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Abstract

Video generation models have progressed tremendously through large latent diffu-
sion transformers trained with rectified flow techniques. Yet, despite these advances,
these models still struggle with geometric inconsistencies, unstable motion, and
visual artifacts that break the illusion of realistic 3D scenes. 3D-consistent video
generation could significantly impact numerous downstream applications in gener-
ation and reconstruction tasks. This work explores how simple epipolar geometry
constraints can improve modern video diffusion models trained on internet-scale
datasets. Despite their massive training data, these models often fail to capture the
fundamental geometric principles underlying all visual content. While traditional
computer vision methods are often non-differentiable and computationally expen-
sive, they provide reliable, mathematically grounded signals for 3D consistency
evaluation. We demonstrate that aligning diffusion models through a preference-
based optimization framework using pairwise epipolar geometry constraints yields
videos with superior visual quality, enhanced 3D consistency, and significantly
improved motion stability. Our approach offers an efficient alignment strategy
that enforces established geometric principles without requiring end-to-end dif-
ferentiability. Evaluation shows that our method outperforms baseline models
and alternative alignment approaches across various metrics. By bridging the gap
between data-driven deep learning and classical geometric computer vision, we
present a practical method for generating more spatially consistent videos without
compromising visual quality or requiring explicit 3D supervision.

1 Introduction

Video generation has witnessed remarkable progress in recent years, with newer models [[1H6]]
producing increasingly realistic content from text and image conditions. This rapid advancement has
spurred researchers to repurpose these powerful video models for broader applications, including
animation [[7]], virtual worlds generation [8]], and novel view synthesis [9].

Video diffusion models are trained on vast volumes of data, encoding rich priors about the visual
world and its dynamics. Through extensive training, these models develop a strong understanding of
object appearance, motion patterns, and scene composition. As a result, many recent works aim to
utilize the priors from latent video diffusion models in various downstream tasks [10-12]]. Despite
this remarkable progress, these models still struggle to maintain perfect 3D consistency throughout
generated sequences. Current video models often produce content with geometric inconsistencies,
unstable motion, and perspective flaws, even though almost all training data is 3D consistent. Some
approaches for enhancing 3D consistency rely on noise optimization [13]], explicit guidance through
point clouds [[14} [15], or camera parameters [16]. Nevertheless, inaccurate control signals can
constrain the model’s generative capabilities, and the latent space optimization typical in diffusion
training makes it difficult to compute direct geometric losses on the final outputs.
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With the rising popularity of reinforcement learning for model alignment [17-19], post-training
alignment has recently gained more attention in diffusion model research as an alternative approach
to improve model capabilities. Methods such as VideoReward [20] have finetuned vision-language
models on a large-scale human preference data, enabling direct supervision through the reward model.
However, it relies on human-annotated motion quality scores (1 to 5), which can introduce noisy
signals into the training process and are expensive to collect. Human judgments about video quality
are inherently subjective and may not consistently capture the geometric principles that ensure proper
3D consistency. The gap between subjective human evaluations and objective geometric requirements
creates an opportunity for alignment methods that leverage more mathematically grounded metrics
for video quality assessment.

We propose a simple approach that bridges modern video diffusion models with classical computer
vision algorithms. Rather than incorporating explicit 3D guidance during generation, we use well-
established non-differentiable geometric constraints as reward signals in a preference-based finetuning
framework. Specifically, we leverage an epipolar geometry constraint: assessing 3D consistency
between frames. By sampling multiple videos conditioned on the same prompt, we generate diverse
camera trajectories that typically vary in geometric coherence. The quality of these trajectories
is well-captured by epipolar geometry metrics, providing a reliable signal for identifying which
generations better adhere to projective geometry principles. This insight enables us to rank videos
based on their adherence to epipolar constraints, creating training pairs that guide the model toward
improved geometric consistency.

Our method implements this through Direct Preference Optimization (DPO) [17], requiring only
relative rankings rather than absolute reward values. This approach bypasses the difficulties of
directly using non-differentiable computer vision algorithms in the training loop. DPO only needs
to determine which output better adheres to the geometric constraints. By finetuning the model to
prioritize generations that satisfy these classical geometric constraints, we guide it towards generating
inherently more 3D-consistent videos, without restricting its creative capabilities or requiring explicit
3D supervision. As shown in Figure |1} this results in enhanced 3D consistency, smoother camera
trajectories, and fewer artifacts compared to the baseline model.

While simple in nature, this paper shows that a basic geometric constraint, described in 1982 [21]],
can recover what video models fail to do, even after large-scale training on billion-scale data: 3D
consistency. In summary, the key contributions are as follows:

Epipolar Geometry Optimization: We introduce a method for finetuning video diffusion models
using epipolar geometry constraints as reward signals, particularly leveraging the Sampson distance
to enhance 3D video consistency without needing differentiability. The models finetuned with the
simple yet reliable signal from classical computer vision algorithms achieve superior consistency and
quality, significantly reducing artifacts and unstable motion trajectories in generated content. Our
approach demonstrates that aligning models with fundamental geometric principles leads to visually
superior results while preserving the model’s ability to generate diverse and creative content.

Comprehensive Evaluation Framework: We develop an extensive evaluation protocol that measures
both perceptual quality and 3D consistency and adherence to projective geometry principles across
diverse generation scenarios. We evaluate text and image-to-video finetuned models, exploring the
impact of geometry-aware finetuning on a large set of metrics.

Large-Scale Preference Dataset: We create and release a large dataset of over 162,000 generated
videos annotated with 3D scene consistency metrics, enabling further research in geometry-aware
video generation. This dataset includes diverse prompts spanning natural landscapes, architectural
scenes, and dynamic environments, each with multiple video generations.

2 Related Work

We structure the related work section into generative models and post-training methods to adapt them.

2.1 Video Generation Models

Recent advances in video generation have been dominated by closed-source models developed by
well-resourced technology companies. These models, trained on large proprietary datasets with
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Figure 1: First and middle frame from videos generated by baseline and our epipolar-aligned model.
The baseline model produces geometrically inconsistent outputs with artifacts and unnatural motion
trajectories visible in distorted structures. Our model, finetuned with epipolar error, generates visibly
improved results with smoother camera trajectories, reduced artifacts, and enhanced 3D consistency.

computational resources beyond academic reach, have demonstrated remarkable capabilities while
revealing limited architectural details. Notable releases include OpenAI’s Sora [1]], which marked a
significant leap in long-form video synthesis; Runway’s Gen-2 and Gen-3 [22]]; Luma AT’s video
models [23]]; Pika Labs models [6]; and Google DeepMind’s Veo series [2]. While these systems
produce impressive results, their closed nature limits opportunities to finetune them or apply them to
other vision tasks.

More recently, open-source large latent diffusion models have become available, increasing interest
in improving video generators. Stable Video Diffusion developed efficient training strategies
for latent video diffusion. Hunyan-Video [5] presented a systematic approach to scaling models,
LTX-Video [23]] introduced optimizations for real-time generation, and Wan-2.1 [4] introduced an
efficient 3D Variational Autoencoder [26] with expanded training pipelines. Wan-2.1 offers models
for text-to-image and video-to-image in 1.3B and 14B parameter versions, enabling researchers to
explore adaptation techniques for various downstream tasks.

These video diffusion models are trained on enormous data volumes covering more content variety
than specific applications need, making domain-aware alignment valuable for specialized tasks.
Geometry-aware finetuning allows general-purpose models to maintain creative flexibility while
ensuring adherence to physical principles like 3D consistency. V3D finetunes models to
generate 360 orbit frames for 3D reconstruction, while VideoReward [20] introduced a framework
for reinforcement learning-based video model alignment. However, prior methods rely on subjective
human preferences or vision language models [27] trained to mimic them. In contrast, our approach
optimizes against mathematical rules from epipolar geometry, providing a clean signal that aligns
models with fundamental 3D consistency principles rather than subjective judgments.

2.2 Diffusion Models Alignment

Since image and video latent diffusion models are trained on internet-scale noisy data, efficient
finetuning, and alignment strategies have emerged as an active research area. Latent image diffusion
models [28] finetune models on data highly ranked by the aesthetics classifier [30]. DRAFT [31]
and AlignProp further explore this paradigm by tuning the diffusion model to maximize the
reward function directly. DPOK [33] and DDPO [34] expand the paradigm to introduce distributional
constraints. Diffusion-DPO [33] introduces the Direct Preference Optimization algorithm into
diffusion model alignment. In contrast to other approaches, DPO does not require direct access
to the reward model and can be trained with only pairwise preference data. Additionally, this
eliminates the need to decode the final denoised sample, which can be finetuned directly in latent
space, significantly improving training efficiency. Recently, VideoReward [20] adapted Diffusion-
DPO for video alignment, effectively aligning video generation with human preferences. Yet, all these
approaches focus on optimizing for subjective and noisy human evaluation. Lately, DSO [36] employs
DPO to align 3D generators with physical soundness, and PISA explicitly [37] improves the physical
stability of video generators with a multi-component reward function. Our method leverages classical
computer vision algorithms to provide objective, mathematically grounded preference signals based
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Figure 2: Epipolar Geometry Optimization pipeline. Our approach: (1) Generate diverse videos
using pretrained generators [4] and leverage the Sampson epipolar error to identify 3D consistent vs.
inconsistent samples; (2) Train policy py using Flow-DPO [20] to prefer geometrically consistent
outputs; (3) Apply the updated policy to enhance 3D consistency in the base video diffusion model.

on epipolar geometry, resulting in more reliable and consistent alignment with 3D physical principles.
However, creating an explicit, robust, differentiable geometry reward model is challenging due to the
complexity of accurately modeling and evaluating 3D consistency across diverse scenes. Our method
addresses these challenges by leveraging classical computer vision algorithms to provide objective,
physically grounded preferences based on epipolar geometry, resulting in consistent alignment.

3 Method

We aim to align pretrained video diffusion models to generate geometrically consistent 3D scenes
from text or image prompts. To address this, we propose an alignment strategy that leverages classical
epipolar geometry constraints within a preference-based optimization framework. Traditional rein-
forcement learning approaches [[18}38]] require explicit reward functions and access to final samples
which is impractical for video models due to the absence of robust differentiable reward models and
the prohibitive computational cost of the denoising process. Our key observation is that while classical
epipolar geometry constraints do not produce a smooth, globally comparable loss surface across
different scene types (e.g., indoor vs. outdoor scenes may exhibit different absolute error magnitudes
due to variations in matchable feature counts), the relative intra-prompt error measurements remain
consistent. When generating multiple video sequences with fixed conditioning, the stochastic nature
of diffusion sampling produces outputs with varying degrees of geometric consistency. Epipolar
error metrics are an effective tool to quantify relative 3D consistency, with higher values reliably
indicating lower geometric consistency. This finding aligns with the direct preference optimization
(DPO) paradigm, which requires only a relative metric to determine preference between output pairs
rather than absolute reward values. The pairwise comparison nature of DPO eliminates the need
for a globally normalized reward function, instead leveraging the reliable local ranking provided by
epipolar geometry measurements to guide model alignment toward more geometrically consistent
video generation.

3.1 Objective Function

Given the pretrained video generator p that takes a text prompt and an optional first frame condi-
tioning I and generates video samples xg ~ pref(zo|T, I*), where I* € {I, )} we want to learn the
model py which is optimized to generate 3D-consistent video sequences. The one choice would be to
optimize it with the following objective:

maxX (7, 1+ e (1,0)) D wompo (ol 7,17) [T(20)]
— ADxL [p9($0|T7 I) || pret (0| T, I*)] ) (D
where r(z¢) is a reward function that outputs 3D consistency scores, D, are samples from the
reference model. The reward is maximized while the optimized model py is kept close to the

reference model p,s via a KL-divergence term weighted by the hyperparameter 3. This formulation
directly encourages the model to generate videos with improved geometric consistency. However,
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this formulation presents a few critical practical challenges. First, the reward function r(x() relies
on classical computer vision algorithms that are non-differentiable, making direct gradient-based
optimization infeasible. Second, evaluating this reward function requires complete video generation
and subsequent geometric analysis, which is highly time-consuming for training large video diffusion
models. These constraints make traditional reinforcement learning approaches impractical for our
setting, and motivate our adoption of Direct Preference Optimization (DPO) [[17, 35]], which was
originally designed for scenarios where direct reward optimization is similarly challenging.

Assuming a fixed dataset of D({z, ¥, x}}) which consists of condition c (text, image), and a pair of
samples from the pr such that x§’ has higher reward value than xf) (zg > xlo).

Diffusion-DPO [33] aligns diffusion models with human preferences by directly solving eq. (I)
analytically. It interprets alignment as a classification problem and optimizes a policy to satisfy the
preferences through supervised training. The Diffusion-DPO objective Lpp(f) is given by:

E[loga< O (e — el D ~ 1€ — et )P

— (I = eolock, BI* = 1€ em(xat)n?))ﬂ : @

where 27 = (1 —t) zj + t €*,¢* ~ N(0,I). The superscript * € {w,[} denotes either w for the
sample with a higher score or [ for a sample with a lower score, €* is a ground truth or predicted noise
by a diffusion model. The expectation is taken over samples {x{, x4} ~ D and the noise schedule .

For rectified flow models [39-41]] the noise vector €* is related to the velocity field v* following [20]:

lle" — Epred(xrat)HQ =01- 25)2”1’* - Upred(vat)HQ . 3

The final Flow-DPO loss [20] is formulated as:

E [mga( (e e

— (" = w6k, ) — " - vmf<xg,t)||2))>] , @

where 3; = B(1 — t2).

Intuitively, minimizing this loss encourages the model to improve its denoising performance on
preferred samples x}” relative to less preferred samples x} [20,35]. This guides the predicted velocity
field vy to align more closely to videos exhibiting better 3D consistency while diverging from those
with poorer geometric coherence.

3.2 3D Consistency Metric

We evaluate the 3D consistency of generated videos by validating how well they satisfy epipolar
geometry constraints. Epipolar geometry represents the intrinsic projective relationship between two
views of the same scene, depending only on the camera’s internal parameters and relative positions.
In perfectly consistent 3D scenes, corresponding points across different viewpoints must adhere to
these geometric constraints.

For any two corresponding points x in one frame and x’ in another, the epipolar constraint x’7 Fx = 0
must be satisfied, where F is the fundamental matrix. This constraint ensures that a point in one view
must lie on its corresponding epipolar line in the other view. The fundamental matrix encapsulates
the geometric relationship between the two camera poses. It can be formulated as F = [¢/] P'PT,
where P and P’ are the camera projection matrices, PV is the pseudo-inverse of P, and e’ is the
epipole in the second view.

Given a pair of frames x; and x; from a generated video, we first compute a set of point corre-
spondences using SIFT [42] feature matching. While we validate the method with a simple, robust
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handcrafted descriptor, the pipeline can also leverage more recent learned descriptors [43-46]. These
correspondences provide a robust set of matching points between the different viewpoints. We then
estimate the fundamental matrix using the normalized 8-point algorithm within a RANSAC [47]
framework to handle outliers.

Once we have estimated the fundamental matrix, we can measure the geometric consistency using
the Sampson epipolar error [21]:

(X/T FX)2 (5)
(Fx)t + (Fx)3 + (FTx)f + (FTx')3
The Sampson error provides a first-order approximation to the geometric distance between a point

and its epipolar line. Lower Sampson error values indicate better adherence to projective geometry
constraints and, thus, more consistent 3D structure in the generated videos.

Sg =

3.3 Implementation Details

We conduct experiments with a state-of-the-art open-source video diffusion model called Wan2.1 [4]],
which possesses 1.3 billion parameters. Our approach is validated in text-to-video and image-to-video
generation setups to demonstrate versatility across conditioning types.

Offline Dataset Generation Since our method focuses on 3D-consistent scene generation, we
require videos of static scenes with dynamic camera movements. We extract text prompts from
the DL3DV [48]] and RealEstate 10K [49] datasets, provided by [50], containing a wide variety of
indoor and outdoor scenes. We generate three videos per caption to ensure sufficient variation in
3D consistency quality, as our preliminary experiments showed that pairs generated from just two
samples often lacked meaningful geometric differences. This approach balances computational
efficiency with training data quality. We filter put near-static videos to prevent the model from
learning a degenerate solution of minimizing camera movement to satisfy epipolar constraint. In total,
we generate 24,000 videos for text-to-video and 30,000 videos for image-to-video training, requiring
approximately 1,980 GPU hours on NVIDIA A6000s.

Training Configuration Given the computational demands of fine-tuning large video diffusion
models, we implement our approach using Low-Rank Adaptation (LoRA) [51] with rank » = 64 and
o = 128. This strategy offers the additional benefit of eliminating the need to store the reference
model separately in memory, since the base model with the adapter disabled naturally serves as
Dref during training. We train with a batch size of 32 for 10,000 iterations using the AdamW [52]]
optimizer with a learning rate of 5 x 10~ and 500 warmup steps. The finetuning takes 2 days on 4
A6000 GPUs.

4 Experiments

We assess the effectiveness of our epipolar-aligned video diffusion model compared to baseline
approaches and evaluate its impact on scene consistency, visual quality, and prompt alignment. Our
evaluation setup consists of 200 videos extracted from the test sets of DL3DV [48]] and RealEstate 10K
[49] datasets, covering a diverse range of indoor and outdoor scenes. To thoroughly test geometric
consistency under challenging conditions, we amplify the complexity of camera motion by augment-
ing prompts with motion-specific phrases (e.g., "orbiting around," "zooming in," "panning across").
We evaluate our model across three complementary benchmarks: (1) the VideoReward benchmark
[20], which measures general video generation quality; (2) VBench [53]], which provides standardized
metrics for temporal consistency and visual fidelity; and (3) our custom suite of 3D consistency
metrics based on epipolar geometry constraints. This multi-protocol evaluation approach allows us to
comprehensively assess the generated videos’ perceptual quality and geometric consistency.

Figure 3| shows some qualitative examples. Before our fine-tuning, the videos often contain morphing
objects or inconsistent geometry.

4.1 VideoReward Benchmark Evaluation

The VideoReward [20] benchmark evaluates videos across Visual Quality, Motion Quality, and
Text Alignment dimensions using a vision language model [27] finetuned on human preferences.
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Figure 3: Qualitative Evaluation: Visual comparison between the videos generated by the base
and finetuned model. First two rows: Wan-2.1-T2V [4], Last two: Wan-2.1-12V. Our finetuning
significantly reduces artifacts and enhances motion smoothness, resulting in more geometrically
consistent 3D scenes. Best seen in the supplementary video.

Table 1: Win-rate vs. original model on the VideoReward [20] benchmark compared to a learned

metric [54].

Text-to-Video

Method Visual Quality Motion Quality Text Alignment Overall

DPO-MET3R [54] 56.5% 64.5% 44.0% 55.0%

DPO-Epipolar 72.0% 71.0% 55.0% 73.0%
Image-to-Video

Method Visual Quality Motion Quality Text Alignment Overall

DPO-MET3R [54] 47.02% 51.19% 54.76 % 48.21%

DPO-Epipolar 51.35% 56.08% 49.32% 52.02%

Annotators select preferences between video pairs, and a VLM simulates these judgments. We use
the resulting pairwise scores to compute win rates of our finetuned model versus the baseline. We
also compare against a model aligned with MET3R [54] to assess how our epipolar geometry metric
compares to modern 3D vision metrics [53]]. Table[T] presents the results of this evaluation. Our
text-to-video model significantly outperforms both the baseline and MET3R-based models across all
metrics, with win rates of 72.0%, 71.0%, and 55.0% for Visual Quality, Motion Quality, and Text
Alignment respectively. This demonstrates that alignment with epipolar constraints enhances not
only motion quality but also visual fidelity by reducing artifacts. The image-to-video model, trained
with more conservative hyperparameters to minimize baseline deviation, still shows meaningful
improvements over both the baseline and MET3R-aligned models in most categories.

4.2 VBench Benchmark Evaluation

VBench [53] introduces a comprehensive benchmark suite for video generative models. It consists of
a large set of metrics across multiple dimensions, facilitating fine-grained and objective evaluation.
We provide the results on five metrics related to visual and motion quality. Background Consistency
evaluates the temporal consistency of the background scenes by calculating CLIP [36] feature
similarity across frames. Aesthetic Quality evaluates the artistic and beauty value humans perceive
towards each video frame using the LAION aesthetic predictor [30]], measuring such concepts as
layout and photo-realism. Temporal Flickering extracts static frames and computes the mean
absolute difference across frames. Motion Smoothness validates whether generated motion follows
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Table 2: Results on the VBench [53]] metrics comparing our epipolar-aligned model against the
original model.

Text-to-Video

Method  Background Aesthetic = Temporal Motion Dynamic
Consistency  Quality  Flickering Smoothness  Degree

Baseline 0.930 0.541 0.958 0.981 0.815
Ours 0.942 0.551 0.969 0.984 0.627

Image-to-Video

Method  Background Aesthetic = Temporal Motion Dynamic
Consistency  Quality  Flickering Smoothness  Degree

Baseline 0.955 0.498 0.981 0.992 0.378
Ours 0.955 0.499 0.980 0.992 0.343

Table 3: 3D consistency metrics comparing our epipolar-aligned model against the baseline and
MET3R [54] approach.

Text-to-Video

Method Motion Perspective  Sampson MET3R
(mean SSIM) Fields Distance

Baseline 0.233 0.426 0.190 0.050

DPO-METS3R [54] 0.232 0.438 0.176 0.049

DPO-Epipolar 0.223 0.428 0.127 0.049

Image-to-Video

Method Motion Perspective  Sampson MET3R
(mean SSIM) Fields Distance

Baseline 0.239 0.504 0.215 0.048

DPO-MET3R [54] 0.220 0.517 0.202 0.049

DPO-Epipolar 0.239 0.515 0.197 0.049

the physical law of the real world. It utilizes the motion priors in the video frame interpolation model
[57] to evaluate the smoothness of generated motions. Finally, Dynamic Degree employs RAFT
(58] to estimate the degree of dynamics in synthesized videos. The results are presented in Table[2]
We compare the finetuned Wan-2.1 [4] models to the baseline. The text-to-video model improves
the scores across all metrics; however, it sacrifices the dynamic degree by a bit. Nevertheless, the
other benchmarks Table [3] and Table [I|demonstrate that the finetuned model generates comparable or
superior dynamics. The image-to-video model, being finetuned, reduces the amount of edge cases
that perform comparably to the baseline.

4.3 3D Geometry Evaluation

Last, we evaluate the direct impact of the finetuned models on 3D geometry metrics. Table 3] shows
results across multiple geometric consistency measures. We assess Sampson error (our primary
optimization target), MET3R score [54], the realism of Perspective Fields [59] and Motion Level.
Perspective Fields classifier [60] evaluates the realism of image perspective fields. Since the metric
is image-level, we compute the mean metric across all frames. Additionally, we validate whether
the models tend to produce nearly static videos by computing the mean SSIM score between the
first and all the other video frames, hence, high scores for static content. Models finetuned with
epipolar geometry constraints show significant improvement in Sampson distance (33% reduction in
text-to-video), while matching MET3R-optimized models on their own metric. This confirms that
classical epipolar geometry provides a cleaner optimization signal than learned metrics, which show
only modest self-improvement due to noise when evaluating generated content.
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Table 4: Win-rate on the VideoReward [20] benchmark comparing different finetuning strategies.

Method Visual Quality Motion Quality Text Alignment Overall
sup. finetuning (SFT) 66.0% 63.0% 54.0% 64.5%
Flow-RWR [20] 63.5% 60.5% 57.0% 64.0%
DRO [36] 65.0% 54.0% 50.5% 64.5%
DPO [17] 72.0% 71.0% 55.0% 73.0%

4.4 Comparison with Other Fine-tuning Techniques

We compare four finetuning strategies as shown in Table[d} Supervised Finetuning (SFT), Flow-based
Reward-Weighted Regression (Flow-RWR) [20], Direct Reward Optimization (DRO) [36], and our
proposed DPO with Sampson Error. SFT directly optimizes for minimal epipolar error but struggles
without negative samples to distinguish consistency levels. Flow-RWR weights samples by reward
values but suffers from inconsistent absolute metrics, while DRO eliminates reference model queries
but deviates substantially from the baseline capabilities. Our approach outperforms all alternatives,
achieving the highest win rates in Visual Quality (72.0%), Motion Quality (71.0%), and Overall score
(73.0%). This demonstrates that preference-based optimization with geometric constraints provides
more effective guidance than approaches relying on absolute metrics or unconstrained optimization.
Notably, our method achieves these improvements while maintaining the generative flexibility of
the original model, allowing it to produce diverse outputs that satisfy both creative and geometric
requirements simultaneously.

5 Limitations and Broader Impact

Our approach primarily focuses on static scenes with dynamic camera movements, aligning well
with applications in 3D reconstruction and novel view synthesis. Adapting this method to scenes
with dynamic objects would require modifying the training pipeline to separately model and evaluate
object motion and camera movement. Additionally, epipolar geometry constraints assume point
correspondences coming from a static scene under camera motion, limiting effectiveness for scenes
with independent object movement or non-rigid deformations where a single fundamental matrix
cannot explain all correspondences. Video generation models may be misused to produce realistic
but deceptive content, contributing to the spread of misinformation, political manipulation, and
erosion of public trust. Furthermore, the computational resources required to train such models
raise environmental concerns and may exacerbate inequalities in access to advanced Al technologies.
Geometry-aware video generation can facilitate various 3D vision tasks, including scene reconstruc-
tion, SLAM, and visual odometry. By improving geometric consistency in generated videos, our
method produces more realistic and usable synthetic data for training computer vision systems. This
advances applications in robotics and autonomous navigation, where accurate spatial understanding
is crucial. The integration of classical geometry principles with modern generative models represents
a promising direction for enhancing Al systems with stronger physical world understanding.

6 Conclusion

We have presented a novel approach for enhancing 3D consistency in video diffusion models by
leveraging classical epipolar geometry constraints as preference signals. Our work demonstrates
that aligning modern generative models with fundamental geometric principles can significantly
improve the spatial coherence of generated content. The robust, mathematically grounded signal
from simple Sampson error calculations provides clear guidance without requiring complex 3D
supervision or differentiable rewards. The resulting models generate videos with notably fewer
geometric inconsistencies and more stable camera trajectories while preserving creative flexibility.
This work highlights how classical computer vision algorithms can effectively complement deep
learning approaches, addressing limitations in purely data-driven systems and improving generated
content quality through adherence to fundamental physical principles.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: section [3] introduce and describe our approach in details while section [4]
evaluates it’s effectiveness.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations of the approach are discussed in section [3]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: The Implementation Details are discussed in section 3]
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We aim to release the code and preferences dataset upon acceptance.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The details are presented in section 3]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:[Yes]

Justification: The paper evaluates the approach on common video evaluation metrics as well
as a custom set of metrics that validate 3D consitency.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The analysis is provided in section 3|
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research does not involve human subjects or participants. All experiments
are conducted with publicly available models and datasets.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: The analysis is provided in section[3]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The finetuned generators are based on publicly available video diffusion
models.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All datasets used in our research are of MIT License.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Yes, we plan to additionally release the code and preference data.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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