
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SYNCKV: A SYNCOPATED SCHEDULING APPROACH
TO KV CACHE COMPRESSION FOR EFFICIENT LONG-
CONTEXT LLM INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

KV cache accelerates the inference of Large Language Models (LLMs) by caching
the key and value states of previous tokens, but its linearly increasing memory
footprint poses a huge bottleneck for long-context tasks. To mitigate this, many
previous studies evict unimportant tokens based on attention scores from the pre-
fill stage or cumulative attention. However, by permanently evicting tokens, such
static compression algorithms fail to preserve globally important tokens, as they
overlook the “attention drift” phenomenon inherent in inference. Our analysis
highlights this drift, showing that after generating just 50 tokens, the set of im-
portant tokens retains only about a 30% overlap with the one identified during
the prefill stage. To address this, our core innovative insight is twofold: (1) the
set of important tokens exhibits high temporal locality across adjacent generation
steps, and (2) this set is highly similar among attention heads within the same
layer. Based on these insights, we propose SyncKV, a training-free dynamic KV
cache compression method. SyncKV takes advantage of these properties through
a novel syncopated strategy in which a few “representative heads” periodically
identify important tokens, triggering an asynchronous upload of the relevant KV
cache from the CPU. We designed a parallelization strategy that overlaps the I/O
overhead with the subsequent forward computing stage, thereby effectively hiding
the delay of data transmission and achieving an acceleration effect. Experiments
show that SyncKV has achieved state-of-the-art performance in multiple long-
context benchmarks, reducing the GPU memory usage of the KV cache by up to
80%. Our code will be open-source.

1 INTRODUCTION

The landscape of artificial intelligence is currently being reshaped by the wave of LLMs, whose pow-
erful capabilities have been validated in numerous interactive applications, such as conversational
assistants capable of complex dialogues (OpenAI et al., 2024; Team et al., 2025) and autonomous
agents capable of planning and performing tasks (Wu et al., 2023; Park et al., 2023). The success
of these applications converges on a core requirement: models must possess the ability to process
and retain long-form contextual information. To push beyond the context limits of existing models,
some work has proposed various innovative architectures with significant success (Dao et al., 2022;
Chen et al., 2024; Grattafiori et al., 2024). However, all models based on the Transformer archi-
tecture (Vaswani et al., 2017) rely on an optimization mechanism known as the KV cache during
auto-regressive generation. Although this mechanism avoids redundant computations by storing the
intermediate states of all previous tokens, it comes at the cost of substantial GPU memory consump-
tion that grows linearly with sequence length. This makes the KV cache the primary obstacle to
deploying long-context LLMs on resource-constrained hardware. The work on Minference (Jiang
et al., 2024) highlights the inherent sparsity of the attention mechanism in long contexts, showing
that just 4k tokens out of 128k can account for 96.4% of the total attention weight. Consequently,
a major line of research has focused on evicting entire unimportant token entries from the cache.
These methods typically leverage various heuristics based on attention scores to identify and retain
a critical subset of tokens from the initial prompt (Xiao et al., 2023; Zhang et al., 2023; Li et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: A comparative example. The static compression method only focuses on the important
tokens (orange words) in the prefill stage, thereby losing information, while the dynamic method
can review the less important information (green words) in the decode stage.

2024), or maximize information density by allocating different KV cache budgets to different layers
or heads (Cai et al., 2024).

We argue that such methods, which rely on static decisions based on historical scores, carry a fun-
damental risk. In long dialogues or complex reasoning, the focus of attention is dynamic, a phe-
nomenon we call attention drift. As illustrated in Figure 1, a detail that appears unimportant in the
early stages may become critical to resolving the task later on. Once a static eviction policy makes
an incorrect eviction decision, the information loss is irreversible, thus limiting the model’s deep
reasoning capabilities.

To overcome this, we propose a dynamic approach that avoids premature information loss. Our work
is built upon two key observations about the attention mechanism’s behavior: (1) temporal locality,
The set of most-attended-to tokens exhibits high temporal locality, with significant overlap between
adjacent decoding steps, and (2) intralayer similarity, this set is highly similar among many attention
heads within the same layer. Based on these insights, we introduce SyncKV, a novel dynamic KV
cache compression framework that leverages these spatio-temporal properties of attention. SyncKV
employs a syncopated strategy, where a few “representative heads” are first selected through a one-
time offline clustering. During the initialization phase of inference, the vast majority of the KV cache
is offloaded to CPU memory, with only a small, critical subset retained on the GPU. Subsequently,
in the decode stage, these representative heads periodically access a wider context to dynamically
identify the current set of most important tokens, which triggers an asynchronous upload of the cor-
responding cache slices from the CPU to the GPU. In the intervening steps, all non-representative
heads perform efficient computation on this newly fetched, highly sparse cache subset. This ap-
proach ensures that only the representative heads bear the periodic retrieval cost, while the bulk of
computation operates on a highly compressed cache, drastically reducing GPU memory overhead
with negligible impact on model performance.

Our extensive experiments were conducted on mainstream large language models, including the
Llama and Qwen series, and evaluated under various compression rates on multiple long-context
benchmarks, such as LongBench (Bai et al., 2023), SCBench (Li et al., 2025), and more. The results
demonstrate that, compared to other advanced compression algorithms, SyncKV achieves state-of-
the-art performance on a variety of tasks.

2 RELATED WORK

2.1 KV CACHE EVICTION

Existing work has demonstrated the inherent sparsity of the attention mechanism in long contexts
(Jiang et al., 2024). Therefore, many KV cache evicting works are studying how to effectively retain
the important tokens in the inference stage and evict the unimportant ones. StreamingLLM (Xiao
et al., 2023) and LM-Infinite (Han et al., 2023) relied on a simple positional heuristic to retain initial
and final tokens. This simple eviction strategy has lost a large amount of information. To address

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) Attention Drift (b) Temporal Locality (c) Intralayer Similarity

Figure 2: Visualization of key observations. (a) Attention Drift: The average overlap between
current and initial steps decreases as decoding progresses. (b) Temporal Locality: The heatmap’s
darker diagonal indicates high attention overlap between adjacent steps. (c) Intralayer Similarity:
The darker main diagonal shows that attention heads are much more similar within a layer than
between layers.

this, subsequent methods introduced more sophisticated, attention-driven indicators to identify less
important tokens. H2O (Zhang et al., 2023) uses cumulative attention to eliminate the last token.
RoCo (Ren & Zhu, 2024) uses mean attention scores to assess token importance to construct a robust
scope of eviction. SnapKV (Li et al., 2024) uses window attention clustering in the prefill stage to
obtain the set of important tokens. CAKE (Qin et al., 2025) introduces a cascading and adaptive
strategy that assesses layer-specific preferences to rationally distribute cache resources. However,
all the methods mentioned above have a fatal problem. Tokens that are regarded irrelevant and
evicted at a certain stage cannot be retrieved. They may become important in subsequent processes,
resulting in significant information loss. Some works have recognized the importance of dynamic
selection, such as Quest (Tang et al., 2024). However, it has not led to a decrease in memory usage
and has lost accuracy.

2.2 OTHER KV CACHE COMPRESSION METHODS

Beyond token-level schemes, recent studies have pursued KV cache compression from several com-
plementary perspectives. DuoAttention (Xiao et al., 2024) only retains the full KV cache for the
retrieval attention head and uses a constant length cache for the remaining heads. ThinK (Xu et al.,
2024) prunes the least significant key cache channels based on a query-dependent interaction score.
MiniCache (Liu et al., 2024a) achieves hierarchical compression by merging highly similar KV
cache of adjacent layers from the middle section to the deep section of the model. Some methods
also attempt to quantize the KV cache, such as Kvquant (Hooper et al., 2024), Kivi (Liu et al.,
2024b), etc. These quantization methods are orthogonal to the token-level eviction strategy of KV
cache, and can be combined to further substantially reduce GPU memory overhead.

3 OBSERVATION

The effectiveness of our proposed algorithm, which will be detailed in this chapter, is based on
several fundamental observations regarding the behavior of the attention mechanism during auto-
regressive generation. These observations motivate a novel strategy for compressing the KV cache.

3.1 ATTENTION DRIFT

Numerous studies on KV cache compression (Li et al., 2024; Cai et al., 2024; Qin et al., 2025) con-
firm the effectiveness of retaining tokens with top k window attention scores during the prefill stage.
However, we find that this set of high-attention tokens is dynamic. To quantify this phenomenon,
we use the overlap coefficient (McGill, 1979) to measure the similarity between the sets of top k
tokens from any two sources, Tk (X) and Tk (Y), calculated as follows:

Overlap(Tk(X), Tk(Y)) =
|Tk(X) ∩ Tk(Y)|

min(|Tk(X)|, |Tk(Y)|)
, (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where X and Y are the attention scores from two sources (e.g., different time steps or different at-
tention heads) and Tk(·) is the set of indices of the top k tokens from a given score. As illustrated in
Figure 2 (a), our analysis reveals that as the generation process progresses, the overlap between the
set of high-attention tokens for the prefill and current steps continuously decreases, with the overlap
coefficient dropping to 30% after only 50 decoding steps. This indicates that tokens identified as
important at one point quickly become less relevant, and relying on a fixed, historical set of impor-
tant tokens can degrade the model’s performance on long-sequence generation. Therefore, SyncKV
avoids directly evicting tokens to cause information loss. Instead, it offloads the temporarily unim-
portant KV cache to the CPU memory for subsequent retrieval.

3.2 TEMPORAL LOCALITY

Based on attention drift, we discovered another phenomenon: high-attention tokens have a high
overlap coefficient in adjacent decoding steps. We define it as temporal locality. As shown in
Figure 2 (b), we calculated the average overlap coefficient across all attention heads for the sets
of high-attention tokens between each decoding step and found that the overlap for adjacent steps
remains at a consistently high level. This indicates a strong temporal locality in the attention mech-
anism’s focus. It suggests that while the set of important tokens does evolve over the long term,
its composition changes gradually and predictably in the short term. This finding is significant for
cache design, as it implies that the most recently identified high-attention tokens are ideal candidates
for retention, given their high probability of remaining important in the immediate future. Using the
principle of temporal locality, SyncKV performs a dynamic evaluation periodically, every m steps.
In the intervening steps, attention is computed by reusing the set of high-attention tokens identified
at the most recent evaluation point. This periodic evaluation strategy is highly effective because
temporal locality ensures this token set remains a high-fidelity proxy for several subsequent steps.

3.3 INTRALAYER SIMILARITY

In addition to the temporal dynamics of attention, we also investigated spatial redundancy across
attention heads. To quantify intralayer relationships, we define layer-level similarity as the average
of the overlap coefficients from each head in a source layer to a target layer. The result, shown in
Figure 2 (c), reveals a strong intralayer similarity, which is significantly higher than the interlayer
similarity. This high degree of intralayer redundancy suggests that not all heads contribute unique
information; many are functionally similar. SyncKV is designed to directly exploit this redundancy.
It employs K-means clustering to group functionally similar heads within each layer and designates
a single representative head for each cluster. This representative head is responsible for tracking
the attention dynamics for the entire cluster, while the other non-representative heads simply syn-
chronize with it. By treating a group of similar heads as a single unit, SyncKV drastically reduces
computational and GPU memory overhead without a significant loss of information.

4 METHOD

We propose SyncKV, an efficient KV cache compression framework for long-context LLM infer-
ence. The core idea of SyncKV originates from two key insights: temporal locality and intralayer
similarity. Based on these insights, this section will introduce the core components of SyncKV in
order: Offline Head Clustering, Initialization, and the two alternating decode phases, Anticipation
and Suspension. The pseudocode for SyncKV is detailed in Appendix A, and its general workflow
is illustrated in Figure 3.

4.1 OFFLINE HEAD CLUSTERING

To leverage the model’s intralayer similarity, we introduce a offline analysis phase. We first com-
pute the similarity S

(l)
i,j between any two heads of attention, hi and hj , within each layer l. This

similarity is measured by the average overlap coefficient of their sets of top k attention indices over
a representative corpus and multiple time steps t:

S
(l)
i,j = Et,data

[
Overlap(Tk(A(l,i)

t), Tk(A(l,j)
t))

]
, (2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: The workflow of SyncKV. After the initialization step in the prefill stage, the decode stage
cycles between two steps: (1) the anticipation step, where R-Heads select top kdyn indices to trigger
an asynchronous upload from the CPU; and (2) the suspension step, where all heads compute by
reusing the existing sparse cache on the GPU.

where A
(l,i)
t and A

(l,j)
t is the attention score for head hi and hj in layer l at time step t, and k is the

predefined top k value. Based on this similarity matrix, we apply K-Means clustering to partition
heads into distinct clusters, Cg . In each cluster, the head closest to the cluster centroid is selected
as the Representative Head (R-Head), and all other heads are treated as Non-Representative Heads
(NR-Heads). The details of our offline head clustering process, including robustness analysis, are
presented in Appendix B.1.

This clustering establishes an efficient “leader-follower” working model. During inference, the
R-Heads undertake the more computationally expensive context-aware task. They are responsible
for drawing attention over a broader context at critical moments to dynamically identify the most
important set of top k tokens. Meanwhile, NR-Heads directly reuse the top k indices calculated by
the R-Head of their cluster. In this way, the attentional focus of the entire cluster is unified, and the
computation for the NR-Heads is drastically simplified, as they only need to perform attention on
the highly sparse KV cache subset pre-selected by the R-Heads.

4.2 INITIALIZATION: SELECTING AND OFFLOADING CACHE

SyncKV inference process begins with the prefill stage, which aims to efficiently process the prompt
and establish the initial context state for the subsequent decode stage. During this stage, the model
first processes the entire input sequence on the GPU to generate the complete initial KV cache.
Immediately following this, the KV cache for NR-Heads is asynchronously offloaded to pinned
CPU memory, establishing a “context bank” for efficient future access.

To facilitate the first step of the decode stage, an initial set of top k indices is determined by perform-
ing attention on the last token of the input sequence. This approach is motivated by the findings of
SnapKV (Li et al., 2024), which demonstrated that attention scores computed over a local window of
recent tokens serve as a strong predictor for identifying tokens that will be important in subsequent
decoding steps:

I(g)0 = Tk
(
A

(l,hr)
L−1

)
, (3)

where I(g)0 is the initial set of top k indices for group g, and AL−1 represents the attention scores
calculated at the last position of the input sequence in layer l by the Representative Head hr.

To strike a balance between the global information budget in the prefill stage and the attention drift
budget in the decode stage, we introduced the static ratio ρ. It divides I(g)0 into a static part and a
dynamic part:

I(g)0 = I(g)S ∪ I(g)D,0, (4)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where I(g)S is the static set, which comprises a fraction of the most important tokens of I(g)0 cor-
responding to the ratio ρ, and its corresponding KV cache is permanently retained on the GPU
throughout the decoding process; I(g)D,0 is the initial dynamic set, defined by the remaining budget,
a ratio of 1 − ρ, which will be populated during the anticipation steps with newly important tokens
uploaded from the CPU. This strategy prevents the model from forgetting critical global information
by using the static cache, while enabling it to flexibly retrieve important, timely content through the
dynamic cache. At the end of this stage, in GPU memory, the R-Heads retain their complete KV
cache, while the NR-Heads retain the initial I(g)0 KV cache.

4.3 ANTICIPATION: UPDATING THE DYNAMIC CACHE

The anticipation step serves as a proactive dynamic sparse context retrieval mechanism, initiating a
computational cycle defined by the synchronization stride m. During an anticipation step, which oc-
curs once every m steps, R-Heads perform an attention calculation to produce an accurate attention
score vector that reflects the current focus of inference:

A
(l,hr)
t = Softmax

q
(l,hr)
t

(
K

(l,hr)
GPU

)T

√
d

 , (5)

where A
(l,hr)
t is the attention score computed at step t in layer l by the R-Head hr; q(l,hr)

t is the
current query vector; K(l,hr)

GPU is the corresponding key cache for R-head stored on the GPU; and d

is the dimension of the key vectors. Based on this score vector, a new set of top k indices, I(g)D,t+1 is
identified for the dynamic cache:

I(g)D,t+1 = Tkdyn

(
A

(l,hr)
t

)
, (6)

where the dynamic budget is set to kdyn = ⌊(1 − ρ)k⌋. This new set subsequently initiates an
asynchronous data update for the entire cluster Cg . The corresponding KV cache slices within the
cluster are fetched from the global context on the CPU and uploaded to the GPU:

K
(l,h∈Cg)
D,t+1 ← K

(l,h∈Cg)
CPU

[
I(g)D,t+1

]
,

V
(l,h∈Cg)
D,t+1 ← V

(l,h∈Cg)
CPU

[
I(g)D,t+1

]
.

(7)

This step is termed anticipation because it proactively identifies and fetches the critical KV cache
subset by tracking the attention drift, which helps in recovering the potential accuracy loss. This
mechanism is crucial, as by periodically executing the anticipation step, the model can dynamically
reevaluate and retrieve older information that has become important in the current phase, effectively
preventing accuracy degradation caused by information loss. This ensures that the model always has
access to the most relevant current context during long-context generation.

4.4 SUSPENSION: QUERYING THE SPARSE CACHE

Following each anticipation step, the system enters a series of suspension steps. This stage is defined
by no extra overhead computation, designed to fully capitalize on the sparse context prepared by the
anticipation step to maximize token generation throughput.

Critically, the NR-Heads attention mechanism no longer operates in the full context. Instead, they
jointly attend to a KV cache subset composed of the static set and the dynamic set, where the
latter was uniformly loaded for their cluster during the last anticipation step, denoted tA. For any
suspension step t in the interval (tA, tA+m], the KV cache used for the calculation remains constant:

K
(l,h)
D,t+1 = K

(l,h)
D,t ,

V
(l,h)
D,t+1 = V

(l,h)
D,t .

(8)

This step is termed suspension because NR-heads sustain and reuse the sparse I(g)t KV cache sub-
set, obtained during the previous anticipation step, for a series of subsequent decoding steps. This
sustained context approach creates an I/O-free computational phase, which in turn significantly re-
duces the complexity of the attention mechanism and directly translates to a substantial acceleration
in token generation throughput.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: The performance of single-step inference on LongBench (Bai et al., 2023). Italics indicate
that the model uses a full attention baseline. Bold indicates the best performance under the same
model. Detailed results are presented in Appendix C.3

Methods Mem% Avg. Single-Doc QA Multi-Doc QA Summarize Few-Shot Synthetic Code
Llama-3.1-8B-Instruct 100% 49.76 43.39 42.76 29.20 69.39 51.81 62.02
Quest 100% 46.73 42.05 37.38 28.12 64.81 52.98 55.03
StreamingLLM 50% 38.97 27.98 32.93 22.18 62.85 35.38 52.51
H2O 50% 41.82 37.48 37.44 27.36 67.55 32.59 48.52
SnapKV 50% 44.51 37.25 38.29 24.63 68.22 47.88 50.81
CAKE 50% 48.93 43.13 42.37 27.83 68.94 52.09 59.23
SyncKV 50% 49.07 43.57 42.56 28.27 68.62 52.08 59.34
Qwen2.5-7B-Instruct 100% 49.70 41.59 43.96 26.72 67.56 54.75 63.63
Quest 100% 46.66 40.14 41.73 22.95 67.75 51.25 56.13
StreamingLLM 30% 41.40 31.08 36.90 23.27 65.21 33.00 58.91
H2O 30% 38.54 32.45 36.66 24.03 59.87 37.50 40.71
SnapKV 30% 43.91 34.84 40.31 20.54 65.31 54.75 47.72
CAKE 30% 48.09 40.74 42.95 23.69 66.77 54.25 60.10
SyncKV 30% 48.18 40.84 44.43 22.63 67.75 54.25 59.17

Qwen2.5-14B-Instruct 100% 49.86 42.50 51.57 23.81 70.50 52.80 57.99
Quest 100% 46.48 39.68 47.96 20.33 67.36 50.93 52.62
StreamingLLM 30% 39.69 26.71 40.89 20.85 66.77 27.18 55.75
H2O 30% 37.57 30.28 43.28 22.07 64.45 23.08 42.27
SnapKV 30% 44.17 28.90 48.53 19.48 68.79 50.38 48.92
CAKE 30% 48.20 40.98 50.83 22.75 69.56 51.23 53.84
SyncKV 30% 48.55 41.23 51.03 21.05 70.68 52.15 55.13

Llama-3.1-70B-Instruct 100% 53.10 43.44 50.88 28.48 70.38 55.00 70.39
Quest 100% 50.76 43.13 50.11 26.55 68.17 54.25 62.36
StreamingLLM 20% 44.12 30.73 44.86 17.44 56.80 54.25 60.63
H2O 20% 44.80 36.60 46.35 17.32 61.20 53.35 54.00
SnapKV 20% 48.28 38.01 50.07 19.62 68.57 54.25 59.16
CAKE 20% 51.83 43.03 50.13 27.20 68.85 54.75 67.01
SyncKV 20% 51.92 43.21 50.58 26.00 69.36 54.75 67.63

4.5 PARALLELIZED DATA TRANSFER

In dynamic caching strategies that move data between the CPU and GPU, a core challenge is the
significant I/O overhead of this two-way transfer. If not handled properly, this latency can completely
nullify the acceleration gains from memory savings. SyncKV addresses this challenge through a
carefully designed parallelization strategy.

In the prefill stage, SyncKV uses asynchronous transfer to hide the I/O latency by overlapping it with
the attention computation. In the decode stage, the core of this mechanism lies in the asynchronous
coordination between the anticipation and suspension steps. When an R-Head identifies the new
set of important tokens, it immediately triggers an asynchronous upload command from the CPU
to the GPU. Consequently, this time-consuming data transfer occurs in the background, with its
latency being overlapped and hidden by the computation of both the current anticipation step and
the subsequent suspension steps. SyncKV hides I/O latency by parallelizing computation and data
transmission, and its efficient sparse attention computation is sufficient to offset additional overhead,
thereby jointly enhancing throughput.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

Backbone LLMs. We selected multiple representative open-source LLMs for our experiments:
Llama-3.1-8B-Instruct, Qwen2.5-7B-Instruct, Qwen2.5-14B-Instruct and Llama-3.1-70B-Instruct.
All of these models support a context length of up to 128K.

Implementation. All performance and latency experiments were conducted on a single NVIDIA
A100 GPU and a 32-core Intel Xeon Gold 6326 processor at 2.90GHz. To demonstrate the or-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison of SyncKV and base-
lines on multi-step reasoning tasks from SCBench. All
methods were evaluated at 30% Mem%.

Methods Avg. Sem. Retr. Global Info. Multi-Task
Llama-3.1-8B-Ins. 44.37 40.66 34.01 58.45
StreamingLLM 26.82 28.47 33.27 18.72
H2O 23.25 25.59 30.20 13.95
SnapKV 29.24 24.58 35.32 27.83
CAKE 34.11 32.11 34.52 35.70
SyncKV 37.59 33.64 34.47 44.66
Qwen2.5-7B-Ins. 25.93 21.80 33.64 22.36
StreamingLLM 20.68 11.28 35.65 15.10
H2O 17.62 13.03 32.05 7.77
SnapKV 19.75 14.77 34.16 10.33
CAKE 23.55 20.32 32.10 18.22
SyncKV 24.66 21.69 34.30 18.00

Table 3: Ablation study of the core com-
ponents of SyncKV. Note that “Prefill”
and “Decode” refer to latency in sec-
onds (s).

Methods Mem% Avg. Prefill Decode
SyncKV 50% 48.12 2.45 0.04
w/o Init. 100% 48.12 2.19 0.05
w/o Anticip. 50% 47.75 2.43 0.04
w/o Susp. 50% 48.50 2.63 0.21

w/ Nr=1 50% 47.86 2.45 0.04
w/ Nr=2 50% 48.12 2.42 0.04
w/ Nr=3 50% 47.63 2.52 0.07

w/ m=1 50% 48.50 2.63 0.21
w/ m=5 50% 48.12 2.45 0.04
w/ m=10 50% 47.62 2.51 0.04

thogonality of SyncKV with quantization, we applied 4-bit weight quantization to all models with
bitsandbytes (Dettmers et al., 2021). To ensure a fair comparison, we standardized the evaluation
criteria by requiring all algorithms to retain a prefetched KV cache equivalent to a fixed percentage
of GPU memory (Mem%), rather than a fixed token budget. For the hyperparameter configuration,
we set Nr to 2 for the Llama model and 1 for Qwen model. The synchronization stride m was set at
5 for both models and the static ratio ρ was set to 0.5. Finally, to evaluate performance under differ-
ent budget constraints, we set Mem% to 20%, 30%, and 50%. Further details of our experimental
setup are presented in the Appendix C.

5.2 PERFORMANCE ON VARIOUS TASKS

Single-Step Reasoning Performance. To comprehensively evaluate SyncKV’s single-step infer-
ence performance, we conducted extensive experiments on LongBench, with detailed results sum-
marized in Table 1. For instance, even with a significant memory reduction on the Llama-3.1-8B
model, SyncKV’s performance is nearly indistinguishable from the full attention baseline and sur-
passes all other methods. This remarkable efficiency is robustly maintained across different model
families like Qwen and larger models, even at aggressive compression rates. The results unequivo-
cally demonstrate the superiority of SyncKV. This success is largely attributed to SyncKV’s ability to
efficiently retrieve cyclically important KV cache, avoiding the permanent information loss inherent
in static eviction methods.

Information Retrieval Performance. To evaluate the long-context information retrieval capabili-
ties of the models, we designed and conducted a series of NIAH experiments. Figure 4 shows that
SyncKV achieves a high score of 0.989. This performance is highly comparable to the original
model, which strongly demonstrates that SyncKV can efficiently compress the KV cache while re-
taining critical information with extremely high fidelity, thereby ensuring both information integrity
and reliability during long-context inference.

Multi-Step Reasoning Performance. To further assess the multi-step inference capabilities of
SyncKV, we performed tests on three specific tasks from SCbench (Li et al., 2025): Semantic Re-
trieval, Global Information, and Multi-Tasking, while retaining the experimental configuration from
the single-step evaluations. As shown in Table 2, the results indicate that SyncKV significantly
outperforms all the baseline methods in semantic retrieval. In other tasks, its performance remains
also highly comparable to that of the original model. This superior multi-step performance is primar-
ily attributed to SyncKV’s unique mechanism during the decoding phase, which effectively retrieves
important tokens and prevents the loss of crucial historical information during long-range reasoning.

5.3 LATENCY

We evaluated the end-to-end latency of SyncKV against the baseline on the Llama-3.1-8B-Instruct
model. For the prefill stage, we measure the Time To First Token (TTFT). For the decode stage, we
calculate the average latency per token over 50 generated tokens.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Results for Llama-3.1-8B-
Instruct on NIAH, evaluated on context
lengths from 16K to 128K tokens.

Figure 5: Comparison of end-to-end latency results be-
tween SyncKV and the baseline. The left and right plots
show the latency for the prefill and decode stage, respec-
tively.

The results are presented in Figure 5. During the prefill stage, SyncKV effectively hides the of-
fload latency by overlapping it with the attention computation. In the decoding phase, while the
CPU operations required by SyncKV’s anticipation mechanism introduce additional latency, this is
a deliberate trade-off necessary for the high-precision retrieval of crucial KV cache. Even so, it
still achieves a 1.25x speedup over FullAttention at a context length of 128K tokens. Furthermore,
we analyze SyncKV w/o offload, a variant that keeps all tensors on the GPU, assuming sufficient
memory. Compared to Quest, SyncKV w/o offload achieves a comprehensive lead in both accuracy
and speed under the same memory footprint. By eliminating the CPU operations associated with
data uploading, this variant demonstrates the benefits of our computation model based on a sparse
cache, achieving a 3x decoding speedup over FullAttention.

5.4 ABLATION STUDIES

We conducted a series of comprehensive ablation studies to validate the necessity of our core design
choices and hyperparameter sensitivity in SyncKV. The results in Table 3 confirm the necessity of
each component. Detailed experimental configurations and analysis are presented in Appendix D.

w/o Initialization. In this variant, we remove the KV cache offloading step during the prefill stage.
The results show that while this reduces prefill latency by eliminating data transfer, it completely
negates any GPU memory savings, which is the core problem our algorithm is designed to solve.

w/o Anticipation. This variant removes the dynamic update mechanism of the anticipation step,
relying solely on a static token set. The results indicate that although this variant achieves the lowest
decode latency due to its simplified computation, it suffers from a noticeable drop in task accuracy.
This highlights the vital role of the anticipation step in maintaining reasoning capabilities.

w/o Suspension. This variant forces every decode step to be an anticipation step. Although this
achieves the highest accuracy by most precisely tracking attention, it leads to a prohibitive increase
in decode latency due to excessive computational and I/O overhead. This negates the acceleration
benefits, proving that the suspension step is indispensable.

Hyperparameter Sensitivity. Furthermore, additional ablation studies, particularly those concern-
ing hyperparameter sensitivity, are detailed in Appendix D. Studies justify our default hyperparam-
eters (ρ = 0.5, Nr = 2, m = 5) as providing an optimal trade-off between performance and latency.

6 CONCLUSION

In this paper, we propose SyncKV, a training-free dynamic KV cache compression framework for
efficient long-context LLM inference. Motivated by the attention drift phenomenon and insights
into the temporal locality and intralayer similarity, SyncKV employs a syncopated strategy with
representative heads and asynchronous offloading and reloading. Experiments show that SyncKV
reduces KV cache memory usage by up to 80% without significant accuracy loss, and achieves
state-of-the-art performance on multiple tasks. Our work offers an effective solution for deploying
long-context LLMs on GPU memory-constrained hardware.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Hyperparameters, hardware environment, and other pertinent details are presented in Section 5.
The core algorithm for SyncKV is provided in Section 4. Detailed settings and implementation of
baselines can be found in Section 5 and Section C.

ETHICS STATEMENT

Our work introduces SyncKV, a framework for compressing the KV cache in Large Language Mod-
els to reduce its memory overhead. The research is purely algorithmic in nature, with a primary
focus on memory optimization.

This study did not involve human subjects and all experiments were conducted on publicly available
open-source models and standard academic benchmarks. No personal or private information was
used. We do not foresee any direct ethical concerns arising from this work. We declare no conflict
of interest.

REFERENCES

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Yucheng Li, Tianyu Liu, Keming Lu, Wayne
Xiong, Yue Dong, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyra-
midal information funneling. arXiv preprint arXiv:2406.02069, 2024.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models, 2024. URL https://arxiv.
org/abs/2309.12307.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems,
35:16344–16359, 2022.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. arXiv preprint arXiv:2110.02861, 2021.

Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Hannaneh Hajishirzi, Yoon Kim, and Hao Peng.
Data engineering for scaling language models to 128k context, 2024. URL https://arxiv.
org/abs/2402.10171.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
et al. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-
infinite: Zero-shot extreme length generalization for large language models. arXiv preprint
arXiv:2308.16137, 2023.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun S Shao, Kurt
Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv
cache quantization. Advances in Neural Information Processing Systems, 37:1270–1303, 2024.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Minference
1.0: Accelerating pre-filling for long-context llms via dynamic sparse attention, 2024. URL
https://arxiv.org/abs/2407.02490.

Yucheng Li, Huiqiang Jiang, Qianhui Wu, Xufang Luo, Surin Ahn, Chengruidong Zhang, Amir H.
Abdi, Dongsheng Li, Jianfeng Gao, Yuqing Yang, and Lili Qiu. Scbench: A kv cache-centric
analysis of long-context methods, 2025. URL https://arxiv.org/abs/2412.10319.

10

https://arxiv.org/abs/2309.12307
https://arxiv.org/abs/2309.12307
https://arxiv.org/abs/2402.10171
https://arxiv.org/abs/2402.10171
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.02490
https://arxiv.org/abs/2412.10319

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. Advances in Neural Information Processing Systems, 37:22947–22970, 2024.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Reza Haffari, and Bohan Zhuang. Minicache: Kv cache
compression in depth dimension for large language models. Advances in Neural Information
Processing Systems, 37:139997–140031, 2024a.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024b.

Michael McGill. An evaluation of factors affecting document ranking by information retrieval sys-
tems. 1979.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al.
Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings
of the 36th annual acm symposium on user interface software and technology, pp. 1–22, 2023.

Ziran Qin, Yuchen Cao, Mingbao Lin, Wen Hu, Shixuan Fan, Ke Cheng, Weiyao Lin, and Jianguo
Li. Cake: Cascading and adaptive kv cache eviction with layer preferences. arXiv preprint
arXiv:2503.12491, 2025.

Siyu Ren and Kenny Q Zhu. On the efficacy of eviction policy for key-value constrained generative
language model inference. arXiv preprint arXiv:2402.06262, 2024.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M. Dai, Anja Hauth, et al. Gemini: A family of highly capable
multimodal models, 2025. URL https://arxiv.org/abs/2312.11805.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation, 2023.
URL https://arxiv.org/abs/2308.08155.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Streamingllm: Effi-
cient streaming language models with attention sinks. In International Conference on Learning
Representations, 2023.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu,
and Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming
heads. arXiv preprint arXiv:2410.10819, 2024.

Yuhui Xu, Zhanming Jie, Hanze Dong, Lei Wang, Xudong Lu, Aojun Zhou, Amrita Saha, Caiming
Xiong, and Doyen Sahoo. Think: Thinner key cache by query-driven pruning. arXiv preprint
arXiv:2407.21018, 2024.

Zhenyu Zhang, Ying Sheng, Yifei He, Tianyu Chen, Lian Zheng, et al. H2o: Heavy-hitter oracle for
efficient generative inference of large language models. arXiv preprint arXiv:2306.14034, 2023.

11

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2308.08155

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A PSEUDOCODE

To provide a clear perspective on our proposed method, we present the detailed SyncKV workflow in
the form of pseudocode. The entire step-by-step procedure is systematically illustrated in Algorithm
1.

Algorithm 1 SyncKV Inference Process

1: Input: Prompt P , Model M , Stride m, Ratio ρ, Budget k, Clusters Nr, Layers L, Generation
length T

2: Output: Generated sequence Y
3: // Offline Head Clustering
4: for l = 1 to L do
5: Compute similarity matrix S(l)

6: H(l)
R ,H(l)

NR ← K-Means(S(l), Nr)
7: end for
8: // Prefill Stage
9: for l = 1 to L do

10: (K(l), V (l))← GenerateKVForLayer(M,P, l)

11: Partition (K(l), V (l)) into GPU-resident (K(l)
R , V

(l)
R) and offloadable (K

(l)
NR, V

(l)
NR)

12: Asynchronously transfer (K(l)
NR, V

(l)
NR) to CPU memory

13: for g = 1 to Nr do
14: h

(g)
r ← Representative head in cluster g of layer l

15: I(l,g)0 ← argTopk(Attention(qL−1,K
(l,h(g)

r)), k)

16: I(l,g)S , I(l,g)D,0 ← Split(I(l,g)0 , ρ · k)
17: end for
18: end for
19: // Decode Stage
20: for t = 1 to T do
21: for l = 1 to L do
22: OR

t ← AttentionH(l)
R

(qt,K
(l)
R , V

(l)
R)

23: Isparse ←
⋃Nr

g=1{I
(l,g)
S ∪ I(l,g)D,t−1}

24: ONR
t ← AttentionH(l)

NR

(qt,K
(l)
NR[Isparse], V

(l)
NR[Isparse])

25: Ot ← Combine(OR
t , O

NR
t)

26: if t (mod m) = 0 then
27: for g = 1 to Nr do
28: A

(g)
t ← Attention(qt,K(l,h(g)

r))

29: I(l,g)D,t ← argTopkdyn
(A

(g)
t , kdyn)

30: Fetch KV for I(l,g)D,t from CPU
31: end for
32: else
33: for g = 1 to Nr do
34: I(l,g)D,t ← I

(l,g)
D,t−1

35: end for
36: end if
37: end for
38: yt, (K,V)← DecodeForward(Ot,K, V)
39: Append yt to Y
40: end for
41: return Y

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B IMPLEMENTATION DETAILS

B.1 HEADS CLUSTER

Robustness Analysis. To validate the stability and generalizability of our clustering methodology,
we first performed a robustness analysis. Specifically, we constructed multiple separate and non-
overlapping corpora to test the consistency of our results. Each corpus was created by randomly
sampling 50 unique articles from a comprehensive snapshot of English Wikipedia. To ensure fair
comparison and maintain methodological consistency, every article across all corpora was truncated
to its first 1000 tokens. Despite the textual variations across these independently sampled corpora,
the resulting head cluster configurations exhibited strong concordance when the clustering process
was applied to each. The cluster assignments for the vast majority of heads remained consistent
across these experiments, indicating that the functional specializations we identified are not artifacts
of a specific text sample but rather intrinsic properties of the model’s attention mechanism.

Handling of MHA and GQA Architectures. Our method for calculating the overlap coefficient
is adapted for different architectures of attention. For the standard Multi-Head Attention (MHA)
architecture, we directly calculate the overlap coefficient between any two individual heads, hi and
hj . In contrast, for the Grouped-Query Attention (GQA) architecture, query heads within the same
group are functionally coupled, as they share a common set of keys and values. Therefore, before
computing coefficients, we first apply a max-pooling operation across the attention head dimension
within each group. This step produces a single consolidated attention map that represents the col-
lective function of the group. Subsequent overlap coefficient analysis is then performed on these
pooled, group-level representations to measure the affinity between different functional groups.

Our offline head clustering process consists of the following core steps:

1. Corpus Construction & Weight Extraction: We first construct a representative corpus from 50
English Wikipedia articles, each truncated to 1000 tokens. We then feed this text into an LLM to
extract and save the complete attention weight matrices A(l,h)

t for each layer at each decode step.

2. Similarity Matrix Calculation: Based on the extracted weights, we calculate a head-to-head
similarity matrix S(l) for each layer l. The similarity between two heads, hi and hj , is defined as
the average overlap of their top k token index sets, I(l,h), attended within a local window.

3. Distance Conversion & Clustering: We convert the similarity matrix S(l) into a distance matrix
D(l) via the formula D

(l)
i,j = max(S(l)) − S

(l)
i,j . This distance matrix serves as the input feature

for the K-Means algorithm, which we then apply to partition all effective heads into Nr groups,
Cg .

4. R-Heads Selection: Finally, for each resulting cluster Cg , we select the head closest to the clus-
ter’s centroid to be its R-Head, which is considered the most functionally representative member.

This offline process ensures that SyncKV incurs no computational overhead from clustering during
actual inference, thus guaranteeing its efficiency.

C EXPERIMENT DETAILS

C.1 BASELINE METHODS.

We evaluated SyncKV performance against many baselines: 1) Full Attention, the original model,
does not evict any tokens. 2) Quest. A query-aware selection method that speeds up attention by
dynamically choosing KV pages, but retains the full cache and does not save memory. For Quest,
we follow the settings in its paper, setting the token budget to 2048 and the size of chunk to 16.
3) StreamingLLM. It uses an initial window and a sliding window to retain tokens, which means
that the tokens in the middle are significantly evicted. 4) H2O. It evicts tokens based on cumulative
attention scores from the prefill and decode stages. 5) SnapKV. It remains the token with the top k
window attention aggregation in the prefill stage. 6) CAKE. Adaptively allocates cache size per layer
based on attention dynamics and evicts tokens using an indicator of their importance and variability.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 4: The performance of Llama-3.1-8B-Instruct and Qwen2.5-7B-Instruct on LongBench.

Methods Mem% Avg. Single-Doc QA Multi-Doc QA Summarize Few-Shot Synthetic Code
Llama-3.1-8B-Instruct 100% 49.76 43.39 42.76 29.20 69.39 51.81 62.02
Quest 100% 46.86 42.05 37.38 28.92 64.81 52.98 55.03
StreamingLLM 30% 41.65 30.73 35.26 24.72 66.20 36.84 56.14
H2O 30% 39.92 36.00 37.07 26.67 66.36 27.84 45.56
SnapKV 30% 43.67 36.11 37.72 23.70 67.88 48.12 48.46
CAKE 30% 47.63 42.23 40.52 26.59 68.58 50.88 56.97
SyncKV 30% 48.84 42.82 41.98 26.89 68.50 52.30 60.55
Qwen2.5-7B-Instruct 100% 49.70 41.59 43.96 26.72 67.56 54.75 63.63
Quest 100% 46.66 40.14 41.73 22.95 67.75 51.25 56.13
StreamingLLM 50% 43.42 32.95 39.39 24.30 66.50 37.00 60.40
H2O 50% 41.66 33.93 37.33 23.39 61.81 47.00 46.52
SnapKV 50% 45.14 36.33 41.85 21.56 65.32 54.75 51.05
CAKE 30% 49.31 41.29 43.92 24.58 68.00 54.25 63.85
SyncKV 50% 49.55 40.86 44.84 24.91 68.79 54.25 63.63

C.2 EVALUATING TASKS.

To evaluate the performance of SyncKV and other baselines, we use three designed benchmarks:
(1) LongBench (Bai et al., 2023): This benchmark focuses on evaluating the understanding and
reasoning capabilities of LLMs in single-step reasoning. We set the maximum context length to
128K tokens. (2) SCBench (Li et al., 2025): This benchmark is designed to evaluate a model’s
multi-step reasoning performance. Given that the average input length in this benchmark ranges
from 22K to 1.5M tokens, we standardized our evaluation by truncating all input sequences to 128K
tokens. (3) Needle In A Haystack (Fu et al., 2024): This test evaluates the in-context retrieval
capabilities of LLMs. It measures retrieval accuracy under high distraction and diagnoses potential
positional biases by embedding a target “needle” of information into a long “haystack” of text. we
covered a range of context lengths from 16K to 128K tokens, with tests conducted at increasing
intervals of 16K.

C.3 LONGBENCH RESULTS

In this section, we present the performance of Llama-3.1-8B-Instruct and Qwen2.5-7B-Instruct on
LongBench. As shown in Table 4, SyncKV still demonstrates a performance far exceeding that of
other compression algorithms.

D ABLATION STUDIES

To systematically validate the necessity of each component in our SyncKV design and to provide a
rationale for our hyperparameter choices, we conducted a series of detailed ablation studies. This
section elaborates on these experiments, for which we reported the impact on accuracy and latency
on the Qasper dataset from LongBench, with the latency metric tested over an average context length
of 16K.

We analyze the hyperparameters that impact the performance and efficiency of SyncKV to determine
their optimal values.

Static Ratio ρ. The static ratio ρ, controls the proportion of initial I(g)0 that are permanently re-
tained on the GPU. We tested multiple values for ρ in the range [0,1]. As shown in Figure 6, the
results indicate that when ρ is too low, the model retains an insufficient global context, which affects
tasks that require an understanding of the overall theme. Conversely, when ρ is too high, the budget
reserved for dynamic information is inadequate, weakening the model’s ability to adapt to “atten-
tion drift.” Ultimately, we found that ρ = 0.5 strikes the optimal balance between preserving global
context and adapting to dynamic attention shifts.

Number of R-Heads Nr. The number of R-Heads, Nr, determines the granularity of the cluster-
ing. As shown in Table 3, our experimental results indicate that the setting Nr = 2 achieves optimal

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 6: The impact of the Static Ratio ρ on model performance.

performance. We attribute this to a critical trade-off between functional specialization and budget
allocation. An overly small Nr fails to account for the functional heterogeneity among attention
heads, treating them as a monolithic group. This overlooks their specialized roles and can lead to
less precise retention of the key-value cache. In contrast, a large Nr fragments the limited token
budget too thinly in many clusters. This provides each NR-Head with insufficient contextual in-
formation to make effective decisions, ultimately degrading model performance. Therefore, setting
Nr = 2 strikes an effective balance, allowing sufficient differentiation of head functionalities with-
out overly constraining the token budget for each group. This result strongly supports our choice of
Nr = 2 as the optimal trade-off between model performance and resource constraints.

Synchronization Stride m. The synchronization stride m, defines the frequency of the anticipa-
tion stage. When m = 1, it is equivalent to the “w/o Suspension” case, resulting in the highest
latency. As m increases, token generation throughput improves significantly. However, if m be-
comes too large, the dynamic information in the cache becomes stale, leading to a decrease in model
performance. As shown in Table 3, our experiments show that m = 5 offers an optimal compromise
between inference latency and model performance.

E STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

We report on the use of Large Language Models (LLMs) in the preparation of this paper. The use
of LLMs was strictly limited to the role of a general-purpose writing assistant. Specifically, we used
these tools to proofread, correct grammatical errors, and rephrase sentences to improve clarity and
readability. The LLMs did not contribute to the core scientific aspects of this work, such as research
ideation, experimental design, data analysis, or the generation of substantive content.

15

	Introduction
	Related Work
	KV Cache Eviction
	Other KV Cache Compression Methods

	Observation
	Attention Drift
	Temporal Locality
	Intralayer Similarity

	Method
	Offline Head Clustering
	Initialization: Selecting and Offloading Cache
	Anticipation: Updating the Dynamic Cache
	Suspension: Querying the Sparse Cache
	Parallelized Data Transfer

	Experiments
	Experiment Settings
	Performance on Various Tasks
	Latency
	Ablation Studies

	Conclusion
	Pseudocode
	Implementation Details
	Heads Cluster

	Experiment Details
	Baseline Methods.
	Evaluating Tasks.
	LongBench Results

	Ablation Studies
	Statement on the Use of Large Language Models

