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ABSTRACT

KV cache accelerates the inference of Large Language Models (LLMs) by caching
the key and value states of previous tokens, but its linearly increasing memory
footprint poses a huge bottleneck for long-context tasks. To mitigate this, many
previous studies evict unimportant tokens based on attention scores from the pre-
fill stage or cumulative attention. However, by permanently evicting tokens, such
static compression algorithms fail to preserve globally important tokens, as they
overlook the “attention drift” phenomenon inherent in inference. Our analysis
highlights this drift, showing that after generating just 50 tokens, the set of im-
portant tokens retains only about a 30% overlap with the one identified during
the prefill stage. To address this, our core innovative insight is twofold: (1) the
set of important tokens exhibits high temporal locality across adjacent generation
steps, and (2) this set is highly similar among attention heads within the same
layer. Based on these insights, we propose SyncKYV, a training-free dynamic KV
cache compression method. SyncKV takes advantage of these properties through
a novel syncopated strategy in which a few “representative heads” periodically
identify important tokens, triggering an asynchronous upload of the relevant KV
cache from the CPU. We designed a parallelization strategy that overlaps the I/O
overhead with the subsequent forward computing stage, thereby effectively hiding
the delay of data transmission and achieving an acceleration effect. Experiments
show that SyncKV has achieved state-of-the-art performance in multiple long-
context benchmarks, reducing the GPU memory usage of the KV cache by up to
80%. Our code will be open-source.

1 INTRODUCTION

The landscape of artificial intelligence is currently being reshaped by the wave of LLMs, whose pow-
erful capabilities have been validated in numerous interactive applications, such as conversational
assistants capable of complex dialogues (OpenAl et al., 2024; [Team et al., [2025)) and autonomous
agents capable of planning and performing tasks (Wu et al., 2023} |Park et al., [2023). The success
of these applications converges on a core requirement: models must possess the ability to process
and retain long-form contextual information. To push beyond the context limits of existing models,
some work has proposed various innovative architectures with significant success (Dao et al.| [2022;
Chen et al.| [2024; |Grattafiori et al. [2024). However, all models based on the Transformer archi-
tecture (Vaswani et al., [2017) rely on an optimization mechanism known as the KV cache during
auto-regressive generation. Although this mechanism avoids redundant computations by storing the
intermediate states of all previous tokens, it comes at the cost of substantial GPU memory consump-
tion that grows linearly with sequence length. This makes the KV cache the primary obstacle to
deploying long-context LLMs on resource-constrained hardware. The work on Minference (Jiang
et al., 2024)) highlights the inherent sparsity of the attention mechanism in long contexts, showing
that just 4k tokens out of 128k can account for 96.4% of the total attention weight. Consequently,
a major line of research has focused on evicting entire unimportant token entries from the cache.
These methods typically leverage various heuristics based on attention scores to identify and retain
a critical subset of tokens from the initial prompt (Xiao et al.| [2023}; [Zhang et al., 2023} |L1 et al.,
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Context

...The model consists of is an assertion... is the evidence..., The role of is to
justify..., is a setof..., limits the degree of certainty..., presents a situation...Thus we omitted
qualifier from the model due... We omitted warrant from the model....Thus we introduced a new component — refutation...
Question

What argument components do the ML methods aim to identify?

Answer

Static method ? é‘ Claim, premise, backing, ,and ]
. . I -----------
(lose information) rebuttal. 1 Prefill-attended
1

Dynamic method Q" Claim, premise, backing, rebuttal, T )
(review information) ﬁ and refutation. v

Figure 1: A comparative example. The static compression method only focuses on the important
tokens (orange words) in the prefill stage, thereby losing information, while the dynamic method
can review the less important information (green words) in the decode stage.

2024), or maximize information density by allocating different KV cache budgets to different layers
or heads (Cai et al., [2024).

We argue that such methods, which rely on static decisions based on historical scores, carry a fun-
damental risk. In long dialogues or complex reasoning, the focus of attention is dynamic, a phe-
nomenon we call attention drift. As illustrated in Figure(l] a detail that appears unimportant in the
early stages may become critical to resolving the task later on. Once a static eviction policy makes
an incorrect eviction decision, the information loss is irreversible, thus limiting the model’s deep
reasoning capabilities.

To overcome this, we propose a dynamic approach that avoids premature information loss. Our work
is built upon two key observations about the attention mechanism’s behavior: (1) temporal locality,
The set of most-attended-to tokens exhibits high temporal locality, with significant overlap between
adjacent decoding steps, and (2) intralayer similarity, this set is highly similar among many attention
heads within the same layer. Based on these insights, we introduce SyncKYV, a novel dynamic KV
cache compression framework that leverages these spatio-temporal properties of attention. SyncKV
employs a syncopated strategy, where a few “representative heads” are first selected through a one-
time offline clustering. During the initialization phase of inference, the vast majority of the KV cache
is offloaded to CPU memory, with only a small, critical subset retained on the GPU. Subsequently,
in the decode stage, these representative heads periodically access a wider context to dynamically
identify the current set of most important tokens, which triggers an asynchronous upload of the cor-
responding cache slices from the CPU to the GPU. In the intervening steps, all non-representative
heads perform efficient computation on this newly fetched, highly sparse cache subset. This ap-
proach ensures that only the representative heads bear the periodic retrieval cost, while the bulk of
computation operates on a highly compressed cache, drastically reducing GPU memory overhead
with negligible impact on model performance.

Our extensive experiments were conducted on mainstream large language models, including the
Llama and Qwen series, and evaluated under various compression rates on multiple long-context
benchmarks, such as LongBench (Bai et al.| [2023), SCBench (Li et al.,|2025)), and more. The results
demonstrate that, compared to other advanced compression algorithms, SyncKV achieves state-of-
the-art performance on a variety of tasks.

2 RELATED WORK

2.1 KV CACHE EVICTION

Existing work has demonstrated the inherent sparsity of the attention mechanism in long contexts
(Jiang et al.,|2024). Therefore, many KV cache evicting works are studying how to effectively retain
the important tokens in the inference stage and evict the unimportant ones. Streamingl.LM (Xiao
et al.} 2023 and LM-Infinite (Han et al.,|2023)) relied on a simple positional heuristic to retain initial
and final tokens. This simple eviction strategy has lost a large amount of information. To address
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Figure 2: Visualization of key observations. (a) Attention Drift: The average overlap between
current and initial steps decreases as decoding progresses. (b) Temporal Locality: The heatmap’s
darker diagonal indicates high attention overlap between adjacent steps. (c) Intralayer Similarity:
The darker main diagonal shows that attention heads are much more similar within a layer than
between layers.

this, subsequent methods introduced more sophisticated, attention-driven indicators to identify less
important tokens. H20 (Zhang et al., [2023)) uses cumulative attention to eliminate the last token.
RoCo (Ren & Zhu, 2024) uses mean attention scores to assess token importance to construct a robust
scope of eviction. SnapKV (Li et al.| 2024) uses window attention clustering in the prefill stage to
obtain the set of important tokens. CAKE (Qin et al., 2025)) introduces a cascading and adaptive
strategy that assesses layer-specific preferences to rationally distribute cache resources. However,
all the methods mentioned above have a fatal problem. Tokens that are regarded irrelevant and
evicted at a certain stage cannot be retrieved. They may become important in subsequent processes,
resulting in significant information loss. Some works have recognized the importance of dynamic
selection, such as Quest (Tang et al.l 2024). However, it has not led to a decrease in memory usage
and has lost accuracy.

2.2 OTHER KV CACHE COMPRESSION METHODS

Beyond token-level schemes, recent studies have pursued KV cache compression from several com-
plementary perspectives. DuoAttention (Xiao et al.| [2024) only retains the full KV cache for the
retrieval attention head and uses a constant length cache for the remaining heads. ThinK (Xu et al.|
2024]) prunes the least significant key cache channels based on a query-dependent interaction score.
MiniCache (Liu et al., 2024a) achieves hierarchical compression by merging highly similar KV
cache of adjacent layers from the middle section to the deep section of the model. Some methods
also attempt to quantize the KV cache, such as Kvquant (Hooper et al., [2024), Kivi (Liu et al.,
2024b), etc. These quantization methods are orthogonal to the token-level eviction strategy of KV
cache, and can be combined to further substantially reduce GPU memory overhead.

3  OBSERVATION

The effectiveness of our proposed algorithm, which will be detailed in this chapter, is based on
several fundamental observations regarding the behavior of the attention mechanism during auto-
regressive generation. These observations motivate a novel strategy for compressing the KV cache.

3.1 ATTENTION DRIFT

Numerous studies on KV cache compression (Li et al.| 2024} |Cai et al.,2024;|Qin et al.l 2025)) con-
firm the effectiveness of retaining tokens with top k& window attention scores during the prefill stage.
However, we find that this set of high-attention tokens is dynamic. To quantify this phenomenon,
we use the overlap coefficient (McGill, [1979) to measure the similarity between the sets of top k
tokens from any two sources, 7 (X) and Ty (Y'), calculated as follows:

|Te(X) N TH(Y)|
min (|7 (X)], [Tx(Y)])’

Overlap(7x(X), Tp(Y)) = (1)
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where X and Y are the attention scores from two sources (e.g., different time steps or different at-
tention heads) and 7 (-) is the set of indices of the top & tokens from a given score. As illustrated in
Figure 2] (a), our analysis reveals that as the generation process progresses, the overlap between the
set of high-attention tokens for the prefill and current steps continuously decreases, with the overlap
coefficient dropping to 30% after only 50 decoding steps. This indicates that tokens identified as
important at one point quickly become less relevant, and relying on a fixed, historical set of impor-
tant tokens can degrade the model’s performance on long-sequence generation. Therefore, SyncKV
avoids directly evicting tokens to cause information loss. Instead, it offloads the temporarily unim-
portant KV cache to the CPU memory for subsequent retrieval.

3.2 TEMPORAL LOCALITY

Based on attention drift, we discovered another phenomenon: high-attention tokens have a high
overlap coefficient in adjacent decoding steps. We define it as temporal locality. As shown in
Figure [2] (b), we calculated the average overlap coefficient across all attention heads for the sets
of high-attention tokens between each decoding step and found that the overlap for adjacent steps
remains at a consistently high level. This indicates a strong temporal locality in the attention mech-
anism’s focus. It suggests that while the set of important tokens does evolve over the long term,
its composition changes gradually and predictably in the short term. This finding is significant for
cache design, as it implies that the most recently identified high-attention tokens are ideal candidates
for retention, given their high probability of remaining important in the immediate future. Using the
principle of temporal locality, SyncKV performs a dynamic evaluation periodically, every m steps.
In the intervening steps, attention is computed by reusing the set of high-attention tokens identified
at the most recent evaluation point. This periodic evaluation strategy is highly effective because
temporal locality ensures this token set remains a high-fidelity proxy for several subsequent steps.

3.3 INTRALAYER SIMILARITY

In addition to the temporal dynamics of attention, we also investigated spatial redundancy across
attention heads. To quantify intralayer relationships, we define layer-level similarity as the average
of the overlap coefficients from each head in a source layer to a target layer. The result, shown in
Figure [2| (¢), reveals a strong intralayer similarity, which is significantly higher than the interlayer
similarity. This high degree of intralayer redundancy suggests that not all heads contribute unique
information; many are functionally similar. SyncKV is designed to directly exploit this redundancy.
It employs K-means clustering to group functionally similar heads within each layer and designates
a single representative head for each cluster. This representative head is responsible for tracking
the attention dynamics for the entire cluster, while the other non-representative heads simply syn-
chronize with it. By treating a group of similar heads as a single unit, SyncKV drastically reduces
computational and GPU memory overhead without a significant loss of information.

4 METHOD

We propose SyncKYV, an efficient KV cache compression framework for long-context LLM infer-
ence. The core idea of SyncKV originates from two key insights: temporal locality and intralayer
similarity. Based on these insights, this section will introduce the core components of SyncKV in
order: Offline Head Clustering, Initialization, and the two alternating decode phases, Anticipation
and Suspension. The pseudocode for SyncKYV is detailed in Appendix |A}] and its general workflow
is illustrated in Figure[3]

4.1 OFFLINE HEAD CLUSTERING

To leverage the model’s intralayer similarity, we introduce a offline analysis phase. We first com-

pute the similarity Si(l])- between any two heads of attention, h; and h;, within each layer I. This
similarity is measured by the average overlap coefficient of their sets of top k attention indices over
a representative corpus and multiple time steps t:

1!} = Evua [Overlap( T (A{""), Tu(A{))] @
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Figure 3: The workflow of SyncKV. After the initialization step in the prefill stage, the decode stage
cycles between two steps: (1) the anticipation step, where R-Heads select top k4, indices to trigger
an asynchronous upload from the CPU; and (2) the suspension step, where all heads compute by
reusing the existing sparse cache on the GPU.

where Agl’l) and Aﬁl’j ) is the attention score for head h; and h; in layer [ at time step ¢, and k is the
predefined top k value. Based on this similarity matrix, we apply K-Means clustering to partition
heads into distinct clusters, C,. In each cluster, the head closest to the cluster centroid is selected
as the Representative Head (R-Head), and all other heads are treated as Non-Representative Heads
(NR-Heads). The details of our offline head clustering process, including robustness analysis, are
presented in Appendix [B.T}

This clustering establishes an efficient “leader-follower” working model. During inference, the
R-Heads undertake the more computationally expensive context-aware task. They are responsible
for drawing attention over a broader context at critical moments to dynamically identify the most
important set of top k tokens. Meanwhile, NR-Heads directly reuse the top & indices calculated by
the R-Head of their cluster. In this way, the attentional focus of the entire cluster is unified, and the
computation for the NR-Heads is drastically simplified, as they only need to perform attention on
the highly sparse KV cache subset pre-selected by the R-Heads.

4.2 INITIALIZATION: SELECTING AND OFFLOADING CACHE

SyncKYV inference process begins with the prefill stage, which aims to efficiently process the prompt
and establish the initial context state for the subsequent decode stage. During this stage, the model
first processes the entire input sequence on the GPU to generate the complete initial KV cache.
Immediately following this, the KV cache for NR-Heads is asynchronously offloaded to pinned
CPU memory, establishing a “context bank” for efficient future access.

To facilitate the first step of the decode stage, an initial set of top & indices is determined by perform-
ing attention on the last token of the input sequence. This approach is motivated by the findings of
SnapKV (Li et al.,[2024)), which demonstrated that attention scores computed over a local window of
recent tokens serve as a strong predictor for identifying tokens that will be important in subsequent
decoding steps:

7 =T, (A0, 3)

where Iég ) is the initial set of top k indices for group g, and Ay _; represents the attention scores

calculated at the last position of the input sequence in layer [ by the Representative Head h,..

To strike a balance between the global information budget in the prefill stage and the attention drift
budget in the decode stage, we introduced the static ratio p. It divides Iég ) into a static part and a
dynamic part:

19 =1 UTY), &)
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where Igg ) is the static set, which comprises a fraction of the most important tokens of I(gg ) cor-

responding to the ratio p, and its corresponding KV cache is permanently retained on the GPU

throughout the decoding process; 11(5’.)0 is the initial dynamic set, defined by the remaining budget,

a ratio of 1 — p, which will be populated during the anticipation steps with newly important tokens
uploaded from the CPU. This strategy prevents the model from forgetting critical global information
by using the static cache, while enabling it to flexibly retrieve important, timely content through the
dynamic cache. At the end of this stage, in GPU memory, the R-Heads retain their complete KV

cache, while the NR-Heads retain the initial Iég ) KV cache.

4.3  ANTICIPATION: UPDATING THE DYNAMIC CACHE

The anticipation step serves as a proactive dynamic sparse context retrieval mechanism, initiating a
computational cycle defined by the synchronization stride . During an anticipation step, which oc-
curs once every m steps, R-Heads perform an attention calculation to produce an accurate attention
score vector that reflects the current focus of inference:

T
1, h LA,
Qt( ) (K((;PU))

Lk,
Ag ) \/& b

(&)

= Softmax

where Agl’h*) is the attention score computed at step ¢ in layer [ by the R-Head h,; qt(l’hr) is the

current query vector; K ((;l’;ﬁ) is the corresponding key cache for R-head stored on the GPU; and d

is the dimension of the key vectors. Based on this score vector, a new set of top & indices, Ig’)t 41 is
identified for the dynamic cache:

T = Thayn (A7) (6)

where the dynamic budget is set to kg, = | (1 — p)k|. This new set subsequently initiates an
asynchronous data update for the entire cluster C,. The corresponding KV cache slices within the
cluster are fetched from the global context on the CPU and uploaded to the GPU:
(I,heCy) (I,heCy) 11(9)
Kphi® < KCPLU ! [IDg.,tJrl]’

(L,heCy) (L,heCy)
Vo < Vopu [I(Dg,)tJrl]'

This step is termed anticipation because it proactively identifies and fetches the critical KV cache
subset by tracking the attention drift, which helps in recovering the potential accuracy loss. This
mechanism is crucial, as by periodically executing the anticipation step, the model can dynamically
reevaluate and retrieve older information that has become important in the current phase, effectively
preventing accuracy degradation caused by information loss. This ensures that the model always has
access to the most relevant current context during long-context generation.

(7

4.4 SUSPENSION: QUERYING THE SPARSE CACHE

Following each anticipation step, the system enters a series of suspension steps. This stage is defined
by no extra overhead computation, designed to fully capitalize on the sparse context prepared by the
anticipation step to maximize token generation throughput.

Critically, the NR-Heads attention mechanism no longer operates in the full context. Instead, they
jointly attend to a KV cache subset composed of the static set and the dynamic set, where the
latter was uniformly loaded for their cluster during the last anticipation step, denoted ¢ 4. For any
suspension step ¢ in the interval (¢ 4, t 4 +m], the KV cache used for the calculation remains constant:

Lh Lh

Kl(ltJ)rl - K,(D,t), ®)
Lh Lh

Vfg,t-zl = Vfé,t )

This step is termed suspension because NR-heads sustain and reuse the sparse It(g ) KV cache sub-
set, obtained during the previous anticipation step, for a series of subsequent decoding steps. This
sustained context approach creates an I/O-free computational phase, which in turn significantly re-
duces the complexity of the attention mechanism and directly translates to a substantial acceleration
in token generation throughput.
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Table 1: The performance of single-step inference on LongBench (Bai et al.,[2023)). Italics indicate
that the model uses a full attention baseline. Bold indicates the best performance under the same
model. Detailed results are presented in Appendix

Methods | Mem% | Avg. |Single-Doc QA Multi-Doc QA Summarize Few-Shot Synthetic Code
Llama-3.1-8B-Instruct 100% 49.76 43.39 42.76 29.20 69.39 51.81 62.02
Quest 100% 46.73 42.05 37.38 28.12 64.81 5298 55.03
StreamingLLM 50% 38.97 27.98 32.93 22.18 62.85 35.38 52.51
H20 50% 41.82 37.48 37.44 27.36 67.55 32.59 48.52
SnapKV 50% 44.51 37.25 38.29 24.63 68.22 47.88 50.81
CAKE 50% 48.93 43.13 42.37 27.83 68.94 52.09 59.23
SyncKV 50% 49.07 43.57 42.56 28.27 68.62 52.08 59.34
Qwen2.5-7B-Instruct 100% 49.70 41.59 43.96 26.72 67.56 5475 63.63
Quest 100% 46.66 40.14 41.73 22.95 67.75 51.25 56.13
StreamingLLM 30% 41.40 31.08 36.90 23.27 65.21 33.00 58.91
H20 30% 38.54 32.45 36.66 24.03 59.87 37.50 40.71
SnapKV 30% 4391 34.84 40.31 20.54 65.31 54.75 47.72
CAKE 30% 48.09 40.74 42.95 23.69 66.77 54.25 60.10
SyncKV 30% 48.18 40.84 44.43 22.63 67.75 54.25 59.17
Qwen2.5-14B-Instruct 100% 49.86 42.50 51.57 23.81 70.50 52.80 57.99
Quest 100% 46.48 39.68 47.96 20.33 67.36 50.93 52.62
StreamingLLM 30% 39.69 26.71 40.89 20.85 66.77 27.18 55.75
H20 30% 37.57 30.28 43.28 22.07 64.45 23.08 4227
SnapKV 30% 44.17 28.90 48.53 19.48 68.79 50.38 48.92
CAKE 30% 48.20 40.98 50.83 22.75 69.56 51.23 53.84
SyncKV 30% 48.55 41.23 51.03 21.05 70.68 52.15 55.13
Llama-3.1-70B-Instruct| 100% 53.10 43.44 50.88 28.48 70.38 55.00 70.39
Quest 100% 50.76 43.13 50.11 26.55 68.17 5425 62.36
StreamingLLM 20% 44.12 30.73 44.86 17.44 56.80 54.25 60.63
H20 20% 44.80 36.60 46.35 17.32 61.20 53.35 54.00
SnapKV 20% 48.28 38.01 50.07 19.62 68.57 54.25 59.16
CAKE 20% 51.83 43.03 50.13 27.20 68.85 54.75 67.01
SyncKV 20% 51.92 43.21 50.58 26.00 69.36 54.75 67.63

4.5 PARALLELIZED DATA TRANSFER

In dynamic caching strategies that move data between the CPU and GPU, a core challenge is the
significant I/O overhead of this two-way transfer. If not handled properly, this latency can completely
nullify the acceleration gains from memory savings. SyncKV addresses this challenge through a
carefully designed parallelization strategy.

In the prefill stage, SyncKV uses asynchronous transfer to hide the I/O latency by overlapping it with
the attention computation. In the decode stage, the core of this mechanism lies in the asynchronous
coordination between the anticipation and suspension steps. When an R-Head identifies the new
set of important tokens, it immediately triggers an asynchronous upload command from the CPU
to the GPU. Consequently, this time-consuming data transfer occurs in the background, with its
latency being overlapped and hidden by the computation of both the current anticipation step and
the subsequent suspension steps. SyncKV hides I/O latency by parallelizing computation and data
transmission, and its efficient sparse attention computation is sufficient to offset additional overhead,
thereby jointly enhancing throughput.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

Backbone LLLMs. We selected multiple representative open-source LLMs for our experiments:
Llama-3.1-8B-Instruct, Qwen2.5-7B-Instruct, Qwen2.5-14B-Instruct and Llama-3.1-70B-Instruct.
All of these models support a context length of up to 128K.

Implementation. All performance and latency experiments were conducted on a single NVIDIA
A100 GPU and a 32-core Intel Xeon Gold 6326 processor at 2.90GHz. To demonstrate the or-
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Table 2: Performance comparison of SyncKV and base- Table 3: Ablation study of the core com-
lines on multi-step reasoning tasks from SCBench. All ponents of SyncKV. Note that “Prefill”

methods were evaluated at 30% Mem%. and “Decode” refer to latency in sec-
onds (s).

Methods Avg. Sem. Retr. Global Info. Multi-Task
Llama-3.1-8B-Ins.  44.37 40.66 34.01 58.45 Methods Mem% Avg. Prefill Decode
StreamingLLM 26.82 28.47 33.27 18.72 SyncKV 50% 48.12  2.45 0.04
H20 23.25 25.59 30.20 13.95 wio Init. 100% 4812  2.19 0.05
SnapKV 29.24 24.58 35.32 27.83 wlo Anticip.  50% 4775 243 0.04
CAKE 34.11 32.11 34.52 35.70 w/o Susp. 50%  48.50  2.63 0.21
SyncKV 37.59 33.64 34.47 44.66 w/ N,=1 50% 47.86 2.45 0.04
Qwen2.5-7B-Ins. ~ 25.93 21.80 33.64 22.36 w/ N,=2 0% 4812 242 0.04
StreamingLLM 20.68 11.28 35.65 15.10 w/ N,=3 50% 4763 252 007
H20 17.62 13.03 32.05 7.7 w/ m=1 50% 4850  2.63 0.21
SnapKV 19.75 14.77 34.16 10.33 w/ m=5 50% 4812 245 0.04
CAKE 23.55 20.32 32.10 18.22 w/ m=10 50% 4762 251 0.04
SyncKV 24.66 21.69 34.30 18.00

thogonality of SyncKV with quantization, we applied 4-bit weight quantization to all models with
bitsandbytes (Dettmers et al., |2021). To ensure a fair comparison, we standardized the evaluation
criteria by requiring all algorithms to retain a prefetched KV cache equivalent to a fixed percentage
of GPU memory (Mem%), rather than a fixed token budget. For the hyperparameter configuration,
we set V. to 2 for the Llama model and 1 for Qwen model. The synchronization stride m was set at
5 for both models and the static ratio p was set to 0.5. Finally, to evaluate performance under differ-
ent budget constraints, we set Mem% to 20%, 30%, and 50%. Further details of our experimental
setup are presented in the Appendix

5.2 PERFORMANCE ON VARIOUS TASKS

Single-Step Reasoning Performance. To comprehensively evaluate SyncKV’s single-step infer-
ence performance, we conducted extensive experiments on LongBench, with detailed results sum-
marized in Table[l] For instance, even with a significant memory reduction on the Llama-3.1-8B
model, SyncKV’s performance is nearly indistinguishable from the full attention baseline and sur-
passes all other methods. This remarkable efficiency is robustly maintained across different model
families like Qwen and larger models, even at aggressive compression rates. The results unequivo-
cally demonstrate the superiority of SyncKV. This success is largely attributed to SyncKV’s ability to
efficiently retrieve cyclically important KV cache, avoiding the permanent information loss inherent
in static eviction methods.

Information Retrieval Performance. To evaluate the long-context information retrieval capabili-
ties of the models, we designed and conducted a series of NIAH experiments. Figure [4| shows that
SyncKV achieves a high score of 0.989. This performance is highly comparable to the original
model, which strongly demonstrates that SyncKV can efficiently compress the KV cache while re-
taining critical information with extremely high fidelity, thereby ensuring both information integrity
and reliability during long-context inference.

Multi-Step Reasoning Performance. To further assess the multi-step inference capabilities of
SyncKYV, we performed tests on three specific tasks from SCbench (Li et al., [2025): Semantic Re-
trieval, Global Information, and Multi-Tasking, while retaining the experimental configuration from
the single-step evaluations. As shown in Table [2] the results indicate that SyncKV significantly
outperforms all the baseline methods in semantic retrieval. In other tasks, its performance remains
also highly comparable to that of the original model. This superior multi-step performance is primar-
ily attributed to SyncKV’s unique mechanism during the decoding phase, which effectively retrieves
important tokens and prevents the loss of crucial historical information during long-range reasoning.

5.3 LATENCY

We evaluated the end-to-end latency of SyncKV against the baseline on the Llama-3.1-8B-Instruct
model. For the prefill stage, we measure the Time To First Token (TTFT). For the decode stage, we
calculate the average latency per token over 50 generated tokens.
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lengths from 16K to 128K tokens. show the latency for the prefill and decode stage, respec-
tively.

The results are presented in Figure [5] During the prefill stage, SyncKV effectively hides the of-
fload latency by overlapping it with the attention computation. In the decoding phase, while the
CPU operations required by SyncKV’s anticipation mechanism introduce additional latency, this is
a deliberate trade-off necessary for the high-precision retrieval of crucial KV cache. Even so, it
still achieves a 1.25x speedup over FullAttention at a context length of 128K tokens. Furthermore,
we analyze SyncKV w/o offload, a variant that keeps all tensors on the GPU, assuming sufficient
memory. Compared to Quest, SyncKV w/o offload achieves a comprehensive lead in both accuracy
and speed under the same memory footprint. By eliminating the CPU operations associated with
data uploading, this variant demonstrates the benefits of our computation model based on a sparse
cache, achieving a 3x decoding speedup over FullAttention.

5.4 ABLATION STUDIES

We conducted a series of comprehensive ablation studies to validate the necessity of our core design
choices and hyperparameter sensitivity in SyncKV. The results in Table [3] confirm the necessity of
each component. Detailed experimental configurations and analysis are presented in Appendix [D]

w/o Initialization. In this variant, we remove the KV cache offloading step during the prefill stage.
The results show that while this reduces prefill latency by eliminating data transfer, it completely
negates any GPU memory savings, which is the core problem our algorithm is designed to solve.

w/o Anticipation. This variant removes the dynamic update mechanism of the anticipation step,
relying solely on a static token set. The results indicate that although this variant achieves the lowest
decode latency due to its simplified computation, it suffers from a noticeable drop in task accuracy.
This highlights the vital role of the anticipation step in maintaining reasoning capabilities.

w/o Suspension. This variant forces every decode step to be an anticipation step. Although this
achieves the highest accuracy by most precisely tracking attention, it leads to a prohibitive increase
in decode latency due to excessive computational and I/O overhead. This negates the acceleration
benefits, proving that the suspension step is indispensable.

Hyperparameter Sensitivity. Furthermore, additional ablation studies, particularly those concern-
ing hyperparameter sensitivity, are detailed in Appendix D} Studies justify our default hyperparam-
eters (p = 0.5, N,, = 2, m = 5) as providing an optimal trade-off between performance and latency.

6 CONCLUSION

In this paper, we propose SyncKYV, a training-free dynamic KV cache compression framework for
efficient long-context LLM inference. Motivated by the attention drift phenomenon and insights
into the temporal locality and intralayer similarity, SyncKV employs a syncopated strategy with
representative heads and asynchronous offloading and reloading. Experiments show that SyncKV
reduces KV cache memory usage by up to 80% without significant accuracy loss, and achieves
state-of-the-art performance on multiple tasks. Our work offers an effective solution for deploying
long-context LLMs on GPU memory-constrained hardware.
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REPRODUCIBILITY STATEMENT

Hyperparameters, hardware environment, and other pertinent details are presented in Section [5
The core algorithm for SyncKV is provided in Section[d] Detailed settings and implementation of
baselines can be found in Section[3land Section|[C
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A PSEUDOCODE

To provide a clear perspective on our proposed method, we present the detailed SyncKV workflow in
the form of pseudocode. The entire step-by-step procedure is systematically illustrated in Algorithm

Algorithm 1 SyncKV Inference Process

1: Input: Prompt P, Model M, Stride m, Ratio p, Budget k, Clusters N,., Layers L, Generation
length T'

2: Qutput: Generated sequence Y

3: // Offline Head Clustering

4: for! =1to L do

5. Compute similarity matrix S

6:  HY HY. « K-Means(5O, N,)

7: end for

8: // Prefill Stage

9: for{ =1to L do

10: (KW, V1) « GenerateKVForLayer(M, P, 1)

11:  Partition (K, V) into GPU-resident (K 1(:?7 ngl)) and offloadable (K ](\l,)R, V]S,ll)%)

12:  Asynchronously transfer (K ](\Z,)R, VJS,II)%) to CPU memory

13:  for g =1to N, do

14: h'9 « Representative head in cluster g of layer [
15: 7349« argTop,, (Attention(qy,_y, K 1)), k)
16 IO 159 Split(Z . p- k)

17:  end for

18: end for

19: // Decode Stage
20: fort =1to 7T do
21: forl=1to Ldo

22: OF « Attention,, o) (gt, Kg), Vlgl))
R
23: Loparse U§;1{Iél’g) U Ig’,?)fl
24 ONR « Autention, ) (qr, K[ Zopurse], VrplZiparse])
25: O; + Combine(Of, ONE)
26: ift (mod m) = 0 then
27: for g =1to N, do
28: A£g> + Attention(g, K(lvh(rg)))
L
29: I](Jvf) « argTopy, - (A§9 ), Kayn)
30: Fetch KV for Z*¥) from CPU
31: end for
32: else
33: for g =1to N, do
34: 59 159,
35: end for
36: end if
37:  end for

38:  y, (K,V) « DecodeForward(O;, K, V)
39: Appendy;toY

40: end for

41: return Y

12
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B IMPLEMENTATION DETAILS

B.1 HEADS CLUSTER

Robustness Analysis. To validate the stability and generalizability of our clustering methodology,
we first performed a robustness analysis. Specifically, we constructed multiple separate and non-
overlapping corpora to test the consistency of our results. Each corpus was created by randomly
sampling 50 unique articles from a comprehensive snapshot of English Wikipedia. To ensure fair
comparison and maintain methodological consistency, every article across all corpora was truncated
to its first 1000 tokens. Despite the textual variations across these independently sampled corpora,
the resulting head cluster configurations exhibited strong concordance when the clustering process
was applied to each. The cluster assignments for the vast majority of heads remained consistent
across these experiments, indicating that the functional specializations we identified are not artifacts
of a specific text sample but rather intrinsic properties of the model’s attention mechanism.

Handling of MHA and GQA Architectures. Our method for calculating the overlap coefficient
is adapted for different architectures of attention. For the standard Multi-Head Attention (MHA)
architecture, we directly calculate the overlap coefficient between any two individual heads, h; and
h;. In contrast, for the Grouped-Query Attention (GQA) architecture, query heads within the same
group are functionally coupled, as they share a common set of keys and values. Therefore, before
computing coefficients, we first apply a max-pooling operation across the attention head dimension
within each group. This step produces a single consolidated attention map that represents the col-
lective function of the group. Subsequent overlap coefficient analysis is then performed on these
pooled, group-level representations to measure the affinity between different functional groups.

Our offline head clustering process consists of the following core steps:

1. Corpus Construction & Weight Extraction: We first construct a representative corpus from 50
English Wikipedia articles, each truncated to 1000 tokens. We then feed this text into an LLM to

extract and save the complete attention weight matrices Agl’h) for each layer at each decode step.

2. Similarity Matrix Calculation: Based on the extracted weights, we calculate a head-to-head
similarity matrix S) for each layer I. The similarity between two heads, h; and h, is defined as
the average overlap of their top k token index sets, Z (1.h) | attended within a local window.

3. Distance Conversion & Clustering: We convert the similarity matrix S() into a distance matrix

DW via the formula Dl(lj) = max(S®) — SZ(ZJ) . This distance matrix serves as the input feature
for the K-Means algorithm, which we then apply to partition all effective heads into N,. groups,
Cqy.

4. R-Heads Selection: Finally, for each resulting cluster C,4, we select the head closest to the clus-
ter’s centroid to be its R-Head, which is considered the most functionally representative member.

This offline process ensures that SyncKV incurs no computational overhead from clustering during
actual inference, thus guaranteeing its efficiency.

C EXPERIMENT DETAILS

C.1 BASELINE METHODS.

We evaluated SyncKV performance against many baselines: 1) Full Attention, the original model,
does not evict any tokens. 2) Quest. A query-aware selection method that speeds up attention by
dynamically choosing KV pages, but retains the full cache and does not save memory. For Quest,
we follow the settings in its paper, setting the token budget to 2048 and the size of chunk to 16.
3) StreamingL.LM. It uses an initial window and a sliding window to retain tokens, which means
that the tokens in the middle are significantly evicted. 4) H2O. It evicts tokens based on cumulative
attention scores from the prefill and decode stages. 5) SnapKV. It remains the token with the top &
window attention aggregation in the prefill stage. 6) CAKE. Adaptively allocates cache size per layer
based on attention dynamics and evicts tokens using an indicator of their importance and variability.
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Table 4: The performance of Llama-3.1-8B-Instruct and Qwen2.5-7B-Instruct on LongBench.

Methods | Mem% | Avg. |Single-Doc QA Multi-Doc QA Summarize Few-Shot Synthetic Code
Llama-3.1-8B-Instruct | 100% 49.76 43.39 42.76 29.20 69.39 51.81 62.02
Quest 100% 46.86 42.05 37.38 28.92 64.81 5298 55.03
StreamingLLM 30% 41.65 30.73 35.26 24.72 66.20 36.84 56.14
H20 30% 39.92 36.00 37.07 26.67 66.36 27.84  45.56
SnapKV 30% 43.67 36.11 37.72 23.70 67.88 48.12 48.46
CAKE 30% 47.63 42.23 40.52 26.59 68.58 50.88  56.97
SyncKV 30% 48.84 42.82 41.98 26.89 68.50 52.30 60.55
Qwen2.5-7B-Instruct 100% 49.70 41.59 43.96 26.72 67.56 5475  63.63
Quest 100% 46.66 40.14 41.73 22.95 67.75 51.25 56.13
StreamingLLM 50% 43.42 32.95 39.39 24.30 66.50 37.00 60.40
H20 50% 41.66 33.93 37.33 23.39 61.81 47.00 46.52
SnapKV 50% 45.14 36.33 41.85 21.56 65.32 5475 51.05
CAKE 30% 49.31 41.29 43.92 24.58 68.00 5425 63.85
SyncKV 50% 49.55 40.86 44.84 2491 68.79 5425 63.63

C.2 EVALUATING TASKS.

To evaluate the performance of SyncKV and other baselines, we use three designed benchmarks:
(1) LongBench (Bai et al.| [2023): This benchmark focuses on evaluating the understanding and
reasoning capabilities of LLMs in single-step reasoning. We set the maximum context length to
128K tokens. (2) SCBench (Li et al.l 2025): This benchmark is designed to evaluate a model’s
multi-step reasoning performance. Given that the average input length in this benchmark ranges
from 22K to 1.5M tokens, we standardized our evaluation by truncating all input sequences to 128K
tokens. (3) Needle In A Haystack (Fu et al.l [2024): This test evaluates the in-context retrieval
capabilities of LLMs. It measures retrieval accuracy under high distraction and diagnoses potential
positional biases by embedding a target “needle” of information into a long “haystack” of text. we
covered a range of context lengths from 16K to 128K tokens, with tests conducted at increasing
intervals of 16K.

C.3 LONGBENCH RESULTS

In this section, we present the performance of Llama-3.1-8B-Instruct and Qwen2.5-7B-Instruct on
LongBench. As shown in Table ] SyncKYV still demonstrates a performance far exceeding that of
other compression algorithms.

D ABLATION STUDIES

To systematically validate the necessity of each component in our SyncKV design and to provide a
rationale for our hyperparameter choices, we conducted a series of detailed ablation studies. This
section elaborates on these experiments, for which we reported the impact on accuracy and latency
on the Qasper dataset from LongBench, with the latency metric tested over an average context length
of 16K.

We analyze the hyperparameters that impact the performance and efficiency of SyncKV to determine
their optimal values.

Static Ratio p. The static ratio p, controls the proportion of initial I(()g ) that are permanently re-
tained on the GPU. We tested multiple values for p in the range [0,1]. As shown in Figure [6] the
results indicate that when p is too low, the model retains an insufficient global context, which affects
tasks that require an understanding of the overall theme. Conversely, when p is too high, the budget
reserved for dynamic information is inadequate, weakening the model’s ability to adapt to “atten-
tion drift.” Ultimately, we found that p = 0.5 strikes the optimal balance between preserving global
context and adapting to dynamic attention shifts.

Number of R-Heads N,. The number of R-Heads, N,., determines the granularity of the cluster-
ing. As shown in Table[3] our experimental results indicate that the setting INV,, = 2 achieves optimal

14



Under review as a conference paper at ICLR 2026

48.0

47.8

Score

47.6

47.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Static Ratio p

Figure 6: The impact of the Static Ratio p on model performance.

performance. We attribute this to a critical trade-off between functional specialization and budget
allocation. An overly small N, fails to account for the functional heterogeneity among attention
heads, treating them as a monolithic group. This overlooks their specialized roles and can lead to
less precise retention of the key-value cache. In contrast, a large N, fragments the limited token
budget too thinly in many clusters. This provides each NR-Head with insufficient contextual in-
formation to make effective decisions, ultimately degrading model performance. Therefore, setting
N, = 2 strikes an effective balance, allowing sufficient differentiation of head functionalities with-
out overly constraining the token budget for each group. This result strongly supports our choice of
N, = 2 as the optimal trade-off between model performance and resource constraints.

Synchronization Stride m. The synchronization stride m, defines the frequency of the anticipa-
tion stage. When m = 1, it is equivalent to the “w/o Suspension” case, resulting in the highest
latency. As m increases, token generation throughput improves significantly. However, if m be-
comes too large, the dynamic information in the cache becomes stale, leading to a decrease in model
performance. As shown in Table 3] our experiments show that m = 5 offers an optimal compromise
between inference latency and model performance.

E STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

We report on the use of Large Language Models (LLMs) in the preparation of this paper. The use
of LLMs was strictly limited to the role of a general-purpose writing assistant. Specifically, we used
these tools to proofread, correct grammatical errors, and rephrase sentences to improve clarity and
readability. The LLMs did not contribute to the core scientific aspects of this work, such as research
ideation, experimental design, data analysis, or the generation of substantive content.
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