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Abstract. Eternal vertexr cover is the following two-player game be-
tween a defender and an attacker on a graph. Initially, the defender
positions k guards on k vertices of the graph; the game then proceeds in
turns between the defender and the attacker, with the attacker selecting
an edge and the defender responding to the attack by moving some of the
guards along the edges, including the attacked one. The defender wins
a game on a graph G with k guards if they have a strategy such that,
in every round of the game, the vertices occupied by the guards form a
vertex cover of GG, and the attacker wins otherwise. The eternal vertex
cover number of a graph G is the smallest number k of guards allowing
the defender to win and EVC is the problem of computing the eternal
vertex cover number of the given graph.

We study this problem when restricted to the well-known class of series-
parallel graphs. In particular, we prove that EVC can be solved in linear
time when restricted to melon graphs, a proper subclass of series-parallel
graphs. Moreover, we also conjecture that this problem is NP-hard on
series-parallel graphs.
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1 Introduction

A wvertex cover of a graph G = (V, E) is a set S C V such that, for every edge
in F, at least one of its endpoints is in S. It is minimum if it is of minimum
cardinality. This minimum value is called the vertex cover number of G and is
denoted by vc(G). The VERTEX COVER problem consists in determining this
number.

The notion of eternal vertex cover, first introduced by Klostermeyer and
Mynhardt [24], exploits the above definition in the context of a two-player multi-
round game, where a defender uses mobile guards (whose number remains the
same throughout the game) placed on some vertices of G to protect the edges
of G from an attacker. The game begins with the defender placing guards on
some vertices, at most one per vertex. In each round of the game, the attacker
chooses an edge to attack. In response, the defender moves the guards so that
each guard either stays at its current location or moves to an adjacent vertex; the
movement of all guards in a round is assumed to happen in parallel. If a guard



crosses the attacked edge during this move, it protects the edge from the attack.
The defender wins if the edges can be protected by any sequence of attacks. If
an attacked edge cannot be protected in some round, the attacker wins. Clearly,
a necessary condition to protect the graph is that the set of vertices where the
guards lie at each round is a vertex cover, and this justifies the name of eternal
vertex cover. The ETERNAL VERTEX COVER problem, EVC for short, consists of
determining the minimum number of guards allowing the defender to protect all
the edges of G, called eternal vertex cover number of G and denoted by evc(G).
In the literature, evc(G) is sometimes denoted by aS°(G) (see for example [24])
or by 7°(G) [6].

EVC finds applications in network security, drone surveillance, and war sce-
narios. For example, some agents are deployed on the nodes of a network in such
a way that the agents watch every connection between nodes. A malicious attack
forces an agent to traverse that connection and, more in general, to reconfigure
the position of the agents. The eternal vertex cover game asks whether it is
possible for a set of agents to respond to any sequence of attacks. Minimizing
the number of agents required for an everlasting defense and understanding a
winning strategy is clearly beneficial to resource allocation.

A series-parallel graph can be recursively constructed by observing that a sin-
gle edge is a series-parallel graph, and by composing smaller series-parallel graphs
either in series or in parallel. Although this class has been introduced a long time
ago [I7], it still attracts the attention of researchers (see, e.g., [TJABIT2IT6]).
Series-parallel graphs are a well-known and studied graph class from a theoreti-
cal perspective and naturally model two-terminal networks that are constructed
with the series and parallel composition.

In this paper, we study the EVC problem when restricted to series-parallel
graphs: we prove that it can be solved in linear time for a proper subclass of
series-parallel graphs, while we conjecture that it remains NP-hard on the whole
class.

1.1 Previous Results

Since its definition, EVC has been deeply studied from a computational com-
plexity point of view: deciding whether k guards can protect all the edges of a
graph is NP-hard [19]; it remains so even for bipartite graphs [28] and for bicon-
nected internally triangulated planar graphs, although there exists a polynomial
time approximation scheme for computing the eternal vertex cover number on
this class of graphs [§]. The problem can be exactly solved in 20(") time and is
FPT parameterized by solution size [19].

On the positive side, there are a few graph classes for which the problem can
be efficiently solved. Indeed, it is solvable in linear time on trees and cycles [24],
maximal outerplanar graphs [9], chain and split graphs [30]. Moreover, it is
solvable in quadratic time on chordal graphs [8/T1] and solvable in polynomial
time on co-bipartite graphs [10], cographs [30] and generalized trees [6].

Connecting the vertex cover and eternal vertex cover numbers, it holds that
ve(Q) < eve(G) < 2ve(G) [24]. Consequently, it is interesting to understand for



which graphs these two parameters are very close: in [2425] different conditions
for equality hold (graphs for which this relation holds are generally called spar-
tan), while in [8] it is showed that eve(G) < ve(G)+1 for every locally connected
graph G.

One of the reasons of interest for series-parallel graphs is that many com-
binatorial problems that are computationally hard on general graphs become
polynomial-time or even linear-time solvable when restricted to the series-parallel
graphs (e.g., vertex cover [33], dominating set [35], coloring [7], graph isomor-
phism [21126] and Hamiltonian cycle [I8I20]). On the other hand, very few prob-
lems are known to be NP-hard for series-parallel graphs. These include the sub-
graph isomorphism [14)2227], the bandwidth [32], the edge-disjoint paths [37],
the common subgraph [2] and the list edge and list total coloring [36] problems.

1.2 Discussion of Our Results

In this work, we study EVC on the class of series-parallel graphs. Preliminarily,
it is worth noting that, given any graph G, it holds ve(G) < eve(G) < 2ve(G) [24)
and both the bounds are attainable: as an example, consider a cycle and an odd
length path, respectively. Both these graphs are, in fact, series-parallel graphs,
although rather special. In particular, paths (for which vertex cover and eternal
vertex cover numbers are very far) are not biconnected; on the other hand, cycles
(for which ve(G@) and eve(G) are very close) are biconnected. In Section (3, we
generalize the known result for cycles to k-melon graphs (k > 2), biconnected
series-parallel graphs constituted by a set of pairwise internally disjoint paths
linking two vertices. In particular, we show the following.

Theorem 1. EVC is linear-time solvable when restricted to the class of melon
graphs. Moreover, for every melon graph G, it holds that eve(G) < ve(G) + 1.

The proof of the aforementioned result is based on a case-by-case analysis
classifying melon graphs according to the number of paths of even and odd
lengths. For each possible input melon graph, we not only compute the eternal
vertex cover number in linear time, but we also provide a minimum eternal vertex
cover class and defense strategies.

One could wonder whether the biconnectivity has some influence on the dif-
ference between vertex cover and eternal vertex cover numbers. In Section [d] we
give a negative answer to this question when extending our analysis to the whole
class of series-parallel graphs. Proving the following result.

Theorem 2. For any integer k > 0, there is a biconnected series-parallel graph

Gy, such that eve(Gy) — ve(Gy) > k, and eve(Gy) > (2 — %)vc(Gk).

Recalling that VC is polynomially solvable on series-parallel graphs [33],
a naive 2-approximation algorithm for EVC consists in simply solving VC and
doubling the vertex cover number. As a side effect, Theorem 2 implies that there
are series-parallel graphs whose eternal vertex cover number is arbitrarily close
to the double of the vertex cover number, so showing that the approximation



ratio of 2 is almost attainable on biconnected series-parallel graphs. Nevertheless,
if we wish to determine the exact value of the eternal vertex cover number, this
issue does not seem to be solved in polynomial time; hence, we conclude our
paper proposing the following;:

Conjecture. EVC is NP-hard on series-parallel graphs.

Due to space restrictions, we provide only sketches of proof for some results.
Nevertheless, we refer to the Appendix for the complete proofs.

2 Terminology

For a positive integer k, we denote with [k] the set {0,...,k}. Let G = (V, E) be
a graph, on which we recall the following definitions. Given a vertex v of G, the
closed neighborhood of v, N[v], is the set of vertices that are adjacent to v and
v itself. A path P is a graph whose vertex set is {vg,...,vs}, £ > 1, and edge set
is {vvi1 | 7 € [€ — 1]}; £ is the length of P.

A graph G = (V, E) is bipartite if it is possible to partition the vertex set into
two not empty subsets: V = AU B so that each edge of F can only connect one
vertex in A with one vertex in B; in this case, we represent G with (AU B, E).
For extended graph terminology, we refer to [I5].

2.1 Eternal Vertex Cover

Given a graph G = (V, E) and a subset of vertices U C V, we imagine each
vertex of U hosting one guard, and all the edges incident to these vertices are
considered guarded. The guards are allowed to move from one vertex to another
only through an edge connecting them.

An attack is the selection of one edge e € F by the attacker. The defender
protects an attacked edge if it can move a guard along that edge. Thus, it is
possible only to protect guarded edges and a necessary condition for U C V to
be able to protect any edge from an attack is that U is a vertex cover of G.

Consider a guarded edge e = vw and, without loss of generality, assume
that v € U. A defense from the attack on e is defined as a one-to-one function
¢ : U — V such that e is protected, that is ¢(v) = w, and for each u € U,
¢(u) € N[u]. Given any vertex u € U, we say that the guard on w shifts to ¢(u)
and, by extension, U shifts to U" where U’ = ¢(U) = {¢(u) s.t. u € U}.

The protection of an attacked edge vw with a guard on both endpoints can
be easily guaranteed by shifting the guard on v to w, the guard on w to v, and
every other guard stays on the same vertex. So, in the following, we implicitly
assume that an attack always happens on an edge guarded by one guard, and
called single-guarded edge. We are now ready to give the notion of eternal vertex
cover.

Definition 1. [§] Given a graph G, a family U of vertex covers of G all of the
same cardinality is an eternal vertex cover class of G if the defender can protect



any attacked edge by shifting any vertexr cover of U to another vertex cover of
U. Each vertex cover of U is called a configuration for G. The size of an eternal
verter cover class U is the cardinality of any configuration of U. EVC consists
of finding the minimum size evc(G) of an eternal vertex cover class for G. An
eternal vertex cover class of size eve(G) is said to be a minimum eternal vertex
cover class.

In the following, in order to determine evc((), we first provide a family U
of vertex covers; then, for every vertex cover U of U and every edge e of G, we
exhibit a defense function that shifts U to another vertex cover of i and protects
e, thus showing that U/ is an eternal vertex cover class of G; finally, we show that
no eternal vertex cover class of G can have size strictly smaller than .

2.2 Series-Parallel Graphs

Let the graphs considered from now on have two distinguished vertices, s and
t, called source and sink, respectively. Let be given two vertex-disjoint graphs
G1 and G, with sources and sinks s; and 1, s and to, respectively. The series
composition of G1 and G is a graph G obtained by merging ¢; with so, and its
distinguished vertices are s = s1 and t = t5. The parallel composition of G; and
G- is a graph G obtained by merging s; with so into the distinguished vertex
s and t; with ¢ into the distinguished vertex t. Series-parallel graphs can be
constructed recursively by series and parallel compositions:

Definition 2. [T7] A series-parallel graph G is a graph with two distinguished
vertices s and t that is either a single edge or can be recursively constructed by
either series or parallel composition of two series-parallel graphs.

Due to the recursive nature of series-parallel graphs, it is natural to introduce
a decomposition that mimics the construction of these graphs.

Definition 3. [3]] The SP-decomposition tree of a series-parallel graph G is a
rooted binary tree T in which each leaf corresponds to an edge of G, and every
internal node of T is labeled as either a parallel or series mode; starting from
its edges, that are series-parallel graphs, the series-parallel subgraph associated
to a subtree of T rooted at a node v is the composition indicated by the label of
v of the two series-parallel subgraphs associated to the children of v; G is the
series-parallel graph associated to the root of T.

For an extended and more formal treatment of series-parallel graphs and
SP-decompositions, the reader can refer e.g. to [16].
2.3 Melon Graphs

The main result of this paper, described and proved in Section [3| deals with a
subclass of series-parallel graphs:



Definition 4. For any integer k > 1, given k internally vertex-disjoint paths
P . P®) whose endpoints are their distinguished vertices, a graph G is a k-
melon graph if G can be constructed by the parallel composition of P, ... P*),
A graph G is a melon graph if it is a k-melon graph, for some k > 1.

In particular, paths are 1-melon graphs and cycles are 2-melon graphs. Note
that for every k # 2, in every k-melon graph G, s and t are the only two
vertices of G not having degree two. Melon graphs have already been studied
in different research works: w.r.t. the computation of the treelength [16], for
the understanding of the treewidth on hereditary graph classes [3I3I] and in
high-energy physics representing tensor models [13].

Let G be a k-melon graph for some k > 1. Denote with P(G) (or simply P if
there is no risk for confusion) the set of paths PW ... P®) used to obtain G.
A path is said to be either an odd or an even path, depending on the parity of
its length. Let P = Pygq U Peyen be the partition of P into odd and even paths.

Definition 5. A k-melon graph G obtained by the paths of P = Peyen U Podq is
an even (respectively odd) k-melon graph if Pogq = 0 (respectively Peyen = 0),
and it is mixed otherwise.

In what follows, we indicate by P. a path in Peye, and by P, a path in P44,
in order to easily have in mind its parity when confusion may arise.
Let G = (V, E) and U be melon graph and a subset of V', respectively.

Let P. = {vg,...,v2m} € Peyen, for some m > 1. We say that P, is an
internal path w.r.t. U if UNV(P.) = {vy; | j € [m]} and similarly, that P, is an
external path w.r.t. U if UNV(P.) = {va;q1 | j € [m — 1]} U {s,t}.

Let P, = {vo,...,V2m+1} € Podd , for some m > 1. We say that P, is an
s-path wr.t. U if (UNV(P,))\ {t} = {vai+1 | i € [m]}, while we say that
P, is an t-path w.r.t. U (or simply s-path, if U is clear from the context) if
(UNV(P,))\{s} = {va; | i € [m]}. As an example, see Figure[]a, that showcases
internal, external s-paths and a t-path.

externgl\path t—/p/ath ~

~s.path
y s-paths 2
a. b. C.

internal paths

Fig. 1. a. mixed melon graph where path definitions of Subsection [2:3] are highlighted;
b. and c. strategies for an odd melon graph (Lemma |1}, and for an even melon graph
(Lemma , respectively.



3 Eternal Vertex Cover on Melon Graphs

In the following, we will prove Theorem [1| separately on even, odd, and mixed
melon graphs via constructive sketches of proofs. Note that it is very well-known
how to solve EVC on 1- and 2-melon graphs, i.e., paths and cycles [24]; hence,
in the rest of this work, we only consider k-melon graphs with k > 3.

Every odd melon graph G is bipartite and the two partition classes A and B
have the same size: |A| = |B| = ve(G).

Lemma 1. Let G=(AU B, E) be an odd k-melon graph. It holds that eve(G) =
ve(G), and the family U={A, B} is a minimum eternal vertex cover class of G.

Sketch of Proof. It is possible to show that for every edge e of an odd melon
graph, there exists a perfect matching M, containing e.

To defend a configuration, say A, from the attack on e, the guards shift
through the edges of M.. Since M, is a perfect matching between A and B, the
resulting configuration is B. See also Figure [I]b. O

Given a k-even melon graph G, for each fixed i € [k], we denote with U; the
vertex set such that the path P() is an external path w.r.t. U; and the path P
is an internal path w.r.t. U;, for every j € [k] and j # i.

Lemma 2. Let G be an even k-melon graph. It holds that eve(G) = ve(G) + 1,
and the family U = {U; | i € [k]} is a minimum eternal vertex cover class of G,
where the sets U; are defined above.

Sketch of Proof. It is possible to show that G has a unique minimum vertex cover
and hence cannot be defended, so eve(G) > ve(G) + 1. To defend a configuration
U; € U from the attack on an edge e, all the guards except one shift along a
specific cycle of G, which contains the edge e and is formed from the union of
an internal and an external path of G. See also Figure [I]c. O

Given a mixed melon graph G, let P, € P.pen and let S, be any subset of
Poaa- We denote with Up, s, the vertex set such that:

— P, is an external path w.rt. Up, s ;

— every path in Peyen \ {Pe} is an internal path w.r.t. Up, s_;
— every path in S, is an s-path w.r.t. Up, s, ;

— every path in Pogq \ S, is a t-path w.r.t. Up, s, .

Lemma 3. Let G be a mized k-melon graph; if |Peven| = 2 and |Podq| > 2, then
it holds that eve(G) = ve(G) + 1 and the family U = {Up, s, | Pe € Peven, 0 #
So C Podaa} is a minimum eternal vertex cover class of G, where the sets Up, s,
are defined above.

Sketch of Proof. This sketch is similar to the one of Lemma [2] To defend a
configuration Up, s, € U from the attack on an edge e, all guards but at most
one shift along a specific cycle of G, which contains the edge e and is formed
from the union of either an internal and an external path or an s- and a t-path.

See also Figures [2la and .b. O
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Fig. 2. a. and b. two cases of the strategy for a mixed melon graph with at least two
even paths and at least two odd paths (Lemma [3)); c. strategy for a mixed melon graph
with at least two even paths and only one odd path (Lemma 4.

Consider now the case where P,qq contains a single path P,. Let x € {s,t}
and P, € Peyen. We denote with U, p, the vertex set such that:

— P, is an external path w.r.t. Uy p,;
— every path in Peyen \ {P.} is an internal path w.r.t. U, p,;
— P, is an z-path w.r.t. U, p,.

Lemma 4. Let G be a mized k-melon graph; if |Poqa| = 1, then it holds that
eve(G) = ve(G) + 1 and the family U = {Uy p, | © € {s,t}, P. € Peven} is a
minimum eternal vertex cover class of G, where the sets U, p, are defined above.

Sketch of Proof. This sketch is similar to the one of Lemma [2] To defend a
configuration Up, s, € U from the attack on an edge e we distinguish two cases:
if e belongs to a path in Peyen, all guards but at most one shift along a specific
cycle of G which contains the edge e and is formed from the union of an internal
and an external path. If e belongs to the unique path P, € P,q4q4, all guards shift
along three paths: Py, the external path P, and one internal path P.. See also
Figure [T}c. O

Finally, consider the case where Pey., contains a single path P,, and P,qq
contains at least two paths. The set Uy (resp. Uy) is a vertex set not containing
t (resp. s) such that P, is an external path and every path in P,qq is a s-path
(resp. t-path) w.r.t. Us (resp. U;). Moreover, for any subset S, of Poaq, let Us,
be the vertex set of G such that:

— P, is an internal path,
— every path in S, is a s-path
— every path in Poqq \ S, is a t-path w.r.t. Us, .

Observe that U, U; and every Us, are vertex covers of G and have all
the same cardinality. Indeed, the extra guard present in the external path is
compensated by the presence of exactly one guard in {s,t}. Vice versa, the
second guard on the set {s,t} is compensated by one less guard in the internal
path. As an example, see Figure [3| that showcases the configurations Us and
Us,.



Lemma 5. Let G be a mized k-melon graph; if |Peven| = 1, it holds that
eve(G) = ve(G) and the family U = {Us, U} U{Us, | 0 # So C Poaa} s a
minimum eternal vertex cover class of G, where the sets Us, Uy and Us, are
defined above.

Sketch of Proof. Every configuration of U is a minimum vertex cover of G; there-
fore, to prove the claim, it is enough to show that U/ is an eternal vertex cover
class of G. Let U be a configuration of U/ and e be a single-guarded edge of G.
We consider two different cases, distinguishing whether U is of the form either
U,, for some x € {s,t}, or Us,, for some non-empty proper subset S, of Poqq.
If U = U, for every non-empty proper subset S, of P,qq, it holds that Usg,
protects Us. The case U = U, is proved in a symmetric way. If U = Ug,, for
some non-empty proper subset S, of P,qq. Then, either U,, with « € {s,t}, or
Us: , for some non-empty proper subset S;, of Pyqq, defends Us, from the attack
on e. U

Q 0 Q T O 0
)
O Q
, N ,
O
b.

a.
Fig. 3. A mixed melon graph with at least two odd paths and only one even path; a.
strategy to defend U, b. and c. strategies to defend Us, (Lemma .

We used the classification of melon graphs based on the parity of the paths
constituting them to completely solve the EVC problem on this graph class. We
are finally ready to prove the main result of this section.

Theorem 1. EVC is linear-time solvable when restricted to the class of melon
graphs. Moreover, for every melon graph G, it holds that eve(G) < ve(G) + 1.

Proof. We start by running a BFS on G rooted at its source s to evaluate the
cardinality k of P, and the two sets Peyen, and Pogq. This takes O(|V] + |E|)
time.

Recall that for & < 2, the claim is already well-known to be true. Hence,
assume that k > 3. According to the cardinality of Peyen and Poqq, exactly one
among Lemmas and [5| applies and the value of eve(G) is obtained in
constant time. Theselemmas also imply that eve(G) < ve(G) + 1. O



4 Toward Eternal Vertex Cover on Series-Parallel Graphs

In view of the recursive structure of series-parallel graphs, it is natural to wonder
whether it is possible to extend the efficient computability given by Theorem
to the whole class of series-parallel graphs. The following conjecture leans to-
wards a negative answer.

Conjecture EVC is NP-hard on series-parallel graphs.

This conjecture is based on many considerations, and the rest of this section
is devoted to formalizing a couple of them. We show that melon graphs and
series-parallel graphs behave differently w.r.t. the eternal vertex cover number
and their SP-decompositions have different properties. These differences support
our conjecture that computing the eternal vertex cover number on series-parallel
graphs is significantly harder than computing the vertex cover number on series-
parallel graphs or the eternal vertex cover number on melon graphs. The first
statement supporting the conjecture is the already-stated result Theorem
which we are now ready to prove.

Theorem 2. For any integer k > 0, there is a biconnected series-parallel graph
G, such that eve(Gy) — ve(Gr) > k, and eve(Gy) > (2 — £25)ve(Gr).

Proof. Let Hj denote the (k + 3)-melon graph where each of the k + 3 paths
is of length 2; in other words, Hy, is a complete bipartite graph K j43. Let Hj,
be the series composition of Hy and of a 2-length path so that the source of
Hj, coincides with the source of the 2-length path and the sink of Hj, coincides
with the sink of Hy. For every k > 2, we define the biconnected series-parallel
graph G}, as the parallel composition of k copies of H}, and one copy of Hj. Let
$1,..., Sk, s and t be the sources of the k copies of Hy, inside Hj,, the source of
G and the sink of Gy, respectively. Note that s and ¢ have a high degree, due to
the presence of Hj, which is put in parallel with the copies of H},. See Figure
for a representation of Gs.

In order to show that eve(Gy) and ve(Gy) fulfill the inequalities of the claim,
in the following, we first exactly evaluate vc(Gy), then provide a lower bound for
eve(Gy). Preliminarily, observe that U = {s1,. .., s, s, t} is the unique minimum
vertex cover of Gi. Indeed, for any other vertex cover U’ # U, if U C U’ then
trivially |U’| > |U|, otherwise U’ does not contain U and, for example, s; ¢ U’.
This means that each of the k + 4 neighbors of s; belongs to U’. Since the
neighborhoods of each s; are disjoint, |U’| > |U| + k + 3 = 2k + 5. Even worse
bounds are obtained when assuming that s ¢ U’ or ¢ ¢ U’. Thus, it holds that
ve(Gy) =k + 2.

Now, let U be a minimum eternal vertex cover class of G. Each configuration
U’ of U must necessarily contain U because, if by contradiction we supposed U’
does not include U, then we would have obtained eve(Gy) = |U’| > 2k +5 >
2ve(Gy), which is a contradiction because eve(Gy) < 2ve(Gy) [24]. We exploit
the property that U C U’ for each U’ € U to provide a lower bound for eve(Gy).
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The informal idea is that guards on the vertices of U, which are the only vertices
of G, having high degree, require an additional guard hosted by a neighboring
vertex, so that they can be replaced to still defend G whenever moved by the
strategy. We now prove that every configuration U’ € Y contains a vertex in N[u)
besides u, for each v € U. If N[u] C U’, the claim is trivially true, so assume
that there exists a neighbor v of w that is not in U’. Since U’ is a configuration
of an eternal vertex cover class of Gy, there exists a defense function ¢ that
protects U’ from the attack on wv and, in particular, ¢(u) = v. Since ¢(U’), the
configuration obtained from U’ after the defense, contains U then it must exist
a vertex v’ € U’ such that ¢(v') = u. Thus, v is a neighbor of u that belongs to
U’, which completes the proof of the claim. This means that eve(Gy) > 2k + 2.

Thanks to the previous claim and to the fact that the k sets N[s;] are pairwise
disjoint, it holds that |U’| > |U| + k, that is evc(Gg) — ve(Gy) > k. Moreover,

eve(Gr) 2k+2 _ 9 _2
ve(Gy) > k+2 =2 k—2" O

It remains an open problem to determine whether there exists a biconnected
series-parallel graph G such that eve(GQ) = ve(G).

Fig. 4. The figure shows the series-parallel graph GG3 described in the proof of The-
orem The black vertices represent its unique minimum vertex cover U. The red
vertices are an example of the position of guards to be added to U in order to get an
eternal vertex cover configuration U.

We propose a graph parameter that is well-defined on series-parallel graphs,
which allows us to characterize melon graphs showing that they have a much
simpler structure than general series-parallel graphs. For a series-parallel graph
G, we define the parameter alt(G) as the maximum number of alternations
between parallel and series nodes or vice versa in any path connecting the root
and a leaf in any SP-decomposition of GG. This parameter is clearly unbounded
for the class of series-parallel graphs. The following result shows that melon
graphs can be characterized as series-parallel graphs with alt at most 1.

11



Lemma 6. For every melon graph G, alt(G) < 1. Conversely, for every series-
parallel graph G with olt(G) < 1, either G is a k-melon graph or is a path with
possibly multiple edges.

Sketch of Proof. Let G be a k-melon graph, for some k > 1. The claim fol-
lows from the fact that every path P connecting the root and a leaf in any
SP-decomposition of G starts with a non-empty sequence of parallel nodes and
continues with a sequence of series nodes, and so P contains at most one alter-
nation: alt(G) < 1.

Let G be a series-parallel graph with alt(G) < 1 and fix any SP-decomposition
T of G. If the root of T is a parallel node, then G is constituted by a set of par-
allel paths between two vertices, that is, G is a melon graph. If the root of T is
a series node, then G is a series of melon graphs in which the length of every
path is one, i.e., a set of multiple edges. O

Algorithmic techniques exploiting results on sub-structures, like divide and
conquer or dynamic programming, look to be very natural on series-parallel
graphs due to their recursive nature. Nevertheless, they are not immediately
applicable for EVC: while alt < 1 for melon graphs guarantees a very limited
number of cases, for the general case, it is impractical to relate eve(G) to eve(Gy)
and eve(Ga).

The reason is that the defense strategies for the EVC problem are, in general,
not local, that is, the defense against an attack may require that every guard
of a given configuration to shift to a neighbor. The idea is that combining the
local information about G; and G5 graphs and elaborating such information to
a global solution for G is far from trivial.

5 Conclusions

This paper focuses on EVC restricted to series-parallel graphs. The problem is
known to be NP-hard in general. This paper fits in the research direction of
understanding the structural and complexity properties of this problem when
restricted to graph classes.

We have shown that EVC can be solved in linear time for melon graphs:
series-parallel graphs that are parallel composition of paths. This result is based
on a case analysis of the structure of the input melon graph and generalizes the
solution for cycles. Moreover, we have conjectured that this problem stays NP-
hard on the whole class of series-parallel graphs. We have argued in favor of this
conjecture exploiting the structural differences between melon and series-parallel
graph based on the (eternal) vertex cover number and the SP-decomposition tree.

To further expand this work, we plan to consider the EVC on outerplanar
graphs, i.e., planar graphs that have a plane drawing with all vertices on the
outer face. This class is interesting because, on the one hand, it is a subclass
of series-parallel graphs and contains the maximal outerplanar graphs for which
this problem is linear-time solvable [9]; on the other hand, the parameter alt is
unbounded for outerplanar graphs.
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A Appendix

This section contains complete proof of lemmas and theorems which have been
partially cut from the main body of the paper due to space restrictions.

A.1 Proof of Lemma 1l

In order to prove Lemma (I} we exploit a result from [29], for which we need
some additional definitions.

A matching M of G is a subset of vertex-disjoint edges of G. Moreover, if
G is bipartite and V = AU B, a matching M is perfect if |M| = min{|A|, |B|};
clearly, if |A| = | B|, every vertex is adjacent to some edge of a perfect matching.

Given an odd path P of length ¢, we can recognize on it a maximum matching
of cardinality (¢ + 1)/2 and a maximal matching of cardinality (¢ — 1)/2; the
first one is perfect, and hence we call it odd-perfect, while the second leaves the
two endpoints of the path out of the matching, and so we denote it as odd-
imperfect. It is easy to see that every edge of P belongs to exactly one of these
two matchings.

In support of our goal of building constructive proofs, we say that a bipartite
graph G is elementary if it is connected and every edge belongs to some perfect
matching of G [23]. The following result connects elementary graphs and their
eternal vertex cover number.

Lemma 7. [29] Let G be an elementary graph, then eve(G) = ve(G) = |V(G)]/2.

We exploit the previous lemma to prove our results on odd melon graphs.
Preliminarily, observe that every odd melon graph G is bipartite, so for the rest
of this subsection, we assume that G = (AU B, E). Since every path has an odd
length, then one between s and t belongs to A while the other belongs to B;
without loss of generality, we assume s € A and t € B.

Lemma 8. FEvery odd melon graph is elementary.

Proof. Every melon graph is connected by definition, so it remains to prove that
any edge e of G belongs to a perfect matching M, that we construct as follows.

For each path of P(G), consider its odd-perfect and odd-imperfect matchings.
Without loss of generality, let e € P(Y) (otherwise we can rename the paths in
P(@G)). If e belongs to the odd-perfect matching of P™) (see the red edge in Fig-
ure a), then put in M, all the edges of this odd-perfect matching (including
e) and all the edges lying in the odd-imperfect matchings of all the other paths.
If, vice versa, e belongs to the odd-imperfect matching of P() (see the red edge
in Figure b), then put in M, all the edges of the odd-perfect matching of P(?)
and all the edges lying on the odd-imperfect matchings of all the other paths
(including e).

M. contains e and is a perfect matching indeed, due to the alternating nature
of M., for every vertex v of G, there exists exactly one edge of M, that contains
. U
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Note that each odd melon is bipartite, and it holds that |A| = | B| because,
for any path P € P, |ANP| = |BN P|. Moreover, A and B are two vertex covers
of G. This observation is exploited to prove the following result.

Lemma 1. Let G=(AU B, E) be an odd k-melon graph. It holds that eve(G) =
ve(@), and the family U={A, B} is a minimum eternal vertex cover class of G.

Proof. Consider an edge e of G. Since G is elementary by Lemma [8] there exists
a perfect matching M, of G that contains e, and M, can be found following the
proof of Lemma

Whenever attacked, the edge e can always be protected. Indeed, suppose
first that the guards are positioned on the vertices of A; then, to protect e, every
guard shifts through its incident edge in M., i.e., for each a € A, ¢(a) = b,
where ab is the unique edge of M, incident to a. The case in which the guards
are positioned on the vertices of B is done symmetrically. See Figure [I]b. O

A.2 Proof of Lemma 2

Let G be an even melon graph. Although it is easy to see that G is bipartite,
we can not exploit a strategy similar to the proof of Lemma [I] because for an
even k-melon graph it holds that the two bipartitions have the same cardinality
if and only if k = 2.

Lemma 9. Let G be an even 2-melon graph with paths P and P’, source s and
sink t. Moreover, let U be a set of vertices such that P is internal and P’ is
external w.r.t. U, and let U’ be a set of vertices such that P’ is internal and
P is external w.r.t. U'. Then it is possible to defend G from an attack on any
single-guarded edge by shifting U to U’ and vice versa.

Proof. Let e = zw be an edge of G. Intuitively, to protect e, we move the guards
to turn P into an external path and P’ into an internal path following the
direction of the forced shift of the guard on e. Let e = zw be an edge of G.
Since U is a vertex cover and e is single-guarded, it is not restrictive to assume
that z € U and w ¢ U. Call uy, ..., us, the vertices of P and vy, ..., va, the
vertices of P/, for some m,m’ > 1, and let ug = vg = t and ua,, = Voy = S.
Then, to protect e, we move the guards to turn P into an external path and P’
into an internal path following the forced shift of the guard from z to w.

In particular, assume that e is either an edge of P and z = up; and w = ugj4+1
for some j € [m — 1], or an edge of P’ and z = vy;41 and w = vy, for some
0 < j € [m’ — 1]. Then, to protect e, we use the following defense function ¢:

— QS(UQi) = U241, for every i € [m — 1};
— P(v2i41) = v, for every i € [m/ — 1J;

~ ls) = 5.

It is clear that ¢(z) = w and ¢(C) = C’. Due to symmetry, a similar defense
function defends the attack of e when it is either an edge of P and z = us; and
w = ug;_1 for some 0 # j € [m], or an edge of P’ and z = vgj_1 and w = vy,
for some 0 # j € [m' —1]. O
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Given a k-even melon graph G, for each fixed i € [k], we denote with U; the
vertex set such that the path P(®) is an external path w.r.t. U; and the path PU)
is an internal path w.r.t. U;, for every j € [k] and j # ¢. In the following result,
we exploit Lemma [J] to defend any even k-melon with k& > 3 with its guards on
the vertices of U; by considering the even 2-melon graph induced by P and
one of the internal paths w.r.t. U;.

Lemma 2. Let G be an even k-melon graph. It holds that eve(G) = ve(G) + 1,
and the family U = {U; | i € [k]} is a minimum eternal vertex cover class of G,
where the sets U; are defined above.

Proof. First, observe that, fixed any ¢ € [k], the set U; is a vertex cover of G with
ve(G) +1 elements. Indeed, due to the alternating nature of the definition, every
edge of G contains exactly one vertex of U; with the exception of the two edges
of the external path P which are incident to s and ¢, whose both endpoints
are vertices of Uj.

Consider now the set U of vertices of G such that every path P € P is internal
w.r.t. U. Clearly, since no external paths are in U, it holds that |U;| = |U| + 1,
for every i € [k]. Moreover, U is a vertex cover and it is of minimum cardinality
because every edge is incident to exactly one vertex in U. Finally, U is the
unique minimum vertex cover of G, and so it cannot be a configuration of a
minimum eternal vertex cover class. It follows that evc(G) is at least ve(G) + 1.
Then, proving that U/ is an eternal vertex cover class of G also shows that U/ is
minimum.

Let U; be any configuration of I and let e be the attacked edge of G. Let PU)
be the path which contains e. If j = i (see Figure c)7 let P**) be any internal
path of P w.r.t. U; and let G’ be the subgraph of G induced by the vertices of
P and P If j # i (see Figure a), let G’ be the subgraph of G induced by
the vertices of P9 and PU). Observe that G’ is an even 2-melon graph; calling
¢’ the defense function of Lemma@to defend G’ from the attack on e, to protect
e in G we define the defense function ¢ as follows: ¢(v) = ¢'(v) if v is a vertex
of G’ and ¢(v) = v otherwise. It is easy to see that ¢ protects e. O

A.3 Proof of Lemma [3]

Lemma 10. Let G be an odd 2-melon graph with paths P and P’, source s and
sink t. Moreover, let U be a set of vertices such that P is an s-path and P’ is
a t-path w.r.t. U and let U' be a set of vertices such that P is a t-path and P’
is an s-path w.r.t. U. Then it is possible to defend G from an attack on any
single-quarded edge by shifting U to U’ and vice versa.

Proof. Let e = zw be an edge of G. Intuitively, to protect e, we move the guards
to turn P into a t-path and P’ into a s-path following the direction of the forced
shift of the guard on e. Let e = zw be an edge of G. Since C' is a vertex cover
and e is single-guarded, it is not restrictive to assume that z € C and w ¢ C.
Call g, ..., usm+1 the vertices of P and vy, ..., vsm +1 the vertices of P/, for

17



t
a.

Fig. 5. a. strategy for an even melon graph (Lemma; b. strategy for a mixed melon
graph with at least two even paths and only one odd path (Lemma 4)); c. strategy for
a mixed melon graph with at least two odd paths and only one even path to defend U,
(Lemma [5)).

some m,m’ > 0, and let ug = vg = t and us,, = va,y = 5. Then, to defend
from the attack on e, we move the guards to turn P into a ¢-path and P’ into
an s-path following the forced shift of the guard from z to w.

In particular, first, assume that e is either an edge of P and z = ug;41 and
w = ugj1o for some j € [m — 1], or an edge of P’ and z = vg;12 and w = vgj41
for some 0 # j € [m’]. Then, to defend from the attack on e, we use the following
defense function ¢:

— ¢(uziy1) = uziy2, for every i € [m — 1J;
— @(vaiq2) = V2iq1, for every 0 # i € [m/ — 1], ;
— ¢(s) = s and ¢(t) = t.
It is clear that ¢(z) = w and ¢(C) = C’.
Now, assume that e is either an edge of P and z = ug;41 and w = ug; for
some 0 # j € [m], or an edge of P" and z = vy; and w = vy for some j € [m/].
Then, to defend from the attack on e, we use the following defense function ¢:

= ¢(u2i4+1) = ug;, for every i € [m];
— ¢(v9;) = vgi41, for every i € [m/].

Similarly, it is clear that ¢(z) = w and ¢(C) = C". O

Let P. € Peyen and let S, be any subset of P,qq. We denote with Up, s, the
vertex set such that:

— P, is an external path w.r.t. Up, s,;

— every path in Peyen \ {Fe} is an internal path w.r.t. Up, s,;
— every path in S, is an s-path w.r.t. Up, s, ;

— every path in Pyyq \ S, is a t-path w.r.t. Up, s, .

Lemma 3. Let G be a mized k-melon graph; if |Peyen| = 2 and |Poad| > 2, then
it holds that eve(G) = ve(G) + 1 and the family U = {Up, s, | Pe € Peven, 0 #
So C Podd} is a minimum eternal vertex cover class of G, where the sets Up, s,
are defined above.
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Proof. For every path set S, such that () # S, C Poaq, consider the set Ugs, of
vertices of G such that all the even paths are internal, the odd paths in S, are
s-paths and the remaining odd paths are ¢-paths. In other words, Us, differs
from any Up, s, only in P, that is not external anymore, so |Up, s,| = |Us, |+ 1,
for every P, € Peyen. Moreover, let the family of the sets Us, be the collection
of all minimum vertex covers of (G; this is not an eternal vertex cover class of G
because it is not possible to defend from an attack on any edge that belongs to
a path in Peyen. It follows that eve(G) is at least ve(G) + 1 and hence proving
that U is an eternal vertex cover class of G also shows that ¢/ is minimum.

Let Up, s, be a configuration of i/ and let e be an attacked single-guarded edge
of G. If e is an edge of a path P, € Peyen, let G’ be the subgraph of G induced by
the vertices of the paths in P,,.,. The definition of ¢ implies that G’ contains
at least an internal and at least an external path w.r.t. Up, s, N V(G’), and we
call ¢’ the defense function obtained from Lemma |§| when applied to the even
melon graph G’ to protect it from the attack on e. Then, to protect G from the
attack on edge e we define the defense function ¢ as follows: ¢(v) = ¢'(v) if v
is a vertex of G’ and ¢(v) = v otherwise. It is easy to see that ¢ protects e. See
Figure [2]a.

Suppose now that e is an edge of a path P, € P,qq. Let P, be another path
of Pogqq such that P, € S, if and only if P, € Pogq \ S, and consider the odd
2-melon graph G’ induced by the vertices of the paths of P, and P.. We call ¢/’
the defense function obtained from Lemma [10] when applied to the odd melon
graph G’ to protect it from the attack on e. To protect G from the attack on
edge e we define the defense function ¢ as follows: ¢(v) = ¢'(v) if v is a vertex of
G’ and ¢(v) = v otherwise. It is easy to see that ¢ protects e. See Figure b. O

A.4 Proof of Lemma [4

Consider now the case where P,44 contains a single path P,. Let = € {s,t} and
P. € Peyen. We denote with U, p, the vertex set such that:

— P, is an external path w.r.t. U, p,;
— every path in Peyen \ {P.} is an internal path w.r.t. U, p,;
— P, is an z-path w.r.t. U, p,.

Lemma 4. Let G be a mized k-melon graph; if |Poqa| = 1, then it holds that
eve(G) = ve(G) + 1 and the family U = {Uy p, | © € {s,t}, P. € Peven} is a
minimum eternal vertex cover class of G, where the sets U, p, are defined above.

Proof. The graph G has two minimum vertex covers Uy, x € {s,t}: U, is the set
of vertices of G such that all even paths are internal paths and P, is a z-path.
In other words, U, differs from any U, p, only in P, that is no longer external,
50 Uy p,| = |Uz| + 1, for every Pe € Peyen.-

Let Uy p. be a configuration of . Due to the symmetry of G, it is not
restrictive to assume that x = s. Let e be an attacked edge.

If e is an edge of a path in P.yey, let G be the subgraph of G induced by
the vertices of the paths in P,,e,,. The definition of ¢/ implies that G’ contains
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at least an internal and at least an external path, and we call ¢’ the defense
function obtained from Lemmawhen applied to the even melon graph G’ when
protecting from the attack on e. To protect G, we define the defense function ¢
as follows: ¢(v) = ¢/(v) if v is a vertex of G’ and ¢(v) = v otherwise. It is easy
to see that ¢ protects e.

Suppose instead that e = zw is an edge of the unique path P, € P,4q and,
without loss of generality, let z € Us p, and w ¢ U p,. Call v, ..., vam41 the
vertices of P,, for some m > 0, vg = t and ve,,+1 = s; since P, is an s-path,
then z = vg9;4; for some 7 < m. We distinguish two cases according to whether
W = vUg49 O W = Vgj, that is, whether the guard on z must be moved in the
direction of s or of ¢ in order to protect e. Let P. be any even path of G different
from P,. Say that the path P, has {uq,...,uam, } as vertices, with vo = t and
Vo, = s, for some m, > 0, and that the path P, has {xo,...,Zom: } as vertices,
with 29 =t and @2, = s, for some m;, > 0.

If w = vgj12 (and hence j < m), we have that U; p/ protects U p, from the
attack on e, all the guards on P, and P/ shift in the direction of s (P, becoming
a t-pathand P! becoming an external path), and all the guards on P. but the
one on s shift in the direction of ¢ (P, becoming a s-path. In particular, the
defense function ¢ is defined as follows:

P(v2i41) = v2it2, for every i € [m];
¢(U2z+1) = ug;, for every i € [me]7
— ¢(x2i) = x2i41, for every i € [m/, — 1];
— ¢(u) = u, for every vertex u, that is not part of neither P,, P, nor P..

It is clear that ¢(z) = w and ¢(Us p,) = U p;. See Figure b.

If, instead, w = vy;, for some j < m, we have that Ut,p; protects Us p, from
the attack on e, all the guards on P, shift in the direction of ¢ (and P, becoming
a t-path), and all the guards on P, and on P, shift in the direction of s (P,

becoming an external path while P, becoming an internal path). In particular,
the defense function ¢ is defined as follows:

- qﬁ(vQH_l) = vy, for every i € [m];
B(u2ip1) = ugiyo, for every i € [me -1}
— ¢(x2i) = x2441, for every i € [m] — 1];
— ¢(u) = u, for every vertex u, that is not part of neither P,, P, nor P..

It is clear that ¢(z) = w and ¢(Us p,) = Uy, p:. This completes the proof. See Fig-
ure Rlc. O

A.5 Proof of Lemma [5]

Consider the case where Py, contains a single path P,, and P,qq contains at
least two paths. The set U, (resp. Uy) is a vertex set not containing ¢ (resp. s)
such that P, is an external path and every path in P,qq is a s-path (resp. t-path)
w.r.t. Ug (resp. U;). Moreover, for any subset S, of Poqq, let Us, be the vertex
set of G such that:
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— P, is an internal path,
— every path in S, is a s-path
— every path in Pygq \ S, is a t-path w.r.t. Us,.

Observe that Us, U; and every Us, are vertex covers of G and have all
the same cardinality. Indeed, the extra guard present in the external path is
compensated by the presence of exactly one guard in {s,t}. Vice-versa, the
second guard on the set {s,t} is compensated by one less guard in the internal
path. Figure [3| showcases the configurations Us and Ug, .

Lemma 5. Let G be a mized k-melon graph; if |Peyen| = 1, it holds that evc(G) =
ve(G) and the familyU = {Us, U }U{Us, | 0 # So C Poaa} is a minimum eternal
vertex cover class of G, where the sets Us, Uy and Ug, are defined above.

Proof. Every configuration of U is a minimum vertex cover of G; therefore, to
prove the claim, it is enough to show that U/ is an eternal vertex cover class of G.
Let U be a configuration of U and e be a single-guarded edge of G. We consider
two different cases, distinguishing whether U is of the form either U,, for some
x € {s,t}, or Us,, for some non-empty proper subset S, of Poq.

Case 1: U is of the form U,, for some x € {s,t}. Thanks to the symmetry of G,
it is not restrictive to assume U = Us. For every non-empty proper subset S, of
Podd, it holds that Us, protects Us.

To prove this claim, it is not restrictive to assume that the attacked edge
e = zw is such that z € Ug; and w & U;. We analyze different cases according

to the position of e in G. Let path P, be a sequence of vertices ug, . .., gy, for
some m > 1 such that uy = t, us,, = s. Moreover, let P, be any path in P,gq
and recall that P, is a s-path. Let P, be a sequence of vertices v, ..., Vom, +1,

for some m, > 0 such that vg =t, Vo, +1 = s.

Assume first that e is an edge of the unique path P. € Peyen, then z = ugj1q
for some j € [m — 1]. Informally, a defending strategy consists of the guards
shifting along the cycle formed by P, and any other odd path around it, say P,.
Formally, the edge can be attacked in order to move the guard on z either in
the direction of s or of ¢. Suppose first that w = ug;j42. To defend G from this
attack, we define a defense function ¢ as follows:

— ¢(uzgit1) = Uzit2, for every i € [m — 1];
— P(v9i41) = vy, for every i € [m,);
— ¢(v) = v, for every z, that is not part of neither P, nor P,.

It is clear that ¢(z) = w and ¢(Us) = Uyp,y. See Figure c.
Suppose now that w = wug;, for some j € [m — 1]. To defend G from this
attack, we define a defense function ¢ as follows:

— ¢(ugiy1) = ug;, for every i € [m — 1], ;

— ¢(v2i41) = Voiy2, for every i € [m, — 1], ;
— ¢(v) = v, for every v, that is not part of neither P, nor P,.
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It is easy to see that ¢(z) = w and ¢(Us) = Uyp,}. See Figure a.

Assume now that e is an edge of some path P, € P,qq. It is easy to see that
by exploiting one of the two defense functions defined above, we obtain to shift
Us to Ugp,y and successfully defend from the attack on e.

Case 2: U is of the form Ug,, for some non-empty proper subset S, of Pogqd.
Then, either U, with 2 € {s,t}, or Us,, for some non-empty proper subset S/
of Poad, defends Us, from the attack on e. To prove this claim, assume again
that e = zw with z € Us, and w ¢ Us,. We analyze different cases according to
the position of e in G.

First, suppose that e is an edge of the unique path P. € Pgyern. Thanks to
the symmetry of G, we can assume z = uy; and w = ug;1, for some j € [m—1].
To defend G from this attack, we define a defense function ¢ as follows:

— ¢(uz;) = ugiq1, for every i € [m — 1J;

— ¢(x) = x4, for every & # t of Ug, that is part of a t-path, where z; is the
neighbor of x in the path from x to s that does not contain t;

— ¢(x) =z, for every x of Us, that is part of an s-path.

It is easy to see that ¢(z) = w and ¢(Us,) = Us. See Figure 3]b.

Now, assume that e is an edge of some path P, € P,44. Let P, be another path
of Poqa such that P, is a t-path if P, is an s-path and an s-path otherwise. Let G
be the subgraph of G induced by the vertices of the paths P, and P.. To defend
from the attack on e we define a defense function as follows: ¢(v) = ¢'(v) if v is
a vertex of G’ and ¢(v) = v otherwise, where ¢’ is the defense function obtained
from Lemma[I0] when applied to the odd 2-melon graph G’ when defending from
the attack on e. This completes the case analysis and the proof. O

A.6 Proof of Lemma

Lemma 6. For every melon graph G, alt(G) < 1. Conversely, for every series-
parallel graph G with olt(G) < 1, either G is a k-melon graph or is a path with
possibly multiple edges.

Proof. First, let G be a k-melon graph, for some k£ > 1, and let us prove by
induction on k that alt(G) < 1. If kK = 1, then G is either a single edge or a path,
which is obtained recursively by the series composition of two 1-melon graphs.
Thus, all non-leaf vertices of any SP-decomposition of G are series vertices and
then alt(G) = 0.

Suppose now k£ > 2. Then G can only be obtained recursively by the parallel
composition of two z- and y-melon graphs with z,y > 1 and x + y = k. Thus,
every path P connecting the root and a leaf in any SP-decomposition of G starts
with a non-empty sequence of parallel nodes and continues with a sequence of
series nodes and so P contains at most one alternation: alt(G) < 1.

Now, let G be a series-parallel graph with alt(G) < 1 and fix any SP-
decomposition T of G. If G is a single edge, then the statement trivially holds,
so from now on we assume that G has at least two edges. It is well known that
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the type of the root is the same in every SP-decomposition of G: indeed, the
root is a series node if G contains a cut-vertex and is a parallel node otherwise.
If the root of T' is a parallel node, then G is constituted by a set of parallel paths
between two vertices, that is, G is a melon graph. If the root of T' is a series
node, then G is a series of melon graphs in which the length of every path is
one, i.e., a set of multiple edges. O
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