes token identity and does not have
position information; 2) then, each layer of nice attentions operates as a transformation on
these latent representations. Consequently, the latent representations evolve and converge
progressively across layers.

Furthermore, as the hidden representations can be viewed as having two axes, which
we call the neuron axis and token axis, and the double convergence happens in the token
axis, it can be shown that any transformations in the neuron axis, as long as being well
conditioned, will not affect this double convergence process. This observation allows us
to “insert” any neuron-wise transformations (such as such as FFNs and normalizations)
between the self-attention layers without affecting the double convergence behavior, enabling
a modular and robust theoretical framework.

Appendix D. Context-wise Convergence

We begin by establishing a general result: if the attention map reflects a specific function of
the underlying tokens, and the representations converge to a set of latent representations,
then the output of the attention layer also converges, towards a transformed set of latent
representations. We start the presentation of this result by defining latent representations
and nice attention maps.

Definition 1 For a sequence of d-dimensional vectors U = {uk}nk=1 ∈
(
Rd
)n, if there exists

a number γ > 0 and another sequence Z = {zx}x∈[c], such that

∀k ∈ [n], ∥uk − zxk∥ ≤ γ√
k
, (3)
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then we say U is a good sequence converging to Z with parameter γ, and Z is the latent
representation of U .

The concept of latent representations captures the idea that the hidden representation
for each token converges to a vector determined solely by the token identity and independent
of position.

Definition 2 If a matrix A = {ak,j}k,j∈[n] ∈ Rn×n+ is lower-triangular and row-stochastic,

i.e. it satisfies ak,j = 0 for all j > k, and
∑k

j=1 ak,j = 1 for all k ∈ [n], then we say A is an
attention map. Moreover, for an attention map A, if there exists a scalar ψ > 0, such that

∀k ∈ [n], j ∈ [k],

j∑
i=1

ak,i ≤
ψj

k
, (4)

then we say A is a nice attention map with parameter ψ.

Nice attention maps are attention maps with a soft uniformity and locality: they prevent
the attention from overly concentrating disproportionately on early tokens.

Definition 3 If A ∈ Rn×n is a nice attention map with parameter ψ, and there is a function
f : [c] → 2

[c], such that for all k > c and j ∈ [k],

ak,j > 0 =⇒ xj ∈ f(xk), (5)

and moreover,

∀k ∈ [n],∀y ∈ f(x),

∣∣∣∣∣∣
∑
j∈[k]

ak,j1{xj=y} −
Fy,k∑

y′∈f(x) Fy′,k

∣∣∣∣∣∣ ≤ ψ√
k

(6)

then we say A reflects the function f .

Intuitively, nice attentions that reflects a function matches a functionally defined neigh-
borhood of the current token, which can be viewed as a generalized notion of induction
heads. Moreover, a nice attention that reflects a function also requires attention weights to
distribute roughly proportionally among all words.

Notice that in Theorem 3, the k-th row of the attention map {ak,j}nj=1 is only well defined
only there exists j ∈ [k] such that xj ∈ f(xk) (otherwise all attention weights in this row
are 0, violating the assumption that each row of A sums up to 1). This is guaranteed under
our setup because we have explicitly set the first c tokens to be a traversal over the entire
vocabulary.

We are now ready to state the main theorem of this section. Notice that this theorem
stated here depends on the DGP, as it relies on the distribution of Fx,k. However, it is
possible to prove a weaker but more general version of this theorem that is independent of
the DGP. See Appendix I for more details.
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Theorem 4 There exists a constant C > 0 that only depends on G, and an event with
probability at least 0.999, such that within this event, the following statement holds. Suppose
V = {vk}nk=1 ∈

(
Rd
)n is a good sequence converging to Z = {zx}x∈[c] with parameter γ, and

A = {ak,j}k,j∈[n] ∈ Rn×n is a nice attention map with parameter ψ that reflects a function
f : [c] → 2

[c]. Then AV is a good sequence converging to

Z ′ =

{∑
y∈f(x) πyzy∑
y∈f(x) πy

}
x∈[c]

(7)

with parameter Cψ(γ +N) + C log n, where N = maxy∈[c] ∥zy∥.

Theorem 4 shows that applying a nice attention map that reflects a function to a good
sequence yields another good sequence, and that the attention operation effectively acts on
the latent representations. In other words, attention maps of this kind preserve convergence
and transform latent representations in a token-consistent way.

Appendix E. Layer-wise Convergence

In Theorem 4, we showed how latent representations evolve under a single attention layer.
In this section, we study how these latent representations change across layers.

Attention Maps. To analyze layer-wise convergence, we must have a more specific
assumption on what exactly are the functions that the attention maps reflect. Specifically,
we assume each attention map is a weighted combination of four basic types of maps: A(ℓ,A),
A(ℓ,B), A(ℓ,O) and A(T ), that satisfies the following assumptions respectively:

1. A-type (self connections): A(ℓ,A) is a nice attention map with parameter ψ(ℓ)
A that

reflects fA : x 7→ {x};

2. B-type (neighbor connections): A(ℓ,B) is a nice attention map with parameter ψ(ℓ)
B that

reflects fB : x 7→ {y ∈ [c]|w̃x,y > 0};

3. O-type (other connections): A(ℓ,O) is a nice attention map with parameter ψ(ℓ)
O that

reflects fO : x 7→ [c];

4. T-type (trivial connections, i.e. attention sinks): A(T ) satisfies a(T )i,j = 1 only when
j = 1.

We assume the attention map at layer ℓ, i.e. A(ℓ), takes the form

A(ℓ) = ρ
(ℓ)
A A(ℓ,A) + ρ

(ℓ)
B A(ℓ,B) + ρ

(ℓ)
O A(ℓ,O) + ρ

(ℓ)
T A(T ), (8)

where ρ(ℓ)τ ≥ 0 (τ ∈ {A,B,O, T}) is the weight of the τ -th type connections, and
∑

τ∈{A,B,O,T} ρ
(ℓ)
τ =

1. Empirically, we find that these four types explain over 70% of attention connections
in real models (see Appendix K for details), highlighting the empirical soundness of this
classification.
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The Role of FFN. To enable meaningful layer-wise convergence results with neuron-wise
transformations involved, we also need assumptions on the nonlinearity σ(ℓ) applied at each
layer. We introduce the following concept.

Definition 5 For a set Z ⊆ Rd×c, an orthonormal matrix U ∈ Rd×p and scalars γ1, γ2 > 0,
if a function σ : Rd → Rd satisfies that for any matrix Z ∈ Z ,

γ1

∥∥∥ZD1/2U
∥∥∥ ≤

∥∥∥σ(Z)D1/2U
∥∥∥ ≤ γ2

∥∥∥ZD1/2U
∥∥∥ , (9)

then we say σ is a great mapping w.r.t. (γ1, γ2,Z ,U).

Intuitively, a great mapping is well-behaved (e.g. smooth) along a given subspace at
the point of the latent representations. This allows us to insert FFNs or other neuron-wise
transformations without disrupting convergence.

E.1. Main Results
Before stating the main results, we first define the concept of the spectral gap of a matrix.

Definition 6 For a symmetric matrix M ∈ Rc×c and index q ∈ [c], let its eigenvalues be
{λk}ck=1, arranging in a non-decreasing order of absolute values, define δq(M) =

∣∣∣ λq
λq+1

∣∣∣ be
the spectral gap of M .

With the above assumptions and definitions, we are ready to present our main theorem.

Theorem 7 There exists an event with probability at least 0.99 such that the following
statement holds. Let n[x] be the largest k ∈ [n] such that xk = x. Let M = D−1/2WD−1/2.
Let the eigen-decomposition of M be

M =
[
f1 X Y

] λ1 Λ
Λ′

 f⊤
1

X⊤

Y ⊤,

 (10)

where the eigenvalues are arranged in a non-increasing order of absolute values; Λ contains
q − 1 eigenvalues and Λ′ contains n − q eigenvalues. Let A(ℓ) be defined as in eq. (8),
and

{
v
(ℓ)
k

}n
k=1

be defined as in Algorithm 1. Suppose each σ(ℓ) is a great mapping w.r.t.(
γ
(ℓ)
1 , γ

(ℓ)
2 ,Rd,X

)
and

(
γ
′(ℓ)
1 , γ

′(ℓ)
2 ,Rd,Y

)
, and have finite Lipschitz constant. Suppose there

exists ϵ > 0 satisfying that δq
(
ρ
(ℓ)
A I + ρ

(ℓ)
B M

)
γ
(ℓ)
1

γ
′(ℓ)
2

≤ 1− ϵ for all ℓ ∈ [L]. Then

lim
L→∞

lim
n→∞

∥∥∥V (L)
n D1/2Y

∥∥∥∥∥∥V (L)
n D1/2X

∥∥∥ = 0, (11)

where V
(L)
n = mat

{
v
(L)
n[x]

}
x∈[c]

.

Appendix F. Proof Theoretical Results w.r.t. Context-wise Convergence

In this section, we prove Theorem 4. The proof start by identifying a high-probability event
in the random walk sequence that ensures it is “regular” enough.
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F.1. Events in a Random Walk Sequence

Theorem 8 (Theorem 1 in (Fan et al., 2021)) Given graph G = (V, E) with stationary
distribution π, there exists constant C > 0 satisfies the following statement. Let {xi}∞i=1 ∈ VN

be a random walk sequence on G starting from the stationary distribution, and {fi}∞i=1 be a
sequence of bounded functions satisfying fi(V) ⊆ [−αi, αi], then for any k ∈ N and ϵ > 0,

P

{∣∣∣∣∣
k∑
i=1

fi(xi)−
k∑
i=1

π(fi)

∣∣∣∣∣ > ϵ

}
≤ 2 exp

(
− Cϵ2

k
∑k

k=1 α
2
i

)
, (12)

where π(fi) =
∑

x∈V πxfi(x) is the expectation of fi under the distribution defined by π.

Notice that in theorem 8, we view the spectral property of the graph as constant and
absorb it into C. Below is a direct corollary of Theorem 8.

Corollary 9 There exists constants C,C ′ (that probably depends on G) such that the
following inequality holds.

∀S ⊆ [c],P


∣∣∣∣∣∣
∑

y∈S Fy,k

k
−
∑
y∈S

πy

∣∣∣∣∣∣ > ϵ

 ≤ 2 exp
(
−Cϵ2k

)
, (13)

in other words, with probability at least 0.999, we have

∀k ∈ [n], ∀S ⊆ [c],

∣∣∣∣∣∣
∑

y∈S Fy,k

k
−
∑
y∈S

πy

∣∣∣∣∣∣ ≤ C ′ log(n)√
k

. (14)

Notice that we assumed n > 10c, therefore the following statement is also a direct
corollary of Theorem 8.

Corollary 10 The following statement holds with probability at least 0.999: for any x ∈ [c],
Fx,n ≥ Fx,⌈n/2⌉ + 1.

F.2. Proof of Theorem 4

Now we prove Theorem 4. We start by a lemma that is easy to verify.

Lemma 11 If a, b, r, s > 0 satisfies |a − r| ≤ ϵ and |b − s| ≤ ϵ and ϵ ≤ s/2, then∣∣a
b −

r
s

∣∣ ≤ 2ϵ r+s
s2

.

Proof Let {uk}nk=1 = AV. Let z′
x =

∑
y∈f(x) πyzy∑
y∈f(x) πy

.
For k ≤ c, we have

∥∥uk − z′
k

∥∥ ≤
k∑
j=1

ak,j ∥vj∥+
∥∥z′

k

∥∥ ≤
k∑
j=1

ψ(γ +N) +N ≤
√
c(c+ 1) (ψγ + ψN)√

k
. (15)
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Therefore, the error can be absorbed into the Cψ(γ + N) terms since C is allowed to be
dependent on c. Below we only consider k > c. Moreover, if f(xk) = ∅, then it is obvious
that uk = 0 = z′

xk
. Therefore, in the following we only consider the case where f(x) ̸= ∅.

Let Rk =
∑

y∈f(x) Fy,k. Let z̃(k)
x =

∑
y∈f(x)

Fy,kzy

Rk
. We have

∥∥∥uk − z̃(k)
x

∥∥∥ =

∥∥∥∥∥∥∥∥
∑
y∈f(x)

∑
j∈[k]
xj=y

ak,jvj −
zyFy,j
Rk


∥∥∥∥∥∥∥∥ (16)

=

∥∥∥∥∥∥∥∥
∑
y∈f(x)

∑
j∈[k]
xj=y

(
ak,jvj −

zxj
Rk

)∥∥∥∥∥∥∥∥ (17)

=

∥∥∥∥∥∥∥∥
∑
y∈f(x)

∑
j∈[k]
xj=y

(
ak,jvj − zxj

)+
∑
y∈f(x)

zy
∑
j∈[k]
xj=k

(
ak,j −

1

Rk

)∥∥∥∥∥∥∥∥ (18)

≤
∑
j∈[k]

xj∈f(x)

ak,j
∥∥vj − zxj

∥∥+N
∑
y∈f(x)

∣∣∣∣∣∣∣∣
Fy,k
Rk

−
∑
j∈[k]
xj=y

ak,j

∣∣∣∣∣∣∣∣ (19)

(i)
≤ γ

 ∑
j∈[k]

xj∈f(x)

ak,j√
j

+
Ncψ√
k

(20)

≤ γ

 k∑
j=1

ak,j√
j

+
Ncψ√
k
, (21)

where in (i) we use the condition that V is a good sequence converging to Z and that A
reflects f .
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Now, define Sk,j =

∑j
i=1 ak,j and Sk,0 = 0. Since A is a nice attention map with

parameter ψ, we have Sj ≤ ψj
k . Notice that ak,j = Sk,j − Sk,j−1. Thus we have

k∑
j=1

ak,j√
j
=

k∑
j=1

1√
j
(Sk,j − Sk,j−1) (22)

=
Sk,k√
k

+
k−1∑
j=0

Sk,j

(
1√
j
− 1√

j + 1

)
(23)

≤ ψ√
k
+
ψ

k

k−1∑
j=1

j

(
1√
j
− 1√

j + 1

)
(24)

=
ψ√
k
+
ψ

k

k−1∑
j=1

1√
j
− ψ(k − 1)

k
√
k

(25)

=
ψ

k

k∑
j=1

1√
j
. (26)

Notice that,

k∑
j=1

1√
j
= 1 +

k∑
j=2

∫ j

j−1

1√
j
dx ≤ 1 +

k∑
j=2

∫ j

j−1

1√
x
dx = 1 +

∫ k

1

1√
x
dx = 2

√
k. (27)

Subtracting eq. (27) into the argument above, we obtain∥∥∥uk − z̃(k)
x

∥∥∥ ≤ 2ψγ +Ncψ√
k

. (28)

Moreover,

∥∥∥z̃(k)
x − z′

x

∥∥∥ =

∥∥∥∥∥∥
∑
y∈f(x)

(
Fy,k
R

− πy∑
y′∈f(x) πy′

)
zy

∥∥∥∥∥∥ (29)

≤ N
∑
y∈[c]

∣∣∣∣∣Fy,k/kR/k
− πy∑

y′∈f(x) πy′

∣∣∣∣∣ . (30)

Define ak,y = Fy,k/k, bk,y = R/k, ry = πy and sy =
∑

y′∈f(x) πy′ . From Theo-
rem 9 we have there exists a constant number C > 0 that only depends on G, and an
event whose probability is at least 0.999, such that for all k ∈ [n] and y ∈ [c] we have
max {|ay,k − ry|, |bk,y − sy|} ≤ C logn√

k
(notice that this event is only related to the random

walk, and does not depend on the specific values of V, A, etc.).
Let ρ = miny∈[c] πy ∈ (0, 1). Let C ′ = 2C/ρ > C that also only depends on G. If

k ≥ 4C2(logn)2

ρ2
, then C logn√

k
≤ ρ

2 ≤ sy
2 , thus from Theorem 11 we have

∣∣∣ay,kry − by,k
sy

∣∣∣ ≤ C logn√
k

≤
C′ logn√

k
. On the other hand, if k < 4C2(logn)2

ρ2
, we have C′ logn√

k
≥ 1 ≥

∣∣∣ay,kry − by,k
sy

∣∣∣. Therefore,
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we conclude that, in an event at happens with probability at least 0.999, for all k ∈ [n] and
y ∈ [c] we have

∣∣∣Fy,k

R − πy∑
y′∈f(x) πy′

∣∣∣ ≤ C′ logn√
k

.
Combining the above arguments, we conclude that with probability at least 0.999, it

holds that for all k,

∥∥uk − z′
xk

∥∥ ≤ Ncψ + 2ψγ + C ′c log n√
k

, (31)

which is the desired conclusion.

Appendix G. Proof of Theoretical Results w.r.t. Layer-wise Convergence

We first prove that under the specific conditions given in Appendix E, how does the latent
representations evolves.

Lemma 12 Suppose V = {vk}nk=1 ∈
(
Rd
)n is a good sequence converging to Z = {zx}x∈[c]

with parameter γ, and V ′ = {v′
k}
n
k=1 ∈

(
Rd
)n is a good sequence converging to Z ′ = {z′

x}x∈[c]
with parameter γ′. Moreover, suppose T,G : Rd → Rd are Lipschitz continuous functions
with Lipschitz constants LT , LG respectively. Then, we have {Tvk +Gv′

k} is a good sequence
converging to {Tzx +Gz′

x}x∈V with parameter LTγ + LGγ
′.

Proof Only need to notice that for any k ∈ [n],

∥∥(Tvk +Gv′
k

)
−
(
Tzxk +Gz′

xk

)∥∥ ≤ LT ∥vk − zxk∥+ LG
∥∥v′

k − z′
xk

∥∥ ≤ LTγ + LGγ
′

√
k

. (32)

Lemma 13 There exists a scalar number C > 0 that possibly depends on the graph G, and
an event with probability at least 0.999, such that the following statement holds. For any layer
ℓ, if V = {vk}nk=1 is a good sequence converging to Z = {zx}x∈[c] with parameter γ, and let
A(ℓ) be defined as in eq. (8), then U = A(ℓ)V is a good sequence converging to Z ′ = {z′

x}x∈[c],
where

z′
x = ρ

(ℓ)
A zx + ρ

(ℓ)
B

∑
y∈[c]

wx,y
dx

zy + ρ
(ℓ)
O

∑
y∈[c]

πG(y)zy + ρ
(ℓ)
T v1, (33)

with parameter

κ = C(γ +N)

 ∑
τ∈{A,B,O}

ρ(ℓ)τ ψ(ℓ)
τ

+ C log n
∑

τ∈{A,B,O}

ρ(ℓ)τ , (34)

where N = maxy∈[c] ∥zy∥.
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Proof

Let Â
(ℓ)

= A(ℓ) − ρ
(ℓ)
T A(T ), and let Û =

(
Â

(ℓ)
V; Ẑ ′

)
, where Ẑ ′ =

{
ẑ′
x

}
x∈[c] is defined as

ẑ′
x = z′

x − ρ
(ℓ)
T v1. (35)

For a token x ∈ [c], let N (x) be the set of all neighbors of x. Notice that for any y ∈ N (x),
we have

πy∑
y′∈N (x) πy′

=
πxπy

πx
∑

y′∈[c] w̃x,y′πy′
=
wx,y
dx

. (36)

Therefore, from Theorem 12 and Theorem 4, we have Û converges to Ẑ ′ with parameter κ.
Since for k > c, uk = ûk + ρ

(ℓ)
T

∑k
j=1 a

(T )
k,j vj = ûk + ρ

(ℓ)
T v1, and z′

xk
= ẑ′

x + ρ
(ℓ)
T v1, we

have ∥∥uk − z′
k

∥∥ =
∥∥ûk − ẑ′

k

∥∥ ≤ κ√
k
, (37)

we have U is also a good sequence converging to Z ′ with parameter κ.

G.1. Evolution of the Latent Representation

From this sub-section, we focus on the evolution of the latent representation across layers
and show where do they converge.

Lemma 14 Let ρA, ρB, ρO, ρT > 0. Let D = diag (W1) is the degree matrix. Let z ∈ Rc
be a vector, and let z′ be defined as

z′ = ρAz + ρBD
−1Wz + ρO ⟨α, z⟩1+ ρT1. (38)

Then, for any U⊤ be a projection on to a subspace orthogonal to D1/21, we have

U⊤D1/2z′ = U⊤MD1/2z, (39)

where M = ρAI + ρBD
−1/2WD−1/2.

Proof
Let E = D1/21α⊤D−1/2. We have

z′ =
(
ρAI + ρBD

−1W + ρO1α
⊤
)
z + ρT1 (40)

= D−1/2
(
ρAI + ρBD

−1W + ρO1α
⊤
)
D1/2z + ρT1. (41)

= D−1/2 (M + ρOE)D1/2z + ρT1. (42)

Let z̃′ = D1/2z′, z̃ = D1/2z, and 1̃ = D1/21. Thus, we have

z̃′ = Mz̃ + ρOEz̃ + ρT 1̃ (43)
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Notice that, since E is a rank-1 matrix, its image space is span 1̃: for any vector x ∈ Rc,

Ex = D1/21α⊤D−1/2x =
〈
α,D−1/2x

〉
D1/21 =

〈
α,D−1/2x

〉
1̃. (44)

Therefore, we have

U⊤z̃′ = U⊤Mz̃ + ρOU
⊤ (Ez̃) + ρTU

⊤1̃ (45)

= U⊤Mz̃ +
(
ρO

〈
α,D−1/2z̃

〉
+ ρT

)
U⊤1̃ (46)

= U⊤Mz̃. (47)

Corollary 15 Let ρA, ρB, ρO, ρT > 0. Let Z = {zx}x∈[c] ∈
(
Rd
)c be a sequence, and define

sequence Z ′ = {z′
x}x∈[c] as follows:

z′
x = ρAzx +

ρB
dx

∑
y∈[c]

wx,yzy + ρO
∑
y∈[c]

αyzy + ρTv1. (48)

Let Z = matZ ∈ Rd×c and Z ′ = matZ ′ ∈ Rd×c. Let M = ρAI + ρBD
−1/2WD−1/2, and

{λk}nk=1 be its eigenvalues, arranging in a non-increasing order of absolute values. Let the
eigen-decomposition of M be

M =
[
f X Y

] λ1 Λ
Λ′

 f⊤

X⊤

Y ⊤,

 (49)

where Λ = {λk}qk=2 and Λ′ = {λk}ck=q+1. Then, we have∥∥∥Z ′D1/2X
∥∥∥∥∥∥ZD1/2X
∥∥∥ ≥ δM

∥∥∥Z ′D1/2Y
∥∥∥∥∥∥ZD1/2Y
∥∥∥ (50)

Proof From Theorem 14, we have

Z ′D1/2X = ZD1/2MX = ZD1/2XΛ, (51)

therefore∥∥∥Z ′D1/2X
∥∥∥
F
=
∥∥∥ZD1/2XΛ

∥∥∥ ≥
∥∥∥ZD1/2X

∥∥∥
F
∥Λ∥ ≥ |λq|

∥∥∥ZD1/2X
∥∥∥
F
. (52)

Similarly, we have ∥∥∥Z ′D1/2Y
∥∥∥
F
≤ |λq+1|

∥∥∥ZD1/2Y
∥∥∥
F
. (53)

The proposition directly follows.
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Corollary 16 Under the same condition as in Theorem 15, let σ : Rd → Rd be a great
mapping w.r.t. (γ1, γ2, {Z ′} ,X) and (γ′1, γ

′
2, {Z ′} ,Y ). Then, we have∥∥∥σ (Z ′)D1/2X

∥∥∥∥∥∥ZD1/2X
∥∥∥ ≥ δM

γ1
γ′2

∥∥∥σ (Z ′)D1/2Y
∥∥∥∥∥∥ZD1/2Y

∥∥∥ . (54)

Proof Only need to repeat the proof of Theorem 15 and use the definition of great mappings.
Notice that ∥∥∥σ (Z ′)D1/2X

∥∥∥
F
≥ γ1

∥∥∥Z ′D1/2X
∥∥∥
F
≥ γ1|λq|

∥∥∥Z ′D1/2X
∥∥∥
F
. (55)

Similarly, ∥∥∥σ (Z ′)D1/2Y
∥∥∥
F
≤ γ′2

∥∥∥Z ′D1/2Y
∥∥∥
F
≤ γ′2|λq+1|

∥∥∥Z ′D1/2Y
∥∥∥
F
. (56)

The proposition directly follows.

G.2. Proof of Theorem 7

Let E1 be an event with probability at least 0.999 defined in Theorem 13 holds. Let
E2 = {∀x ∈ [c], n[x] > n/2}, Theorem 10 shows that E2 also holds with probability at least
0.999. In the following, we condition on the event E1 ∩ E2, which holds with probability at
least 0.99.

Let Z(ℓ) =
{
z
(ℓ)
x

}c
x=1

∈
(
Rd
)c be defined as follows: z

(1)
x = bx, and

z(ℓ+1)
x = ρ

(ℓ)
A z(ℓ)

x +
ρ
(ℓ)
B

dx

∑
y∈[c]

wx,yz
(ℓ)
y + ρO

∑
y∈[c]

αyz
(ℓ)
y + ρ

(ℓ)
T v

(ℓ)
1 . (57)

for any ℓ ∈ [L− 1], and z
′(ℓ)
x = σ(ℓ)

(
z
(ℓ)
k

)
. From the definition, it is obvious that

{
v
(1)
k

}n
k=1

converges to Z(1) with parameter 0.

• We first fix an L ∈ N and analyze the context-wise convergence. First consider an
arbitrary x ∈ [c]. Using Theorem 13 with an induction, it is not hard to prove that for
each ℓ ∈ L there exists a γ(ℓ) = poly log n (since we are going to take limit w.r.t. n, we
view all other values independent of n as constants; notice that ℓ is a fixed index here),
such that

{
v
(ℓ)
k

}n
k=1

is a good sequence converging to
{
z
′(ℓ)
y

}
y∈[c]

with parameter γ(ℓ).

Therefore, we have ∥∥∥v(ℓ)
n[x]

− σ
(
z(ℓ)
x

)∥∥∥ ≤ γ(ℓ)
√
n[x]

<

√
2 poly log n√

n
. (58)

Therefore, taking ℓ = L and sending n→ ∞, we have

lim
n→∞

∥∥∥v(L)
n[x]

− z′(L)
x

∥∥∥ = 0, (59)
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which is equivalent to

lim
n→∞

v(L)
n[x]

= z′(ℓ)
x . (60)

Notice that this holds for any x ∈ [c]. Therefore, let Z ′(ℓ) = mat
{
z
′(ℓ)
x

}
x∈[c]

∈ Rd×c,

we have when
∥∥∥V ′(L)

n D1/2X
∥∥∥ > 0, we have

lim
n→∞

∥∥∥V (L)
n D1/2Y

∥∥∥∥∥∥V (L)
n D1/2X

∥∥∥ =

∥∥∥Z ′(L)D1/2Y
∥∥∥∥∥∥Z ′(L)D1/2X
∥∥∥ . (61)

• Next, we consider the layer-wise evolution. Theorem 16 shows that for any ℓ ∈ [L],∥∥∥Z ′(ℓ)D1/2Y
∥∥∥∥∥∥Z ′(ℓ)D1/2X
∥∥∥ ≤ δq (ρAI + ρBM)

γ
(ℓ)
1

γ
′(ℓ)
2

∥∥∥Z ′(ℓ−1)D1/2Y
∥∥∥∥∥∥Z ′(ℓ−1)D1/2X
∥∥∥ ≤ (1− ϵ)

∥∥∥Z ′(ℓ−1)D1/2Y
∥∥∥∥∥∥Z ′(ℓ−1)D1/2X
∥∥∥ .

(62)

Theorem 16 also confirms that
∥∥∥Z ′(L)D1/2X

∥∥∥ > 0. Using an easy induction, we have∥∥∥Z ′(L)D1/2Y
∥∥∥∥∥∥Z ′(L)D1/2X
∣∣∣ ≤ (1− ϵ)L−1

∥∥∥Z ′(1)D1/2Y
∥∥∥∥∥∥Z ′(1)D1/2X
∥∥∥ . (63)

Therefore,

lim
L→∞

∥∥∥Z ′(L)D1/2Y
∥∥∥∥∥∥Z ′(L)D1/2X
∥∥∥ = 0. (64)

Combining above arguments, we obtain that

lim
L→∞

lim
n→∞

∥∥∥V (L)
n D1/2Y

∥∥∥∥∥∥V (L)
n D1/2X

∥∥∥ = lim
L→∞

∥∥∥Z ′(L)D1/2Y
∥∥∥∥∥∥Z ′(L)D1/2X
∥∥∥ = 0. (65)

Appendix H. The Role of FFN: What Mappings are Great Mappings

Lemma 17 Let σ : Rd → Rd be defined as σ(z) = Wz, where W is a non-singular matrix,
then σ is a great mapping w.r.t. (γmin, γmax,Rd,U) for any orthonormal matrix U , where
γmin and γmax are the smallest and largest singular values of matrix W , respectively.

The proof of Theorem 17 is obvious.

Lemma 18 Let σ : Rd → Rd be a great mapping w.r.t. (γ1, γ2,Z ,U) and σ′ : Rd → Rd be a
great mapping w.r.t. (γ′1, γ

′
2,Z ,U), then σ1 ◦σ2 is a great mapping w.r.t. (γ1γ

′
1, γ2γ

′
2,Z ,U).

The proof of Theorem 18 is obvious.
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Appendix I. A Generalized Framework That is Independent of Data

Generating

In the main paper, Theorem 4 conditions on the specific data generating process used in Park
et al. (2024). This is because we need to match the distribution of the attention connection
to each token with their stationary distribution in the data. In this section, we show that,
with a slightly stronger assumption on the attention map, a general result of the context-wise
convergence can be derived.

Definition 19 If a matrix A = {ak,j}k,j∈[n] ∈ Rn×n is an nice attention map with parameter
ψ, and there is a mapping f : [c] → [c], such that for all k, j ∈ [n],

ak,j > 0 =⇒ xj = f(xk), (66)

then we say A reflects f .

Notice that Theorem 19 is basically Theorem 3 but limits the function f maps each
node to only one node, instead of a set of nodes as in Theorem 3 (and in this case eq. (6)
automatically holds). Although this condition seems stronger, we note that following the
same idea used in the main paper, that we can compose multiple attention maps into one,
this still represents a large family of allowed attention maps.

Next, we prove a similar result as Theorem 4 under Theorem 19 that is independent of
input distribution.

Theorem 20 Suppose V = {vk}nk=1 ∈
(
Rd
)n is a good sequence converging to Z = {zx}x∈[c]

with parameter γ, and A = {ak,j}k,j∈[n] ∈ Rn×n is a nice attention map with parameter ψ
that reflects a function f : [c] → [c]. Then AV is a good sequence converging to

Z ′ =
{
zf(x)

}
x∈[c] (67)

with parameter 2γψ + c(γ + 2N), where N = maxx∈[c] ∥zx∥.

Proof Let AV = {uk}nk=1.
If k ≤ c, we have

∥∥uk − zf(xk)
∥∥ ≤ ∥uk − zxk∥+

∥∥zf(xk)∥∥+ ∥zxk∥ ≤ γ + 2N ≤ c(γ + 2N)√
k

. (68)

Below, we only need to consider k > c.
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We have

∥∥uk − zf(xk)
∥∥ =

∥∥∥∥∥∥∥∥
∑
j∈[k]

xj=f(xk)

ak,j
(
vj − zf(xk)

)∥∥∥∥∥∥∥∥ (69)

≤
∑
j∈[k]

xj=f(xk)

ak,j
∥∥vj − zxj

∥∥ (70)

≤
∑
j∈[k]

xj=f(xk)

ak,jγ√
j

(71)

≤ γ
k∑
j=1

ak,j√
j
. (72)

Now, define Sk,j =
∑j

i=1 ak,j and Sk,0 = 0. Since A is nice, we have Sj ≤ ψj
k . Notice that

ak,j = Sk,j − Sk,j−1. Thus we have

1

γ

∥∥uk − zf(xk)
∥∥ ≤

k∑
j=1

ak,j√
j

(73)

=

k∑
j=1

1√
j
(Sk,j − Sk,j−1) (74)

=
Sk,k√
k

+

k−1∑
j=0

Sk,j

(
1√
j
− 1√

j + 1

)
(75)

≤ ψ√
k
+
ψ

k

k−1∑
j=1

j

(
1√
j
− 1√

j + 1

)
(76)

=
ψ√
k
+
ψ

k

k−1∑
j=1

1√
j
− ψ(k − 1)

k
√
k

(77)

=
ψ

k

k∑
j=1

1√
j

(78)

≤ 2ψ√
k
. (79)

Thus we conclude that
∥∥uk − zf(xk)

∥∥ ≤ 2γψ√
k

for any k ∈ [n], which means U converges to{
zf(xk)

}n
k=1

with parameter 2γψ.

Using, Theorem 12 which is also independent of DGP, we can prove the generalized results
for a large family of attention maps by combining multiple attention maps that satisfies
Theorem 19.
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Appendix J. Integrating Other Transformer Components

In this section, we discuss how our theoretical results can extend to more complex and
realistic Transformer architectures beyond the simplified model described in Algorithm 1.
We first note that in our framework, any neuron-wise transformation (i.e., operations that
apply independently to the representation of each token) can be absorbed into the definition
of the great mapping σ. This includes FFNs as well as normalizations such as LayerNorm or
RMSNorm. Therefore, here we focus here two architectural components not yet discussed:
residual connections and multi-head attention.

Residual Connection The most critical step in the proof of Theorem 7 is Theorem 13,
which establishes that applying a nice attention map to a good sequence results in another
good sequence, and that the attention operates implicitly on the latent representations to
which the sequence converges. Introducing residual connections here is straightforward: with
residual connection, eq. (33) would become

z′
x =

(
1 + ρ

(ℓ)
A

)
zx + ρ

(ℓ)
B

∑
y∈[c]

wx,y
dx

zy + ρ
(ℓ)
O

∑
y∈[c]

πG(y)zy + ρ
(ℓ)
T v1, (80)

which is simply adding 1 to the ρ(ℓ)A coefficient. This modification only affects the δq term in
Theorem 7, which becomes

δq [(ρA + 1)I + ρBM ] , (81)

which makes the spectral gap smaller. This can slower the convergence, but will not prevent
it as long as the spectral gap of M is large enough.

Multi-head Attention Theorem 12 shows that any Lipschitz combination of good se-
quences remains a good sequence. Since multi-head attention can be viewed as a Lipschitz
combination of multiple single-head attentions, it follows that a multi-head attention mecha-
nism also satisfies Theorem 13, as long as each individual head does. All other parts of the
theoretical framework extend accordingly. Notice that the coefficients in Theorem 13 may
differ by constant factors in the multi-head case, but this does not affect the asymptotic
conclusions in Theorem 7, which only concern limiting behavior.

Appendix K. Empirical Verification

As discussed in the main text, Theorem 7 relies on a relatively strong structural assumption
about the attention maps. It is therefore essential to verify whether these assumptions hold
in practice. In this section, we empirically examine this question.

Specifically, in Figure 8, we compute the proportion of A,B,T type attention connections
defined in Appendix E. Note that Type O connections (i.e., connecting to arbitrary tokens)
are excluded from this analysis, as they cover all positions. For each head, we compute the
fraction of attention weights (across all layers) that fall into types A, B, or T. Overlapping
cases (e.g., the connection from the second token in the sequence to the first one can be
considered both as B and as T type) are counted only once. The figure shows that a large
proportion of attention weights (> 72% in total) indeed falls into these structured types,
lending empirical support to our theoretical assumptions.
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Figure 8: Proportion of structured attention connections. For each attention head,
we sum attention weights that falls into type A,B and T across all layers, and divide them by
total attention weights (which is equal to the number of tokens per layer, since the attention
weights are normalized). The dotted horizontal line is the average proportion over all heads.
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