
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PORT-HAMILTONIAN ARCHITECTURAL BIAS FOR
LONG-RANGE PROPAGATION IN DEEP GRAPH NET-
WORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The dynamics of information diffusion within graphs is a critical open issue that
heavily influences graph representation learning, especially when considering long-
range propagation. This calls for principled approaches that control and regulate
the degree of propagation and dissipation of information throughout the neural flow.
Motivated by this, we introduce port-Hamiltonian Deep Graph Networks, a novel
framework that models neural information flow in graphs by building on the laws
of conservation of Hamiltonian dynamical systems. We reconcile under a single
theoretical and practical framework both non-dissipative long-range propagation
and non-conservative behaviors, introducing tools from mechanical systems to
gauge the equilibrium between the two components. Our approach can be applied
to general message-passing architectures, and it provides theoretical guarantees on
information conservation in time. Empirical results prove the effectiveness of our
port-Hamiltonian scheme in pushing simple graph convolutional architectures to
state-of-the-art performance in long-range benchmarks.

1 INTRODUCTION

The conjoining of dynamical systems and deep learning has become a topic of great interest in recent
years. In particular, neural differential equations (neural DEs) demonstrate that neural networks and
differential equations are two sides of the same coin (Haber & Ruthotto, 2017; Chen et al., 2018;
Chang et al., 2019). This connection has been pushed to the domain of graph learning (Bacciu et al.,
2020; Wu et al., 2020), forging the field of differential-equations inspired Deep Graph Networks
(DE-DGNs) (Poli et al., 2019; Chamberlain et al., 2021a; Gravina et al., 2023; Han et al., 2024).

In this paper, we are interested in designing the information flow within a graph as a solution of a
port-Hamiltonian system (Van der Schaft, 2017), which is a general formalism for physical systems
that allows for both conservative and non-conservative dynamics, with the aim of allowing flexible
long-range propagation in DGNs. Indeed, long-range propagation is an ongoing challenge that
limits the power of the Message-Passing Neural Network (MPNN) family (Gilmer et al., 2017),
as their capacity to transmit information between nodes exponentially decreases as the distance
increases (Alon & Yahav, 2021; Di Giovanni et al., 2023). This prevents DGNs from effectively
solving real-world tasks, e.g., predicting anti-bacterial properties of peptide molecules (Dwivedi
et al., 2022). While recent literature proposes various approaches to mitigate this issue, such as
graph rewiring (Gasteiger et al., 2019; Topping et al., 2022; Gutteridge et al., 2023) and graph
transformers (Shi et al., 2021; Dwivedi & Bresson, 2021; Wu et al., 2023), here we aim to address
this problem providing a theoretically grounded framework through the prism of port-Hamiltonian-
inspired DE-DGNs. Therefore, we propose port-Hamiltonian Deep Graph Network (PH-DGN) a new
message-passing scheme that, by design, introduces the flexibility to balance non-dissipative long-
range propagation and non-conservative behaviors as required by the specific task at hand. Therefore,
when using purely conservative dynamics, our method allows the preservation and propagation of
long-range information by obeying the conservation laws. In contrast, when our method is used to its
full extent, internal damping and additional forces can deviate from this purely conservative behavior,
potentially increasing effectiveness in the downstream task. To the best of our knowledge, we are the
first to propose a port-Hamiltonian-inspired DE-DGNs. Leveraging the connection with Hamiltonian
systems, we provide theoretical guarantees that information is conserved over time. Lastly, the general

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

formulation of our approach can seamlessly incorporate any neighborhood aggregation function (i.e.,
DGN), thereby endowing these methods with the distinctive properties of our PH-DGN.

Our main contributions can be summarized as follows: (i) We introduce PH-DGN, a novel general
DE-DGN inspired by port-Hamiltonian dynamics, which enables the balance and integration of non-
dissipative long-range propagation and non-conservative behavior while seamlessly incorporating the
most suitable aggregation function; (ii) We theoretically prove that, when pure conservative dynamic
is employed, both the continuous and discretized versions of our framework allow for long-range
propagation in the message passing flow, since node states retain their past; (iii) We introduce tools
inspired by mechanical systems that deviate from such conservative behavior, thus facilitating a
clear interpretation from the physics perspective; and (iv) We conduct extensive experiments to
demonstrate the benefits of our method and the ability to stack thousands of layers. Our PH-DGN
outperforms existing state-of-the-art methods on both synthetic and real-world tasks.

2 PORT-HAMILTONIAN DEEP GRAPH NETWORK

We consider the problem of learning node embeddings for a graph G = (V, E), where V is a set of
n entities (the nodes) interacting through relations (i.e., edges) in E ⊆ V × V . Each node u ∈ V is
associated to state xu(t) ∈ Rd, that is the representation of the node at time t. The term X(t) ∈ Rn×d

is the matrix of all node states in graph G.

We introduce a new DE-DGN framework that designs the information flow within a graph as the
solution of a port-Hamiltonian system (Van der Schaft, 2017). Hamiltonian mechanics is a formalism
for physical systems based on the Hamiltonian function H(p,q, t), which represents the generalized
energy of the system with position q and momentum p. A classic example of a Hamiltonian
system is that of a simple mass-spring pendulum, with mass m attached to a spring with constant k
having position q = x and momentum p = mẋ. The Hamiltonian of the system is the total energy
H = K + P where K is the kinetic component K = p2

2m = 1
2mẋ2 and P the spring potential

component P = 1
2kx

2. Hamilton’s equations are then defined as:

ṗ = −∂H

∂q
= −kx, q̇ =

∂H

∂p
=

p

m
, (1)

from which we recover the well-known mass-spring pendulum equation mẍ = −kx. The Hamilto-
nian formalism allows for an easy description of the dynamics of a system based on its energy and
provides theoretical results that will allow us to guarantee relevant properties on our system, such as
energy preservation. It is widely used both in classical mechanics (Arnold et al., 2013) as well as
in quantum mechanics (Griffiths & Schroeter, 2018) due to its generality. In the port-Hamiltonian
formulation, the system allows for energy exchange between subsystems and interaction with external
environments. Therefore, port-Hamiltonian systems let us introduce non-conservative phenomena in
the system, such as internal dampening D(q)p and external forcing F (q, t), acting on the momentum
equation as ṗ = −∂H

∂q −D(q)p+ F (q, t).

Here, we show how the port-Hamiltonian formulation provides the backing to preserve and propagate
long-range information between nodes in the absence of non-conservative behaviors, thus in adherence
to the laws of conservation. The casting of the system in the more general, full port-Hamiltonian
setting, then, introduces the possibility of trading non-dissipation with non-conservative behaviors
when needed by the task at hand. Our approach is general, as it can be applied to any message-passing
DGN, and frames in a theoretically sound way the integration of non-dissipative propagation and
non-conservative behaviors. In the following, we refer to our framework as port-Hamiltonian Deep
Graph Network (PH-DGN). Figure 1 shows our high-level architecture hinting at how the initial state
of the system is propagated up to the terminal time T . While the state evolves preserving energy,
internal dampening and additional forces (in the following denoted as driving forces) can intervene to
alter its conservative trajectory.

In the following, we present our method in a bottom-up fashion. Thus, we start by deriving our
PH-DGN from a purely conservative system, proving its conservative behavior theoretically, and then
extend it by integrating non-conservative behaviors.

Conservative message passing. To inject a purely conservative behavior inspired by port-
Hamiltoninan dynamics into a DE-DGN, we start by considering the graph Hamiltonian system

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Initial
Contition

Final
Embedding

Energy preservation

Continuous time
Layers

External
Forcing

Internal
Dampening

and
and

Figure 1: A high-level overview of the proposed port-Hamiltonian Deep Graph Network. It sum-
marizes how the initial node state xu(0) is propagated by means of energy preservation up until
the terminal time T (i.e., layer L), xu(T). While the global system’s state y evolves preserving
energy, external forces (i.e., dampening D(y) and external control F (y, t)) can intervene to alter
its conservative trajectory. The gray trajectories between the initial and final states represent the
continuous evolution of the system. The discrete message passing step from layer ℓ to ℓ+ 1, which is
shown in middle of the figure, is given by the coupling of coordinates q and momenta p in terms of
neighborhood aggregation ΦG and influence to adjacent neighbors Φ∗

G . Self-influence on both q and
p from the previous step ℓ are omitted for simplicity.

described by the following ODE

dy(t)

dt
= J∇HG(y(t)), (2)

for time t ∈ [0, T] and subject to an initial condition y(0) = y0. The term y(t) ∈ Rnd is the
vectorized view of X(t) that represents the global state of the graph at time t, with an even dimension
d, following the notation of Hamiltonian systems (Hairer et al., 2006). HG : Rnd → R is a neural-
parameterized Hamiltonian function capturing the energy of the system. The skew-symmetric matrix

J =

(
0 −Ind/2

Ind/2 0

)
, with Ind/2 being the identity matrix of dimension nd/2, reflects a rotation

of the gradient ∇HG and couples the position and momentum of the system.

Since we are dealing with a port-Hamiltonian system, the global state y(t) is composed by
two components which are the momenta, p(t) = (p1(t), . . . ,pn(t)), and the position, q(t) =
(q1(t), . . . ,qn(t)), of the system, thus y(t) = (p(t),q(t)). Therefore, from the node (local) per-
spective, each node state is expressed as xu(t) = (pu(t),qu(t)).

Under this local node-wise perspective, Eq. (2) can be equivalently written as

dxu(t)

dt
=

(
ṗu(t)
q̇u(t)

)
=

(
−∇qu

HG(p(t),q(t))
∇pu

HG(p(t),q(t))

)
, ∀u ∈ V. (3)

With the aim of designing a purely conservative port-Hamiltonian system (i.e., driving forces are
null, reducing it to a Hamiltonian system) based on message passing, we instantiate the Hamiltonian
function HG as

HG(y(t)) =
∑
u∈V

σ̃(Wxu(t) + ΦG({xv(t)}v∈Nu
) + b)⊤1d, (4)

where σ̃(·) is the anti-derivative of a monotonically non-decreasing activation function σ, Nu is
the neighborhood of node u, and ΦG is a neighborhood aggregation permutation-invariant function.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Terms W ∈ Rd×d and b ∈ Rd are the weight matrix and the bias vector, respectively, containing the
trainable parameters of the system; 1d denotes a vector of ones of length d.

By computing the gradient ∇xuHG(y(t)) we obtain an explicit version of Eq. (3), which can be
rewritten from the node-wise perspective of the information flow as the sum of the self-node evolution
influence and its neighbor’s evolution influence (referred to as Φ∗

G). More formally, for each node
u ∈ V

dxu(t)

dt
= Ju

[
W⊤σ(Wxu(t) + ΦG({xv(t)}v∈Nu

) + b)

+
∑

v∈Nu∪{u}

(
∂ΦG({xv(t)}v∈Nu)

∂xu(t)

)⊤

σ(Wxu(t) + ΦG({xv(t)}v∈Nu
) + b)

︸ ︷︷ ︸
Φ∗

G

]
. (5)

Here, Ju has the same structure as J , but the identity blocks have dimension d/2 as it is applied to
the single node u. Notice that the system in Eq. (5) implements a Hamiltonian system, so it adheres
solely to conservation laws.

Now, given an initial condition xu(0) for a node u, and the other nodes in the graph, the ODE defined
in Eq. (5) is a continuous information processing system over a graph governed by conservation laws
that computes the final node representation xu(T). This is visually summarized in Figure 1 when
dampening and external forcing are excluded.

Moreover, we observe that the general formulation of the neighborhood aggregation function
ΦG({xv(t)}v∈Nu

) allows implementing any function that aggregates nodes (and edges) information.
Therefore, ΦG({xv(t)}v∈Nu

) allows enhancing a standard DGN with our Hamiltonian conservation.
As a demonstration of this, in Section 3, we experiment with two neighborhood aggregation functions,
which are the classical GCN aggregation (Kipf & Welling, 2017) and

ΦG({xv(t)}v∈Nu
) =

∑
v∈Nu

Vxv(t). (6)

Further details about the discretization of the purely conservative PH-DGN are in Appendix A.3.

Purely conservative PH-DGN allows long-range propagation. We show that our PH-DGN in
Eq. (5) adheres to the laws of conservation, allowing long-range propagation in the message-passing
flow.

As discussed in (Haber & Ruthotto, 2017; Gravina et al., 2023), non-dissipative propagation is directly
linked to the sensitivity of the solution of the ODE to its initial condition, thus to the stability of the
system. Such sensitivity is controlled by the Jacobian’s eigenvalues of Eq. (5). Under the assumption
that the Jacobian varies sufficiently slow over time and its eigenvalues are purely imaginary, then the
initial condition is effectively propagated into the final node representation, making the system both
stable and non-dissipative, thus allowing for long-range propagation.
Theorem 2.1. The Jacobian matrix of the system defined by the ODE in Eq. (5) possesses eigenvalues
purely on the imaginary axis, i.e.,

Re

(
λi

(
∂

∂xu
Ju∇xuHG(y(t))

))
= 0, ∀i,

where λi represents the i-th eigenvalue of the Jacobian.

We report the proof in Appendix B.1. Then, we take a further step and strengthen such result by
proving that the nonlinear vector field defined by conservative PH-DGN is divergence-free, thus
preserving information within the graph during the propagation process and helping to maintain
informative node representations. In other words, the PH-DGN’s dynamics possess a non-dissipative
behavior independently of both the assumption regarding the slow variation of the Jacobian and the
position of the Jacobian eigenvalues on the complex plane.
Theorem 2.2. The autonomous Hamiltonian HG of the system in Eq. (5) with learnable weights
shared across time stays constant at the energy level specified by the initial value HG(y(0)), i.e.,
dHG/dt = 0, and possesses a divergence-free nonlinear vector field

∇ · Ju∇xuHG(y(t)) = 0, t ∈ [0, T]. (7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

See proof in Appendix B.2. This allows us to interpret the system dynamics as purely rotational,
without energy loss, and demonstrates that our PH-DGN is governed by conservation laws when
driving forces are null.

We now provide a sensitivity analysis, following Chang et al. (2019); Gravina et al. (2023); Galimberti
et al. (2023), to prove that our conservative PH-DGN effectively allows for long-range information
propagation. Specifically, we measure the sensitivity of a node state after an arbitrary time T of the
information propagation with respect to its previous state, ∥∂xu(T)/∂xu(T − t)∥. In other words,
we compute the backward sensitivity matrix (BSM). We now provide a theoretical bound of our
PH-DGN, with its proof in Appendix B.3.
Theorem 2.3. Considering the continuous system defined by Eq. (5), the backward sensitivity matrix
(BSM) is bounded from below: ∥∥∥∥ ∂xu(T)

∂xu(T − t)

∥∥∥∥ ≥ 1, ∀t ∈ [0, T].

The result of Theorem 2.3 indicates that the gradients in the backward pass do not vanish, enabling
the effective propagation of previous node states through successive transformations to the final
nodes’ representations. Therefore, whenever driving forces are null, PH-DGN has a conservative
message passing, where the final representation of each node retains its complete past. We observe
that Theorem 2.3 holds even during discretization when the Symplectic Euler method is employed
(see Appendix A.3).

To give the full picture of the time dynamics of the gradients, we present a similar analysis and provide
an upper bound of the BSM in Theorem A.1. Recently, Topping et al. (2022); Di Giovanni et al.
(2023) proposed to evaluate the long-range propagation ability of a model by measuring the sensitivity
of the node embedding after ℓ layers with respect to the input of another node, i.e., ∥∂x(ℓ)

u /∂x
(0)
v ∥,

bounding such a measure on a MPNN:∥∥∥∥∥∂x(ℓ)
v

∂x
(0)
u

∥∥∥∥∥
L1

≤ (cσwd)
ℓ((crI+ caA)ℓ)vu (8)

where cσ is the Lipschitz constant of non linearity σ, w is the maximal entry-value over all weight
matrices, d is the embedding dimension, and cr and ca being the weighted contributions of the
residual and aggregation term, respectively. Following a similar analysis, in Theorem 2.4 we provide
a bound for our PH-DGN when Symplectic Euler method is used as discretization method.
Theorem 2.4. Considering our PH-DGN discretized via Symplectic Euler method (Eqs. (12) and (13)),
with neighborhood aggregation function of the form ΦG =

∑
v∈Nu

Vxv , then∥∥∥∥∥∂x(ℓ)
u

∂x
(0)
v

∥∥∥∥∥
L1

≤ (dwNcσ)
ℓ((wI+ w(N + 1)A)ℓ)uv, (9)

where N = maxu |Nu|, and cr = ca = 1 for simplicity.

See proof in Appendix B.6. The result of Theorem 2.4 indicates that our upper bound on the
right-hand side of the inequality is at least N ℓ times bigger than the one computed for an MPNN.
Therefore, together with previous theoretical results, it holds the capability of PH-DGN to perform
long-range propagation effectively.

Introducing dissipative components. Without driving forces, a purely conservative inductive bias
forces the node states to follow trajectories that maintain constant energy, potentially limiting the
effectiveness of the DGN on downstream tasks by restricting the system’s ability to model all complex
nonlinear dynamics. To this end, we complete the formalization of our port-Hamiltonian framework
by introducing tools from mechanical systems, such as friction and external control, to learn how
much the dynamic should deviate from this purely conservative behavior. Therefore, we extend the
dynamics in Eq. (5) by including two new terms D(q) ∈ Rd/2×d/2 and F (q, t) ∈ Rd/2, i.e.,

dxu(t)

dt
=

[
Ju −

(
D(q(t)) 0

0 0

)]
∇xu

HG(y(t)) +

(
F (q(t), t)

0

)
, ∀u ∈ V. (10)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Depending on the definition of D(q(t)) we can implement different forces. Specifically, if D(q(t))
is positive semi-definite then it implements internal dampening, while a negative semi-definite
implementation leads to internal acceleration. A mixture of dampening and acceleration is obtained
otherwise. In the case of dampening, the energy is decreased along the flow of the system (Van der
Schaft, 2017). To further enhance the modeling capabilities, we integrate the learnable state- and time-
dependent external force F (q(t), t), which further drives node representation trajectories. Figure 1
visually summarizes how such tools can be plugged in our framework during node update.

Although D(q(t)) and F (q(t), t) can be implemented as static (fixed) functions, in our experiments
in Section 3 we employ neural networks to learn such terms. We provide additional details on
the specific architectures in Appendix A.2. We provide further details about the discretization of
PH-DGN in Appendix A.3. Additional theoremes supporting the long-range propagation capability
of our PH-DGN with driving forces are provided in Appendix B.7.

3 EXPERIMENTS

We empirically verify both theoretical claims and practical benefits of our framework on popular
graph benchmarks for long-range propagation. First (Section 3.1), we conduct a controlled syn-
thetic test showing non-vanishing gradients even when thousands of layers are used. Afterward
(Section 3.2), we run a graph transfer task inspired by Di Giovanni et al. (2023) to assess the efficacy
in preserving long-range information between nodes. Then, we assess our framework in popular
benchmark tasks requiring the exchange of messages at large distances over the graph, including
graph property prediction (Section 3.3) and the long-range graph benchmark (Dwivedi et al., 2022)
(Section 3.4). An additional ablation on the impact of the different dissipative components on the
Minesweeper (Luo et al., 2024) and graph transfer tasks is reported in Appendix D.4. We compare
our performance to state-of-the-art methods, such as MPNN-based models, DE-DGNs (including
Hamiltonian-inspired DGNs), higher-order DGNs, and graph transformers. Notice that DE-DGNs
represent a direct competitor to our method. Additional details on literature methods are in Ap-
pendix C.1. We investigate two neighborhood aggregation functions for our PH-DGN, which are the
classical GCN aggregation and that in Eq. (6). Our model is implemented in PyTorch (Paszke et al.,
2017) and PyTorch-Geometric (Fey & Lenssen, 2019). We release openly the code implementing
our methodology and reproducing our empirical analysis upon acceptance. Our experimental results
were obtained using NVIDIA A100 GPUs and Intel Xeon Gold 5120 CPUs.

3.1 NUMERICAL SIMULATIONS

Setup. We empirically verify that our theoretical considerations on the purely conservative PH-DGN
(i.e., , the driving forces are null) hold true by an experiment requiring to propagate information
within a Carbon-60 molecule graph without training on any specific task, i.e., we perform no gradient
update step. While doing so, we measure the energy level captured in HG(y(ℓϵ)) in the forward pass
and the sensitivity, ∥∂x(L)

u /∂x
(ℓ)
u ∥, from each intermediate layer ℓ = 1, . . . , L in the backward pass.

We consider the 2-d position of the atom in the molecule as the input node features, fixed terminal
propagation time T = 10 with various integration step sizes ϵ ∈ {0.1, 0.01, 0.001} and T = 300
with ϵ = 0.3. Note that the corresponding number of layers is computed as L = T/ϵ, i.e., we use
tens to thousands of layers. For the ease of the simulation, we use tanh-nonlinearity, fixed learnable
weights that are randomly initialized, and the aggregation function in Eq. (6).

Results. In Figure 2a, we show the energy difference HG(y(ℓϵ)) − HG(y(0)) for different step
sizes. For a fixed time T , a smaller step size ϵ is related to a higher number of stacked layers.
We note that the energy difference oscillates around zero, and the smaller the step size the more
accurately the energy is preserved. This supports our intuition of the conservative PH-DGN being a
discretization of a divergence-free continuous Hamiltonian dynamic, that allows for non-dissipative
forward propagation, as stated in Theorem 2.1 and Theorem 2.2. Even for larger step sizes, energy is
neither gained nor lost.

Regarding the backward pass, Figures 2b, 2c assert that the lower bound ∥∂x(L)/∂x(ℓ)∥ ≥ 1 stated
in Theorem 2.3 and its discrete version in Theorem A.2 leads to non-vanishing gradients. In particular,
Figure 2c shows a logarithmic-linear increase of sensitivity with respect to the distance to the final
layer, hinting at the exponential upper bound derived in Theorem A.1. This growing behavior can be

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

controlled by regularizing the weight matrices, or by use of normalized aggregation functions, as in
GCN (Kipf & Welling, 2017).

(a) (b) (c)

Figure 2: (a) Time evolution of the energy difference to the initial state y(0) = y0 obtained from one
forward pass of conservative PH-DGN with fixed random weights on the Carbon-60 graph with three
different numbers of layers given by T/ϵ. The sensitivity ∥∂x(L)

u /∂x
(ℓ)
u ∥ of 15 different node states

to their final embedding obtained by backpropagation on the Carbon-60 graph after (b) T = 10 and
ϵ = 0.1 (i.e., 100 layers) and (c) T = 300 and ϵ = 0.3 (i.e., 1000 layers). The log scale’s horizontal
line at 0 indicates the theoretical lower bound.

3.2 GRAPH TRANSFER

Setup. We build on the graph transfer tasks by Di Giovanni et al. (2023) and consider the problem of
propagating a label from a source node to a target node located at increasing distances k in the graph.
We use the same graph distributions as in the original work, i.e., line, ring, and crossed-ring graphs. To
increase the difficulty of the task, we randomly initialize intermediate nodes with a feature uniformly
sampled in [0, 0.5). Source and destination nodes are initialized with labels “1” and “0”, respectively.
We considered problems at distances k ∈ {3, 5, 10, 50}, thus requiring incrementally higher efficacy
in propagating long-range information. Given the conservative nature of the task, we focus on
assessing our PH-DGN without driving forces. More details on the task and the hyperparameters can
be found in the Appendix C.2 and C.5.

Results. Figure 3 reports the test mean-squared error (and std. dev.) of PH-DGN compared to
literature models. It appears that classical MPNNs do not effectively propagate information across
long ranges as their performance decreases when k increases. Differently, PH-DGN achieves low
errors even at higher distances, i.e., k ≥ 10. The only competitor to our PH-DGN is A-DGN, which
is another non-dissipative method. Overall, PH-DGN outperforms all the classical MPNNs baseline
while having on average better performance than A-DGN, thus empirically supporting our claim of
long-range capabilities while introducing a new architectural bias. Moreover, our results highlight
how our framework can push simple graph convolutional architectures to state-of-the-art performance
when imbuing them with dynamics capable of long-range message exchange.

(a) Line (b) Ring (c) Crossed-Ring

Figure 3: Information transfer performance on (a) Line, (b) Ring, and (c) Crossed-Ring graphs.
Overall, baseline approaches are not able to transfer the information accurately as distance increase,
while non-dissipative methods like A-DGN and our PH-DGN achieve low errors.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

3.3 GRAPH PROPERTY PREDICTION

Setup. We consider three graph property prediction tasks introduced in Corso et al. (2020) under the
experimental setting of Gravina et al. (2023). We investigate the performance of our port-Hamiltonian
framework in predicting graph diameters, single source shortest paths (SSSP), and node eccentricity
on synthetic graphs. Note that to effectively solve these tasks, it is fundamental to propagate not only
the information of direct neighborhoods, but also the information coming from nodes far away in the
graph. Therefore, good performance in these tasks highlights long-range propagation capabilities. In
this experiment, we investigate the performance of our complete framework (i.e., including driving
forces), and present the pure conservative PH-DGN (referred to as PH-DGNC) as an ablation study.
More details on the task and the hyperparameters can be found in Appendix C.3 and C.5.

Results. We present the results on the graph property prediction tasks in Table 1,

Table 1: Mean test log10(MSE) and std average over 4 training
seeds on the Graph Property Prediction. Our methods and DE-
DGN baselines are implemented with weight sharing. The first,
second, and third best scores are colored.

Model Eccentricity Diameter SSSP
MPNNs
GCN 0.8468±0.0028 0.7424±0.0466 0.9499±9.2·10−5

GAT 0.7909±0.0222 0.8221±0.0752 0.6951±0.1499

GraphSAGE 0.7863±0.0207 0.8645±0.0401 0.2863±0.1843

GIN 0.9504±0.0007 0.6131±0.0990 -0.5408±0.4193

GCNII 0.7640±0.0355 0.5287±0.0570 -1.1329±0.0135

DE-DGNs
DGC 0.8261±0.0032 0.6028±0.0050 -0.1483±0.0231

GraphCON 0.6833±0.0074 0.0964±0.0620 -1.3836±0.0092

GRAND 0.6602±0.1393 0.6715±0.0490 -0.0942±0.3897

A-DGN 0.4296±0.1003 -0.5188±0.1812 -3.2417±0.0751

HamGNN 0.7851±0.0140 0.6762±0.1317 0.9449±0.0008

HANG 0.8302±0.0051 1.1036±0.1025 0.1671±0.0160

Ours
PH-DGNC -0.7248±0.1068 -0.5473±0.1074 -3.0467±0.1615

PH-DGN -0.9348±0.2097 -0.5385±0.0187 -4.2993±0.0721

reporting log10(MSE) as evaluation
metric. We observe that our PH-
DGN show a strong improvement
with respect to baseline methods,
achieving new state-of-the-art per-
formance on all the tasks. Our ab-
lation reveals that the purely con-
servative model has, on average, a
log10(MSE) that is 0.33 lower than
the best baseline. Such gap is
pushed to 0.81 when the full port-
Hamiltonian bias (i.e., PH-DGN) is
employed, marking a significant de-
crease in the test loss. The largest
gap is achieved by PH-DGN in the
eccentricity task, where it improves
the log10(MSE) performance of the
best baseline by 1.36. Moreover, we
note that our PH-DGN is more ef-
fective than its purely conservative
version and existing Hamiltonian-
inspired DE-DGN, i.e., HamGNN
and HANG, highlighting the signif-
icance of port-Hamiltonian dynam-
ics with respect to a purely conser-
vative inductive bias. This effectiveness is also reflected in the computational cost, as shown in
Appendix D.3, where our PH-DGN results to be more efficient both in terms of speed and memory
usage compared to HamGNN and HANG.

Although our purely conservative PH-DGNC shows improved performance with respect to all base-
lines, it appears that relaxing such bias via PH-DGN is more beneficial overall, leading to even greater
improvements in long-range information propagation. Our intuition is that such tasks do not require
purely conservative behavior since nodes need to count distances while exchanging more messages
with other nodes, similar to standard algorithmic solutions such as Dijkstra (1959). Therefore, the
energy may not be constant during the resolution of the task, hence benefiting from the non-purely
conservative behavior of PH-DGN.

As for the graph transfer task, our results demonstrate that our PH-DGNs can effectively learn and
exploit long-range information while pushing simple graph neural architectures to state-of-the-art
performance when modeling dynamics capable of long-range propagation.

3.4 LONG-RANGE GRAPH BENCHMARK

Setup. We assess the performance of our method on the real-world long-range graph benchmark
(LRGB) from Dwivedi et al. (2022), focusing on the Peptide-func and Peptide-struct tasks. As in
Section 3.3, we decouple our method into PH-DGN and PH-DGNC to provide an ablation study on
the strictly conservative behavior. For our evaluation, we follow the experimental setting in Dwivedi

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

et al. (2022). Acknowledging the results from Tönshoff et al. (2023), we also report results with a
3-layer MLP readout. While some baselines leverage positional or structural encodings, our approach
does not depend on these mechanisms. More details on the task and the hyperparameters can be
found in Appendix C.4 and C.5.

Table 2: Results for Peptides-func and Peptides-struct
averaged over 3 training seeds. The first, second, and
third best scores are colored. Extended version of this
table is provided in Appendix D.2. "+PE/SE" indicates
the use of positional or structural encoding. We have
detailed the type of encoding wherever the original source
explicitly specifies it.

Model Peptides-func Peptides-struct
AP ↑ MAE ↓

MPNNs, Tönshoff et al. (2023)
GCN+PE/SE 0.6860±0.0050 0.2460±0.0007

GCNII+PE/SE 0.6444±0.0011 0.2507±0.0012

GINE+PE/SE 0.6621±0.0067 0.2473±0.0017

GatedGCN+PE/SE 0.6765±0.0047 0.2477±0.0009

Multi-hop DGNs, Gutteridge et al. (2023)
DIGL+MPNN+LapPE 0.6830±0.0026 0.2616±0.0018

MixHop-GCN+LapPE 0.6843±0.0049 0.2614±0.0023

DRew-GCN+LapPE 0.7150±0.0044 0.2536±0.0015

Transformers, Gutteridge et al. (2023)
Transformer+LapPE 0.6326±0.0126 0.2529±0.0016

SAN+LapPE 0.6384±0.0121 0.2683±0.0043

GraphGPS+LapPE 0.6535±0.0041 0.2500±0.0005

DE-DGNs
GRAND 0.5789±0.0062 0.3418±0.0015

GraphCON 0.6022±0.0068 0.2778±0.0018

A-DGN 0.5975±0.0044 0.2874±0.0021

Ours
PH-DGNC 0.6961±0.0070 0.2581±0.0020

PH-DGN 0.7012±0.0045 0.2465±0.0020

Results. We report results on the LRGB
tasks in Table 2 (extended results are
reported in Appendix D.2 due to space
limits). Our results show that both PH-
DGNC and PH-DGN outperform classi-
cal MPNNs, graph transformers, most
of the multi-hop DGNs, and recent DE-
DGNs (which represent a direct competi-
tor to our method). Overall, our port-
Hamiltonian framework (with and with-
out driving forces) shows great benefit
in propagating long-range information
without requiring additional strategies
such as global position encoding (as ev-
idenced by comparisons with MPNN-
based models using positional encod-
ing), global attention mechanisms (as
seen in comparisons with Transformer-
based models), or rewiring techniques
(as shown in comparisons with Multi-
hop DGNs) that increase the overall com-
plexity of the method. Consequently,
our results reaffirm the effectiveness of
our framework in enabling efficient long-
range propagation, even in simple DGNs
characterized by purely local message ex-
changes. Lastly, we believe that our PH-
DGN with driving forces achieves bet-
ter performance than PH-DGNC on the
real-world LRGB because the learned
driving forces act as an adaptive filter
mechanism that filters noisy information,
facilitating the learning of relevant infor-
mation.

4 RELATED WORKS

DGN based on differential equations. Recent advancements in the field of representation learn-
ing have introduced new architectures that establish a connection between neural networks and
dynamical systems. Inspired by pioneering works on recurrent neural networks (Chen et al., 2018;
Haber & Ruthotto, 2017; Chang et al., 2019; Galimberti et al., 2023), such connection has been
pushed to the domains of DGNs (Han et al., 2024). Indeed, works like GDE (Poli et al., 2019),
GRAND (Chamberlain et al., 2021a), PDE-GCN (Eliasof et al., 2021), DGC (Wang et al., 2021),
GRAND++ (Thorpe et al., 2022) propose to interpret DGNs as discretization of ODEs and PDEs.
The conjoint of dynamical systems and DGNs have found favorable consensus, as these new methods
exploit the intrinsic properties of differential equations to extend the characteristic of message passing
within DGNs. GRAND, GRAND++, and DGC bias the node representation trajectories to follow the
heat diffusion process, thus performing a gradual smoothing of the initial node states. On the contrary,
GraphCON (Rusch et al., 2022) used oscillatory properties to enable linear dynamics that preserve the
Dirichlet energy encoded in the node features; PDE-GCNM (Eliasof et al., 2021) uses an interpolation
between anisotropic diffusion and conservative oscillatory properties; more recently, A-DGN (Grav-
ina et al., 2023) introduces an anti-symmetric mechanism that leads to node-wise non-dissipative
dynamics. Related work in the line of Hamiltonian systems for DGNs, such as HamGNN (Kang et al.,
2023), exclusively leverage Hamiltonian dynamics to encode node input features, which are then fed

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

into classical DGNs to enhance their conservative properties. Similarly, HANG (Zhao et al., 2023)
leverages Hamiltonian dynamics to improve robustness to adversarial attacks to the graph structure.
Differently from HamGNN and HANG, our PH-DGN is (to the best of our knowledge) the first
DGN that leverages port-Hamiltonian dynamics, thus balancing non-dissipative and non-conservative
behaviors while providing theoretical guarantees of long-range propagation. A deeper discussion on
the differences with HamGNN and HANG is provided in Appendix D.3.

Long-range propagation on DGNs. Effectively transferring information across distant nodes is
still an open challenge in the graph representation learning community (Shi et al., 2023). Various
strategies have been explored in recent years to address this challenge, such as graph rewiring.
In this setting, methods like SDRF (Topping et al., 2022), GRAND (Chamberlain et al., 2021a),
BLEND (Chamberlain et al., 2021b), and DRew (Gutteridge et al., 2023) (dynamically) alter the orig-
inal edge set to densify the graph during preprocessing to facilitate node communication. Differently,
Transformer-based methods (Shi et al., 2021; Dwivedi & Bresson, 2021; Ying et al., 2021; Wu et al.,
2023) enable message passing between all node pairs. FLODE (Maskey et al., 2024) incorporates
non-local dynamics by using a fractional power of the graph shift operator. Although these techniques
are effective in addressing the problem of long-range communication, they can also increase the
complexity of information propagation due to denser graph shift operators.

5 CONCLUSIONS

In this paper, we have presented port-Hamiltonian Deep Graph Network (PH-DGN), a general
framework that gauges the equilibrium between non-dissipative long-range propagation and non-
conservative behavior while seamlessly incorporating the most suitable neighborhood aggregation
function. We theoretically prove that, when pure conservative dynamic is employed, both the con-
tinuous and discretized versions of our framework allow for long-range propagation in the message
passing flow since node states retain their past. To demonstrate the benefits of including port-
Hamiltonian dynamics in DE-DGNs, we conducted several experiments on synthetic and real-world
benchmarks requiring long-range interaction. Our results show that our method outperforms state-of-
the-art models and that the inclusion of data-driven forces that deviate from a purely conservative
behavior is often key to maximize efficacy of the approach on tasks requiring long-range propagation.
Indeed, in practice, effective information propagation requires a balance between long-term memo-
rization and propagation and the ability to selectively discard and forget information when necessary.
Looking ahead to future developments, our port-Hamiltonian dynamic can be extended to handle
time-varying streams of graphs and can be evaluated with alternative discretization methods, e.g.,
adaptive multistep schemes (Rufai et al., 2023).

ETHICS AND REPRODUCIBILITY STATEMENTS

Ethics Statement. In this work, we do not release any datasets or models that could pose a significant
risk of misuse. We believe our research does not have any direct or indirect negative societal
implications or harmful consequences, as we do not utilize sensitive, privacy-related data, nor do
we develop methods that could be applied for harmful purposes. As far as we are aware, this study
does not raise any ethical concerns or potential negative impacts. Furthermore, our research does
not involve human subjects, nor does it employ crowdsourcing methods. We confirm there are no
potential conflicts of interest or sponsorship affecting the objectivity or outcomes of this study.

Reproducibility Statement. In Section 3 we outline the setups employed in our experiments,
while in Appendix C we provide comprehensive supplementary information, including references
to the baselines, detailed dataset descriptions, the experimental settings for each task, and the
hyperparameter grids used in our study. All experiments presented in Sections 3.3 and 3.4 are
conducted on publicly available benchmarks. To further support reproducibility, we openly release
all the data and code to reproduce our empirical evaluation upon acceptance.

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional ar-

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

chitectures via sparsified neighborhood mixing. In International Conference on Machine Learning,
pp. 21–29. PMLR, 2019.

Uri Alon and Eran Yahav. On the Bottleneck of Graph Neural Networks and its Practical Implications.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=i80OPhOCVH2.

V.I. Arnold, K. Vogtmann, and A. Weinstein. Mathematical Methods of Classical Mechanics.
Graduate Texts in Mathematics. Springer New York, 2013. ISBN 9781475716931.

Davide Bacciu, Federico Errica, Alessio Micheli, and Marco Podda. A gentle introduction to deep
learning for graphs. Neural Networks, 129:203–221, 2020. ISSN 0893-6080.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017.

Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan Webb, and
Emanuele Rossi. GRAND: Graph neural diffusion. In International Conference on Machine
Learning, pp. 1407–1418. PMLR, 2021a.

Benjamin Chamberlain, James Rowbottom, Davide Eynard, Francesco Di Giovanni, Xiaowen Dong,
and Michael Bronstein. Beltrami Flow and Neural Diffusion on Graphs. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information
Processing Systems, volume 34, pp. 1594–1609. Curran Associates, Inc., 2021b.

Bo Chang, Minmin Chen, Eldad Haber, and Ed H. Chi. AntisymmetricRNN: A dynamical system
view on recurrent neural networks. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=ryxepo0cFX.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and Deep Graph
Convolutional Networks. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pp. 1725–1735. PMLR, 13–18 Jul 2020.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural Ordinary
Differential Equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
Neighbourhood Aggregation for Graph Nets. In Advances in Neural Information Processing
Systems, volume 33, pp. 13260–13271. Curran Associates, Inc., 2020.

Shaan A. Desai, Marios Mattheakis, David Sondak, Pavlos Protopapas, and Stephen J. Roberts.
Port-hamiltonian neural networks for learning explicit time-dependent dynamical systems. Phys.
Rev. E, 104:034312, 9 2021.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Liò, and Michael
Bronstein. On over-squashing in message passing neural networks: the impact of width, depth, and
topology. In Proceedings of the 40th International Conference on Machine Learning, ICML’23.
JMLR.org, 2023.

Edsger. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:
269–271, 1959.

Vijay Prakash Dwivedi and Xavier Bresson. A Generalization of Transformer Networks to Graphs.
AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long Range Graph Benchmark. In Advances in Neural Information
Processing Systems, volume 35, pp. 22326–22340. Curran Associates, Inc., 2022.

11

https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=ryxepo0cFX

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Moshe Eliasof, Eldad Haber, and Eran Treister. PDE-GCN: Novel Architectures for Graph Neu-
ral Networks Motivated by Partial Differential Equations. In Advances in Neural Information
Processing Systems, volume 34, pp. 3836–3849. Curran Associates, Inc., 2021.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Clara Lucía Galimberti, Luca Furieri, Liang Xu, and Giancarlo Ferrari-Trecate. Hamiltonian deep
neural networks guaranteeing nonvanishing gradients by design. IEEE Transactions on Automatic
Control, 68(5):3155–3162, 2023.

Johannes Gasteiger, Stefan Weiß enberger, and Stephan Günnemann. Diffusion Improves Graph
Learning. In Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for Quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning, volume 70 of ICML’17, pp. 1263–1272. JMLR.org, 2017.

Alessio Gravina, Davide Bacciu, and Claudio Gallicchio. Anti-Symmetric DGN: a stable architecture
for Deep Graph Networks. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=J3Y7cgZOOS.

David J. Griffiths and Darrell F. Schroeter. Introduction to quantum mechanics. Cambridge University
Press, Cambridge ; New York, NY, third edition edition, 2018. ISBN 978-1-107-18963-8.

Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni. Drew:
Dynamically rewired message passing with delay. In International Conference on Machine
Learning, pp. 12252–12267. PMLR, 2023.

E. Haber and L. Ruthotto. Stable architectures for deep neural networks. Inverse Problems, 34(1),
2017.

Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric numerical integration. Springer
Series in Computational Mathematics. Springer, Berlin, Germany, 2 edition, 2006.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Proceedings of the 31st International Conference on Neural Information Processing Systems,
NIPS’17, pp. 1025–1035. Curran Associates Inc., 2017. ISBN 9781510860964.

Andi Han, Dai Shi, Lequan Lin, and Junbin Gao. From Continuous Dynamics to Graph Neural
Networks: Neural Diffusion and Beyond. Transactions on Machine Learning Research, 2024.
ISSN 2835-8856. URL https://openreview.net/forum?id=fPQSxjqa2o. Survey
Certification.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for Pre-training Graph Neural Networks. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=HJlWWJSFDH.

Qiyu Kang, Kai Zhao, Yang Song, Sijie Wang, and Wee Peng Tay. Node Embedding from Neural
Hamiltonian Orbits in Graph Neural Networks. In International Conference on Machine Learning,
2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. URL https://arxiv.org/abs/1412.6980.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

12

https://openreview.net/forum?id=J3Y7cgZOOS
https://openreview.net/forum?id=fPQSxjqa2o
https://openreview.net/forum?id=HJlWWJSFDH
https://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yuankai Luo, Lei Shi, and Xiao-Ming Wu. Classic GNNs are strong baselines: Reassessing GNNs
for node classification. In The Thirty-eight Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2024. URL https://openreview.net/forum?id=
xkljKdGe4E.

Sohir Maskey, Raffaele Paolino, Aras Bacho, and Gitta Kutyniok. A fractional graph laplacian
approach to oversmoothing. Advances in Neural Information Processing Systems, 36, 2024.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In Advances in Neural Information Processing Systems, 2017.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at the evaluation of GNNs under heterophily: Are we really making progress?
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=tJbbQfw-5wv.

Michael Poli, Stefano Massaroli, Junyoung Park, Atsushi Yamashita, Hajime Asama, and Jinkyoo
Park. Graph neural ordinary differential equations. arXiv preprint arXiv:1911.07532, 2019.

Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a General, Powerful, Scalable Graph Transformer. Advances in Neural
Information Processing Systems, 35, 2022.

Mufutau Ajani Rufai, Thanh Tran, and Zacharias A. Anastassi. A variable step-size imple-
mentation of the hybrid nyström method for integrating hamiltonian and stiff differential sys-
tems. Computational and Applied Mathematics, 42(4):156, Apr 2023. ISSN 1807-0302. doi:
10.1007/s40314-023-02273-2.

T Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra, and Michael Bronstein.
Graph-coupled oscillator networks. In International Conference on Machine Learning, pp. 18888–
18909. PMLR, 2022.

Dai Shi, Andi Han, Lequan Lin, Yi Guo, and Junbin Gao. Exposition on over-squashing problem on
gnns: Current methods, benchmarks and challenges. arXiv preprint arXiv:2311.07073, 2023.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked Label
Prediction: Unified Message Passing Model for Semi-Supervised Classification. In Zhi-Hua Zhou
(ed.), Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-
21, pp. 1548–1554. International Joint Conferences on Artificial Intelligence Organization, 8 2021.
doi: 10.24963/ijcai.2021/214. URL https://doi.org/10.24963/ijcai.2021/214.
Main Track.

Matthew Thorpe, Tan Minh Nguyen, Heidi Xia, Thomas Strohmer, Andrea Bertozzi, Stanley Osher,
and Bao Wang. Grand++: Graph neural diffusion with a source term. In International Conference
on Learning Representation (ICLR), 2022.

Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go? reassessing
the long-range graph benchmark. In The Second Learning on Graphs Conference, 2023.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=7UmjRGzp-A.

Arjan Van der Schaft. L2-gain and passivity techniques in nonlinear control. Springer, third edition,
2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is All you Need. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

13

https://openreview.net/forum?id=xkljKdGe4E
https://openreview.net/forum?id=xkljKdGe4E
https://openreview.net/forum?id=tJbbQfw-5wv
https://openreview.net/forum?id=tJbbQfw-5wv
https://doi.org/10.24963/ijcai.2021/214
https://openreview.net/forum?id=7UmjRGzp-A
https://openreview.net/forum?id=7UmjRGzp-A

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Dissecting the Diffusion Process in
Linear Graph Convolutional Networks. In Advances in Neural Information Processing Systems,
volume 34, pp. 5758–5769. Curran Associates, Inc., 2021.

Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. DIFFormer:
Scalable (Graph) Transformers Induced by Energy Constrained Diffusion. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=j6zUzrapY3L.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
Comprehensive Survey on Graph Neural Networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):4–24, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in Neural
Information Processing Systems, 34:28877–28888, 2021.

Kai Zhao, Qiyu Kang, Yang Song, Rui She, Sijie Wang, and Wee Peng Tay. Adversarial Robustness
in Graph Neural Networks: A Hamiltonian Approach. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

A ADDITIONAL DETAILS OF THE (PORT-)HAMILTONIAN FRAMEWORK

A.1 SENSITIVITY UPPER BOUND

Although the sensitivity of a node state after a time t with respect to its previous state can be bounded
from below, allowing effective conservative message passing in PH-DGN, we observe that it is
possible to compute an upper bound on such a measure, which we provide in the following theorem.
While the theorem shows that, theoretically, the sensitivity measure may grow (i.e., potentially
causing gradient explosion), we emphasize that during our experiments we did not encounter such a
problem.

Theorem A.1. Consider the continuous system defined by Eq. (5), if σ is a non-linear function with
bounded derivative, i.e. ∃M > 0, |σ′(x)| ≤ M , and the neighborhood aggregation function is of the
form ΦG =

∑
v∈Nu

Vxv , the backward sensitivity matrix (BSM) is bounded from above:∥∥∥∥ ∂xu(T)

∂xu(T − t)

∥∥∥∥ ≤
√
d exp(QT), ∀t ∈ [0, T],

where Q =
√
dM∥W∥22 +

√
dMmaxi∈[n]|Ni|∥V∥22.

We give the proof of this theorem in Appendix B.4.

A.2 ARCHITECTURAL DETAILS OF DISSIPATIVE COMPONENTS

As typically employed, we follow physics-informed approaches that learn how much dissipation and
external control is necessary to model the observations (Desai et al., 2021). In particular, we consider
these (graph-) neural network architectures for the dampening term D(q) and external force term
F (q, t), assuming for simplicity qu ∈ R d

2 .

Dampening D(q): it is a square d
2 × d

2 matrix block with only diagonal entries being non-zero and
defined as:

14

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=j6zUzrapY3L
https://openreview.net/forum?id=j6zUzrapY3L
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

• param: a learnable vector w ∈ R d
2 .

• param+: a learnable vector followed by a ReLU activation, i.e., ReLU(w) ∈ R d
2 .

• MLP4-ReLU: a 4-layer MLP with ReLU activation and all layers of dimension d
2 .

• DGN-ReLU: a DGN node-wise aggregation layer from Eq. (6) with ReLU activation.

External forcing F (q, t): it is a d
2 dimensional vector where each component is the force on a

component of the system. Since it takes as input d
2 + 1 components it is defined as:

• MLP4-Sin: 3 linear layers of d
2 + 1 units with sin activation followed by a last layer with d

2
units.

• DGN-tanh: a single node-wise DGN aggregation from Eq. (6) followed by a tanh activation.

Note that dampening, i.e., energy loss, is only given when D(q) represents a positive semi-definite
matrix. Hence, we used ReLU-activation, except for param, which offers a flexible trade-off between
dampening and acceleration learned by backpropagation.

A.3 DISCRETIZATION OF PORT-HAMILTONIAN DGNS

As for standard DE-DGNs a numerical discretization method is needed to solve Eq. (5). However, as
observed in Haber & Ruthotto (2017); Galimberti et al. (2023), not all standard techniques can be
employed for solving Hamiltonian systems. Indeed, symplectic integration methods need to be used
to preserve the conservative properties in the discretized system.

For the ease of simplicity, in the following we focus on the Symplectic Euler method, however, we
observe that more complex methods such as Strömer-Verlet can be employed (Hairer et al., 2006).

The Symplectic Euler scheme, applied to our PH-DGN with null driving forces in Eq. (5), updates
the node representation at the (ℓ+ 1)-th step as

x(ℓ+1)
u =

(
p
(ℓ+1)
u

q
(ℓ+1)
u

)
=

(
p
(ℓ)
u

q
(ℓ)
u

)
+ ϵJu

(
∇pu

HG(p
(ℓ+1),q(ℓ))

∇quHG(p
(ℓ+1),q(ℓ))

)
, ∀u ∈ V. (11)

with ϵ the step size of the numerical discretization. We note that Eq. (11) relies on both the current
and future state of the system, hence marking an implicit scheme that would require solving a
linear system of equations in each step. To obtain an explicit version of Eq. (11), we consider the
neighborhood aggregation function in Eq. (6) and impose a structure assumption on W and V,

namely W =

(
Wp 0
0 Wq

)
and V =

(
Vp 0
0 Vq

)
. A comparable assumption can be made for

other neighborhood aggregation functions, such as GCN aggregation. Despite the necessary block
diagonal structure assumption on W and V to ensure the separation into the p and q components,
we note that Wp, Wq , Vp, and Vq are unconstrained learnable weight matrices.

Therefore, the gradients in Eq. (11) can be rewritten in the explicit form as

p(ℓ+1)
u = p(ℓ)

u − ϵ

[
W⊤

q σ(Wqq
(ℓ)
u +ΦG({q(ℓ)

v }v∈Nu
) + bq)

+
∑

v∈Nu\{u}

V⊤
q σ(Wqq

(ℓ)
v +ΦG({q(ℓ)

j }j∈Nv) + bq)

]
(12)

q(ℓ+1)
u = q(ℓ)

u + ϵ

[
W⊤

p σ(Wpp
(ℓ+1)
u +ΦG({p(ℓ+1)

v }v∈Nu) + bp)

+
∑

v∈Nu\{u}

V⊤
p σ(Wpp

(ℓ+1)
v +ΦG({p(ℓ+1)

j }j∈Nv
) + bp)

]
. (13)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

We observe that Eqs. (12) and (13) can be understood as coupling two DGN layers. This discretization
mechanism is visually summarized in the middle of Figure 1 where a message-passing step from
layer ℓ to layer ℓ+ 1 is performed.

In the case of PH-DGN with driving forces in Eq. (10) the discretization employs the same step for
q(ℓ+1) in Eq. (13) while Eq. (12) includes the dissipative components, thus it can be rewritten as

p(ℓ+1)
u = p(ℓ)

u + ϵ

[
−∇qu

HG(p
(ℓ),q(ℓ))−Du(q

(ℓ+1))∇pu
HG(p

(ℓ),q(ℓ)) + Fu(q
(ℓ), t)

]
. (14)

Lastly, it is important to acknowledge that properties observed in the continuous domain may not
necessarily hold in the discrete setting due to the limitations of the discretization method. In the
following theorem, we show that when the Symplectic Euler method is employed, then Theorem 2.3
holds.

Theorem A.2. Considering the discretized system in Eq. (11) obtained by Symplectic Euler dis-
cretization, the backward sensitivity matrix (BSM) is bounded from below:∥∥∥∥∥ ∂x

(L)
u

∂x
(L−ℓ)
u

∥∥∥∥∥ ≥ 1, ∀ℓ ∈ [0, L].

We provide the proof in Appendix B.5. Again, this indicates that even the discretized version of
PH-DGN with null driving forces enables for effective propagation and conservative message passing.

B PROOFS OF THE THEORETICAL STATEMENTS

In this section, we provide the proofs of the theoretical statements in the main text and in appendix A.
As for the rest of the paper, we will use the denominator notation, i.e., Jacobian matrices have output
components on columns and input components on the rows.

B.1 PROOF OF THEOREM 2.1

Proof. First, we note that

∂

∂xu
Ju∇xuHG(y(t)) = ∇2

xu
HG(y(t))J⊤

u , (15)

where ∇2
xu

HG is the symmetric Hessian matrix. Hence, the Jacobian is shortly written as AB, where
A is symmetric and B is anti-symmetric. Consider an eigenpair of AB, where the eigenvector is
denoted by v and the eigenvalue by λ ̸= 0. Then:

v∗AB = λv∗

v∗A = λv∗B−1

v∗Av = λ
(
v∗B−1v

)
where ∗ represents the conjugate transpose. On the left-hand side, it is noticed that the (v∗Av)
term is a real number. Recalling that B−1 remains anti-symmetric and for any real anti-symmetric
matrix C it holds that C∗ = C⊤ = −C, it follows that (v∗Cv)

∗
= v∗C∗v = −v∗Cv. Hence,

the v∗B−1v term on the right-hand side is an imaginary number. Thereby, λ needs to be purely
imaginary, and, as a result, all eigenvalues of AB are purely imaginary.

B.2 PROOF OF THEOREM 2.2

Our conservative PH-DGN has shared weights W,V across the layers of the DGN. This means that
the Hamiltonian is autonomous and does not depend explicitly on time HG(y(t), t) = HG(y(t)) as
we can see from Eq. (4). In such case, the energy is naturally conserved in the system it represents:
this is a consequence of the Hamiltonian flow and dynamics, as we show in this theorem. For a more
in-depth description and analysis of Hamiltonian dynamics in general we refer to Arnold et al. (2013).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Proof. The time derivative of H(y(t)) is given by means of the chain-rule:
dH(y(t))

dt
=

∂H(y(t))

∂y(t)
· dy(t)

dt
=

∂H(y(t))

∂y(t)
· J ∂H(y(t))

∂y(t)
= 0, (16)

where the last equality holds since J is anti-symmetric. Having no change over time implies that
H(y(t)) = H(y(0)) = const for all t.

Since the Hessian ∇2HG(y(t)) is symmetric, it follows directly

∇ · Ju∇xv
HG(y(t)) =

d∑
i=1

−∂2HG(y(t))

∂qiv ∂p
i
v

+
∂2HG(y(t))

∂piv ∂q
i
v

= 0

B.3 PROOF OF THEOREM 2.3

In order to prove the lower bound on the BSM, we need a technical lemma that describes the time
evolution of the BSM itself, which extends the result from Galimberti et al. (2023).
Lemma B.1. Given the system dynamics of the ODE in Eq. (2), we have that

d

dt

∂y(T)

∂y(T − t)
= J ∂H

∂y

∣∣∣∣
y(T−t)

∂y(T)

∂y(T − t)
(17)

as in (Galimberti et al., 2023). The same applies, with a slightly different formula, for each node u,
that is the BSM satisfies

d

dt

∂xu(T)

∂xu(T − t)
=

∂y

∂xu

∣∣∣∣
(T−t)

∂fu
∂y

∣∣∣∣
y(T−t)

∂xu(T)

∂xu(T − t)
= Fu

∂xu(T)

∂xu(T − t)
(18)

where fu is the restriction of f = J ∂H
∂y to the components corresponding to xu, that is the dynamics

of node u, which can be written as

fu = Luf = LuJ
∂H

∂y
(19)

where Lu is the readout matrix, of the form

Lu =

[
0 d

2×
d
2 (u−1) I d

2×
d
2

0 d
2×

d
2 (n−u) 0 d

2×
d
2 (u−1) 0 d

2×
d
2

0 d
2×

d
2 (n−u)

0 d
2×

d
2 (u−1) 0 d

2×
d
2

0 d
2×

d
2 (n−u) 0 d

2×
d
2 (u−1) I d

2×
d
2

0 d
2×

d
2 (n−u)

]
(20)

which is a projection on the coordinates of a single node u. Notice as well that, in denominator
notation

∂y

∂xu
= Lu (21)

We only show Eq. (18), as it is related to graph networks and is actually a harder version of Eq. (17),
with the latter being already proven in Galimberti et al. (2023). We also show the last part of the
proof in a general sense, without using the specific matrices of the Hamiltonian used.

Proof. Following Galimberti et al. (2023), the solution to the ODE dxu

dt = fu(y(t)) can be written
in integral form as

xu(T) = xu(T − t) +

∫ T

T−t

fu(y(τ))dτ = xu(T − t) +

∫ t

0

fu(y(T − t+ s))ds (22)

Differentiating by the solution at a previous time xu(T − t) we obtain

∂xu(T)

∂xu(T − t)
= Iu +

∂
∫ ⊤
0

fu(y(T − t+ s))ds
∂xu(T − t)

=

= Iu +

∫ t

0

∂fu(y(T − t+ s))

∂xu(T − t)

= Iu +

∫ t

0

∂y(T − t+ s)

∂xu(T − t)

∂fu
∂y

∣∣∣∣
y(T−t+s)

ds

(23)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where in the second equality we brought the derivative term under the integral sign and in the third we
used the chain rule of the derivative (recall we are using denominator notation). Considering a slight
perturbation in time δ, we consider ∂xu(T)

∂xu(T−t−δ) as this will be used to calculate the time derivative of
the BSM. Using again the chain rule for the derivative and the formula above with T − t− δ instead
of T − t, we have that

∂xu(T)

∂xu(T − t− δ)
=

∂xu(T − t)

∂xu(T − t− δ)

∂xu(T)

∂xu(T − t)

=

(
Iu +

∫ δ

0

∂y(T − t− δ + s)

∂xu(T − t− δ)

∂fu
∂y

∣∣∣∣
y(T−t−δ+s)

ds

)
∂xu(T)

∂xu(T − t)

(24)

This way, we have expressed ∂xu(T)
∂xu(T−t−δ) in terms of ∂xu(T)

∂xu(T−t) . To calculate our objective, we want
to differentiate with respect to δ. We first calculate the difference:

∂xu(T)

∂xu(T − t− δ)
− ∂xu(T)

∂xu(T − t)
=

(∫ δ

0

∂y(T − t− δ + s)

∂xu(T − t− δ)

∂fu
∂y

∣∣∣∣
y(T−t−δ+s)

ds

)
∂xu(T)

∂xu(T − t)

(25)
We can now divide by δ and take the limit δ → 0

lim
δ→0

1

δ

(
∂xu(T)

∂xu(T − t− δ)
− ∂xu(T)

∂xu(T − t)

)
= lim

δ→0

(
1

δ

∫ δ

0

∂y(T − t− δ + s)

∂xu(T − t− δ)

∂fu
∂y

∣∣∣∣
y(T−t−δ+s)

ds

)
∂xu(T)

∂xu(T − t)

=
∂y

∂xu

∣∣∣∣
(T−t)

∂fu
∂y

∣∣∣∣
y(T−t)

∂xu(T)

∂xu(T − t)

(26)

Where in the final equality we used the fundamental theorem of calculus. Finally

d

dt

∂xu(T)

∂xu(T − t)
=

∂y

∂xu

∣∣∣∣
(T−t)

∂fu
∂y

∣∣∣∣
y(T−t)

∂xu(T)

∂xu(T − t)
= Fu

∂xu(T)

∂xu(T − t)
(27)

giving us the final result.

We are now ready to prove Theorem 2.3. First, we calculate that

∂fu
∂y

=
∂

∂y

(
LuJ

∂H

∂y

)
=

∂2H

∂y2
J⊤L⊤

u = SJ⊤L⊤
u (28)

so that Fu = LuSJ⊤L⊤
u . This will be helpful in the following matrix calculations.

Proof. For brevity, we call
[

∂xu(T)
∂xu(T−t)

]
= Ψu(T, T−t), which will be indicated simply as Ψu. When

t = 0, Ψu is just the Jacobian of the identity map Ψu(T, T) = Iu and the result Ψ⊤
uJuΨu = Ju is

true for t = 0. Calculating the time derivative on Ψ⊤
uJuΨu we have that

d

dt
[Ψ⊤

uJuΨu] = Ψ̇⊤
uJuΨu +Ψ⊤

uJuΨ̇u

= (FuΨu)
⊤JuΨu +Ψ⊤

uJuFuΨu =

= Ψ⊤
uLuJ S⊤L⊤

uJuΨu +Ψ⊤
uJuLuSJ⊤L⊤

uΨ

= Ψ⊤
u

(
LuJ SL⊤

uJu + JuLuSJ⊤L⊤
u

)
Ψu

(29)

where in the second equality we used the result from lemma B.1. We just need to show that the term
in parentheses is zero so that the time derivative is zero. Using the relations J⊤L⊤

u = −L⊤
uJu and

JuLu = LuJ we easily see that, finally

d

dt

([
∂xu(T)

∂xu(T − t)

]⊤
Ju

[
∂xu(T)

∂xu(T − t)

])
= Ψ⊤

u

(
LuJ SL⊤

uJu + LuJ S(−L⊤
uJu)

)
Ψu = 0

(30)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

which means that
[

∂xu(T)
∂xu(T−t)

]⊤
Ju

[
∂xu(T)

∂xu(T−t)

]
is constant and equal to Ju for all t, that is our thesis.

Now, the bound on the gradient follows by considering any sub-multiplicative norm ∥ · ∥:

∥Ju∥ =

∥∥∥∥∥
[

∂xu(T)

∂xu(T − t)

]⊤
Jk

[
∂xu(T)

∂xu(T − t)

]∥∥∥∥∥ ≤
∥∥∥∥ ∂xu(T)

∂xu(T − t)

∥∥∥∥2 ∥Ju∥

and simplifying by ∥Ju∥ = 1.

B.4 PROOF OF THEOREM A.1

To prove the upper bound, we use the following technical lemma:

Lemma B.2 (Galimberti et al. (2023)). Consider a matrix A ∈ Rn×n with columns ai ∈ Rn, i.e.,
A = [a1 a2 · · · an], and assume that ∥ai∥2 ≤ γ+ for all i = 1, . . . , n. Then, ∥A∥2 ≤
γ+

√
n.

This lemma gives a bound on the spectral norm of a matrix when its columns are uniformly bounded
in norm. Therefore, our proof strategy for Theorem A.1 lies in bounding each column of the BSM
matrix.

Proof. Consider the ODE in Eq. (27) from Lemma B.1 and split ∂xu(T)
∂xu(T−t) into columns ∂xu(T)

∂xu(T−t) =

[z1(t) z2(t) . . . zd(t)]. Then, Eq. (27) is equivalent to

żi(t) = Au(T − t)zi(t), t ∈ [0, T], i = 1, 2 . . . , d, (31)

subject to zi(0) = ei, where ei is the unit vector with a single nonzero entry in position i. The
solution of the linear system of ODEs in Eq. (31) is given by the integral equation

zi(t) = zi(0) +

∫ t

0

Au(T − s)zi(s)ds, t ∈ [0, T]. (32)

By assuming that ∥Au(τ)∥2 ≤ Q for all τ ∈ [0, T], and applying the triangular inequality in Eq. (32),
it is obtained that:

∥zi(t)∥2 ≤ ∥zi(0)∥2 +Q

∫ t

0

∥zi(s)∥2 ds = 1 +Q

∫ t

0

∥zi(s)∥2 ds,

where the last equality follows from ∥zi(0)∥2 = ∥ei∥2 = 1 for all i = 1, 2, . . . , d. Then, applying
the Gronwall inequality, it holds for all t ∈ [0, T]

∥zi(t)∥2 ≤ exp(QT). (33)

By applying Lemma B.2, the general bound follows.

Lastly, we characterize Q by bounding the norm ∥Au(τ)∥2 ∀τ ∈ [0, T]. From Lemma B.1 Av can
be expressed as Au = LuSJ⊤L⊤

u , which is equivalently Au = ∇2
xu

HG(y)J⊤
u , since J⊤L⊤

u =

L⊤
v J⊤

u . The Hessian ∇2
xu

HG(y) is of the form:

∇2
xu

HG(y) = W⊤ diag(σ′(Wxu +Φu + b))W +
∑
v∈Nu

V⊤ diag(σ′(Wxv +Φv + b))V.

After noting that ∥∇2
xu

HG(y)J⊤
u ∥2 ≤ ∥∇2

xu
HG(y)∥2∥J⊤

u ∥2, the only varying part is the Hessian
∇2

xu
HG(y) since ∥J⊤

u ∥2 = 1. By Lemma B.2 diag(σ′(x)) ≤
√
dM and noting that ∥X⊤∥ = ∥X∥

for any square matrix X, then∥∥∇2
xu

HG(y)
∥∥
2
≤

√
dM ∥W∥22 +

√
dM maxi∈[n] |Ni| ∥V∥22 =: Q.

This also justifies our previous assumption that ∥Au(τ)∥2 is bounded.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B.5 PROOF OF THEOREM A.2

Proof. In the discrete case, since the semi-implicit Euler integration scheme is a symplectic method,
it holds that: [

∂x
(ℓ)
u

∂x
(ℓ−1)
u

]⊤
Ju

[
∂x

(ℓ)
u

∂x
(ℓ−1)
u

]
= Ju (34)

Further, by using the chain rule and applying Eq. (34) iteratively we get:[
∂x

(L)
u

∂x
(L−ℓ)
u

]⊤
Ju

[
∂x

(L)
u

∂x
(L−ℓ)
u

]
=

[
L−1∏

i=L−ℓ

∂x
(i+1)
u

∂x
(i)
u

]⊤
Ju

[
L−1∏

i=L−ℓ

∂x
(i+1)
u

∂x
(i)
u

]
= Ju

Hence, the BSM is symplectic at arbitrary depth and we can conclude the proof with:

∥Ju∥ =

∥∥∥∥∥∥
[

∂x
(L)
u

∂x
(L−ℓ)
u

]⊤
Ju

[
∂x

(L)
u

∂x
(L−ℓ)
u

]∥∥∥∥∥∥ ≤

∥∥∥∥∥ ∂x
(L)
u

∂x
(L−ℓ)
u

∥∥∥∥∥
2

∥Ju∥ .

B.6 PROOF OF THEOREM 2.4

Proof. We employ a similar proof as in Di Giovanni et al. (2023) and redo some calculations based
on our model and the Symplectic Euler scheme used to obtain Eqs. (12) and (13). To calculate ∂x(ℓ+1)

u

∂x
(ℓ)
v

for two consecutive nodes u, v, we consider the 4 sub-blocks as per

∂x
(ℓ+1)
u

∂x
(ℓ)
v

=

∂p(ℓ+1)
v

∂p
(ℓ)
v

∂q(ℓ+1)
v

∂p
(ℓ)
v

∂p(ℓ+1)
v

∂q
(ℓ)
v

∂q(ℓ+1)
v

∂q
(ℓ)
v

 . (35)

We proceed to calculate the 4 blocks independently, stopping at first-order terms in ϵ for simplicity
reasons:

∂pℓ+1
u

∂pℓ
v

=
∑

w∈Nu∩Nv

∂qℓ+1
w

∂pℓ
v

∂pℓ+1
u

∂qℓ
w

= O(ϵ2),

∂pℓ+1
u

∂qℓ
v

= −ϵAuv

(
V⊤

q W
⊤
q σ

′
q(u) +W⊤

q V
⊤
q σ

′
q(v) +

∑
w∈Nu∩Nv

(V⊤
q)

2σ′
q(w)

)
,

∂qℓ+1
u

∂qℓ
v

=
∑

w∈Nu∩Nv

∂pℓ+1
w

∂qℓ
v

∂qℓ+1
u

∂pℓ+1
w

= O(ϵ2),

∂qℓ+1
u

∂pℓ
v

= ϵAuv

(
V⊤

p W
⊤
p σ

′
p(u) +W⊤

p V
⊤
p σ

′
p(v) +

∑
w∈Nu∩Nv

(V⊤
p)

2σ′
p(w)

)
,

(36)

where compressed σp(u) = σ(Wpp
(ℓ+1)
u + ΦG({p(ℓ+1)

v }v∈Nu
) and analogously for q for length

reasons. Now, the norm of a block matrix is less or equal to the sum of the norms of the sub-blocks,
so that ∥∥∥∥∥∂x(ℓ+1)

u

∂x
(ℓ)
v

∥∥∥∥∥
L1

≤

∥∥∥∥∥∂p(ℓ+1)
u

∂p
(ℓ)
v

∥∥∥∥∥
L1

+

∥∥∥∥∥∂p(ℓ+1)
u

∂q
(ℓ)
v

∥∥∥∥∥
L1

+

∥∥∥∥∥∂q(ℓ+1)
u

∂p
(ℓ)
v

∥∥∥∥∥
L1

+

∥∥∥∥∥∂q(ℓ+1)
u

∂q
(ℓ)
v

∥∥∥∥∥
L1

≤

∥∥∥∥∥∂p(ℓ+1)
u

∂q
(ℓ)
v

∥∥∥∥∥
L1

+

∥∥∥∥∥∂q(ℓ+1)
u

∂p
(ℓ)
v

∥∥∥∥∥
L1

+O(ϵ2).

(37)

Now, using the Eq. (36) and setting cσ = maxx |σ′(x)|, we can estimate∥∥∥∥∥∂x(ℓ+1)
u

∂x
(ℓ)
v

∥∥∥∥∥
L1

≤ ϵAuv

(
2dcσ|Wq||Vq|+

∑
w

AvwAwu|V2
q |dcσ

)

+ ϵAuv

(
2dcσ|Wp||Vp|+

∑
w

AvwAwu|V2
p|dcσ

)
.

(38)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Recalling the block structure of V, we can say that |V| = |Vp|+ |Vq| and obtain this final form of
the one-step neighbor sensitivity:∥∥∥∥∥∂x(ℓ+1)

u

∂x
(ℓ)
v

∥∥∥∥∥
L1

≤ ϵAuvcσd

(
2|V||W|+

∑
w

AvwAwu|V2|

)
. (39)

Repeating the same process for the same node update, one has that∥∥∥∥∥∂x(ℓ+1)
v

∂x
(ℓ)
v

∥∥∥∥∥
L1

= dI

(
1 + ϵcσ

(
|W2|+

∑
w

AuwAwu|V2|

))
. (40)

Now, we can show the inductive step:

∂x
(ℓ+1)
u

∂x
(0)
v

=
∂x

(ℓ)
u

∂x
(0)
v

∂x
(ℓ+1)
u

∂x
(ℓ)
u

+
∑

w∈Nu

∂x
(ℓ)
w

∂x
(0)
v

∂x
(ℓ+1)
u

∂x
(ℓ)
w

. (41)

We now evaluate the norm of this object and, by using the triangular inequality and the two relations
above for same-node and neighboring-node updates, we obtain∥∥∥∥∥∂x(ℓ+1)

u

∂x
(0)
v

∥∥∥∥∥
L1

≤

∥∥∥∥∥∂x(ℓ)
u

∂x
(0)
v

∥∥∥∥∥
L1

∥∥∥∥∥∂x(ℓ+1)
u

∂x
(ℓ)
u

∥∥∥∥∥
L1

+
∑

w∈Nu

∥∥∥∥∥∂x(ℓ)
w

∂x
(0)
v

∥∥∥∥∥
L1

∥∥∥∥∥∂x(ℓ+1)
u

∂x
(ℓ)
w

∥∥∥∥∥
L1

≤

∥∥∥∥∥∂x(ℓ)
u

∂x
(0)
v

∥∥∥∥∥
L1

dI

(
1 + ϵcσ|W2|+ ϵcσ

∑
w

AuwAwu|V2|

)

+ dAuvϵcσ
∑
w

Auw

∥∥∥∥∥∂x(ℓ)
w

∂x
(0)
v

∥∥∥∥∥
L1

(
2|V||W|+

∑
z

AvzAzw|V2|

)
.

(42)

If we now consider the upper bound to be independent of the specific nodes and the maximum degree
of a node to be N , we have that∥∥∥∥∥∂x(ℓ+1)

u

∂x
(0)
v

∥∥∥∥∥
L1

≤

∥∥∥∥∥∂x(ℓ)
u

∂x
(0)
v

∥∥∥∥∥
L1

dI

(
1 + ϵcσ|W2|+ ϵcσ

∑
w

AuwAwu|V2|

)

+

∥∥∥∥∥∂x(ℓ)
u

∂x
(0)
v

∥∥∥∥∥
L1

AuvNdϵcσ

(
2|V||W|+

∑
z

AvzAzu|V2|

)

≤

∥∥∥∥∥∂x(ℓ)
u

∂x
(0)
v

∥∥∥∥∥
L1

Id
(
1 + ϵcσ|W2|+ (N − 1)ϵ|V2|

)
+

∥∥∥∥∥∂x(ℓ)
u

∂x
(0)
v

∥∥∥∥∥
L1

Auvd
(
Nϵcσ

(
2|V||W|+ (N − 1)|V2|

))
.

(43)

which is in the form of theorem 3.2 of Di Giovanni et al. (2023). Calling w = max{|W |, |V |}, we
obtain that ∥∥∥∥∥∂x(ℓ+1)

u

∂x
(0)
v

∥∥∥∥∥
L1

≤

∥∥∥∥∥∂x(ℓ)
u

∂x
(0)
v

∥∥∥∥∥
L1

(
Id(1 + ϵcσNw2) +Auvdw

2ϵcσ(N
2 +N)

)
. (44)

We now sacrifice the term 1 and set ϵ = 1 we can collect a term wcσNd and, following proof in
Di Giovanni et al. (2023), we finally arrive at∥∥∥∥∥∂x(ℓ+1)

u

∂x
(0)
v

∥∥∥∥∥
L1

≤ (dwNcσ)
ℓ+1((wI+ w(N + 1)A)ℓ+1)uv. (45)

Without the terms we sacrificed along the proof, our upper bound is at least N ℓ greater than the one
in Di Giovanni et al. (2023).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

B.7 ADDITIONAL THEOREMS FOR PH-DGN WITH DRIVING FORCES

In this section, we consider the case of σ being a bounded activation function |σ(x)| ≤ bσ with a
bounded derivative |σ′(x)| ≤ cσ, e.g. tanh. Further, we suppose the driving forces are bounded
and Lipschitz continuous with common constant Bd. In formulas, this means that |Du(q)| ≤ Bd,∣∣∣∂Du(q)

∂q

∣∣∣ ≤ Bd, |F (q, t)| ≤ Bd and
∣∣∣∂F (q,t)

∂q

∣∣∣ ≤ Bd. Under these hypotheses, the self-influence of a
node after one step is bounded from below by a constant. An upper bound on the backward sensitivity
matrix (BSM) norm can also be derived for the same node influence and neighboring node influence
after one step.

Theorem B.1 (Lower bound, port-Hamiltonian case). Consider the full port-Hamiltonian update in
Eqs. (13) and (14). Then, with the above hypotheses, the following lower bound for the BSM holds

∥∥∥∥∥∂x(ℓ+1)
u

∂x
(ℓ)
u

∥∥∥∥∥
L1

≥

∣∣∣∣∣
∥∥∥∥∥∂x̃(ℓ+1)

u

∂x
(ℓ)
u

∥∥∥∥∥− ∥D∥

∣∣∣∣∣
≥ 1− ϵwBdc

′
σ(N + 3 + w),

(46)

where w = max{|W|, |V|} as before. In this equation, [∂x(ℓ+1)
u /∂x

(ℓ)
v] represents the BSM for the

full port-Hamiltonian update as in Eqs. (13) and (14), while [∂x̃(ℓ+1)
u /∂x

(ℓ)
v] is the BSM for the pure

Hamiltonian case as in Eqs. (12) and (13), and D is defined as

D =
∂

∂xℓ
u

(
Du(q

(ℓ+1))∇pu
HG(p

(ℓ),q(ℓ))
)
+

∂Fu(q
(ℓ), t)

∂xℓ
u

(47)

This theorem shows that, with these hypotheses, the effect of the driving forces on the BSM norm
can be controlled with a small enough step size.

Proof. We start by providing the same calculations as Theorem 2.4, this time with port-Hamiltonian
components included, for the one-step update in both the cross-node case

∂pℓ+1
u

∂pℓ
v

= −ϵAuvDu(qu)

(
V⊤

p W
⊤
p σ

′
p(u) +W⊤

p V
⊤
p σ

′(p)v +
∑

w∈Nu∩Nv

(V⊤
p)

2σ′
p(w)

)
+O(ϵ2),

∂pℓ+1
u

∂qℓ
v

= −ϵAuv

(
V⊤

q W
⊤
q σ

′
q(u) +W⊤

q V
⊤
q σ

′
q(v) +

∑
w∈Nu∩Nv

(V⊤
q)

2σ′
q(w)

)

− ϵAuv

(
∂Du(q)

∂qv
(W⊤

p σp(u) +
∑

w∈Nu

V⊤
p σp(w)) +

∂F (q, t)

∂qv

)
∂qℓ+1

u

∂qℓ
v

+O(ϵ2) =
∑

w∈Nu∩Nv

∂pℓ+1
w

∂qℓ
v

∂qℓ+1
u

∂pℓ+1
w

= O(ϵ2),

∂qℓ+1
u

∂pℓ
v

= ϵAuv

(
V⊤

p W
⊤
p σ

′
p(u) +W⊤

p V
⊤
p σ

′
p(v) +

∑
w∈Nu∩Nv

(V⊤
p)

2σ′
p(w)

)
+O(ϵ2)

(48)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

and same node case

∂pℓ+1
u

∂pℓ
u

= I− ϵ
(
Du(q)(W

⊤
p)

2σp(u)
)
+O(ϵ2),

∂pℓ+1
u

∂qℓ
u

= −ϵI

(
(W⊤

q)
2σ′

q(u) +
∑

w∈Nu

(V⊤
q)

2σ′
q(w)

)
,

− ϵI

(
∂Du(q)

∂qu
(W⊤

p σp(u) +
∑

w∈Nu

V⊤
p σp(w)) +

∂F (q, t)

∂qu

)
+O(ϵ2)

∂qℓ+1
u

∂qℓ
u

= −ϵI

(
(W⊤

p)
2σ′

p(u) +
∑

w∈Nu

(V⊤
p)

2σ′
p(w)

)
+O(ϵ2),

∂qℓ+1
u

∂pℓ
u

= I+O(ϵ2).

(49)

If we consider the one-step update for the same node, we can divide it into the non-dissipative
component, called ∂x̃(ℓ+1)

u

∂x
(ℓ)
u

, and the dissipative component given by

D = −ϵ
(
Du(q)(W

⊤
p)

2σp(u)
)
− ϵI

(
∂Du(q)

∂qu
(W⊤

p σp(u) +
∑

w∈Nu

V⊤
p σp(w)) +

∂F (q, t)

∂qu

)
(50)

Now, to estimate a lower bound on the self-influence norm, we can use the triangular inequality∥∥∥∥∥∂x(ℓ+1)
u

∂x
(ℓ)
u

∥∥∥∥∥
L1

≥

∣∣∣∣∣
∥∥∥∥∥∂x̃(ℓ+1)

u

∂x
(ℓ)
u

∥∥∥∥∥
L1

− ∥D∥L1

∣∣∣∣∣ (51)

Since the first term is the update for the non-dissipative case, Theorem A.2 holds and then the
right-hand side is greater or equal to

(1− ∥D∥) . (52)

The driving forces effect can then be estimated as

∥D∥ ≤ ϵ(∥W∥2|σ′||Du|) + ϵL(1 + ∥W∥|σ|+N∥V∥|σ|)
≤ dϵwLc′σ(N + 3 + w)

(53)

as per the definitions above, which leads to Eq. (46).

We now calculate an upper bound on the one-step BSM on a node u.

Theorem B.2 (BSM upper bound, same-node update in port-Hamiltonian case). Consider again
the full port-Hamiltonian update in Eqs. (13) and (14) with the same hypothesis above. Then, the
following upper bound for the BSM holds:∥∥∥∥∥∂x(ℓ+1)

u

∂x
(ℓ)
u

∥∥∥∥∥
L1

≤

∥∥∥∥∥∂x̃(ℓ+1)
u

∂x
(ℓ)
u

∥∥∥∥∥+ ∥D∥

≤ d(1 + ϵc′σw(1 +Bd)(N + w + 3))),

(54)

where the individual terms are defined as in theorem B.1.

Proof. We start by recalling the calculations for the same-node and cross-node update gradients from
Theorem B.1. Then, we employ again the triangular inequality to obtain∥∥∥∥∥∂x(ℓ+1)

u

∂x
(ℓ)
u

∥∥∥∥∥
L1

≤

∥∥∥∥∥∂x̃(ℓ+1)
u

∂x
(ℓ)
u

∥∥∥∥∥
L1

+ ∥D∥L1
(55)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Since the first term involves the non-dissipative components only, we use the same calculations as in
Theorem 2.4. We use the same calculations for the second term as in Theorem B.1. Finally, we can
calculate ∥∥∥∥∥∂x(ℓ+1)

u

∂x
(ℓ)
u

∥∥∥∥∥
L1

≤

∥∥∥∥∥∂x̃(ℓ+1)
u

∂x
(ℓ)
u

∥∥∥∥∥
L1

+ ∥D∥L1

≤ Id
(
1 + ϵcσ|W2|+ (N − 1)ϵ|V2|

)
+ dϵwLc′σ(N + 3 + w)

≤ d(1 + ϵc′σNw) + dϵwLc′σ(N + 3 + w)

≤ d(1 + ϵc′σw(1 + L)(N + w + 3)))

(56)

Theorem B.3 (BSM upper bound, cross-node update in the port-Hamiltonian case). Consider again
the full port-Hamiltonian update in Eqs. (13) and (14) with the same hypothesis above. Then, the
following upper bound for the cross-node BSM holds:∥∥∥∥∥∂x(ℓ+1)

u

∂x
(ℓ)
v

∥∥∥∥∥
L1

≤

∥∥∥∥∥∂x̃(ℓ+1)
u

∂x
(ℓ)
v

∥∥∥∥∥+ ∥Dcross∥

≤ d(ϵc′σw(1 + L)(N + w + 3))),

(57)

where [∂x
(ℓ+1)
u /∂x

(ℓ)
v] represents the cross-node BSM for the full port-Hamiltonian update as in

Eqs. (13) and (14), while [∂x̃(ℓ+1)
u /∂x

(ℓ)
v] is the cross-node BSM for the pure Hamiltonian case as in

Eqs. (12) and (13), and Dcross is defined as

Dcross =
∂

∂xℓ
v

(
Du(q

(ℓ+1))∇pu
HG(p

(ℓ),q(ℓ))
)
+

∂Fu(q
(ℓ), t)

∂xℓ
v

. (58)

Proof. We start by recalling the calculations for the same-node and cross-node update gradients from
Theorem B.1. Then, we employ again the triangular inequality to obtain∥∥∥∥∥∂x(ℓ+1)

u

∂x
(ℓ)
v

∥∥∥∥∥
L1

≤

∥∥∥∥∥∂x̃(ℓ+1)
u

∂x
(ℓ)
v

∥∥∥∥∥
L1

+ ∥Dcross∥L1 (59)

Since the first term involves the non-dissipative components only, we use the same calculations as
in Theorem 2.4. For the driving forces component, similar calculations to the ones in Theorem B.1
result in

∥Dcross∥ ≤ d(ϵc′σw(1 + L)(N + w + 3))) (60)

from which our bound follows.

C EXPERIMENTAL DETAILS

C.1 EMPLOYED BASELINES

In our experiments, the performance of our port-Hamiltonian DGNs is compared with various
state-of-the-art DGN baselines from the literature. Specifically, we consider:

• classical MPNN-based methods, i.e., GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton
et al., 2017), GAT (Veličković et al., 2018), GatedGCN (Bresson & Laurent, 2017), GIN (Xu
et al., 2019), GINE (Hu et al., 2020), and GCNII (Chen et al., 2020);

• DE-DGNs, i.e., DGC (Wang et al., 2021), GRAND (Chamberlain et al., 2021a), Graph-
CON (Rusch et al., 2022), A-DGN (Gravina et al., 2023), HamGNN (Han et al., 2024), and
HANG (Zhao et al., 2023);

• Graph Transformers, i.e., Transformer (Vaswani et al., 2017; Dwivedi & Bresson, 2021),
SAN (Kreuzer et al., 2021), and GraphGPS (Rampášek et al., 2022);

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

• Higher-Order DGNs, i.e., DIGL (Gasteiger et al., 2019), MixHop (Abu-El-Haija et al.,
2019), and DRew (Gutteridge et al., 2023).

Note that since DE-DGNs belong to the same family as our proposed method, they are a direct
competitor to our port-Hamiltonian DGNs.

C.2 GRAPH TRANSFER TASK

The graph transfer task consists of the problem of propagating a label from a source node to a target
node located at increased distance k in the graph. In other words, we implemented a regression task
that measures how much of the source node information has reached the target node. We develop this
task based on the work of (Di Giovanni et al., 2023). We employ the same graph distributions as in the
original work, i.e., line, ring, and crossed ring graphs (see Figure 4 for a visual exemplification of the
three types of graphs when the distance between the source and target nodes is 5). However, to make
the task more challenging, we initialize node input features with random values uniformly sampled
in the range [0, 0.5). In each graph, the source node is assigned with label “1”, and a target node is
assigned with label “0”. We use an input dimension of 1, and with a source-target distance equal to
3, 5, 10, and 50. We generate 1000 graphs for training, 100 for validation, and 100 for testing.

Figure 4: Three topologies for Graph Transfer. Left) Line. Center) Ring. Right) Crossed-Ring. The
distance between source and target nodes is equal to 5. Nodes marked with S are source nodes, while
the nodes with a T are target nodes.

We design each model using three main components. First is the encoder, which maps the node input
features into a latent hidden space. Second is the graph convolution component (i.e., PH-DGN or
other baselines). Third is the readout, which maps the convolution’s output into the output space. The
encoder and readout have the same architecture across all models in the experiments.

We perform hyperparameter tuning via grid search, optimizing the Mean Squared Error (MSE)
computed on the node features of the whole graph. We train the models using Adam optimizer
(Kingma & Ba, 2015) for a maximum of 2000 epochs and early stopping with patience of 100 epochs
on the validation loss. For each model configuration, we perform 4 training runs with different weight
initialization and report the average and standard deviation of the results. We report in Table 3 the
grid of hyperparameter employed by each model in our experiment.

C.3 GRAPH PROPERTY PREDICTION

The tasks consist of predicting two node-level (i.e., single source shortest path and eccentricity) and
one graph-level (i.e., graph diameter) properties on synthetic graphs generated by different graph
distributions. In our experiments, we follow the data generation and experimental procedure outlined
in Gravina et al. (2023). Therefore, graphs contains between 25 and 35 nodes and are randomly
generated from multiple distributions. Nodes are randomly initialized with a value uniformly sampled
in the range [0, 1), while target values represent single source shortest path, eccentricity, and graph
diameter depending on the selected task. 5120 graphs are used as the training set, 640 as the validation
set, and the rest as the test set.

As in the original work, each model is designed as three components, i.e., encoder, graph convolution
component (PH-DGN or baselines), and readout. We perform hyperparameter tuning via grid search,
optimizing the Mean Square Error (MSE), training the models using Adam optimizer for a maximum
of 1500 epochs, and early stopping with patience of 100 epochs on the validation error. For each
model configuration, we perform 4 training runs with different weight initialization and report the
average of the results. We report in Appendix C.5 the grid of hyperparameters employed by each
model in our experiment.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

C.4 LONG-RANGE GRAPH BENCHMARK

We consider the Peptide-func and Peptide-struct tasks from the Long-Range Graph Benchmark
(Dwivedi et al., 2022). Both tasks contain graphs corresponding to peptide molecules for a total of
15,535 graphs, 2.3 million nodes and 4.7 million edges. Each graph has an average of 150 nodes, 307
edges, and an average diameter of 57. Peptide-func is a multi-label graph classification task with the
aim of predicting the peptide function. Peptide-struct is a multi-dimensional graph regression task,
whose objective is to predict structural properties of the peptides.

We follow the experimental setting of Dwivedi et al. (2022), thus we consider a stratified splitting of
the data, with 70% of graphs as the training set, 15% as the validation set, and 15% as the test set.
We perform hyperparameter tuning via grid search, optimizing the Average Precision (AP) in the
Peptide-func task and the Mean Absolute Error (MAE) in the Peptide-struct task, training the models
using AdamW optimizer for a maximum of 300 epochs. For each model configuration, we perform 3
training runs with different weight initialization and report the average of the results. Moreover, we
stay within 500K parameter budget as proposed by Dwivedi et al. (2022). In our experiments, we
also consider the setting of Tönshoff et al. (2023) that propose to employ a 3-layer MLP as readout.
We report in Appendix C.5 the grid of hyperparameters employed by each model in our experiment.

C.5 EXPLORED HYPERPARAMETER SPACE

In Table 3 we report the grid of hyperparameters employed in our experiments by each method,
adhering to the established procedures for each task to ensure fair evaluation and reproducibility.
We note that for hyperparameters specific to our PH-DGN, such as the step size ϵ and the number
of layers L, we selected values based on the specific benchmark protocol (whenever possible) and
considering factors like the average graph diameter in the training set.

Table 3: The grid of hyperparameters employed during model selection for the graph transfer tasks
(Transfer), graph property prediction tasks (GraphProp), and Long Range Graph Benchmark (LRGB).
We refer to Appendix A.2 for more details about dampening and external force implementations.

Hyperparameters Values
Transfer GraphProp LRGB

Optimizer Adam Adam AdamW
Learning rate 0.001 0.003 0.001, 0.0005
Weight decay 0 10−6 0
embedding dim 64 10, 20, 30 195, 300
N. layers (L) 3, 5, 10, 50, 1, 5, 10, 20, 30 32, 64

100, 150
Termination time (T) Lϵ 0.1, 1, 2, 3, 4 3, 5, 6
ϵ 0.5, 0.2, 0.1, T/L T/L

0.05, 0.01, 10−4

Φp Eq. (6), GCN Eq. (6), GCN Eq. (6), GCN
Φq Eq. (6), GCN Eq. (6), GCN GCN
Readout input p, q, p∥q p, q, p∥q p, q, p∥q
σ tanh tanh tanh
Dampening – param, param+, param

MLP4-ReLU, DGN-ReLU
External Force – MLP4-Sin, DGN-tanh DGN-tanh
N. readout layers 1 1 1, 3

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 GRAPH PROPERTY PREDICTION RUNTIMES

In Table 4 we report runtimes of PH-DGN with and without driving forces as well as baseline methods
on the graph property prediction task in Section 3.3. To obtain a fair comparison, we configured all
models with 20 layers and an embedding dimension of 30. We averaged the time (in seconds) over 4
random weight initializations for a complete epoch, which includes the forward and backward passes
on the training data, as well as the forward pass on the validation and test data.

Table 4 shows that PH-DGN with and without driving forces has improved or comparable runtimes
compared to MPNNs. Notably, PH-DGN without driving forces is on average 5.92 seconds faster
than GAT and 5.19 seconds faster than GCN. Compared to DE-DGN baselines, our methods show
longer execution times, which are inherently caused by the sequential computation of both p and q
explicitly given in Appendix A.3 and non-conservative components (i.e., param and MLP4-ReLU in
Table 4). Lastly, related Hamiltonian approaches require at least twice as much computation (HANG
(Zhao et al., 2023)) up until 126x more seconds per epoch (HamGNN (Kang et al., 2023). This
underlines our key contribution of a MPNN-complexity model adhering to Hamiltonian laws, i.e.,
linear in number of edges and nodes.

Table 4: Average time per epoch (measured in seconds) and std, averaged over 4 random weight
initializations. Each time is obtained by employing 20 layers and an embedding dimension equal to
30. Our PH-DGN employs param and MLP4-ReLU as dampening and external force, respectively.
The evaluation was carried out on an AMD EPYC 7543 CPU @ 2.80GHz. First, second, and third
best results.

Model Diameter SSSP Eccentricity
MPNNs
GCN 32.45±2.54 17.44±3.85 11.78±2.43

GAT 20.20±5.18 26.41±8.34 17.28±1.92

GraphSAGE 13.12±2.99 13.12±2.99 8.20±0.75

GIN 6.63±0.28 21.16±2.33 14.22±3.17

GCNII 13.13±6.85 14.96±7.17 15.70±3.92

DE-DGNs
DGC 8.97±9.07 12.54±1.62 7.21±11.10

GRAND 133.84±42.57 109.15±27.49 202.46±85.01

GraphCON 9.26±0.47 7.76±0.05 7.80±0.05

A-DGN 8.42±2.71 7.86±2.11 13.18±9.07

HamGNN 1097.90±379.56 1897.04±22.08 1773.43±54.37

HANG 28.92±0.10 34.24±1.08 34.63±0.96

Ours
PH-DGNC 15.49±0.05 15.28±0.02 15.34±0.04

PH-DGN 17.18±0.04 17.12±0.07 17.13±0.06

D.2 COMPLETE LRGB RESULTS

In Table 5 we report the complete results for the LRGB tasks including more multi-hop DGNs and
ablating on the scores obtained with the original setting from Dwivedi et al. (2022) and the one
proposed by Tönshoff et al. (2023), which leverage 3-layers MLP as a decoder to map the DGN
output into the final prediction. Since we are unable to compare the validation scores of the baselines
directly, we cannot determine the best method between (Dwivedi et al., 2022) and Tönshoff et al.
(2023). Therefore, in Table 5, we present all the results.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 5: Results for Peptides-func and Peptides-struct averaged over 3 training seeds. Baseline
results are taken from Dwivedi et al. (2022), Tönshoff et al. (2023) and Gutteridge et al. (2023).
"+PE/SE" indicates the use of positional or structural encoding. We have detailed the type of encoding
wherever the original source explicitly specifies it. “*” means that we re-computed the performance
of the method strictly following the experimental protocol from Tönshoff et al. (2023). As proposed
in Tönshoff et al. (2023), re-evaluated methods employ a 3-layer MLP readout and (Laplacian)
positional or (random walk) structural encoding. The first, second, and third best scores are colored.

Model Peptides-func Peptides-struct
AP ↑ MAE ↓

MPNNs, Dwivedi et al. (2022)
GCN 0.5930±0.0023 0.3496±0.0013

GINE 0.5498±0.0079 0.3547±0.0045

GCNII 0.5543±0.0078 0.3471±0.0010

GatedGCN 0.5864±0.0077 0.3420±0.0013

Multi-hop DGNs, Gutteridge et al. (2023)
DIGL+MPNN 0.6469±0.0019 0.3173±0.0007

DIGL+MPNN+LapPE 0.6830±0.0026 0.2616±0.0018

MixHop-GCN 0.6592±0.0036 0.2921±0.0023

MixHop-GCN+LapPE 0.6843±0.0049 0.2614±0.0023

DRew-GCN 0.6996±0.0076 0.2781±0.0028

DRew-GCN+LapPE 0.7150±0.0044 0.2536±0.0015

DRew-GIN 0.6940±0.0074 0.2799±0.0016

DRew-GIN+LapPE 0.7126±0.0045 0.2606±0.0014

DRew-GatedGCN 0.6733±0.0094 0.2699±0.0018

DRew-GatedGCN+LapPE 0.6977±0.0026 0.2539±0.0007

Transformers, Gutteridge et al. (2023)
Transformer+LapPE 0.6326±0.0126 0.2529±0.0016

SAN+LapPE 0.6384±0.0121 0.2683±0.0043

GraphGPS+LapPE 0.6535±0.0041 0.2500±0.0005

Re-evaluated, Tönshoff et al. (2023)
GCN+PE/SE 0.6860±0.0050 0.2460±0.0007

GINE+PE/SE 0.6621±0.0067 0.2473±0.0017

GCNII+PE/SE∗ 0.6444±0.0011 0.2507±0.0012

GatedGCN+PE/SE 0.6765±0.0047 0.2477±0.0009

DRew-GCN+PE/SE∗ 0.6945±0.0021 0.2517±0.0011

GraphGPS+PE/SE 0.6534±0.0091 0.2509±0.0014

DE-DGNs
GRAND 0.5789±0.0062 0.3418±0.0015

GraphCON 0.6022±0.0068 0.2778±0.0018

A-DGN 0.5975±0.0044 0.2874±0.0021

Ours
PH-DGNC 0.6961±0.0070 0.2581±0.0020

PH-DGN 0.7012±0.0045 0.2465±0.0020

D.3 COMPARISON TO HAMGNN AND HANG

In this section, we discuss on the differences with related works in the line of Hamiltonian systems
for DGNs, such as HamGNN (Kang et al., 2023) and HANG (Zhao et al., 2023).

At first, we highlight that HamGNN and HANG are both instances of auto-differentiated models that
are solved with a neuralODE solver, while our PH-DGN provides exact equations for the layer-wise
information aggregation, revealing a generalized formulation that allows to turn any MPNN-based
model into its energy-preserving version, thus remaining efficient and general.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

From an architectural point of view, HamGNN uses black-box Hamiltonian functions that are agnostic
to the graph structure, thus limiting its interpretation as a DGN, while HANG explicitly couples
the graph structure with the energy function, without making the connection nor investigate this
design choice in relation to (long-range) message passing propagation, which is the main focus of our
work. In contrast, our PH-DGN uses a port-Hamiltonian function that has a clear interpretation and is
directly translated into the nonlinear message-passing framework, aiming to preserve information in
the evolution and aggregation process. Thus, the port-Hamiltonian function drives the aggregation
process based on the graph topology, allowing information to be propagated for an arbitrary number
of layers. Additionally, our approach extends and generalizes Hamiltonian-inspired DGNs by
introducing the ability to adaptively balance between conservative and dissipative behaviors, thus
incorporating port-Hamiltonian dynamics. As demonstrated theoretically in Section 2 and empirically
in Section 3, PH-DGN achieves long-range propagation through intrinsic graph coupling combined
with conservative dynamics, which can be modulated by learnable components from the port-
Hamiltonian framework, such as internal damping and external forces. These properties, crucial for
adding generality to the approach and for effective information flow, are absent in existing models
like HamGNN and HANG. We summarize the above comparison in Table 6 and in Table 7 we report
an empirical assessment between PH-DGN, HamGNN, and HANG to evaluate the computational
requirements of the three methods on the Eccentricity task (Section 3.3). To ensure a fair evaluation,
we conducted a model selection given officially released implementations of HamGNN1 and HANG2

on a grid of total number of layers L ∈ {1, 5, 10, 20, 30}, embedding dimension d ∈ {20, 30},
step size ϵ ∈ {1.0, 0.5, 0.1}, and in case of HamGNN we selected the Hamiltonian fuction to be
H ∈ {H2, H3}, which are the top performing Hamiltonian functions in Kang et al. (2023). Note that
for HamGNN, L = 30 was infeasible due to memory constraints of 40GB. Our results in Table 7
show that our PH-DGN not only outperforms HamGNN and HANG, but also operates at a lower
computational cost, proving to be more efficient in terms of both speed and memory usage.

Table 6: Key properties of DE-DGN models inspired by Hamiltonian and port-Hamiltonian dynamics.

Hamiltonian Graph Learnable
Conservation Coupling Driving Forces

Ham.-insp. DGNs
HamGNN ✓
HANG ✓ ✓

Our
PH-DGNC ✓ ✓
PH-DGN ✓ ✓

Table 7: Mean test log10(MSE) and std average over 4 training seeds on the Eccentricity task from
Section 3.3 along with the measured memory consumption and average time per epoch (in seconds)
of HamGNN, HANG, and our PH-DGN with L = 20 and d = 30. Best result is color coded.

Model Eccentricity Memory Time per epoch
log10(MSE) ↓ GB ↓ sec. ↓

Ham.-insp. DGNs
HamGNN 0.7851±0.0140 26.8 GB 1773.43±54.37

HANG 0.8302±0.0051 3.2 GB 34.63±0.96

Our
PH-DGN -0.9348±0.2097 1.3 GB 17.13±0.06

1https://github.com/zknus/Hamiltonian-GNN
2https://github.com/zknus/NeurIPS-2023-HANG-Robustness

29

https://github.com/zknus/Hamiltonian-GNN
https://github.com/zknus/NeurIPS-2023-HANG-Robustness

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

D.4 ABLATION ON DRIVING FORCES

In order to study the different dampening and external forces we designed for the full port-Hamiltonian
setup (i.e., including driving forces), we provide an ablation of our model on the Minesweeper task
(Platonov et al., 2023), employing the most recent training protocol of Luo et al. (2024). The model
selection is split into two stages. First, the best purely conservative PH-DGN (i.e., PH-DGNC) is
selected from a grid with total number of layers L ∈ {1, 5, 8}, embedding dimension d ∈ {256, 512},
step size ϵ ∈ {0.1, 1.0} according to the validation ROC-AUC. Then, the best selected configuration
is tested with different driving forces. We refer the reader to Appendix A.2 for the details on the
tested architectures. We report in Table 8 the results on the Minesweeper task alongside with the
top-6 models from Luo et al. (2024). We observe that our purely conservative PH-DGNC show a
strong improvement with respect to baseline methods, achieving new state-of-the-art performance.
As evidenced by our ablation in Table 8, the inclusion of driving forces could not improve on this
task, thus there is no advantage in deviating from a purely conservative regime. Our intuition is that
counting-based tasks, like Minesweeper, greatly benefit from a purely conservative bias, such as that
used by PH-DGNC since they require preserving all the information.

To complete the picture of the empirical performance differences between PH-DGN with and without
driving forces, we report in Fig. 5 the ablation on the Graph Transfer task.
We observe that the purely conservative PH-DGNC achieves better performance than the full PH-
DGN on two out of three tasks in the long-range regime. This finding aligns with our intuition that
a purely conservative bias is essential for problems requiring the preservation of all information.
Indeed, solving the graph transfer task effectively demands retaining the source node label without
dissipation.

These results, together with those reported in Section 3, suggest that model selection should determine
the optimal configuration of driving forces depending on the specific data setting.

Table 8: Ablation results on Minesweeper for different architectures of the driving forces proposed in
this work. The scores reported are ROC-AUC scores averaged over the 10 official tr/vl/ts splits of
Platonov et al. (2023). The first, second, and third best scores are colored.

Model Train Score Test Score
ROC-AUC ↑ ROC-AUC ↑

Top-6 models form Luo et al. (2024)
GraphGPS - 90.75±0.89

SGFormer - 91.42±0.41

Polynormer - 97.49±0.48

GAT - 97.73±0.73

GraphSAGE - 97.77±0.62

GCN - 97.86±0.24

Our - no driving forces
PH-DGNC 99.78±0.05 98.45±0.21

Our - with driving forces
PH-DGN

Dampening External Force
– MPL4-Sin 99.37±0.38 96.61±0.57

– DGN-tanh 99.28±0.10 97.20±0.42

param – 99.79±0.05 98.42±0.21

param MLP4-Sin 99.55±0.21 96.86±0.52

param DGN-tanh 99.30±0.19 97.27±0.29

MLP4-ReLU – 99.62±0.57 95.33±0.65

MLP4-ReLU MLP4-Sin 99.93±0.03 95.67±0.62

MLP4-ReLU DGN-tanh 98.79±0.24 95.41±0.66

DGN-ReLU – 94.96±0.17 93.42±0.61

DGN-ReLU MLP4-Sin 95.61±0.48 93.87±0.55

DGN-ReLU DGN-tanh 95.01±0.47 93.32±0.84

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

(a) Line (b) Ring (c) Crossed-Ring

Figure 5: Information transfer performance on (a) Line, (b) Ring, and (c) Crossed-Ring graphs,
including the purely conservative PH-DGN (i.e., PH-DGNC) and PH-DGN with driving forces.

31

	Introduction
	Port-Hamiltonian Deep Graph Network
	Experiments
	Numerical Simulations
	Graph Transfer
	Graph Property Prediction
	Long-Range Graph Benchmark

	Related works
	Conclusions
	Additional Details of the (port-)Hamiltonian Framework
	Sensitivity Upper Bound
	Architectural Details of Dissipative Components
	Discretization of port-Hamiltonian DGNs

	Proofs of the Theoretical Statements
	Proof of Theorem 2.1
	Proof of Theorem 2.2
	Proof of Theorem 2.3
	Proof of Theorem A.1
	Proof of Theorem A.2
	Proof of Theorem 2.4
	Additional theorems for PH-DGN with driving forces

	Experimental Details
	Employed Baselines
	Graph Transfer Task
	Graph Property Prediction
	Long-Range Graph Benchmark
	Explored Hyperparameter Space

	Additional Experimental Results
	Graph Property Prediction Runtimes
	Complete LRGB Results
	Comparison to HamGNN and HANG
	redAblation on Driving Forces

