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Abstract

Video generation models have progressed tremendously through large latent diffu-1

sion transformers trained with rectified flow techniques. Yet, despite these advances,2

these models still struggle with geometric inconsistencies, unstable motion, and3

visual artifacts that break the illusion of realistic 3D scenes. 3D-consistent video4

generation could significantly impact numerous downstream applications in gener-5

ation and reconstruction tasks. This work explores how simple epipolar geometry6

constraints can improve modern video diffusion models trained on internet-scale7

datasets. Despite their massive training data, these models often fail to capture the8

fundamental geometric principles underlying all visual content. While traditional9

computer vision methods are often non-differentiable and computationally expen-10

sive, they provide reliable, mathematically grounded signals for 3D consistency11

evaluation. We demonstrate that aligning diffusion models through a preference-12

based optimization framework using pairwise epipolar geometry constraints yields13

videos with superior visual quality, enhanced 3D consistency, and significantly14

improved motion stability. Our approach offers an efficient alignment strategy15

that enforces established geometric principles without requiring end-to-end dif-16

ferentiability. Evaluation shows that our method outperforms baseline models17

and alternative alignment approaches across various metrics. By bridging the gap18

between data-driven deep learning and classical geometric computer vision, we19

present a practical method for generating more spatially consistent videos without20

compromising visual quality or requiring explicit 3D supervision.21

1 Introduction22

Video generation has witnessed remarkable progress in recent years, with newer models [1–6]23

producing increasingly realistic content from text and image conditions. This rapid advancement has24

spurred researchers to repurpose these powerful video models for broader applications, including25

animation [7], virtual worlds generation [8], and novel view synthesis [9].26

Video diffusion models are trained on vast volumes of data, encoding rich priors about the visual27

world and its dynamics. Through extensive training, these models develop a strong understanding of28

object appearance, motion patterns, and scene composition. As a result, many recent works aim to29

utilize the priors from latent video diffusion models in various downstream tasks [10–12]. Despite30

this remarkable progress, these models still struggle to maintain perfect 3D consistency throughout31

generated sequences. Current video models often produce content with geometric inconsistencies,32

unstable motion, and perspective flaws, even though almost all training data is 3D consistent. Some33

approaches for enhancing 3D consistency rely on noise optimization [13], explicit guidance through34

point clouds [14, 15], or camera parameters [16]. Nevertheless, inaccurate control signals can35

constrain the model’s generative capabilities, and the latent space optimization typical in diffusion36

training makes it difficult to compute direct geometric losses on the final outputs.37
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With the rising popularity of reinforcement learning for model alignment [17–19], post-training38

alignment has recently gained more attention in diffusion model research as an alternative approach39

to improve model capabilities. Methods such as VideoReward [20] have finetuned vision-language40

models on a large-scale human preference data, enabling direct supervision through the reward model.41

However, it relies on human-annotated motion quality scores (1 to 5), which can introduce noisy42

signals into the training process and are expensive to collect. Human judgments about video quality43

are inherently subjective and may not consistently capture the geometric principles that ensure proper44

3D consistency. The gap between subjective human evaluations and objective geometric requirements45

creates an opportunity for alignment methods that leverage more mathematically grounded metrics46

for video quality assessment.47

We propose a simple approach that bridges modern video diffusion models with classical computer48

vision algorithms. Rather than incorporating explicit 3D guidance during generation, we use well-49

established non-differentiable geometric constraints as reward signals in a preference-based finetuning50

framework. Specifically, we leverage an epipolar geometry constraint: assessing 3D consistency51

between frames. By sampling multiple videos conditioned on the same prompt, we generate diverse52

camera trajectories that typically vary in geometric coherence. The quality of these trajectories53

is well-captured by epipolar geometry metrics, providing a reliable signal for identifying which54

generations better adhere to projective geometry principles. This insight enables us to rank videos55

based on their adherence to epipolar constraints, creating training pairs that guide the model toward56

improved geometric consistency.57

Our method implements this through Direct Preference Optimization (DPO) [17], requiring only58

relative rankings rather than absolute reward values. This approach bypasses the difficulties of59

directly using non-differentiable computer vision algorithms in the training loop. DPO only needs60

to determine which output better adheres to the geometric constraints. By finetuning the model to61

prioritize generations that satisfy these classical geometric constraints, we guide it towards generating62

inherently more 3D-consistent videos, without restricting its creative capabilities or requiring explicit63

3D supervision. As shown in Figure 1, this results in enhanced 3D consistency, smoother camera64

trajectories, and fewer artifacts compared to the baseline model.65

While simple in nature, this paper shows that a basic geometric constraint, described in 1982 [21],66

can recover what video models fail to do, even after large-scale training on billion-scale data: 3D67

consistency. In summary, the key contributions are as follows:68

Epipolar Geometry Optimization: We introduce a method for finetuning video diffusion models69

using epipolar geometry constraints as reward signals, particularly leveraging the Sampson distance70

to enhance 3D video consistency without needing differentiability. The models finetuned with the71

simple yet reliable signal from classical computer vision algorithms achieve superior consistency and72

quality, significantly reducing artifacts and unstable motion trajectories in generated content. Our73

approach demonstrates that aligning models with fundamental geometric principles leads to visually74

superior results while preserving the model’s ability to generate diverse and creative content.75

Comprehensive Evaluation Framework: We develop an extensive evaluation protocol that measures76

both perceptual quality and 3D consistency and adherence to projective geometry principles across77

diverse generation scenarios. We evaluate text and image-to-video finetuned models, exploring the78

impact of geometry-aware finetuning on a large set of metrics.79

Large-Scale Preference Dataset: We create and release a large dataset of over 162,000 generated80

videos annotated with 3D scene consistency metrics, enabling further research in geometry-aware81

video generation. This dataset includes diverse prompts spanning natural landscapes, architectural82

scenes, and dynamic environments, each with multiple video generations.83

2 Related Work84

We structure the related work section into generative models and post-training methods to adapt them.85

2.1 Video Generation Models86

Recent advances in video generation have been dominated by closed-source models developed by87

well-resourced technology companies. These models, trained on large proprietary datasets with88
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Figure 1: First and middle frame from videos generated by baseline and our epipolar-aligned model.
The baseline model produces geometrically inconsistent outputs with artifacts and unnatural motion
trajectories visible in distorted structures. Our model, finetuned with epipolar error, generates visibly
improved results with smoother camera trajectories, reduced artifacts, and enhanced 3D consistency.

computational resources beyond academic reach, have demonstrated remarkable capabilities while89

revealing limited architectural details. Notable releases include OpenAI’s Sora [1], which marked a90

significant leap in long-form video synthesis; Runway’s Gen-2 and Gen-3 [22]; Luma AI’s video91

models [23]; Pika Labs models [6]; and Google DeepMind’s Veo series [2]. While these systems92

produce impressive results, their closed nature limits opportunities to finetune them or apply them to93

other vision tasks.94

More recently, open-source large latent diffusion models have become available, increasing interest95

in improving video generators. Stable Video Diffusion [24] developed efficient training strategies96

for latent video diffusion. Hunyan-Video [5] presented a systematic approach to scaling models,97

LTX-Video [25] introduced optimizations for real-time generation, and Wan-2.1 [4] introduced an98

efficient 3D Variational Autoencoder [26] with expanded training pipelines. Wan-2.1 offers models99

for text-to-image and video-to-image in 1.3B and 14B parameter versions, enabling researchers to100

explore adaptation techniques for various downstream tasks.101

These video diffusion models are trained on enormous data volumes covering more content variety102

than specific applications need, making domain-aware alignment valuable for specialized tasks.103

Geometry-aware finetuning allows general-purpose models to maintain creative flexibility while104

ensuring adherence to physical principles like 3D consistency. V3D [12] finetunes models to105

generate 360 orbit frames for 3D reconstruction, while VideoReward [20] introduced a framework106

for reinforcement learning-based video model alignment. However, prior methods rely on subjective107

human preferences or vision language models [27] trained to mimic them. In contrast, our approach108

optimizes against mathematical rules from epipolar geometry, providing a clean signal that aligns109

models with fundamental 3D consistency principles rather than subjective judgments.110

2.2 Diffusion Models Alignment111

Since image and video latent diffusion models are trained on internet-scale noisy data, efficient112

finetuning, and alignment strategies have emerged as an active research area. Latent image diffusion113

models [28, 29] finetune models on data highly ranked by the aesthetics classifier [30]. DRAFT [31]114

and AlignProp [32] further explore this paradigm by tuning the diffusion model to maximize the115

reward function directly. DPOK [33] and DDPO [34] expand the paradigm to introduce distributional116

constraints. Diffusion-DPO [35] introduces the Direct Preference Optimization algorithm into117

diffusion model alignment. In contrast to other approaches, DPO does not require direct access118

to the reward model and can be trained with only pairwise preference data. Additionally, this119

eliminates the need to decode the final denoised sample, which can be finetuned directly in latent120

space, significantly improving training efficiency. Recently, VideoReward [20] adapted Diffusion-121

DPO for video alignment, effectively aligning video generation with human preferences. Yet, all these122

approaches focus on optimizing for subjective and noisy human evaluation. Lately, DSO [36] employs123

DPO to align 3D generators with physical soundness, and PISA explicitly [37] improves the physical124

stability of video generators with a multi-component reward function. Our method leverages classical125

computer vision algorithms to provide objective, mathematically grounded preference signals based126
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Figure 2: Epipolar Geometry Optimization pipeline. Our approach: (1) Generate diverse videos
using pretrained generators [4] and leverage the Sampson epipolar error to identify 3D consistent vs.
inconsistent samples; (2) Train policy pθ using Flow-DPO [20] to prefer geometrically consistent
outputs; (3) Apply the updated policy to enhance 3D consistency in the base video diffusion model.

on epipolar geometry, resulting in more reliable and consistent alignment with 3D physical principles.127

However, creating an explicit, robust, differentiable geometry reward model is challenging due to the128

complexity of accurately modeling and evaluating 3D consistency across diverse scenes. Our method129

addresses these challenges by leveraging classical computer vision algorithms to provide objective,130

physically grounded preferences based on epipolar geometry, resulting in consistent alignment.131

3 Method132

We aim to align pretrained video diffusion models to generate geometrically consistent 3D scenes133

from text or image prompts. To address this, we propose an alignment strategy that leverages classical134

epipolar geometry constraints within a preference-based optimization framework. Traditional rein-135

forcement learning approaches [18, 38] require explicit reward functions and access to final samples136

which is impractical for video models due to the absence of robust differentiable reward models and137

the prohibitive computational cost of the denoising process. Our key observation is that while classical138

epipolar geometry constraints do not produce a smooth, globally comparable loss surface across139

different scene types (e.g., indoor vs. outdoor scenes may exhibit different absolute error magnitudes140

due to variations in matchable feature counts), the relative intra-prompt error measurements remain141

consistent. When generating multiple video sequences with fixed conditioning, the stochastic nature142

of diffusion sampling produces outputs with varying degrees of geometric consistency. Epipolar143

error metrics are an effective tool to quantify relative 3D consistency, with higher values reliably144

indicating lower geometric consistency. This finding aligns with the direct preference optimization145

(DPO) paradigm, which requires only a relative metric to determine preference between output pairs146

rather than absolute reward values. The pairwise comparison nature of DPO eliminates the need147

for a globally normalized reward function, instead leveraging the reliable local ranking provided by148

epipolar geometry measurements to guide model alignment toward more geometrically consistent149

video generation.150

3.1 Objective Function151

Given the pretrained video generator pref that takes a text prompt and an optional first frame condi-152

tioning I and generates video samples x0 ∼ pref(x0|T, I∗), where I∗ ∈ {I, ∅} we want to learn the153

model pθ which is optimized to generate 3D-consistent video sequences. The one choice would be to154

optimize it with the following objective:155

max
θ

E(T,I∗∈{I,∅})∼Dc,x0∼pθ(x0|T,I∗) [r(x0)]

− βDKL [pθ(x0|T, I∗)∥pref(x0|T, I∗)] , (1)

where r(x0) is a reward function that outputs 3D consistency scores, Dc are samples from the156

reference model. The reward is maximized while the optimized model pθ is kept close to the157

reference model pref via a KL-divergence term weighted by the hyperparameter β. This formulation158

directly encourages the model to generate videos with improved geometric consistency. However,159
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this formulation presents a few critical practical challenges. First, the reward function r(x0) relies160

on classical computer vision algorithms that are non-differentiable, making direct gradient-based161

optimization infeasible. Second, evaluating this reward function requires complete video generation162

and subsequent geometric analysis, which is highly time-consuming for training large video diffusion163

models. These constraints make traditional reinforcement learning approaches impractical for our164

setting, and motivate our adoption of Direct Preference Optimization (DPO) [17, 35], which was165

originally designed for scenarios where direct reward optimization is similarly challenging.166

Assuming a fixed dataset of D({x, xw
0 , x

l
0}) which consists of condition c (text, image), and a pair of167

samples from the pref such that xw
0 has higher reward value than xl

0 (xw
0 ≻ xl

0).168

Diffusion-DPO [35] aligns diffusion models with human preferences by directly solving eq. (1)169

analytically. It interprets alignment as a classification problem and optimizes a policy to satisfy the170

preferences through supervised training. The Diffusion-DPO objective LDD(θ) is given by:171

−E

[
log σ

(
− β

2

(
∥ϵw − ϵθ(x

w
t , t)∥2 − ∥ϵw − ϵref(x

w
t , t)∥2

−
(
∥ϵl − ϵθ(x

l
t, t)∥2 − ∥ϵl − ϵref(x

l
t, t)∥2

)))]
, (2)

where x∗
t = (1 − t) x∗

0 + t ϵ∗, ϵ∗ ∼ N (0, I). The superscript ∗ ∈ {w, l} denotes either w for the172

sample with a higher score or l for a sample with a lower score, ϵ∗ is a ground truth or predicted noise173

by a diffusion model. The expectation is taken over samples {xw
0 ,x

l
0} ∼ D and the noise schedule t.174

For rectified flow models [39–41] the noise vector ϵ∗ is related to the velocity field v∗ following [20]:175

∥ϵ∗ − ϵpred(x
∗
t , t)∥2 = (1− t)2∥v∗ − vpred(x

∗
t , t)∥2 . (3)

The final Flow-DPO loss [20] is formulated as:176

−E

[
log σ

(
− βt

2

(
∥vw − vθ(x

w
t , t)∥2 − ∥vw − vref(x

w
t , t)∥2

−
(
∥vl − vθ(x

l
t, t)∥2 − ∥vl − vref(x

l
t, t)∥2

)))]
, (4)

where βt = β(1− t2).177

Intuitively, minimizing this loss encourages the model to improve its denoising performance on178

preferred samples xw
t relative to less preferred samples xl

t [20, 35]. This guides the predicted velocity179

field vθ to align more closely to videos exhibiting better 3D consistency while diverging from those180

with poorer geometric coherence.181

3.2 3D Consistency Metric182

We evaluate the 3D consistency of generated videos by validating how well they satisfy epipolar183

geometry constraints. Epipolar geometry represents the intrinsic projective relationship between two184

views of the same scene, depending only on the camera’s internal parameters and relative positions.185

In perfectly consistent 3D scenes, corresponding points across different viewpoints must adhere to186

these geometric constraints.187

For any two corresponding points x in one frame and x′ in another, the epipolar constraint x′TFx = 0188

must be satisfied, where F is the fundamental matrix. This constraint ensures that a point in one view189

must lie on its corresponding epipolar line in the other view. The fundamental matrix encapsulates190

the geometric relationship between the two camera poses. It can be formulated as F = [e′]×P
′P+,191

where P and P′ are the camera projection matrices, P+ is the pseudo-inverse of P, and e′ is the192

epipole in the second view.193

Given a pair of frames xi and xj from a generated video, we first compute a set of point corre-194

spondences using SIFT [42] feature matching. While we validate the method with a simple, robust195
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handcrafted descriptor, the pipeline can also leverage more recent learned descriptors [43–46]. These196

correspondences provide a robust set of matching points between the different viewpoints. We then197

estimate the fundamental matrix using the normalized 8-point algorithm within a RANSAC [47]198

framework to handle outliers.199

Once we have estimated the fundamental matrix, we can measure the geometric consistency using200

the Sampson epipolar error [21]:201

SE =
(x′TFx)2

(Fx)21 + (Fx)22 + (FTx′)21 + (FTx′)22
(5)

The Sampson error provides a first-order approximation to the geometric distance between a point202

and its epipolar line. Lower Sampson error values indicate better adherence to projective geometry203

constraints and, thus, more consistent 3D structure in the generated videos.204

3.3 Implementation Details205

We conduct experiments with a state-of-the-art open-source video diffusion model called Wan2.1 [4],206

which possesses 1.3 billion parameters. Our approach is validated in text-to-video and image-to-video207

generation setups to demonstrate versatility across conditioning types.208

Offline Dataset Generation Since our method focuses on 3D-consistent scene generation, we209

require videos of static scenes with dynamic camera movements. We extract text prompts from210

the DL3DV [48] and RealEstate10K [49] datasets, provided by [50], containing a wide variety of211

indoor and outdoor scenes. We generate three videos per caption to ensure sufficient variation in212

3D consistency quality, as our preliminary experiments showed that pairs generated from just two213

samples often lacked meaningful geometric differences. This approach balances computational214

efficiency with training data quality. We filter put near-static videos to prevent the model from215

learning a degenerate solution of minimizing camera movement to satisfy epipolar constraint. In total,216

we generate 24,000 videos for text-to-video and 30,000 videos for image-to-video training, requiring217

approximately 1,980 GPU hours on NVIDIA A6000s.218

Training Configuration Given the computational demands of fine-tuning large video diffusion219

models, we implement our approach using Low-Rank Adaptation (LoRA) [51] with rank r = 64 and220

α = 128. This strategy offers the additional benefit of eliminating the need to store the reference221

model separately in memory, since the base model with the adapter disabled naturally serves as222

pref during training. We train with a batch size of 32 for 10,000 iterations using the AdamW [52]223

optimizer with a learning rate of 5× 10−6 and 500 warmup steps. The finetuning takes 2 days on 4224

A6000 GPUs.225

4 Experiments226

We assess the effectiveness of our epipolar-aligned video diffusion model compared to baseline227

approaches and evaluate its impact on scene consistency, visual quality, and prompt alignment. Our228

evaluation setup consists of 200 videos extracted from the test sets of DL3DV [48] and RealEstate10K229

[49] datasets, covering a diverse range of indoor and outdoor scenes. To thoroughly test geometric230

consistency under challenging conditions, we amplify the complexity of camera motion by augment-231

ing prompts with motion-specific phrases (e.g., "orbiting around," "zooming in," "panning across").232

We evaluate our model across three complementary benchmarks: (1) the VideoReward benchmark233

[20], which measures general video generation quality; (2) VBench [53], which provides standardized234

metrics for temporal consistency and visual fidelity; and (3) our custom suite of 3D consistency235

metrics based on epipolar geometry constraints. This multi-protocol evaluation approach allows us to236

comprehensively assess the generated videos’ perceptual quality and geometric consistency.237

Figure 3 shows some qualitative examples. Before our fine-tuning, the videos often contain morphing238

objects or inconsistent geometry.239

4.1 VideoReward Benchmark Evaluation240

The VideoReward [20] benchmark evaluates videos across Visual Quality, Motion Quality, and241

Text Alignment dimensions using a vision language model [27] finetuned on human preferences.242
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Figure 3: Qualitative Evaluation: Visual comparison between the videos generated by the base
and finetuned model. First two rows: Wan-2.1-T2V [4], Last two: Wan-2.1-I2V. Our finetuning
significantly reduces artifacts and enhances motion smoothness, resulting in more geometrically
consistent 3D scenes. Best seen in the supplementary video.

Table 1: Win-rate vs. original model on the VideoReward [20] benchmark compared to a learned
metric [54].

Text-to-Video
Method Visual Quality Motion Quality Text Alignment Overall

DPO-MET3R [54] 56.5% 64.5% 44.0% 55.0%
DPO-Epipolar 72.0% 71.0% 55.0% 73.0%

Image-to-Video
Method Visual Quality Motion Quality Text Alignment Overall

DPO-MET3R [54] 47.02% 51.19% 54.76% 48.21%
DPO-Epipolar 51.35% 56.08% 49.32% 52.02%

Annotators select preferences between video pairs, and a VLM simulates these judgments. We use243

the resulting pairwise scores to compute win rates of our finetuned model versus the baseline. We244

also compare against a model aligned with MET3R [54] to assess how our epipolar geometry metric245

compares to modern 3D vision metrics [55]. Table 1 presents the results of this evaluation. Our246

text-to-video model significantly outperforms both the baseline and MET3R-based models across all247

metrics, with win rates of 72.0%, 71.0%, and 55.0% for Visual Quality, Motion Quality, and Text248

Alignment respectively. This demonstrates that alignment with epipolar constraints enhances not249

only motion quality but also visual fidelity by reducing artifacts. The image-to-video model, trained250

with more conservative hyperparameters to minimize baseline deviation, still shows meaningful251

improvements over both the baseline and MET3R-aligned models in most categories.252

4.2 VBench Benchmark Evaluation253

VBench [53] introduces a comprehensive benchmark suite for video generative models. It consists of254

a large set of metrics across multiple dimensions, facilitating fine-grained and objective evaluation.255

We provide the results on five metrics related to visual and motion quality. Background Consistency256

evaluates the temporal consistency of the background scenes by calculating CLIP [56] feature257

similarity across frames. Aesthetic Quality evaluates the artistic and beauty value humans perceive258

towards each video frame using the LAION aesthetic predictor [30], measuring such concepts as259

layout and photo-realism. Temporal Flickering extracts static frames and computes the mean260

absolute difference across frames. Motion Smoothness validates whether generated motion follows261
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Table 2: Results on the VBench [53] metrics comparing our epipolar-aligned model against the
original model.

Text-to-Video
Method Background Aesthetic Temporal Motion Dynamic

Consistency Quality Flickering Smoothness Degree

Baseline 0.930 0.541 0.958 0.981 0.815
Ours 0.942 0.551 0.969 0.984 0.627

Image-to-Video
Method Background Aesthetic Temporal Motion Dynamic

Consistency Quality Flickering Smoothness Degree

Baseline 0.955 0.498 0.981 0.992 0.378
Ours 0.955 0.499 0.980 0.992 0.343

Table 3: 3D consistency metrics comparing our epipolar-aligned model against the baseline and
MET3R [54] approach.

Text-to-Video
Method Motion Perspective Sampson MET3R

(mean SSIM) Fields Distance

Baseline 0.233 0.426 0.190 0.050
DPO-MET3R [54] 0.232 0.438 0.176 0.049
DPO-Epipolar 0.223 0.428 0.127 0.049

Image-to-Video
Method Motion Perspective Sampson MET3R

(mean SSIM) Fields Distance

Baseline 0.239 0.504 0.215 0.048
DPO-MET3R [54] 0.220 0.517 0.202 0.049
DPO-Epipolar 0.239 0.515 0.197 0.049

the physical law of the real world. It utilizes the motion priors in the video frame interpolation model262

[57] to evaluate the smoothness of generated motions. Finally, Dynamic Degree employs RAFT263

[58] to estimate the degree of dynamics in synthesized videos. The results are presented in Table 2.264

We compare the finetuned Wan-2.1 [4] models to the baseline. The text-to-video model improves265

the scores across all metrics; however, it sacrifices the dynamic degree by a bit. Nevertheless, the266

other benchmarks Table 3 and Table 1 demonstrate that the finetuned model generates comparable or267

superior dynamics. The image-to-video model, being finetuned, reduces the amount of edge cases268

that perform comparably to the baseline.269

4.3 3D Geometry Evaluation270

Last, we evaluate the direct impact of the finetuned models on 3D geometry metrics. Table 3 shows271

results across multiple geometric consistency measures. We assess Sampson error (our primary272

optimization target), MET3R score [54], the realism of Perspective Fields [59] and Motion Level.273

Perspective Fields classifier [60] evaluates the realism of image perspective fields. Since the metric274

is image-level, we compute the mean metric across all frames. Additionally, we validate whether275

the models tend to produce nearly static videos by computing the mean SSIM score between the276

first and all the other video frames, hence, high scores for static content. Models finetuned with277

epipolar geometry constraints show significant improvement in Sampson distance (33% reduction in278

text-to-video), while matching MET3R-optimized models on their own metric. This confirms that279

classical epipolar geometry provides a cleaner optimization signal than learned metrics, which show280

only modest self-improvement due to noise when evaluating generated content.281
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Table 4: Win-rate on the VideoReward [20] benchmark comparing different finetuning strategies.

Method Visual Quality Motion Quality Text Alignment Overall

sup. finetuning (SFT) 66.0% 63.0% 54.0% 64.5%
Flow-RWR [20] 63.5% 60.5% 57.0% 64.0%
DRO [36] 65.0% 54.0% 50.5% 64.5%
DPO [17] 72.0% 71.0% 55.0% 73.0%

4.4 Comparison with Other Fine-tuning Techniques282

We compare four finetuning strategies as shown in Table 4: Supervised Finetuning (SFT), Flow-based283

Reward-Weighted Regression (Flow-RWR) [20], Direct Reward Optimization (DRO) [36], and our284

proposed DPO with Sampson Error. SFT directly optimizes for minimal epipolar error but struggles285

without negative samples to distinguish consistency levels. Flow-RWR weights samples by reward286

values but suffers from inconsistent absolute metrics, while DRO eliminates reference model queries287

but deviates substantially from the baseline capabilities. Our approach outperforms all alternatives,288

achieving the highest win rates in Visual Quality (72.0%), Motion Quality (71.0%), and Overall score289

(73.0%). This demonstrates that preference-based optimization with geometric constraints provides290

more effective guidance than approaches relying on absolute metrics or unconstrained optimization.291

Notably, our method achieves these improvements while maintaining the generative flexibility of292

the original model, allowing it to produce diverse outputs that satisfy both creative and geometric293

requirements simultaneously.294

5 Limitations and Broader Impact295

Our approach primarily focuses on static scenes with dynamic camera movements, aligning well296

with applications in 3D reconstruction and novel view synthesis. Adapting this method to scenes297

with dynamic objects would require modifying the training pipeline to separately model and evaluate298

object motion and camera movement. Additionally, epipolar geometry constraints assume point299

correspondences coming from a static scene under camera motion, limiting effectiveness for scenes300

with independent object movement or non-rigid deformations where a single fundamental matrix301

cannot explain all correspondences. Video generation models may be misused to produce realistic302

but deceptive content, contributing to the spread of misinformation, political manipulation, and303

erosion of public trust. Furthermore, the computational resources required to train such models304

raise environmental concerns and may exacerbate inequalities in access to advanced AI technologies.305

Geometry-aware video generation can facilitate various 3D vision tasks, including scene reconstruc-306

tion, SLAM, and visual odometry. By improving geometric consistency in generated videos, our307

method produces more realistic and usable synthetic data for training computer vision systems. This308

advances applications in robotics and autonomous navigation, where accurate spatial understanding309

is crucial. The integration of classical geometry principles with modern generative models represents310

a promising direction for enhancing AI systems with stronger physical world understanding.311

6 Conclusion312

We have presented a novel approach for enhancing 3D consistency in video diffusion models by313

leveraging classical epipolar geometry constraints as preference signals. Our work demonstrates314

that aligning modern generative models with fundamental geometric principles can significantly315

improve the spatial coherence of generated content. The robust, mathematically grounded signal316

from simple Sampson error calculations provides clear guidance without requiring complex 3D317

supervision or differentiable rewards. The resulting models generate videos with notably fewer318

geometric inconsistencies and more stable camera trajectories while preserving creative flexibility.319

This work highlights how classical computer vision algorithms can effectively complement deep320

learning approaches, addressing limitations in purely data-driven systems and improving generated321

content quality through adherence to fundamental physical principles.322
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NeurIPS Paper Checklist473

1. Claims474

Question: Do the main claims made in the abstract and introduction accurately reflect the475

paper’s contributions and scope?476

Answer: [Yes]477

Justification: section 3 introduce and describe our approach in details while section 4478

evaluates it’s effectiveness.479

Guidelines:480

• The answer NA means that the abstract and introduction do not include the claims481

made in the paper.482

• The abstract and/or introduction should clearly state the claims made, including the483

contributions made in the paper and important assumptions and limitations. A No or484

NA answer to this question will not be perceived well by the reviewers.485

• The claims made should match theoretical and experimental results, and reflect how486

much the results can be expected to generalize to other settings.487

• It is fine to include aspirational goals as motivation as long as it is clear that these goals488

are not attained by the paper.489

2. Limitations490

Question: Does the paper discuss the limitations of the work performed by the authors?491

Answer: [Yes]492

Justification: The limitations of the approach are discussed in section 5.493

Guidelines:494

• The answer NA means that the paper has no limitation while the answer No means that495

the paper has limitations, but those are not discussed in the paper.496

• The authors are encouraged to create a separate "Limitations" section in their paper.497

• The paper should point out any strong assumptions and how robust the results are to498

violations of these assumptions (e.g., independence assumptions, noiseless settings,499

model well-specification, asymptotic approximations only holding locally). The authors500

should reflect on how these assumptions might be violated in practice and what the501

implications would be.502

• The authors should reflect on the scope of the claims made, e.g., if the approach was503

only tested on a few datasets or with a few runs. In general, empirical results often504

depend on implicit assumptions, which should be articulated.505

• The authors should reflect on the factors that influence the performance of the approach.506

For example, a facial recognition algorithm may perform poorly when image resolution507

is low or images are taken in low lighting. Or a speech-to-text system might not be508

used reliably to provide closed captions for online lectures because it fails to handle509

technical jargon.510

• The authors should discuss the computational efficiency of the proposed algorithms511

and how they scale with dataset size.512

• If applicable, the authors should discuss possible limitations of their approach to513

address problems of privacy and fairness.514

• While the authors might fear that complete honesty about limitations might be used by515

reviewers as grounds for rejection, a worse outcome might be that reviewers discover516

limitations that aren’t acknowledged in the paper. The authors should use their best517

judgment and recognize that individual actions in favor of transparency play an impor-518

tant role in developing norms that preserve the integrity of the community. Reviewers519

will be specifically instructed to not penalize honesty concerning limitations.520

3. Theory assumptions and proofs521

Question: For each theoretical result, does the paper provide the full set of assumptions and522

a complete (and correct) proof?523

Answer: [NA]524

13



Justification: The paper does not include theoretical results.525

Guidelines:526

• The answer NA means that the paper does not include theoretical results.527

• All the theorems, formulas, and proofs in the paper should be numbered and cross-528

referenced.529

• All assumptions should be clearly stated or referenced in the statement of any theorems.530

• The proofs can either appear in the main paper or the supplemental material, but if531

they appear in the supplemental material, the authors are encouraged to provide a short532

proof sketch to provide intuition.533

• Inversely, any informal proof provided in the core of the paper should be complemented534

by formal proofs provided in appendix or supplemental material.535

• Theorems and Lemmas that the proof relies upon should be properly referenced.536

4. Experimental result reproducibility537

Question: Does the paper fully disclose all the information needed to reproduce the main ex-538

perimental results of the paper to the extent that it affects the main claims and/or conclusions539

of the paper (regardless of whether the code and data are provided or not)?540

Answer: [Yes]541

Justification: The Implementation Details are discussed in section 3.542

Guidelines:543

• The answer NA means that the paper does not include experiments.544

• If the paper includes experiments, a No answer to this question will not be perceived545

well by the reviewers: Making the paper reproducible is important, regardless of546

whether the code and data are provided or not.547

• If the contribution is a dataset and/or model, the authors should describe the steps taken548

to make their results reproducible or verifiable.549

• Depending on the contribution, reproducibility can be accomplished in various ways.550

For example, if the contribution is a novel architecture, describing the architecture fully551

might suffice, or if the contribution is a specific model and empirical evaluation, it may552

be necessary to either make it possible for others to replicate the model with the same553

dataset, or provide access to the model. In general. releasing code and data is often554

one good way to accomplish this, but reproducibility can also be provided via detailed555

instructions for how to replicate the results, access to a hosted model (e.g., in the case556

of a large language model), releasing of a model checkpoint, or other means that are557

appropriate to the research performed.558

• While NeurIPS does not require releasing code, the conference does require all submis-559

sions to provide some reasonable avenue for reproducibility, which may depend on the560

nature of the contribution. For example561

(a) If the contribution is primarily a new algorithm, the paper should make it clear how562

to reproduce that algorithm.563

(b) If the contribution is primarily a new model architecture, the paper should describe564

the architecture clearly and fully.565

(c) If the contribution is a new model (e.g., a large language model), then there should566

either be a way to access this model for reproducing the results or a way to reproduce567

the model (e.g., with an open-source dataset or instructions for how to construct568

the dataset).569

(d) We recognize that reproducibility may be tricky in some cases, in which case570

authors are welcome to describe the particular way they provide for reproducibility.571

In the case of closed-source models, it may be that access to the model is limited in572

some way (e.g., to registered users), but it should be possible for other researchers573

to have some path to reproducing or verifying the results.574

5. Open access to data and code575

Question: Does the paper provide open access to the data and code, with sufficient instruc-576

tions to faithfully reproduce the main experimental results, as described in supplemental577

material?578
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Answer: [Yes]579

Justification: We aim to release the code and preferences dataset upon acceptance.580

Guidelines:581

• The answer NA means that paper does not include experiments requiring code.582

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/583

public/guides/CodeSubmissionPolicy) for more details.584

• While we encourage the release of code and data, we understand that this might not be585

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not586

including code, unless this is central to the contribution (e.g., for a new open-source587

benchmark).588

• The instructions should contain the exact command and environment needed to run to589

reproduce the results. See the NeurIPS code and data submission guidelines (https:590

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.591

• The authors should provide instructions on data access and preparation, including how592

to access the raw data, preprocessed data, intermediate data, and generated data, etc.593

• The authors should provide scripts to reproduce all experimental results for the new594

proposed method and baselines. If only a subset of experiments are reproducible, they595

should state which ones are omitted from the script and why.596

• At submission time, to preserve anonymity, the authors should release anonymized597

versions (if applicable).598

• Providing as much information as possible in supplemental material (appended to the599

paper) is recommended, but including URLs to data and code is permitted.600

6. Experimental setting/details601

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-602

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the603

results?604

Answer: [Yes]605

Justification: The details are presented in section 3606

Guidelines:607

• The answer NA means that the paper does not include experiments.608

• The experimental setting should be presented in the core of the paper to a level of detail609

that is necessary to appreciate the results and make sense of them.610

• The full details can be provided either with the code, in appendix, or as supplemental611

material.612

7. Experiment statistical significance613

Question: Does the paper report error bars suitably and correctly defined or other appropriate614

information about the statistical significance of the experiments?615

Answer:[Yes]616

Justification: The paper evaluates the approach on common video evaluation metrics as well617

as a custom set of metrics that validate 3D consitency.618

Guidelines:619

• The answer NA means that the paper does not include experiments.620

• The authors should answer "Yes" if the results are accompanied by error bars, confi-621

dence intervals, or statistical significance tests, at least for the experiments that support622

the main claims of the paper.623

• The factors of variability that the error bars are capturing should be clearly stated (for624

example, train/test split, initialization, random drawing of some parameter, or overall625

run with given experimental conditions).626

• The method for calculating the error bars should be explained (closed form formula,627

call to a library function, bootstrap, etc.)628

• The assumptions made should be given (e.g., Normally distributed errors).629
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• It should be clear whether the error bar is the standard deviation or the standard error630

of the mean.631

• It is OK to report 1-sigma error bars, but one should state it. The authors should632

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis633

of Normality of errors is not verified.634

• For asymmetric distributions, the authors should be careful not to show in tables or635

figures symmetric error bars that would yield results that are out of range (e.g. negative636

error rates).637

• If error bars are reported in tables or plots, The authors should explain in the text how638

they were calculated and reference the corresponding figures or tables in the text.639

8. Experiments compute resources640

Question: For each experiment, does the paper provide sufficient information on the com-641

puter resources (type of compute workers, memory, time of execution) needed to reproduce642

the experiments?643

Answer: [Yes]644

Justification: The analysis is provided in section 3645

Guidelines:646

• The answer NA means that the paper does not include experiments.647

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,648

or cloud provider, including relevant memory and storage.649

• The paper should provide the amount of compute required for each of the individual650

experimental runs as well as estimate the total compute.651

• The paper should disclose whether the full research project required more compute652

than the experiments reported in the paper (e.g., preliminary or failed experiments that653

didn’t make it into the paper).654

9. Code of ethics655

Question: Does the research conducted in the paper conform, in every respect, with the656

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?657

Answer: [Yes]658

Justification: The research does not involve human subjects or participants. All experiments659

are conducted with publicly available models and datasets.660

Guidelines:661

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.662

• If the authors answer No, they should explain the special circumstances that require a663

deviation from the Code of Ethics.664

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-665

eration due to laws or regulations in their jurisdiction).666

10. Broader impacts667

Question: Does the paper discuss both potential positive societal impacts and negative668

societal impacts of the work performed?669

Answer: [NA]670

Justification: The analysis is provided in section 5671

Guidelines:672

• The answer NA means that there is no societal impact of the work performed.673

• If the authors answer NA or No, they should explain why their work has no societal674

impact or why the paper does not address societal impact.675

• Examples of negative societal impacts include potential malicious or unintended uses676

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations677

(e.g., deployment of technologies that could make decisions that unfairly impact specific678

groups), privacy considerations, and security considerations.679
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• The conference expects that many papers will be foundational research and not tied680

to particular applications, let alone deployments. However, if there is a direct path to681

any negative applications, the authors should point it out. For example, it is legitimate682

to point out that an improvement in the quality of generative models could be used to683

generate deepfakes for disinformation. On the other hand, it is not needed to point out684

that a generic algorithm for optimizing neural networks could enable people to train685

models that generate Deepfakes faster.686

• The authors should consider possible harms that could arise when the technology is687

being used as intended and functioning correctly, harms that could arise when the688

technology is being used as intended but gives incorrect results, and harms following689

from (intentional or unintentional) misuse of the technology.690

• If there are negative societal impacts, the authors could also discuss possible mitigation691

strategies (e.g., gated release of models, providing defenses in addition to attacks,692

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from693

feedback over time, improving the efficiency and accessibility of ML).694

11. Safeguards695

Question: Does the paper describe safeguards that have been put in place for responsible696

release of data or models that have a high risk for misuse (e.g., pretrained language models,697

image generators, or scraped datasets)?698

Answer: [NA]699

Justification: The finetuned generators are based on publicly available video diffusion700

models.701

Guidelines:702

• The answer NA means that the paper poses no such risks.703

• Released models that have a high risk for misuse or dual-use should be released with704

necessary safeguards to allow for controlled use of the model, for example by requiring705

that users adhere to usage guidelines or restrictions to access the model or implementing706

safety filters.707

• Datasets that have been scraped from the Internet could pose safety risks. The authors708

should describe how they avoided releasing unsafe images.709

• We recognize that providing effective safeguards is challenging, and many papers do710

not require this, but we encourage authors to take this into account and make a best711

faith effort.712

12. Licenses for existing assets713

Question: Are the creators or original owners of assets (e.g., code, data, models), used in714

the paper, properly credited and are the license and terms of use explicitly mentioned and715

properly respected?716

Answer: [Yes]717

Justification: All datasets used in our research are of MIT License.718

Guidelines:719

• The answer NA means that the paper does not use existing assets.720

• The authors should cite the original paper that produced the code package or dataset.721

• The authors should state which version of the asset is used and, if possible, include a722

URL.723

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.724

• For scraped data from a particular source (e.g., website), the copyright and terms of725

service of that source should be provided.726

• If assets are released, the license, copyright information, and terms of use in the727

package should be provided. For popular datasets, paperswithcode.com/datasets728

has curated licenses for some datasets. Their licensing guide can help determine the729

license of a dataset.730

• For existing datasets that are re-packaged, both the original license and the license of731

the derived asset (if it has changed) should be provided.732
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• If this information is not available online, the authors are encouraged to reach out to733

the asset’s creators.734

13. New assets735

Question: Are new assets introduced in the paper well documented and is the documentation736

provided alongside the assets?737

Answer: [Yes]738

Justification: Yes, we plan to additionally release the code and preference data.739

Guidelines:740

• The answer NA means that the paper does not release new assets.741

• Researchers should communicate the details of the dataset/code/model as part of their742

submissions via structured templates. This includes details about training, license,743

limitations, etc.744

• The paper should discuss whether and how consent was obtained from people whose745

asset is used.746

• At submission time, remember to anonymize your assets (if applicable). You can either747

create an anonymized URL or include an anonymized zip file.748

14. Crowdsourcing and research with human subjects749

Question: For crowdsourcing experiments and research with human subjects, does the paper750

include the full text of instructions given to participants and screenshots, if applicable, as751

well as details about compensation (if any)?752

Answer: [NA]753

Justification: The paper does not involve crowdsourcing nor research with human subjects.754

Guidelines:755

• The answer NA means that the paper does not involve crowdsourcing nor research with756

human subjects.757

• Including this information in the supplemental material is fine, but if the main contribu-758

tion of the paper involves human subjects, then as much detail as possible should be759

included in the main paper.760

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,761

or other labor should be paid at least the minimum wage in the country of the data762

collector.763

15. Institutional review board (IRB) approvals or equivalent for research with human764

subjects765

Question: Does the paper describe potential risks incurred by study participants, whether766

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)767

approvals (or an equivalent approval/review based on the requirements of your country or768

institution) were obtained?769

Answer: [NA]770

Justification: The paper does not involve crowdsourcing nor research with human subjects.771

Guidelines:772

• The answer NA means that the paper does not involve crowdsourcing nor research with773

human subjects.774

• Depending on the country in which research is conducted, IRB approval (or equivalent)775

may be required for any human subjects research. If you obtained IRB approval, you776

should clearly state this in the paper.777

• We recognize that the procedures for this may vary significantly between institutions778

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the779

guidelines for their institution.780

• For initial submissions, do not include any information that would break anonymity (if781

applicable), such as the institution conducting the review.782

16. Declaration of LLM usage783
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Question: Does the paper describe the usage of LLMs if it is an important, original, or784

non-standard component of the core methods in this research? Note that if the LLM is used785

only for writing, editing, or formatting purposes and does not impact the core methodology,786

scientific rigorousness, or originality of the research, declaration is not required.787

Answer: [NA]788

Justification: The core method development in this research does not involve LLMs789

Guidelines:790

• The answer NA means that the core method development in this research does not791

involve LLMs as any important, original, or non-standard components.792

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)793

for what should or should not be described.794
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