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ABSTRACT

Neural networks have achieved remarkable performance on various few-shot tasks.
However, recent studies reveal that existing few-shot models often exploit the
spurious correlations between training and test sets, achieving a high performance
that is hard to generalize. Motivated by a fact that a robust few-shot learner should
accurately classify data given any valid training set, we consider a worst-case few-
shot evaluation that computes worst-case generalization errors by constructing a
challenging few-shot set. Specifically, we search for the label-balanced subset of a
full-size training set that results in the largest expected risks. Since the search space
is enormous, we propose an efficient method NMMD-attack to optimize the target
by maximizing NMMD distance (maximum mean discrepancy based on neural
tangent kernel). Experiments show that NMMD-attack can successfully attack
various architectures. The large gap between average performance and worst-case
performance shows that neural networks still suffer from poor robustness. We
appeal to more worst-case benchmarks for better robust few-shot evaluation.

1 INTRODUCTION

Given a limited number of supervised samples, few-shot learning aims to achieve high generalization
performance on unseen test data (Wang et al., 2020; Yue et al., 2020). Recent years have witnessed
rapid advancement of few-shot learning, particularly with neural networks pre-trained with self-
supervised data (Brown et al., 2020; Dosovitskiy et al., 2021; Tan & Le, 2021). Neural networks
gradually become the dominant solution to few-shot learning. Some networks (He et al., 2021; Xu
et al., 2022) even surpass humans in standard benchmarks (Wang et al., 2019; Mukherjee et al., 2021).

Despite promising results on fixed sets, recent work (Sagawa et al., 2020; Taori et al., 2020a; Koh
et al., 2021; Tang et al., 2022) reveals that neural networks as few-shot learners exacerbate spurious
correlations and easily fail on distribution shifts. Spurious correlation is a typical representation
learning problem in which models learn to classify based on superficial features. For example, when
learning the class label pigs from a few pig images, neural network models sometimes learn to guess
based on superficial features (e.g., background with farm fences) rather than learn to generalize base
on essential features (e.g., the facial characteristics of pigs), as shown in Figure 1.

Over-fitting to spurious attributes brings performance increase hallucination but does not guarantee
better robustness, which explains over-optimistic performance on existing benchmarks (Mutton et al.,
2007; Vinyals et al., 2016; Oreshkin et al., 2018; Schick & Schütze, 2021; Alayrac et al., 2022a). The
performance of models are assessed according to the averaged test accuracy given a fixed training set
(1-fold evaluation) or several random subsets of the training set (k-fold evaluation). In that procedure,
it is easy for the superficial features to be carried by the few-shot sets and eventually exploited by
the neural networks since training and test data usually come from the same data distribution in the
construction of the benchmark (Sagawa et al., 2020).

Motivated by a fact that a robust few-shot learner should accurately classify data given any valid
training set, we propose a worst-case evaluation for few-shot learners in this work. Worst-case
evaluation targets to evaluate generalization error bounds. Instead of randomly sampling few-shot
sets, we search for the worst-case few-shot set from a full-size training set with balanced labels.
An illustration of worst-case few-shot evaluation is shown in Figure 1. Inspired by the notion that
spurious correlations often arise from common statistical features (Sagawa et al., 2019; Tang et al.,
2022), the distribution of unbiased samples generally has large divergence with the full-size training
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Figure 1: An illustration of worst-case evaluation. Spurious correlations affect few-shot evaluation.
Since training and test data usually come from the same distribution, over-fitting to spurious features
brings performance increase but does not bring better robustness. For example, models learn to
classify pig based on superficial features (e.g., in a fence), rather than the shape. In this work, we
consider a worst case evaluation for few-shot robustness evaluation by extracting a challenging and
label-balanced subset from a full-size training set with the largest expected risk.

set. Therefore, we adopt a distribution divergence maximization approach NMMD-attack to find the
most challenging few-shot set. This approach is also theoretically guaranteed as the generalization
error of a few-shot set is bounded by the maximum mean discrepancy (MMD) distance (Gretton
et al., 2012) between the few-shot distribution and the original training distribution. The goal of
maximizing generalization error can then be simplified to maximizing the MMD distance between
the few-shot set and the full-size training set. Following the MMD maximization principle, we use
the MMD distance in the hypothesis space to define group (or set) distance. Since the MMD distance
is still intractable, we borrow neural tangent kernel, an approximation to over-parameterized neural
networks, to estimate MMD distance without optimization. Given the searched subset, we train
models and report test accuracy.

Experiments show that NMMD-attack challenges high few-shot performance in randomly-sampled
cases. It can successfully attack various model architectures with large performance drops. For
example, the performance of DenseNet-121 drops by 10.02% on the generated few-shot set. Also,
our case study on ImageNet-1K and CIFAR-10 demonstrates that the generated few-shot sets show
much fewer spurious attributes than randomly-sampled few-shot training sets.

This work re-examine the actual ability of representative neural networks on few-shot cases. The
large performance drop indicates large improvement space in future work. Actually, the bias to
spurious attributes can be a severe system bug and loophole for all few-shot learners. The attacker
can manipulate sets with unseen correlations to destroy a model, which is hard to detect. How to
avoid learning spurious features is a hopeful direction to improve few-shot robustness. Furthermore,
compared with existing few-shot benchmarks, worst-case evaluation can provide a new view demon-
strating how worse a model can be such that we can prepare backup plans in case of accidents in
real-word applications. In this work, we provide a feasible solution to estimate generalization error
bounds for few-shot cases, we appeal to more worst-case benchmarks for better few-shot evaluation
in future.

2 RELATED WORK

In this work, we review related topics, including adversarial attack, distribution shift, and distribution
robustness optimization.

Our work comes as a form of attack inspired by adversarial attack literature (Szegedy et al., 2013;
Goodfellow et al., 2014). Adversarial attacks aim to fool neural networks while keeping innocuous to
humans. This form of attack, though effective, alters each sample independently and ignores group
correlations. Performing attacks mainly concerns making slight variations, e.g. adding noise to the
sample. Since few-shot cases usually have serious spurious correlations between groups, the target of
worst-case few-shot evaluation is to evaluate robustness to distribution shifts.
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Distribution shift naturally arises from real-world applications and has been widely used in robust-
ness (Sagawa et al., 2019; 2021). Also, distribution discrepancy metrics, similar to the NMMD metric
in our work, have been extensively used (Peng et al., 2019; Chen et al., 2020; Zhao et al., 2021)
in predicting generalization performance under data shifts. Distributional robustness (Sinha et al.,
2017) , though inspired by distribution shift, is a distinct direction. Distribution robustness requires
models to minimize empirical error under any valid training set. Unlike attack methods (Madry et al.,
2017; Cohen et al., 2019) that define their perturbation set with an Lp-ball, distributional robustness
analyzes set robustness.

Other works have also explored distribution shifts and adopted samples with spurious correlations
as benchmarks. However, most studies (Sagawa et al., 2019; Taori et al., 2020b; Sagawa et al.,
2021) rely on prior knowledge of spurious correlations, which limits its application to real-world
tasks with complicated and unseen correlations. Existing benchmarks for few-shot learning, like
Mini-Imagenet (Dhillon et al., 2019), CIFAR-FS (Bertinetto et al., 2018), Tiered-ImageNet (Ren
et al., 2018), mainly focus on cross-class query and label shifts. A more practical setting is based
on the idea of “in context” learning few-shot examples for large pre-trained models (Alayrac et al.,
2022b; Yang et al., 2022; Tsimpoukelli et al., 2021) and is the field that suffers over-optimistic
performances. Our few-shot robustness evaluation also follows this setting. We are the first to appeal
to worst-case benchmarks.

3 NOTATIONS

For a better description, we introduce the notations used in this paper. LetX be the data space, Y be the
label space, andH be the hypothesis space in our investigationH : X → Y . We consider classification
tasks for simplification. The training set X consists of n samples (xi, yi)

n
i=1 ∼ P (X,Y ). The model

fθ ∈ H maps input to prediction Y ∈ Rd, where d denotes the dimensions of the output and θ
represents the parameters of the model. To give a probabilistic view of the problem, the training
distribution is denoted as P (X,Y ) = 1

n

∑n
i=1 δ(xi,yi), where δ denotes the Dirac delta distribution

concentrated on (xi, yi). Consequently, P (X) = 1
n

∑n
i=1 δxi

and P (Y ) = 1
n

∑n
i=1 δyi

.

4 FEW-SHOT ROBUSTNESS: THE WORST-CASE GENERALIZATION ERROR

In this work, we discuss the problem of few-shot robustness. In traditional few-shot learning, we
construct a few-shot set and measure the performance given the fixed training set and test set. Here
we are interested in if different few-shot training sets lead to large model performance degradation.
Inspired by the notion of robustness in distributional robust optimization (Sagawa et al., 2019; Kuhn
et al., 2019), we aim to find a challenging few-shot training set Pfew that maximizes the expected
risk on the test set. For convenience, we focus on a data-driven few-shot distribution, where Pfew is
centered around empirical examples extracted from the original training set distribution.

We consider a few shot set with k examples. The example index is defined as Ik := {i1, i2, ...ik} ⊂
[n], and therefore Pfew(X) = 1

k

∑k
m=1 δXim

. For short, we also write Pfew(X) as PIk(X). Let
f be the model hypothesis and Q as the test distribution, the empirical risk of f w.r.t training
set P is ϵP (f) = Ex∈P (x)|δ(f(x)) − P (y|x)|, and the expected risk of f w.r.t. Q is denoted as
ϵQ(f) = Ex∈Q(x)|δ(f(x))−Q(y|x)|. We assume the original training sets and test sets are sampled
i.i.d from a natural distribution. Then we can safely make Assumption. 4.1 that the full-size training
set can teach a model with acceptable generalization errors.

Assumption 4.1. (Generalization) Let H : X → Y be the hypothesis space, then there exists a
model f satisfies f ∈ H and ϵP (f) ≤ α, ϵQ(f) ≤ β, where α, β are constants approaching zero.

In a real-world setting, a few-shot dataset is usually constructed by choosing a few representative
samples (Parnami & Lee, 2022; Gao et al., 2020). Data imbalance is preferably avoided so as not to
inject bias (Ochal et al., 2021; Wang et al., 2020). It is thus logical to assume that the few-shot subset
should match the balanced label distribution of the original training set, as stated in Assumption. 4.2.

Assumption 4.2. (Label Alignment) Let PIk(X,Y ) be the few-shot set selected from P (X,Y ), then
Ik should satisfy P (Y ) = Pfew(Y ), i.e, 1

n

∑n
i=1 δYi =

1
k

∑k
m=1 δYim

.
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Few-shot Robustness Under these assumptions, the few-shot robustness problem we address asks
to solve the worst-case problem denoted as,

max
Ik

ϵQ(fIk), (1)

where fIk is a hypothesis that satisfies ϵPIk
(fIk) ≤ α, and Ik satisfies 1

n

∑
i=1 δYi

= 1
k

∑
δYi,m

, i ∈
[n],m ∈ Ik, Ik ⊂ [n] . {PIk} is the uncertainty set for constraining this distributional robustness
problem. Different few-shot training sets XIk lead to varied generalization errors.

Traditional few-shot evaluation usually adopts a fixed training set. Correlations between the training
set and the test set largely decide the generalization errors on the test set. Higher performance does
not represent better robustness due to the missing evaluation of the worst-case performance. To
evaluate few-shot robustness in Eq. 1, the target is to find a subset XIk to prevent models from
learning biased features and increase the difficulty for generalization performance.

5 NMMD-ATTACK FOR WORST-CASE FEW-SHOT EVALUATION

This section introduces our method for evaluating the worst-case generalization error by constructing
a challenging few-shot set based on Eq. 1. The intuition of NMMD-ATTACK is based on eliminating
the spurious correlation between few-shot training set and test set. Since most samples hold spurious
attributes (Sagawa et al., 2019) and samples with the same spurious attributes tend to be more similar,
it is more likely to find less biased subsets based on distribution discrepancy. Therefore, we propose
a NMMD-attack approach to find the worst-case few-shot subset with the largest MMD discrepancy
from the original training distribution, while maintaining the balance of labels.

Here, We first proves the intuition that the worst-case can be achieved by maximizing the MMD
distance between few-shot set and the original training set, and then introduce how to quantitatively
evaluate the MMD distance using neural tangent kernel. Last, a practical solution is provided to
generate the worst few-shot set. All proofs are available in the Appendix A.

5.1 FEW-SHOT ROBUSTNESS EVALUATION WITH MMD MAXIMIZATION

To find the worst-case few-shot set, our goal is to solve the optimization problem stated in Eq. 1.
Intuitively, the generalization errors increase when there are fewer correlations and lower distribution
similarity between the few-shot set and test set. In many benchmarks and contests, the test set is not
directly available, but we can use a well-rounded training set as a resource of natural data distribution.
In this case, our optimization goal becomes maximizing the distribution distance between the few-shot
set and original training set. Here we use MMD distance following Gretton et al. (2012).
Definition 5.1. (Distribution Distance) LetH be the family of mappings from X → R

d, and let P
and Q be two distribution, then the MMD distance can be defined as,

MMD(H,P,Q) := sup
f∈H

(Ex∼P [f(x)]− Ey∼Q[f(y)]). (2)

We theoretically show that the MMD distance is an upperbound for the few-shot robustness metric.
Theorem 5.1. (Few-shot Robustness Measured by MMD Discrepancy) Let H be the hypothesis
space X → R

d. fIk is the empirical risk ϵPIk
(f) minimizer, and f is the hypothesis that minimizes

expected risk ϵQ(f). Then

ϵQ(fIk) ≤ ϵQ(f) + MMD(PIk , P ) + ϵα + t+ ϵH, (3)

where ϵα,t and ϵH are small constants describing the error occurred in training, the sampling behav-
ior of training distribution and the hypothesis space complexity. Details are shown in Appendix A.1

This theorem gives the intuition that a high discrepancy between the few-shot set and a training set
results in high expected risk. Following statistics literature (Cheng & Xie, 2021), a biased empirical
estimate of the MMD is obtained by replacing the population expectations with the empirical average
computed on the samples. Then we have,

MMD(H, P, PIk) := sup
f∈H

(
1

n

n∑
i=1

f(xi)−
1

m

k∑
m=1

f(xim)) (4)
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For over-parameterized non-linear models, calculating MMD in the hypothesis space is intractable.
Neural Tangent Kernel (NTK), however, is a simple approximation to understand neural networks as
a kernel regression that can be optimized in its Reproducing Kernel Hilbert Space. Following the
convention in NTK literature, we consider the NTK kernel function defined for optimization step
t ≥ 0 as:

Kt(x, x′) := ⟨∇θf(θ(t), x),∇θf(θ(t), x
′)⟩. (5)

Then the MMD distance could be deducted following kernel conventions (Gretton et al., 2012).

Proposition 5.1. (NMMD Distance) The MMD static with NTK at time t is,

MMD2
Kt(P,Q) =

∫
X

∫
X ′

Kt(x, x′)(p̂− p̂′)(x)(p̂− p̂′)(x′)dxdx′, (6)

where X and X ′ denotes the support set for P and Q.

When the neural network approaches its infinite width limit, the NTK matrix stays constant during
training (Arora et al., 2019; Du et al., 2019), i.e., Kt equals to K0. This property enables us to
accurately estimate the MMD distance without costly training. Together with the approximate ability
of NTK for neural network training (shown in Proposition. A.1), we show that NMMD can be used
as an approximation to the MMD distance.

Theorem 5.2. (NMMD Approximation) Let MMDf be the MMD distance calculated with model
f ∈ H and let MMDK be the MMD static w.r.t. the NTK kernel K. Assume f has taken t steps of
training at a learning rate of η, and f is Lf -Lipschitz Continuous. Denote NTK at initialization as
K(x, x′) = ⟨∇θf(θ(0), x),∇θf(θ(0), x)⟩. If k ≤ n

2 , then the two MMD statistics satisfies:

MMDf (P, PIk)) = O(tη ·MMD2
K(P, PIk)) (7)

This theorem formally justifies using NTK kernel to calculate MMD distances. Compared with
estimating MMD distance with neural networks, this method requires no training, and its calculation
can be easily decomposed into kernel similarity K(xi, xj) with the help of the kernel trick. The
simplified distance would be,

MMD2
K(P, PIk) =

1

n2

n∑
i,k

K(xi, xk) + (
1

k2
− 2

nk
)

k∑
s,t

K(xis , xit)︸ ︷︷ ︸
intra-set kernel similarity

− 2

nk

∑
i∈Ik,j ̸∈Ik

K(xi, xj)︸ ︷︷ ︸
inter-set kernel similarity

,

(8)
This distance would achieve its maximum while maximizing the intra-set kernel similarity of the
few-shot set and minimizing the inter-set kernel similarity.

5.2 IMPLEMENTATION

We have simplified the task of finding the worst few-shot set to maximizing the NMMD distance
between a few-shot distribution and the full-size training distribution, as shown in Eq. 8. However,
there are several challenges in implementation: (1) The computational complexity for the NTK matrix
on all training examples is O(n2), making it hard to scale to large-scale sets; (2) Optimizing the
MMD distance requires solving a combinatorial problem of O(

(
n
k

)
). In our work, we address these

problems by taking advantage of the sparsity of NTK matrix.

Efficient Optimization of Eq. 8 In experiments, we discovered the NTK is usually a sparse,
diagonally dominant matrix. As shown in Figure 2, the diagonal terms K(xi, xi) are more than
10x larger than cross terms K(xi, xj). In this way, we can discard cross terms for simplification in
Eq. 8. K(xi, xi) is actually gradient norm ⟨∇θf(θ, xi),∇θf(θ, xi)⟩i∈[n]. Note that the gradient of
model f : X → R

d is∇θf(θ(t), x) ∈ Rp×d, p is the number of parameters in f . The calculation of
K(xi, xi) can be written as,

K(xi, xi) = ⟨∇θf(θ, x),∇θf(θ, x)⟩ =
p∑

i=1

d∑
j=1

∇θifj(x)
2. (9)
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Algorithm 1 Details of NMMD-Attack.
Input: Full-size training set X = (xi, yi)

n
i=1, few-

shot set size k, model f with random parameters
θ, initial parameters θ0.
Output: The few-shot attack set.

1: initialize fθ with θ0
2: for i = 1 : n do
3: Gi ← ⟨∇θfθ(xi),∇θfθ(xi)⟩
4: end for
5: Sort examples in X based on Gi

6: For each label, select top k examples into
the final few-shot set Xfew to optimize Eq. 10

7: return Xfew
Figure 2: Visualization of NTK matrix with 50
examples randomly sampled from CIFAR-10.

After reducing the sparse terms in the NTK matrix, our new goal is to maximize the intra-set kernel
similarity using the gradient norm terms:

max
Ik

k∑
s=1

K(xis , xis), is ∈ Ik (10)

Implementation Algorithm Given Eq. 10, the target of finding the worst-case few-shot set is
simplified into finding the few-shot set with the maximum sum gradient norms. The algorithm
details are shown in Algorithm 1. First, We rank all training samples w.r.t. their gradient norms, i.e.,
K(xj1 , xj1) > K(xj2 , xj2) > ... > K(xjn , xjn), then we choose the top-k samples (xjs , yjs)s∈[k]

as our attack few-shot set. Last, we train models on the searched few-shot set and report its test
accuracy.

6 EXPERIMENTS

Datasets We explore the few-shot robustness on 4 image classification datasets, namely the CIFAR-
10 dataset (Krizhevsky et al., 2009), the CIFAR-100 dataset (Krizhevsky et al., 2009), the MNIST
dataset (LeCun et al., 1998) and the ILSVRC-2012 ImageNet dataset with 1K classes (Deng et al.,
2009). We select a subset of the full-size training set as attack set. To build natural few-shot sets and
guarantee the label alignment constraints, each label keeps k corresponding instances in few-shot
training set.

Models and Hyper-parameters To evaluate the robustness of over-parameterized neural networks,
we consider the following models: 1) FFN, a feed-forward neural networks; 2) VGG (Simonyan &
Zisserman, 2014), a classical convolutional neural network; 3) ResNet (He et al., 2016), a residual
neural network; 4) ResNeXt (Xie et al., 2017); 5) DenseNet (Huang et al., 2017). Besides, to
verify the attack ability on pre-trained models, we also re-implement two pre-trained models: 1)
Transformer-based ViT (Dosovitskiy et al., 2021) and 2) Convolutional-based EfficientNetV2 (Tan
& Le, 2021). Appendix B provides detailed model description and hyper-parameter settings. For each
result, we conduct m experiments and report the mean and variance. m = 5 for MNIST, CIFAR-10,
and CIFAR-100, and m = 3 for ImageNet.

Baseline and Comparison NMMD-attack finds the subset from the full-size training set to attack
models. We implement an “average-case” baseline that randomly samples few-shot sets from the
full-size training set as a comparison. After training models on the few-shot group, we report the
accuracy of the test sets for both methods. To make a fair comparison, NMMD-attack and the baseline
have the same dataset size and label distribution. To be specific, we extract 10% data from the
training set as a few-shot set. Each label has 500 examples in MNIST, 500 examples in CIFAR-10,
50 examples in CIFAR-100, 100 examples in ImageNet-1K. Since NMMD-attack requires gradient
norms, we implement various networks to calculate gradient norms. It needs to notice that such
gradients do not require a trained network. Only architecture and initialization are required.
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Table 1: The comparison between average performance and attack (FFN-attack) performance. “Acc.”
represents accuracy. “Test Acc. Gap” represents the gap between average performance and attack
performance. “Abs.” represents absolute gap and “Rel.” represents relative gap. As we can see,
NMMD-attack can successfully attack models with large performance drop.

Datasets Models Average-case NMMD-attack Test Acc. Gap

Train Acc. Test Acc. Train Acc. Test Acc. Abs. Rel.

MNIST

FFN 100.00 ±0.00 97.63 ±0.12 99.99 ±0.01 93.87 ±0.73 3.76 3.84
VGG-16 100.00 ±0.00 98.73 ±0.13 100.00 ±0.00 76.47 ±0.65 22.26 22.55
ResNet-18 100.00 ±0.00 98.65 ±0.05 100.00 ±0.00 75.41 ±0.54 23.24 23.55
ResNeXt-29 100.00 ±0.00 98.42 ±0.10 100.00 ±0.00 70.64 ±0.77 27.78 28.23
DenseNet-121 100.00 ±0.00 99.14 ±0.06 100.00 ±0.00 77.20 ±0.66 21.94 22.13

CIFAR-10

FFN 100.00 ±0.00 49.38 ±0.47 100.00 ±0.00 42.29 ±0.73 7.09 14.36
VGG-16 98.85 ±0.31 66.20 ±0.91 98.82 ±0.84 51.43 ±1.07 14.77 22.31
ResNet-18 99.97 ±0.02 63.11 ±1.44 99.98 ±0.02 48.72 ±0.89 14.52 23.01
ResNeXt-29 99.52 ±0.48 61.75 ±0.58 99.66 ±0.16 48.59 ±0.62 13.16 21.31
DenseNet-121 99.53 ±0.45 71.19 ±0.87 99.64 ±0.18 54.76 ±1.56 16.43 23.08

CIFAR-100

FFN 99.99 ±0.00 14.46 ±0.51 99.98 ±0.00 11.91 ±0.51 2.55 17.63
VGG-16 100.00 ±0.00 27.15 ±0.65 100.00 ±0.00 14.35 ±0.12 12.80 47.15
ResNet-18 100.00 ±0.00 24.91 ±0.20 100.00 ±0.00 14.27 ±0.29 10.64 42.71
ResNeXt-29 100.00 ±0.00 23.88 ±0.42 100.00 ±0.00 14.54 ±0.40 9.34 39.11
DenseNet-121 100.00 ±0.00 32.74 ±0.68 100.00 ±0.00 17.18 ±0.17 15.56 47.53

ImageNet-1K

FFN 99.94 ±0.01 5.06 ±0.31 99.77 ±0.00 3.14 ±0.24 2.08 51.49
VGG-16 98.11 ±0.02 14.22 ±0.24 97.97 ±0.05 9.74 ±0.50 2.54 40.71
ResNet-18 99.96 ±0.00 30.06 ±0.29 99.72 ±0.00 23.66 ±0.42 6.93 38.01
ResNeXt-50 99.94 ±0.01 37.97 ±0.09 99.66 ±0.05 26.51 ±0.50 9.72 37.28
DenseNet-121 99.84 ±0.01 37.76 ±0.73 99.61 ±0.02 28.49 ±0.36 10.02 37.63

6.1 WORST-CASE EVALUATION ON RANDOM-INITIALIZED ARCHITECTURES

NMMD-attack successfully attack various models with large performance drop. As Table 1
illustrates, NMMD-attack can successfully attack neural networks with worse generalization errors.
For example, DenseNet-121 trained on the randomly sampling few-shot set achieves high test results
with 71.19% on CIFAR-10, 99.14% on MNIST. When DenseNet-121 is trained on the adversarial
few-shot sets generated by NMMD-attack , the performance drops significantly with 16.43% on
CIFAR-10, 21.94% on MNIST, respectively.

Neural Networks suffer from poor robustness. First, Table 1 shows that the neural networks do
not perform well on complicated few-shot datasets, including CIFAR-100 and ImageNet-1K with
over 100 labels. It proves that few-shot generalization to complicated sets is still a big challenge.
Second, even well-performing models on CIFAR-10 and MNIST easily learn spurious correlations
and fail on adversarial sets. The large performance gap between NMMD-attack and average-case
baseline implies that neural networks still suffer from the robustness problem.

FFN-attack and ResNext-attack, two NMMD-attack variants, show better attack performance.
Since NTK requires gradient norm during the few-shot set search, we implement different networks
as variants to observe how backbones affect attack performance. Due to the steady of NTK, we do
not require a trained network during the search. The results are shown in Figure 3. FNN-attack and
ResNeXt-attack achieve better attack performance. It indicates that gradients of FNN and ResNeXt
give valuable information on unbiased examples. It also shows that worse models are more suitable
for attack implementation. The over-fitting to spurious attributes empowers models with a solid
ability to distinguish spurious attributes.

6.2 WORST-CASE EVALUATION ON PRE-TRAINED MODELS

We further verify the effectiveness of the NMMD-attack on pre-trained models. Recently, pre-training
and fine-tuning have become a new paradigm of neural networks with strong learning ability (He
et al., 2019). We conduct FFN-based NMMD-attack on two pre-trained models, transformer-based
Vit-B/16 (Dosovitskiy et al., 2021) and convolution-based EfficientNetV2-S (Tan & Le, 2021) on
CIFAR-10. These two models both are pre-trained on ImageNet-1K before downstream fine-tuning.
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Figure 3: Results of NMMD-attack variants. Since NTK requires gradient norm during few-shot
set search, we implement different networks. FNN-attack and ResNeXt-attack show good attack
performance. Due to its simplicity, We adopt FNN-attack by default in the following experiments.

Table 2: The attack results (FFN-attack) on pre-trained models. The abbreviations follow Table 1. As
we can see, pre-trained models have better defense performance on 500-shot cases but also suffer
from poor robustness on 50-shot cases.

Datasets Models Average-case NMMD-attack Test Acc. Gap
Train Acc. Test Acc. Train Acc. Test Acc. Abs. Rel.

CIFAR-10 (500-shot) EffientNetV2-S 99.72 ±0.03 91.71 ±0.29 99.75 ±0.04 91.50 ±0.43 0.21 0.23
ViT-B/16 100.00 ±0.00 97.14 ±0.14 100.00 ±0.00 96.97 ±0.13 0.17 0.18

CIFAR-10 (50-shot) EffientNetV2-S 99.88 ±0.10 68.79 ±1.48 100.00 ±0.00 65.36 ±2.66 3.43 4.97
ViT-B/16 100.00 ±0.00 88.97 ±0.41 100.00 ±0.00 80.57 ±1.72 8.40 9.44

Pre-trained networks outperform randomly-initialized networks under the same worst-case
few-shot. The first column in Table 2, CIFAR-10 (500-shot) shows performance of pre-trained
networks on the few-shot set searched by FNN-attack. As we can see, pre-trained networks achieve
much better robustness than randomly-initialized networks on 500-shot cases where the FFN-based
NMMD-attack slightly deduces the few-shot learning ability of the pre-trained models. ViT-B/16 has
0.73% relative accuracy drop on CIFAR-10. It proves that large-scale pre-training can reduce the
over-fitting to biased attributes and help robustness.

Pre-trained networks suffer from poor robustness on smaller few-shot sets. In particular,
pre-trained models have solid performance on 500-shot cases. We are wondering if high performance
can be generalized to smaller few-shot sets. We reduce the number of few-shot sets to 50-shot, where
each label has 50 samples. As Table 2 illustrates, the FFN-based NMMD-attack consistently deduces
few-shot performance on smaller few-shot sets. EfficientNetV2 has 4.97% relative accuracy drop
and ViT-B/16 has 9.44% relative accuracy drop, respectively. In summary, NMMD-attack leads
to performance deduction for various models, not only over-parameterized networks but also large
pre-trained models. Moreover, we report our experiments for one-shot models in Appendix D.1. Our
worst-case evaluation poses a higher challenge to defense such attacks for few-shot learning.

7 DISCUSSION

7.1 HOW IS THE QUALITY OF THE ADVERSARIAL FEW-SHOT SETS?

We first explore the instance similarity in the worst-case few-shot sets generated by NMMD-attack.
To this end, we analyze the instance similarity via three metrics: 1) Structural Similarity (SSIM), a
widely recognized method for measuring the similarity between two images (Wang et al., 2004); 2)
Mutual Information (MI), a measure between two variables in information theory; 3)Peak signal-
to-noise ratio (PSNR), a measure between super resolved image and the original one. Details of
similarity measures can be found at Appendix C.

The searched few-shot sets are natural and diverse. Table 3 shows the instance similarity in the
worst-case few-shot sets and random few-shot sets. As we can see, the searched sets are natural and
diverse, and close to the instance similarity in the randomly sampled few-shot set. This indicates that
our approach cannot be replaced by trivial implementations, such as aggregating a group of similar
instances or picking out noise instances. Appendix G shows sampled instances from the searched
few-shot set.

8
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Table 3: The similarity analysis on the searched few-shot sets and randomly-sampled few-shot sets.
For SSIM and MI, lower scores represent better diversity. For PSNR, higher scores represent better
diversity. The searched few-shot sets show competitive diversity scores compared with randomly-
sampled sets.

Diversity Score FFN-attack VGG-attack ResNet-attack ResNeXt-attack DenseNet-attack Average-case
SSIM↓ 0.06 0.12 0.18 0.20 0.12 0.12
MI↓ 0.44 0.44 0.37 0.35 0.46 0.44
PSNR↑ 54.57 57.25 56.18 58.04 56.03 57.43

Figure 4: Case study of spurious correlation: Sky Background→ airplane. Specifically, P (S|A)
refers to the number of airplane images with a sky background correctly judged, and so on. This
spurious correlation is witnessed in the classification results of the model trained on a random-chosen
few-shot set. The NMMD-attack results barely show this correlation.

7.2 EXPLAINING THE EFFECTIVENESS OF NMMD-ATTACK WITH SPURIOUS CORRELATION

Spurious correlation occurs as a statistical phenomenon, whereas confounders in data can be used
to perform inference. These confounding attributes are often superficial features like background
or lightning and are easy to capture. Here we compute the conditional probability of the spurious
attribute to labels. All probabilities are statistically estimated by counting the figures with or without
the hand-annotated spurious attribute. As shown in Figure. 4, airplanes in the CIFAR-10 dataset
appear more common in a sky background than other classes, and thus models are likely to learn the
spurious correlation “figure of airplanes→ sky background→ planes”. These spurious correlations
between training and test sets thus bring a high performance that is yet hard to generalize.

However, our worst-case few-shot set on CIFAR-10 picks several samples for each class as a few-shot
set, all with an almost plain white background. This forbids models from learning to classify airplanes
based on the sky background. The essential features are much harder to learn, resulting in much
lower accuracy. Similar cases are common in various datasets. Other cases on Imagenet-1K include
Bamboo Leaves→ Small Panda, Water Background→ Drake, and Human Activity→ Paddle, as
shown in Appendix F. All spurious correlation experiments are based on ResNeXt-attack set and
finetuned with VGG model.

8 CONCLUSION

This paper proposes a worst-case evaluation to re-examine neural networks as few-shot learners by
constructing a label-balanced subset from a full-size training set that results in the largest expected
risks. An efficient method NMMD-attack is proposed to optimize the target in this work. Experiments
show that NMMD-attack can find natural and diverse few-shot sets that successfully attack various
architectures, even pre-trained models. The quantitative analysis gives several case studies to
understand how spurious correlations between training and test sets affect few-shot evaluation. We
find that the searched few-shot sets have fewer spurious attributes than randomly-sampled few-shot
sets, which can explain why the searched few-shot set is more challenging. The worst-case evaluation
re-examines the actual ability of neural networks on few-shot cases and also brings new problems to
defense such attack for better robustness. Our work is still limited in the computer vision domain
and we intend to apply to natural language tasks in the future. We also intend to further explore the
negative impact of spurious attribute on general benchmarking and extend our theoretical analysis to
the impact of distribution shift on spurious correlation.

9
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9 REPRODUCIBILITY STATEMENT

• Experiment Reproducibility: We have included the code, data, and instructions to repro-
duce the experimental results. The codes and searched few-shot sets are available in the
supplementary materials. We also record the gradient norms in the materials, which enables
a quick re-implementation. Models and hyper-parameter settings are described in 6. For
each result, we run experiments with different random seeds and report the average accuracy
with standard deviation.

• Theory Reproducibility: The proofs of all propositions, lemmas, and theorems are included
in A. A few theorems and lemmas referenced from other works are provided with careful
citation.
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A PROOF

A.1 PROOF FOR THEOREM 5.1

Lemma 1. Define ϵS(h, f) := Ex∼S |δ(h(x))− δ(f(x))|. For any hypothesis h, h′ ∈ H, there exists
ϵH > 0 which satisfies,

|ϵPIk
(h, h′)− ϵP (h, h

′)| ≤ MMD(H, PIk , P ) +
ϵH
2

(11)

ϵH is a constant for the complexity of hypothesis space.

Proof.∣∣∣ϵPIk
(h, h′)− ϵP (h, h′)

∣∣∣ ≤ sup
h,h′∈H

∣∣∣ϵPIk
(h, h′)− ϵP (h, h′)

∣∣∣
= sup

h,h′∈H

∣∣∣Px∼PIk
[δ(h(x)) ̸= δ(h′(x))]−Px∼P [δ(h(x)) ̸= δ(h′(x))]

∣∣∣
= sup

h,h′∈H

∣∣∣Px∼PIk
[h(x) ̸= h′(x)]−Px∼P [h(x) ̸= h′(x)]

∣∣∣
= sup

h,h′∈H

∣∣∣∣∫
X
1h(x) ̸=h′(x)dµPIk

−
∫
X
1h(x)̸=h′(x)dµP

∣∣∣∣
(12)

Inspired by proof in Peng et al. (2019), we use a continuous function to approximate the indicator
function 1h(x)̸=h′(x). Formally, for any h, h′, 1h(x)̸=h′(x) is a L1 function, thus there exists f ∈
Cc(X ) that satisfies,

sup
h,h′∈H

∣∣∣∣∫
X
1h(x)̸=h′(x)dµPIk

−
∫
X
1h(x)̸=h′(x)dµP

∣∣∣∣ ≤ ∣∣∣∣∫
X
f(x)dµPIk

−
∫
X
f(x)dµP

∣∣∣∣+ ϵH
2

≤

∣∣∣∣∣supf∈H
(Ex∼P [f(x)]− Ey∼PIk

[f(y)])

∣∣∣∣∣+ ϵH
2

= |MMD(H, PIk , P )|+ ϵH
2

(13)

where Cc(X ) is a subset of the hypothesis space with compact support and ϵ is a constant for the
complexity of hypothesis space which measures the closeness of the approximation.

Lemma 2. Let fIk be the trained classifier on the few-shot distribution PIk , and f be the trained
classifier on distribution P . Since PIk is formed by a subset of the training examples, when training
error ϵP (f)→ 0 and ϵPIk

(fIk)→ 0, ϵPIk
(fIk , f) ≤ ϵα, where ϵα is a constant approaching zero.

Following Ben-David et al. (2010), we use Lemma 1 and 2 to prove Theorem 5.1.

Proof

ϵQ(fIk) ≤ ϵQ(f) + ϵQ(fIk , f)

= ϵQ(f) + ϵPIk
(fIk , f) + (ϵQ(fIk , f)− ϵP (fIk , f)) + (ϵP (fIk , f)− ϵPIk

(fIk , f))

≤ ϵQ(f) + ϵPIk
(fIk , f) + |ϵP (fIk , f)− ϵQ(fIk , f)|+ |ϵPIk

(fIk , f)− ϵP (fIk , f)|
≤ ϵQ(f) + ϵα + |ϵP (fIk , f)− ϵQ(fIk , f)|+ MMD(PIk , P ) + ϵH

(14)

In which,
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|ϵP (fIk , f)− ϵQ(fIk , f)| =
∣∣∣∣∫

X
1fIk (x)̸=f(x)dµP −

∫
X
1fIk (x)̸=f(x)dµQ

∣∣∣∣
= |

n∑
i=1

1fIk (xi )̸=f(xi) − EQ1fIk (x) ̸=f(x)|
(15)

Here suppose test set Q matches the distribution of data for this classification task, and P is con-
structed by sampling n i.i.d. samples from the distribution Q. Using Hoeffding inequality we have,

P (|ϵP (fIk , f)− ϵQ(fIk , f)| > t) ≤ 2e−2nt2 (16)

Therefore, with a probability over 1 − 2e−2nϵ2t (in practice n is very large and the probability
approaches 1), we have

ϵQ(fIk) ≤ ϵQ(f) + MMD(PIk , P ) + ϵα + t+ ϵH (17)

A.2 PROPERTY OF NTK

Proposition A.1. (Neural Tangent Kernel, Arora et al. (2019)) Consider minimizing the loss l(θ)
by gradient descent with infinitesimally small learning rate: dθ(t)

dt = −∇l(θ(t)). Let u(t) =

(f(θ(t), xi))i∈[n] ∈ Rnd be the network outputs on all xi at time t, and Y = (yi)i∈[n] be the ground
truth outputs, loss is l(f(θ,X), Y ). Then u(t) follows the following evolution, where Kt is the NTK
matrix, Kt

(i,j) = ⟨
∂f(θ(t),xi

∂θ ,
∂f(θ(t),xj)

∂θ ⟩:

u(t)− u(t− 1) = Kt ∂l(θ(t))

∂u(t)
+O((θt − θt−1)

2) (18)

The proof follows Arora et al. (2019).

A.3 ON PROPOSITION 5.1

This proposition is adopted from Lemma.4 in Gretton et al. (2012).
Lemma 3. (Restatement of Lemma.4 in Gretton et al. (2012)) Let H be the Reproducing Ker-
nel Hilbert Space for kernel K(·, ·). If K(·, ·) is measurable and Ex∼PK(x, x) > 0,∀x ∈ X ,
Ex∼QK(x, x) > 0,∀x ∈ X ′, then mean embeddings µP , µQ exists such that Exf = ⟨f, µP ⟩ and
satisfies,

MMD(P,Q) = ||µP − µQ||H (19)

The NTK kernel is a positive definite matrix and satisfies constraints in this Lemma. Also based on
the definition of distance in RKHS, we can rewrite Equation. 19 into the form in Proposition. 5.1.

A.4 PROOF FOR THEOREM 5.2

Proof

Using the MMD expression in integral form (Cheng & Xie, 2021), we can simplify the expression in
Definition 5.1:

MMDf (P,Q) = sup
θ

∫
X
f(θ, x)|p̂− q̂|(x)dx (20)

where p̂ = 1
nδxi

, xi ∼ P , and q̂ = 1
mδyi

, yi ∼ Q. δx is the indicator function that equals to 1 when
input equals to x, otherwise the output is 0.

Similarly we can write NTK-MMD initialized with f(0) as,

MMD2
K0

(P,Q) =

∫
X

∫
X
K0 (x, x

′) (p̂− q̂)(x)(p̂− q̂) (x′) dxdx′ (21)
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We can see that MMDf involves solving an optimization problem. Here we design a loss to achieves
the maximum at the last time step during fine-tuning. At the same time, we require the model f to
learn the distribution of the task.

L(f(θt, x)) = −|EQf(θ(t), x)−EP f(θ(t), x)|︸ ︷︷ ︸
Unalignment loss

+EP |f(x)− p(y|x)|︸ ︷︷ ︸
Classification loss

(22)

During training, we take a two steps approach, first aligning the distributions and then minimizing
the classification error (in practice, this can be done by training the representation encoder and then
the classification head). Here we suppose at initialization, the loss is quite large such that the two
distributions are aligned.

The NTK at time step t is Kt(x, x
′) = ⟨∂f(x,θ(t)θ(t)

∂f(x′,θ(t)
θ(t) ⟩. Our P is the training set distribution,

and PIk is the distribution Q (here we write Q for convenience). Using the L1 loss, combined with
Proposition 3.1, we have:

u(x, t)− u(x, t− 1) = ∇θtf (x; θt)
T
(θt − θt−1) +O

(
∥θt − θt−1∥2

)
=

∫
X
∇θtf (x; θt)

T ∇θtf (x′; θt) (−|p̂− q̂|+ p̂)(x′)dx′ +O
(
∥θt − θt−1∥2

)
(23)

Recalling that, the NTK matrix remains stable during training, thus we can write it as,

u(x, t)− u(x, t− 1) = η

∫
X
∇θ0f (x; θ0)

T ∇θ0f (x′; θ0) (−|p̂− q̂|+ p̂)(x′)dx′ +O
(
∥θt − θt−1∥2

)
(24)

Here X is the support set of P and Q. Also,

||θt − θt−1|| = η||∇θtL(f(θ(t)), x||

=
η

n
||∇θtf(θ(t))|| ≤

ηLf

n

(25)

Therefore, combining t = cn steps (c epochs) of training we have:

u(x, t)− u(x, 0) = η

∫
t

∫
X
∇θ0f (x; θ0)

T ∇θ0f (x′; θ0) (p̂)(x
′)dx′dt+

t∑
s=0

O

(
η2L2

fs

n2

)

= η

∫
t

∫
X
∇θ0f (x; θ0)

T ∇θ0f (x′; θ0) (p̂)(x
′)dx′dt+O

(
η2L2

f

)
+O(η2L2

f )

(26)

Then combined with the definition of MMD, if n ≥ 2k:

MMDf (P,Q) =

∫
X
u(x, t)|p̂− q̂|(x)dx

=

∫
X
[u(x, 0) + η

∫
t

∫
X

∫
X
K0(x, x′)(−|p̂− q̂|+ p̂)(x′)dx′dt]|p̂− q̂|(x)dx+O(tη2L2

f )

≤ 2η

∫
t

∫
X

∫
X
K0(x, x′)|p̂− q̂|(x′)dx′dt|p̂− q̂|(x)dx+O(tη2L2

f )

= 2ηtMMD2
K0(P,Q) +O(tη2L2

f )
(27)
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Also,

MMDf (P,Q) =

∫
X
u(x, t)|p̂− q̂|(x)dx

=

∫
X
[u(x, 0) + η

∫
t

∫
X

∫
X
K0(x, x′)(−|p̂− q̂|+ p̂)(x′)dx′dt]|p̂− q̂|(x)dx+O(tη2L2

f )

> η

∫
t

∫
X

∫
X
K0(x, x′)|p̂− q̂|(x′)dx′dt|p̂− q̂|(x)dx+O(tη2L2

f )

= ηtMMD2
K0(P,Q) +O(tη2L2

f )
(28)
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Table 4: Hyperparameters settings. These settings are reported in their official repository for best
practice. CA refers to cosine annealing scheduler (Loshchilov & Hutter, 2016). The Linear refers
LinearLR scheduler in Pytorch. OneCycle refers 1-cycle learning rate policy (Smith & Topin, 2019).

Models Datasets Batch Size Training Epochs Optimizer Learning Rate

FFN

MNIST 128 50/200 SGD 0.01 (CA)
CIFAR-10 128 50/200 SGD 0.01 (CA)
CIFAR-100 128 50/200 SGD 0.01 (CA)
ImageNet-1K 32 40/90 SGD [0.01, 0.001, 0.0001]

VGG

MNIST 128 50/200 SGD 0.01 (CA)
CIFAR-10 128 50/200 SGD 0.01 (CA)
CIFAR-100 128 50/200 SGD 0.01 (CA)
ImageNet-1K 32 40/90 SGD [0.01, 0.001, 0.0001]

ResNet

MNIST 128 50/200 SGD 0.01 (CA)
CIFAR-10 128 50/200 SGD 0.01 (CA)
CIFAR-100 128 50/200 SGD 0.01 (CA)
ImageNet-1K 32 40/90 SGD [0.1, 0.01, 0.001]

ResNeXt

MNIST 128 50/200 SGD 0.01 (CA)
CIFAR-10 128 50/200 SGD 0.01 (CA)
CIFAR-100 128 50/200 SGD 0.01 (CA)
ImageNet-1K 100 40/90 SGD [0.1, 0.01, 0.001]

DenseNet

MNIST 128 50/200 SGD 0.01 (CA)
CIFAR-10 128 50/200 SGD 0.01 (CA)
CIFAR-100 128 50/200 SGD 0.01 (CA)
ImageNet-1K 32 40/90 SGD [0.1, 0.01, 0.001]

ViT-B/16 CIFAR-10 32 4 Adam 5e-5 (Linear)
CIFAR-100 32 4 Adam 5e-5 (Linear)

EfficientNetV2-S CIFAR-10 32 4 AdamW 1e-3 (OneCycle)
CIFAR-100 32 4 AdamW 1e-3 (OneCycle)

B MODELS AND HYPERPARAMETERS

To evaluate the robustness of over-parameterized neural networks, we consider the following models.
1) FFN, a feed-forward neural network with two convolution and pooling layers and three feed-
forward layers. 2) VGG (Simonyan & Zisserman, 2014), a classical convolutional neural network.
We use the VGG-16 with 13 convolution layers and three fully connected layers as implementation.
3) ResNet (He et al., 2016), a residual neural network. We use the ResNet-18 with 16 residual blocks,
one convolution layer, and one fully connected layer as implementation; 4) ResNeXt (Xie et al.,
2017) incorporating the advantages of ResNet and Inception (Szegedy et al., 2015; 2016; 2017; Ioffe
& Szegedy, 2015). We use the ResNeXt-29 (2x64d) for MNIST, CIFAR-10, and CIFAR-100, and
ResNeXt-50 (32x4d) for ImageNet. 5) DenseNet (Huang et al., 2017). We use DenseNet-121 with
121 layers, one convolution layer, and one fully connected layer as re-implementation.1 Besides,
to verify the attack ability NMMD-attack on the pre-trained models, we also re-implement two
pre-trained models: 1) Transformer-based ViT (Dosovitskiy et al., 2021)2 and 2) Convolutional-based
EfficientNetV2 (Tan & Le, 2021)3. For FFN, VGG, ResNet, ResNeXt, and DenseNet on ImageNet,
we resize all the images into 256×256 and then center-crop them into 224×224. For ViT on CIFAR,
we resize all the images into 224× 224, while 384× 384 for EfficientNetV2.

We list hyper-paramter settings in Table 4. All the SGD optimizers are with a momentum of 0.9. For
Adam/AdamW, we set β = (0.9, 0.999). For the learning rate in selected Imagenet, the milestones
are [15, 30], while [30, 60] for the full-sized. We conduct all the experiments on a single A100 GPU.

1For VGG, ResNet, ResNeXt, and DenseNet on CIFAR and MNIST, we use the implementation from
https://github.com/kuangliu/pytorch-cifar. As for ImageNet, we use the implementation
from torch.models.

2We use the implementation from https://huggingface.co/google/
vit-large-patch16-224

3We use the implementation from torch.models.
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C DETAILS OF SIMILARITY MEASURE METHODS

1) Structural SIMilarity (SSIM), which is a widely recognized method for measuring the similarity
between two images (Wang et al., 2004). The SSIM index considers three measurements on the two
images x and y, including luminance, contrast, and structure. Following the settings of Wang et al.
(2004), we formulate SSIM by:

SSIM(x, y) = lα · cβ · sγ (29)

We set the weights α, β, and γ all to 1.

2) Mutual Information (MI), which is a measure of the mutual dependence between the two variables
in information theory. Following (Studholme et al., 1999), we calculate MI for image matching.
Given the signal intensity in an image, it evaluates how well the signal in the other image will be
predicted. Compared with other measurements, MI has fewer restrictions on image modality and
alignment. We implement MI by applying the normalized mutual information function in scikit-learn 4

toolkit and normalizing MI to the interval 0 to 1.

3) Peak Signal-to-Noise Ratio (PSNR) is a frequently used metric for image quality comparison
between two images, especially in the area of image compression. PSNR computes the mean-square
error of the compressed and the original image and further calculates the peak error by:

PSNR = 10 log10

(
R2

MSE(x, y)

)
(30)

where R is the maximum fluctuation in the image data type. In our experiment, we normalized the
images, took the MSE of the images in the worst-case group one-to-one, and set the R to 1.

4https://scikit-learn.org
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Figure 5: Spearman correlation of gradient norms calculated by different models. All results have
r < 0.005 except for the VGG correlation, whose r > 0.05.

D INTER-MODEL CORRELATION ANALYSIS

For different models, the gradient norms are different and thus various models can generate different
adversarial few-shot sets.In this section, we explore whether there is an intrinsic gradient ranking
correlation across different models.

We report the correlation analysis between different models in Figure 6. As can be seen from the
graph, the VGG is not correlating with any of the other models’ rankings. The correlation result
also aligns with our main results that the VGG attack is almost invalid. Beyond that, we can see that
ResNet, DenseNet, and ResNeXt, which have similar residual structures, maintain some correlation.
Apart from that, the FFN, which also has a strong attack capability, only maintains a high correlation
with ResNeXt, showing that influential ranking is model-independent.

D.1 WORST-CASE EVALUATION ON FEW-SHOT LEARNING MODELS

We also explored the ability of the NMMD-Attack on the FEW-SHOT learning models. We selected
the ProtoNet (Snell et al., 2017)5 for experiments on CIFAR-100 with FFN-attack. From the results,
we can see that even though the model is designed for few-shot learning, it still suffers from our
attack.

Table 5: The attack results on few-shot models on CIFAR-100. The abbreviations follow Table 1.

Models Average-case NMMD-attack Test Acc. Gap
Train Acc. Test Acc. Train Acc. Test Acc. Abs. Rel.

ProtoNet 99.97 54.88 99.96 52.46 2.42 4.41

5We use the implementation from https://github.com/orobix/
Prototypical-Networks-for-Few-shot-Learning-PyTorch
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Table 6: The comparison between average performance and attack performance of different size on
CIFAR-10. The abbreviations follow Table 1.

k-shot Models Average-case NMMD-attack Test Acc. Gap
Train Acc. Test Acc. Train Acc. Test Acc. abs. rel.

50-shot

FFN 52.16 ±10.93 30.13 ±1.60 84.52 ±9.82 24.90 ±1.00 5.23 17.36
VGG-16 100.00 ±0.00 40.00 ±0.41 100.00 ±0.00 22.14 ±2.02 17.89 44.65
ResNet-18 100.00 ±0.00 35.06 ±0.46 100.00 ±0.00 19.01 ±1.17 10.83 45.78
ResNeXt-29 100.00 ±0.00 34.95 ±1.15 100.00 ±0.00 24.12 ±0.59 10.83 30.99
DenseNet-121 100.00 ±0.00 40.57 ±1.75 100.00 ±0.00 24.29 ±1.88 16.28 40.13

200-shot

FFN 100.00 ±0.00 43.08 ±1.29 99.99 ±0.01 36.12 ±1.68 6.06 16.16
VGG-16 100.00 ±0.00 56.93 ±0.41 100.00 ±0.00 34.93 ±1.24 22.00 38.64
ResNet-18 100.00 ±0.00 53.65 ±0.88 100.00 ±0.00 34.42 ±1.69 19.23 35.84
ResNeXt-29 100.00 ±0.00 52.07 ±1.10 100.00 ±0.00 34.66 ±1.19 17.41 33.44
DenseNet-121 100.00 ±0.00 60.85 ±0.82 100.00 ±0.00 36.18 ±1.42 24.67 40.54

2000-shot

FFN 100.00 ±0.00 59.10 ±0.69 99.99 ±0.01 55.84 ±0.90 3.26 5.52
VGG-16 100.00 ±0.00 82.66 ±0.15 100.00 ±0.00 78.22 ±0.29 4.44 5.37
ResNet-18 100.00 ±0.00 80.68 ±0.25 100.00 ±0.00 76.49 ±0.77 4.19 5.19
ResNeXt-29 100.00 ±0.00 79.10 ±0.35 100.00 ±0.00 76.00 ±0.37 3.10 3.92
DenseNet-121 100.00 ±0.00 85.96 ±0.45 100.00 ±0.00 82.64 ±0.34 3.32 3.86

E ATTACK ON THE FEW-SHOT SETS WITH DIFFERENT SIZES

We conducted attack experiments on few-shot sets with different sizes. The results show that with
the increase of training data, the robustness gradually becomes better. There is considerable overlap
between the attack and random datasets at larger data sizes. The performance drop on 2000-shot
cases also can indicate the effectiveness of our methods.

Figure 6: Attack performances on different scale subsets of CIFAR-10. The bars represent the gap
between NMMD-attack and average-case.
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F SPURIOUS CORRELATION ANALYSIS

We case study the correlation between several spurious attributes and labels on the Imagenet-1K. The
results in Figures 6,7&8 shows that spurious correlations are common. When trained on a randomly
selected few-shot set, all three cases suffer from spurious correlations at different levels. However,
the spurious correlations problem becomes less severe after training on our NMMD-attack set in
Bamboo Leaves VS. Small Panda and Water Background VS. Drake cases. Compared to results on
CIFAR-10, the spurious correlation alleviation is less precise, possibly because the model has not
learned the spurious attributes on Imagenet well. Furthermore, the spurious attributes on complicated
figures may also be more complicated and hard to gain.

Figure 7: Case study of spurious correlation: Human Involvement→
Paddle.

Figure 8: Case study of spurious correlation: Water Background→
Drake.

Figure 9: Case study of spurious correlation: Bamboo Leaves→ Small
Panda.
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G VISUALIZATION OF THE FEW-SHOT SET SEARCHED BY NMMD-ATTACK

Figure 10: Visualization of the few-shot set searched by NMMD-attack for CIFAR-10. We randomly
choose 50 examples for each label.
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