
Towards Faster Quantum Circuit Simulation Using
Graph Decompositions, GNNs and Reinforcement

Learning

Alexander Koziell-Pipe∗ Richie Yeung∗ Matthew Sutcliffe∗
Department of Computer Science

University of Oxford
Oxford, UK

[firstname.lastname]@cs.ox.ac.uk

Abstract

In this work, we train a graph neural network with reinforcement learning to more
efficiently simulate quantum circuits using the ZX-calculus. Our experiments
show a marked improvement in simulation efficiency using the trained model over
existing methods that do not incorporate AI. In this way, we demonstrate a machine
learning model that can reason effectively within a mathematical framework such
that it enhances scientific research in the important domain of quantum computing.

In the present-day ‘Noisy Intermediate Scale’ (NISQ) era of quantum computing [30], quantum
resources are still largely limited. Given this limit on quantum resources, being able to simulate quan-
tum computations efficiently and at scale on classical hardware can accelerate quantum computing
research and set a standard for benchmarking quantum computers.

While in general quantum circuit simulation can be #P-hard [28], a subclass of quantum circuits
known as stabiliser circuits can be simulated in polynomial time with respect to size [1]. Hence
a technique for simulating quantum circuits is to decompose them into an ensemble of efficiently
simulated stabiliser circuits, the aggregation of which simulates the same computation as the original
circuit. Decompositions are calculated iteratively, where sub-circuits are decomposed in a sequential
manner until the ensemble of stabiliser circuits is achieved. At each step in the decomposition, the
choice of sub-circuit to decompose can greatly affect the number of stabiliser circuits that need to be
simulated at the end – in the worst case, this is exponential with respect to the number of a certain
type of gate, called a T -gate, in the original circuit.

In this work, we formulate the challenge of choosing good sub-circuit decompositions as a reinforce-
ment learning problem, where an agent learns to make decisions in a combinatorially large action
space. To facilitate this, we utilise a mathematical framework known as the ZX-calculus, in which
quantum circuits are represented as graphs and reasoning amounts to a set of rules allowing one
graph to be transformed into another. Formulating our problem in terms of graphs enables the use of
Graph Neural Networks (GNNs), which have seen promising applications in other scientific domains
including bioinformatics [39], social networks [17], and combinatorial optimisation [7].

We show that, for classes of quantum circuit known not to be efficiently classically simulated, our
GNN agent trained using reinforcement learning achieves significantly more efficient decompositions
compared to current methods that do not incorporate AI. Moreover, we show that additional algebraic
rules can be added to the decomposition strategy to achieve even further improvements in simulation
efficiency. As such, our model demonstrates the ability of an AI-agent to reason about a task that
typically requires strong mathematical reasoning skills and a deep understanding of the algebraic

∗Co-first authors

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

structures underlying quantum circuits. Furthermore, it improves our capacity to conduct scientific
research in the increasingly important field of quantum computing.

1 ZX-Calculus

Quantum algorithms can be expressed graphically in circuit notation, with quantum gates com-
posed together in a time-ordered structure. The ZX-calculus [11, 12, 23, 36], offers a powerful
alternative which has proven effective for reasoning about quantum computing problems such
as circuit compilation and optimisation [5, 8, 13–15, 18, 27, 29] as well as classical simulation
[2, 9, 10, 22, 24, 26, 33–35]. In our work we use a variation of the ZX-calculus comprised of graphs
whose vertices, called spiders, are labelled by a real number ∈ [0, 2π) (the phase) and two types of
edges:

α...
...

m n :=

←2m→
1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . eiα

 ↑2n↓
:=

(
1 0
0 1

)
:= 1√

2

(
1 1
1 −1

)
The way spiders are wired together by edges in a ZX-diagram with m inputs and n outputs determines
a matrix in C2n×2m . Furthermore, wiring the inputs of one diagram to the outputs of another amounts
to multiplication of their respective matrices, while juxtaposing two diagrams in parallel amounts to
taking the Kronecker product. Indeed, for arbitrary m,n the ZX-calculus is sufficient to express
any matrix in C2n×2m , hence any quantum circuit acting on qubits. In particular, standard gates in
quantum computing may be expressed as ZX-diagrams:

Z = π

H =S = π
2

T = π
4

CNOT = CZ =

Note that when no number is present on a spider, the phase is implicitly taken to equal 0. Diagrams
may be deformed arbitrarily and still represent the same quantum computation, provided the graph
topology is conserved. They may also be modified using rewrite rules, which express how sub-
diagrams may be replaced without changing the semantics (the matrix they represent) [36]:

α β
...

...
... = ...

... α + β π α
... = -α

π

π

...
eiα

=
√
2 aπ α =

aπ

aπ

eiaα
√
2

= =

α = 1 + eiα

aπ =
√
2eiaαα

Note that α, β ∈ R, a ∈ {0, 1} and addition is taken modulo 2π in the above diagrams. Rewrite rules
can be used to simplify ZX representations of quantum circuits, an example of which may be found
in appendix section B.1.

In the literature, there is nomenclature for certain important classes of ZX-diagram. Spiders whose
phases are multiples of π

2 are referred to as Clifford spiders, hence diagrams containing only Clifford
spiders are referred to as Clifford diagrams, also known as stabiliser diagrams. Spiders whose
phases are an odd multiple of π

4 are often referred to as T-spiders, hence we call diagrams whose
spiders only have multiple of π

4 phases Clifford+T diagrams. Moreover, we call diagrams with
neither inputs nor outputs closed diagrams. Clifford+T diagrams are sufficient for approximating
any quantum computation to arbitrary accuracy [25], but cannot be classically simulated efficiently.
Clifford diagrams, on the other hand, can be classically simulated efficiently but are not universal
for quantum computing. This manifests in that Clifford diagrams containing N spiders may be
simulated in O(N3) operations [22], whereas Clifford+T diagrams require operations exponential
with the number of T-spiders. Furthermore, while the rewrite rules above are sufficient to reduce any
closed Clifford ZX-diagram to a single scalar value, more advanced techniques (such as the graph
decompositions described below) are required to compute the scalar of a closed Clifford+T diagram
without resorting to matrix calculations.

2

2 Circuit Simulation via Graph Decompositions

Where near-term quantum hardware is insufficient for computing quantum circuits of non-trivial
scale, the use of classical simulation can be very helpful in verifying their behaviour. Specifically,
there is weak simulation, wherein a quantum circuit is emulated to provide some probabilistic output,
and strong simulation, where the probability of a particular measurement outcome is determined. The
latter is strictly more powerful as it can be used to achieve the former, and is the focus of our work.

Strong simulation of a quantum circuit can be performed by first representing it as a ZX-diagram, then
reducing it to a scalar number via rewrite rules – this scalar represents the probability amplitude of the
quantum computation. Where the rewrite rules are insufficient, decompositions may be employed to
remove problematic sub-diagrams at the cost of splitting the original diagram into a weighted sum of
diagrams. For Clifford+T diagrams, one state of the art decomposition used for classical simulation
is the |magic5⟩ decomposition, introduced by Kissinger et al. [24]:
Lemma 1. The |magic5⟩ decomposition [24]:

π
4

π
4

π
4

π
4

π
4

−3π
4

= 2 −π
4+ 2

√
2ieiπ/4

π
2

π
2

π
2

π
2

π
2

π
4− 2

√
2eiπ/4

exchanges a set of 5 T-spiders for 3 partial stabiliser terms.

This decomposition removes 4 T-spiders at the cost of replacing a single graph term with 3 terms. Ef-
ficient decompositions for Clifford+T diagrams remove hard-to-simulate T-spiders while introducing
as few new terms as possible in the weighted sum. We quantify this efficiency via the decomposition
efficiency coefficient α, defined as follows:
Definition 1. The efficiency of a particular decomposition can be measured via:

α :=
log2 N

t

where N is the number of terms produced and t is the number of T-spiders removed by the decompo-
sition. The overall efficiency of a sequence of decompositions and diagram rewrites, αeffective, can be
measured similarly.

A lower α means a more efficient decomposition. For the |magic5⟩ decomposition of equation (1),
the efficiency is α ≈ 0.396. In practice, the decomposition is applied to a sub-circuit, and after
diagram rewrites have been applied to the resulting terms, the number of T-spiders remaining may be
reduced even further. This can lead to an αeffective far lower than 0.396.

The present state-of-the-art-algorithm [24] deterministically applies efficient structure-specific de-
compositions (see appendix A) wherever applicable, relying on the |magic5⟩ decomposition only
when these structures are no longer found. In each case, this algorithm selects the 5 T-spiders upon
which to apply this decomposition at random. However, we emphasise that this choice of 5 T-spiders
greatly influences the effective α during a sequence of decompositions and diagram rewrites. As
such, selecting spiders that lead to more efficient decompositions, thus yielding fewer stabiliser terms
to simulate overall can significantly reduce the computational cost of strong simulation. It is this
problem of selecting spiders giving more efficient decompositions that we tackle using AI.

3 Experiments

Data Generation Training, validation and test data is generated using PyZX: the Python library for
quantum circuit rewriting and optimisation using the ZX-calculus [21]. We generate three different
types of ZX-diagrams: 1. Clifford+T quantum circuits, 2. grid-like diagrams, and 3. random graphs
generated using the G(n,m) Erdös-Rényi model [16]. Generating random samples from these 3
classes of diagram requires specifying parameters determining the diagram size and phases that
appear on the spiders. Specific parameter details used for generating the data can be found in the
appendix section C.1.

3

GNN + PPO
(Magic5 only)

Kissinger et al.
(Magic5 only)

GNN + PPO
(with Cats)

Kissinger et al.
(with Cats)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Ef
fe

ct
iv

e

(a) Distribution of decomposition efficiency over the
entire test dataset

5 10 15 20 25 30 35 40 45
T-count

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

lo
g2

 #
 Te

rm
s

GNN + PPO
Kissinger et al.

(b) Number of stabiliser terms to simulate after
decomposition against T-spider count

Figure 1: Comparison of our trained model versus Kissinger et al. [24]

GNN Architecture We use a graph attention network (GAT) [38]-based architecture. For the
reinforcement learning algorithm used, the full architecture is divided into a features extractor, policy
network and value network. The features extractor processes the input graph. The output of the
features extractor is then fed into two separate networks: a policy network, which outputs a probability
distribution used to sample vertices for the graph decomposition; and a value network, which assesses
the relative value of the current state in the reinforcement learning environment. The value network is
only used during training and is not required at inference time.

The features extractor consists of 8 GAT layers each with 4 attention heads and embedding dimension
of 64. The policy and value networks follow a transformer-style architecture, consisting of blocks
of alternating GAT layers with MLP layers. Residual connections, GELU activations[19], Graph
normalisation layers [6], and layer normalisation [4] layers are used. We note the similarity of the
policy and value network architectures to a standard transformer architecture [37], with attention
layers replaced with GAT layers, and some layer normalisations replaced with graph normalisation.
For further details on the architecture, see appendix section C.2.

Reinforcement Learning Setup We train the model using the Proximal Policy Optimisation (PPO)
reinforcement learning (RL) algorithm [31] with an adapted version of generalized advantage estima-
tion [32]. Observations in the RL environment are graphs, actions are vertices to which the |magic5⟩
decomposition (1) is applied, and rewards are the effective α-efficiencies of applying |magic5⟩ to
these particular vertices. Further details are given in the appendix section C.3. Data is sampled
randomly during training, and intra-training performance is assessed on a validation dataset. We save
model weights achieving the best performance on the validation set during a random hyperparameter
search; hyperparameters for the top performing weights are listed in table 1, appendix section C.4.

Evaluation & Results We evaluate the models on an unseen test dataset. The best model obtains a
mean effective α of 0.263: a marked improvement over selecting the vertices for the decomposition
randomly as in Kissinger et al. [24], which achieves 0.293 on the same data. Note that an asymptotic
decrease in α leads to an exponential factor speed-up. As an additional investigation, we compare
efficiency coefficients when augmenting both methods with an additional set of decompositions,
called the |catn⟩ decompositions (see appendix A). In both cases, the decompositions are applied
according to the algorithm in Kissinger et al. [24] which is the best, to our knowledge, heursitics-
based algorithm using |catn⟩ and |magic5⟩. In this experiment, the model achieves a mean effective
α of 0.232, versus 0.235 for [24]. This improvement in effective α is highlighted by figure 1a. These
results are further summarised appendix D.

Moreover, when looking at the number of stabiliser terms to simulate after decomposition, our
model observes better scaling behavior as the number of T-spiders, which comprise the non-stabiliser
components of the ZX-diagrams, increases – see figure 1b. We hypothesise that this is because the
message passing performed by the graph neural network permits, within a limited neighborhood,
broader contextual information about the diagram to be taken into account when choosing the site of
a decomposition, whereas the heuristic method of [24] does not.

4

4 Discussion

Our experiments have shown that a machine learning model can be perform effective mathematical
reasoning, with applications to the domain of quantum computing. This was enabled by an algebraic
framework: the ZX-calculus, which allowed the task of simulating quantum circuits to be formulated
in terms of graphs, making the problem amenable to graph neural networks. Furthermore, the
algebraic nature of the ZX-calculus provided a way of designing a reinforcement learning environment
in which to learn the circuit simulation task. The trained model showed a marked improvement in
simulation efficiency over existing methods without the use of AI.

These initial results are extremely promising: our methodology could be extended to include a broader
set of decompositions into the model’s action space. Recent work has shown that heuristics-based
applications of decompositions, such as in [2, 3, 34], are remarkably effective for a broad range
of quantum circuits. We also note that the ZX-calculus has applications to many other problems
in quantum computing beyond circuit simulation. This suggests that similar approaches applying
AI to other pertinent areas of quantum computing research, such as circuit optimisation and error
correction, could be facilitated by the ZX-calculus in the same manner. Typically, these problems
are solved by domain experts due to a solid understanding of the mathematics required. Our work
suggests, however, that given a sufficient framework within which to perform reasoning, a machine
learning model can learn to solve these mathematics-intensive problems. Indeed, it is clear that the
ability of AI to solve problems requiring a high-level mathematical understanding can significantly
enhance research and engineering across a broad range of scientific domains.

Acknowledgments and Disclosure of Funding

Alexander Koziell-Pipe and Richie Yeung would like to thank Simon Harrison for his generous
support via the Wolfson Harrison UKRI Quantum Foundation Scholarship, as well as the enthusiasm
he shows toward their research. Alexander Koziell-Pipe and Richie Yeung are part-funded by the
EPSRC.

References
[1] Scott Aaronson and Daniel Gottesman. Improved simulation of stabilizer circuits. Physical

Review A, 70(5):052328, 2004.

[2] Wira Azmoon Ahmad. Efficient Heuristics for Classical Simulation of Quantum Circuits Using
ZX-Calculus. Master’s thesis, University of Oxford, 2024.

[3] Wira Azmoon Ahmad and Matthew Sutcliffe. Dynamic t-decomposition for classical simulation
of quantum circuits. [Preprint], 2024.

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
https://arxiv.org/abs/1607.06450.

[5] Agustín Borgna, Simon Perdrix, and Benoît Valiron. Hybrid quantum-classical circuit simplifi-
cation with the ZX-calculus. In Hakjoo Oh, editor, Programming Languages and Systems, pages
121–139, Cham, 2021. Springer International Publishing. doi: 10.1007/978-3-030-89051-3_8.

[6] Tianle Cai, Shengjie Luo, Keyulu Xu, Di He, Tie-Yan Liu, and Liwei Wang. Graphnorm:
A principled approach to accelerating graph neural network training, 2021. URL https:
//arxiv.org/abs/2009.03294.

[7] Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks, 2022. URL
https://arxiv.org/abs/2102.09544.

[8] Francois Charton, Alexandre Krajenbrink, Konstantinos Meichanetzidis, and Richie Yeung.
Teaching small transformers to rewrite ZX diagrams. In The 3rd Workshop on Mathemati-
cal Reasoning and AI at NeurIPS’23, 2023. URL https://openreview.net/forum?id=
btQ7Bt1NLF.

5

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2009.03294
https://arxiv.org/abs/2009.03294
https://arxiv.org/abs/2102.09544
https://openreview.net/forum?id=btQ7Bt1NLF
https://openreview.net/forum?id=btQ7Bt1NLF

[9] Julien Codsi. Cutting-Edge Graphical Stabiliser Decompositions for Classical Simulation of
Quantum Circuits. Master’s thesis, University of Oxford, 2022. URL https://www.cs.ox.
ac.uk/people/aleks.kissinger/theses/codsi-thesis.pdf.

[10] Julien Codsi and John van de Wetering. Classically Simulating Quantum Supremacy IQP
Circuits trough a Random Graph Approach. arXiv preprint arXiv:2212.08609, 2022.

[11] Bob Coecke and Ross Duncan. Interacting quantum observables: categorical algebra and
diagrammatics. New Journal of Physics, 13(4):043016, 2011.

[12] Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course in Quantum
Theory and Diagrammatic Reasoning. Cambridge University Press, 2017.

[13] Alexander Cowtan, Silas Dilkes, Ross Duncan, Will Simmons, and Seyon Sivarajah. Phase
Gadget Synthesis for Shallow Circuits. In Bob Coecke and Matthew Leifer, editors, Proceedings
16th International Conference on Quantum Physics and Logic, Chapman University, Orange,
CA, USA., 10-14 June 2019, volume 318 of Electronic Proceedings in Theoretical Computer
Science, pages 213–228. Open Publishing Association, 2020. doi: 10.4204/EPTCS.318.13.

[14] Niel de Beaudrap, Xiaoning Bian, and Quanlong Wang. Fast and Effective Techniques for
T-Count Reduction via Spider Nest Identities. In Steven T. Flammia, editor, 15th Conference on
the Theory of Quantum Computation, Communication and Cryptography (TQC 2020), volume
158 of Leibniz International Proceedings in Informatics (LIPIcs), pages 11:1–11:23, Dagstuhl,
Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. ISBN 978-3-95977-146-7.
doi: 10.4230/LIPIcs.TQC.2020.11.

[15] Ross Duncan, Aleks Kissinger, Simon Perdrix, and John van de Wetering. Graph-theoretic
Simplification of Quantum Circuits with the ZX-calculus. Quantum, 4:279, 6 2020. ISSN
2521-327X. doi: 10.22331/q-2020-06-04-279.

[16] Paul L. Erdos and Alfréd Rényi. On random graphs. i. Publicationes Mathematicae Debrecen,
2022. URL https://api.semanticscholar.org/CorpusID:253789267.

[17] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation, 2019. URL https://arxiv.org/abs/1902.07243.

[18] Stefano Gogioso and Richie Yeung. Annealing optimisation of mixed zx phase circuits. In
Stefano Gogioso and Matty Hoban, editors, Proceedings 19th International Conference on
Quantum Physics and Logic, Wolfson College, Oxford, UK, 27 June - 1 July 2022, volume 394
of Electronic Proceedings in Theoretical Computer Science, pages 415–431. Open Publishing
Association, 2023. doi: 10.4204/EPTCS.394.20.

[19] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023. URL https:
//arxiv.org/abs/1606.08415.

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[21] Aleks Kissinger and John van de Wetering. Pyzx: Large scale automated diagrammatic
reasoning. arXiv preprint arXiv:1904.04735, 2019.

[22] Aleks Kissinger and John van de Wetering. Simulating quantum circuits with zx-calculus
reduced stabiliser decompositions. Quantum Science and Technology, 7(4):044001, July 2022.
ISSN 2058-9565. doi: 10.1088/2058-9565/ac5d20. URL http://dx.doi.org/10.1088/
2058-9565/ac5d20.

[23] Aleks Kissinger and John van de Wetering. Picturing Quantum Software: An Introduction to
the ZX-Calculus and Quantum Compilation. Preprint, 2024.

[24] Aleks Kissinger, John van de Wetering, and Renaud Vilmart. Classical simulation of quantum
circuits with partial and graphical stabiliser decompositions. In 17th Conference on the Theory
of Quantum Computation, Communication and Cryptography, 2022.

6

https://www.cs.ox.ac.uk/people/aleks.kissinger/theses/codsi-thesis.pdf
https://www.cs.ox.ac.uk/people/aleks.kissinger/theses/codsi-thesis.pdf
https://api.semanticscholar.org/CorpusID:253789267
https://arxiv.org/abs/1902.07243
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
http://dx.doi.org/10.1088/2058-9565/ac5d20
http://dx.doi.org/10.1088/2058-9565/ac5d20

[25] A Yu Kitaev. Quantum computations: algorithms and error correction. Russian Mathematical
Surveys, 52(6):1191, 1997.

[26] Mark Koch, Richie Yeung, and Quanlong Wang. Contraction of zx diagrams with triangles
via stabiliser decompositions. Physica Scripta, 2024. URL http://iopscience.iop.org/
article/10.1088/1402-4896/ad6fd8.

[27] Tommy McElvanney and Miriam Backens. Flow-preserving ZX-calculus Rewrite Rules for
Optimisation and Obfuscation. In Shane Mansfield, Benoit Valîron, and Vladimir Zamdzhiev,
editors, Proceedings of the Twentieth International Conference on Quantum Physics and Logic,
Paris, France, 17-21st July 2023, volume 384 of Electronic Proceedings in Theoretical Computer
Science, pages 203–219. Open Publishing Association, 2023. doi: 10.4204/EPTCS.384.12.

[28] Ramis Movassagh. The hardness of random quantum circuits. Nature Physics, 19(11):1719–
1724, 2023.

[29] Maximilian Nägele and Florian Marquardt. Optimizing zx-diagrams with deep reinforcement
learning. Machine Learning: Science and Technology, 5(3):035077, sep 2024. doi: 10.1088/
2632-2153/ad76f7. URL https://dx.doi.org/10.1088/2632-2153/ad76f7.

[30] John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, August 2018.
ISSN 2521-327X. doi: 10.22331/q-2018-08-06-79. URL http://dx.doi.org/10.22331/
q-2018-08-06-79.

[31] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

[32] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation, 2018. URL https:
//arxiv.org/abs/1506.02438.

[33] Matthew Sutcliffe. Smarter k-partitioning of zx-diagrams for improved quantum circuit simula-
tion. arXiv preprint arXiv:2409.00828, 2024. URL https://arxiv.org/abs/2409.00828.

[34] Matthew Sutcliffe and Aleks Kissinger. Procedurally optimised zx-diagram cutting for efficient
t-decomposition in classical simulation. Electronic Proceedings in Theoretical Computer
Science, 406:63–78, August 2024. ISSN 2075-2180. doi: 10.4204/eptcs.406.3. URL http:
//dx.doi.org/10.4204/EPTCS.406.3.

[35] Matthew Sutcliffe and Aleks Kissinger. Fast classical simulation of quantum circuits via
parametric rewriting in the zx-calculus. arXiv preprint arXiv:2403.06777, 2024. URL https:
//arxiv.org/abs/2403.06777.

[36] John van de Wetering. Zx-calculus for the working quantum computer scientist, 2020.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[38] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks, 2018. URL https://arxiv.org/abs/1710.10903.

[39] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks, 2018.
URL https://arxiv.org/abs/1806.03536.

Appendix

A Cat state decompositions

A |catn⟩ state is defined as follows:

7

http://iopscience.iop.org/article/10.1088/1402-4896/ad6fd8
http://iopscience.iop.org/article/10.1088/1402-4896/ad6fd8
https://dx.doi.org/10.1088/2632-2153/ad76f7
http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.22331/q-2018-08-06-79
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/2409.00828
http://dx.doi.org/10.4204/EPTCS.406.3
http://dx.doi.org/10.4204/EPTCS.406.3
https://arxiv.org/abs/2403.06777
https://arxiv.org/abs/2403.06777
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1806.03536

π
4

π
4

π
4

...
|catn⟩ := 1√

2

}
n

Such states can be decomposed more efficiently than ‘magic’ |T⟩⊗n states. In particular, the best
known |cat3⟩ to |cat6⟩ decompositions are as follows [24]:

= 1
2 + ieiπ/4

√
2

π
2

π
2

π
2

π
2

π
2

−

π
4

π
4

π
4

π
4

π
4

−π
2

eiπ/4
√
2

= 1
2 + ieiπ/4

√
2

π
2

π
2

π
2

π
2

π
2

− eiπ/4
√
2 π

2

π
4

π
4

π
4

π
4

π
4

π
4

−π
2

=

π
4

π
4

π
4

π
4

e−iπ/4
√
2

−π
2 + i

= e−iπ/4
√
2

+ i

π
4

π
4

π
4

−π
2

These respectively achieve decomposition efficiencies of:

α|cat3⟩ ≈ 0.333,

α|cat4⟩ = 0.250,

α|cat5⟩ ≈ 0.317,

α|cat6⟩ ≈ 0.264.

|catn⟩ states of larger n may be decomposed into sums of the above, with an asymptotic (n → ∞)
efficiency equivalent to that of the |magic5⟩ decomposition, namely α ≈ 0.396 [24].

B ZX-Calculus Examples

B.1 Simplification Example

The following example [36] demonstrates how a quantum circuit may be translated into a ZX-diagram
and subsequently simplified via applications of the rewriting rules. The ZX representation of the
same circuit is device-agnostic, highlights the symmetries of the quantum circuit, and can often be
extracted to an equivalent circuit with fewer quantum gates:

8

|0⟩
|0⟩
|0⟩

H

⊕

⊕
≡ =

= = = =

B.2 Decomposition Example

As an illustrative example, the following shows a fully reduced Clifford+T ZX-diagram and how,
with the application of a single |cat4⟩ decomposition, it may be reduced to two terms which are each
reducible (via the rewriting rules) to a scalar:

3π
4

7π
4

π
4

5π
4

5π
4

7π
4

3π
4

π
2

3π
2

π
4

5π
4

π

3π
2

7π
4

π
2

= + π
2

3π
2

π
4

5π
4

π

7π
4

π
2

e−iπ/4
√
2

i = . . .

= √
2i
4

+ 1
4 (−1 + i) ≈ −0.25 + 0.60i

C Experiment Details

C.1 Training Data Parameters

We specify the parameters used in generating the training data below. Note that the floor function is
applied to any non-integer samples drawn from the below probability distributions.

The Clifford+T circuits are generated to have a number of qubits between 20 and 30 sampled from
a clipped normal distribution N (20, 25)2, and a qubit-dependent depth uniformly sampled from
num_qubits · (7.5 + U(0, 67.5)).
The grid diagrams are of width sampled from a clipped normal distribution N (7.5, 1) between 7 and
10 nodes and a height sampled from N (5.5, 1) between 5 and 9 nodes.

The random graphs have a number of vertices sampled from N (25, 4) clipped between 20 and 32,
and a number of edges sampled from |V | · (|V | − 1) · (0.25 + U [0, 0.15)).

C.2 Model Architecture

The features extractor consists of 8 GAT layers each with 4 attention heads and embedding dimension
of 64. Residual connections are placed across each GAT layer, after which ReLU activations are
applied. Graph normalisation layers[6] are placed between each ReLU activation and the next GAT
layer.

The policy and value networks follow a transformer-style architecture, consisting of blocks of
alternating GAT layers with MLP layers. Residual connections are placed across each GAT and
each MLP layer, graph normalisation is placed before each GAT layer, and layer normalisation[4] is
placed before each MLP layer. GELU activations are placed after each GAT and MLP layer. Note
the similarity to a standard transformer architecture[37], with attention layers replaced with GAT
layers, and some layer normalisations replaced with graph normalisation. Each of the policy and
value network consist of 8 such GAT + MLP blocks with embedding dimension 256, only differing

2we use N (µ, σ2) to represent the normal distribution of mean µ and standard deviation σ and U [a, b) to
represent the uniform distribution sampling from the half open interval [a, b).

9

in output: for the value network, the output vertex embeddings are aggregated into a single value by
taking their mean, while the policy network outputs a single logit for each vertex in the graph.

C.3 Reinforcement Learning Environment Description

The reinforcement learning environment begins an episode with a singleton list containing a graph to
be fully decomposed. At each timestep, a graph is popped from the front of the list and the model
selects vertices to decompose. A graph decomposition is applied to these vertices to produce a number
of new graphs. These graphs are simplified as much as possible using classically-efficient methods.
If any graph can be fully reduced to zero vertices, in other words, classically simulated efficiently, it
is discarded. Otherwise, the graph is added to the list of graphs to be decomposed. This procedure is
continued until no graphs remain in the list, which amounts to a classical simulation of the original
graph. At each time step, a reward equal to the effective α-efficiency of the decomposition is given.

C.4 PPO Hyperparameters

Table 1: PPO hyperparameters used to train our model
Hyperparameter Value

Steps Trained 967, 680
Batch Size 80
PPO Clip Range 0.223
GAE gamma 0.977
GAE lambda 0.976
Optimizer Adam[20]
Learning rate 3× 10−4

Entropy coefficient 5.67× 10−3

Value coefficient 0.602
Min. steps per rollout 3, 840
PPO updates per rollout 15
GAE normalisation True
Gradient norm clipping 1
Max KL divergence per rollout 0.1

D Detailed Evaluation Results

Table 2: Comparison between our model and [24]

Mean α ± std dev

Magic5 Magic5 with Cats

GNN + PPO 0.263± 0.04 0.232± 0.04
Kissinger et al. [24] 0.293± 0.04 0.235± 0.04

10

	ZX-Calculus
	Circuit Simulation via Graph Decompositions
	Experiments
	Discussion
	Cat state decompositions
	ZX-Calculus Examples
	Simplification Example
	Decomposition Example

	Experiment Details
	Training Data Parameters
	Model Architecture
	Reinforcement Learning Environment Description
	PPO Hyperparameters

	Detailed Evaluation Results

