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ABSTRACT

Causal reasoning is a critical aspect of human cognition and artificial intelligence
(AI), which plays a prominent role in understanding the relationships between
events. Causal Bayesian Networks (CBNs) have been instrumental in modeling
such relationships, using directed, acyclic links between nodes in a network to de-
pict probabilistic associations between variables. Deviations from these graphical
models’ edicts would result in biased judgments. This study explores one such
bias in the causal judgments of humans and Large Language Models (LLMs) by
examining two structures in CBNs: Canonical Chain (A→B→C) and Common
Cause (A←B→C) networks. In these structures, once the intermediate variable
(B) is known, the probability of the outcome (C) is normatively independent of
the initial cause (A). However, studies have shown that humans often ignore this
independence. We tested the mutually exclusive predictions of three theories that
could account for this bias (N = 320). Using hierarchical mixed-effect models,
we found that humans tend to perceive causes in Chain structures as significantly
stronger, providing support for only one of the hypotheses. This increase in per-
ceived causal power might reflect a view of intermediate causes as more reflective
of reliable mechanisms, which could, in turn, stem from our interactions with
the world or the way we communicate causality to others. LLMs are primarily
trained on language data. Therefore, examining whether they exhibit similar bi-
ases in causal reasoning can help us understand the origins of canonical Chain
structures’ perceived causal power while also shedding light on whether LLMs
can abstract causal principles. To investigate this, we subjected three LLMs,
GPT3.5-Turbo, GPT4, and Luminous Supreme Control, to the same
queries as our human subjects, adjusting a key ‘temperature’ hyperparameter. Our
findings show that, particularly with higher temperatures (i.e., greater random-
ness), LLMs exhibit a similar boost in the perceived causal power of Chains, sug-
gesting the bias is at least partly reflected in language use. Similar results across
items suggest a degree of causal principle abstraction in the studied models. Im-
plications for causal representation in humans and LLMs are discussed.

1 INTRODUCTION

Representations of causal structure guide our reasoning and shape our interpretations of reality. For
instance, keeping all else constant, people provide different judgments of a causal Chain, a sequence
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of causally related events that result in an outcome, than a Common Cause structure where an un-
derlying factor gives rise to multiple effects (Rehder, 2014). Would such a difference in structure -
all else being equal - lead to systematic differences in the perceived likelihood of a cause (i.e., its
causal strength)?

1.1 CAUSAL BAYESIAN NETWORKS (CBNS)

Causal Bayesian Networks (CBNs) provide a common approach to causal structure representation,
which has been fruitfully applied to similar questions (Pearl, 2009). CBNs are graphs that depict
probabilistic inter-dependencies between variables. The variables (called “nodes”) are intercon-
nected through directed arrows (called “edges”) into a-cyclic structures, indicating their probabilistic
associations.
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Figure 1: The joint probability P (A,B,C) in canonical Common Cause and
Chain Causal Bayesian Networks is identical. Given C, the causal strength of
C → B is independent of the network structure.

Bayes Theorem provides a prescriptive framework for updating beliefs based on evidence according
to such networks in a rational and consistent way, a deviation from any of its axioms leading to
demonstrably sub-optimal reasoning. Two well-studied CBNs that we will focus on are shown in
figure 1: three-node Chains and Common Cause networks. The joint probability, the probability that
the events represented by all three nodes happen in an instance of the causal structure, is equal for
the two graphs (see equation 1). This “equivalence class” means that a given dataset would have the
same likelihood under both structures, indicating that they cannot be differentiated solely based on
observational data. Therefore, any systematic differences in our intuitions of causal strength across
them are not due to the networks’ overall likelihood.

P (A,B,C) = P (B | C)P (C | A)P (A) = P (A | C)P (B | C)P (C) (1)

But more central to our research question is the notion of conditional independence that leads to
this equivalence: the probability of B should not depend on A if we know C. In other words, for
a given value of C, the likelihood of C→B, and therefore the causal strength of C for bringing B
about, should be the same for the Chain and Common Cause networks in figure 1.

1.2 HUMANS AND THE INDEPENDENCE ASSUMPTIONS

Humans systematically violate the independence assumptions in their causal judgments (Mayrhofer
et al., 2008; Park & Sloman, 2013; Rehder & Burnett, 2005; Rehder, 2014). Recently, the direct
scope of a cause, i.e., the number of distinct effects generated directly by it, has been studied as
a source of perceived causal strength (or lack thereof) not predicted by Bayesian theory (Sussman
& Oppenheimer, 2020; Zemla et al., 2017). In Chain A→C→B, the direct scope of C is one,
less than the node’s scope in the Common Cause structure A←C→B, which is two. Sussman and
Oppenheimer (Sussman & Oppenheimer, 2020) argued that, depending on the valence of a target
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effect (B in this case), a broader scope might enhance or diminish perceived causal strength. For
positive effects (“boons”), broader scope increases perceived causal strength: a drug preventing three
negative symptoms is stronger than one that prevents a single symptom. When effects are negative
(“banes”), however, a broader scope leads to lower perceived strength. Like most prior research,
Sussman and Oppenheimer (Sussman & Oppenheimer, 2020) limited their comparison to a single
structure type: Common Cause networks, with two-variable direct causation as the baseline.

Stephan et al. (2023) found that when scenarios were abstract enough to eliminate prior domain
beliefs in participants (e.g., an alien on Mars eating a red crystal that induces/prevents three vs. one
attribute(s)), the effect of scope was uniform across positive and negative outcomes. They instead
found a “dilution effect”: in causes with broader scopes (three effects in their experiments rather than
one), a singular “source” of causal strength is seen as distributed and, therefore, “diluted” across the
multiple effects regardless of effect valence.
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Figure 2: Pattern predictions for the effect of causal structure on perceived causal
strength estimates across conditions. The predictions of the different theories for
networks with negative-valence contents are illustrated.

Park & Sloman (2013) uncovered another systematicity in people’s responses that may be relevant
to perceived causal strength in these cases: Subjects’ deviations from experimenter-provided causal
structures and their subsequent apparent violations of normative reasoning always revolved around
mechanisms and could be changed with mechanism-directed instructions. For instance, based on
whether the same mechanism accounted for the two effects in a Common Cause network or the
mechanism for each effect was distinct, perceptions of the causes’ influence differed significantly.
This finding adds to a large body of literature in the cognitive sciences demonstrating the centrality
of mechanisms to causal reasoning in ways that do not always track normative predictions (Johnson
& Ahn, 2017). For instance, Zemla and colleagues (Zemla et al., 2017) found that mechanistic infor-
mation subverts a preference for simplicity in explanations, with subjects going so far as identifying
enough causes to make the effect seem inevitable. From a more normative standpoint, Russo and
Williamson (2007) have emphasized the importance of mechanistic evidence in discerning alterna-
tive non-causal explanations, such as confounding, bias, or chance, which may lead to misleading
associations. If a plausible mechanism to explain the correlation is absent, the association will likely
be merely coincidental (Russo & Williamson, 2007). If we adopt the view that mechanistic rele-
vance is seen as a link in the causal chain connecting the input (the initial cause) and the output (the
final effect) (Menzies, 2012), C may be perceived in the Chain network of figure 1 (i.e., A→C→B)
as the mechanism that explains A’s impact on B. If so, the perceived causal strength of C on B in
A→C→B would be higher than in a control condition C→B, as the chain would be seen as more
likely to represent a mechanistic rather than a merely correlational relation. In the Common Cause
network, on the other hand, the mechanism is vague without elaboration ( figure 2: Mechanism).
Therefore, if people accept the provided networks as the ground truth (Rehder, 2014) but base their
causal strength judgments on other structural features like the provision of a mediating process, we
would expect the Chain condition to have higher causal likelihood ratings. Figure 2 shows how
three experimental conditions would allow this hypothesis to be evaluated alongside the accounts of
Boon-Bane theory (Sussman & Oppenheimer, 2020) as well as the Dilution theory (Stephan et al.,
2023).
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1.3 LARGE LANGUAGE MODELS AND THE INDEPENDENCE ASSUMPTIONS

A key question in cognitive science concerns the role of language in causal reasoning, with important
implications for the causal capabilities of large language models (LLMs) (Binz & Schulz, 2023;
Willig et al., 2022). Human beings can communicate causal information via language, but they
also develop an understanding of causality through interactions with the world. Carrying out exact
computational operations internally, LLMs can — in theory — perform perfect normative reasoning.
However, trained almost exclusively on human textual data, we expect LLMs to pick up on biases
that are reflected in language use but not those only learned through experience. To see whether
LLMs also perceive intermediate causes in canonical Chain structures as stronger, we collect and
compare LLM answers with the distribution of human judgments (cf. figure 5).

If LLMs, trained predominantly on linguistic data, acquire similar biases in their causal reasoning, it
would stand to reason that such elements of human judgments are at least partially imparted through
language. Such a finding would also contribute to an ongoing debate within the AI community about
whether LLMs grasp causality or merely echo causal language without comprehension Zečević et al.
(2023). Many researchers have recently taken the stance that current LLMs are not able to gener-
alize causal ideas beyond their training distribution and/or without strong user-induced guidance
(Kıcıman et al., 2023; Jin et al., 2023). But if a preference for canonical Chain over Common Cause
structures emerges across items in experiments with LLMs, that would provide some evidence that
LLMs suffer from the influence of human bias for causal principle abstraction.

2 HUMAN EXPERIMENT

2.1 METHOD

2.1.1 DESIGN

We manipulated causal structures between subjects to minimize task demands. We limited our
materials to structures with three nodes to minimize working memory demands also because none
of the general explanations we evaluated demanded degrees higher than two. Stephan et al. (2023)
highlighted intuitive familiarity with the variables as a potential explanation for finding different
results than Sussman & Oppenheimer (2020). To account for this possibility, we included an adapted
version of Stephan et al. (2023) Alien scenario, meant to preclude prior knowledge of the causal
relations. Our two other items represented more intuitive domains: a widely used causal setup about
the Economy (adapted from (Rehder, 2014)), and a novel scenario about Sex Work Criminalization
that represented more prescriptive causal reasoning. The C→B relation was always presented as
probabilistic (C can lead to B) to prevent ceiling effects seen in a pilot study. Because Sussman and
Oppenheimer’s (2020) account deviates from the Dilution predictions only when target effects are
negatively valenced, node B in figure 1 was negatively valenced in all scenarios to provide better
experimental contrast. Following (Rehder, 2014), we instructed participants to consider all presented
relations as “single sense,” meaning that only the presence of the event represented by a node has an
impact on its effect(s).

2.1.2 NETWORK STRUCTURE

For the main manipulation, each participant was assigned to one of the following conditions at
random: 1. Chain, where A generates C, which in turn generates B (A→C→B), 2. CC, a Common
Cause network where C separately generates both A and B (A←C→B), 3. Control, a baseline for (1)
and (2) in which A is not included and C generates B (C→B). For instance, participants in the Chain
condition were presented with scenarios such as: ”Criminalizing sex work leads to greater profits for
criminal organizations, which can then lead to higher gender-based crime rates.” In contrast, those
in the Control condition encountered scenarios like: ”Greater profits for criminal organizations can
lead to higher gender-based crime rates.”

To examine whether generative causation behaves differently than preventative causal power in these
scenarios (Walsh & Sloman, 2011), we compared two additional conditions: 4. CC(P): a Common
Cause network where C prevents A and separately inhibits B (A←C→B), 5. Control(P): a baseline
for (3) in which A is not included and C inhibits B (C→B). A random pairing of scenarios was
created for within-subject manipulations and then counterbalanced across participants. Scenarios
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were individually presented on the screen in randomized order. Demographics followed the last
vignette.

2.1.3 DEPENDENT MEASURE

The dependent measure was always the likelihood of the effect B if C had been present. For example,
participants in the aforementioned condition were presented with the statement: ”Criminalizing sex
work leads to greater profits for criminal organizations, which can then lead to higher gender-based
crime rates.” Subsequently, participants were asked to evaluate the likelihood of the statement: ”How
likely is it that greater profits for criminal organizations lead to higher gender-based crime rates?”
The C→B causal relationship was scrutinized as it remained constant across the network types under
examination.

2.1.4 PARTICIPANTS

We collected pilot data from 100 participants to calculate the needed sample size using the
simulation-based method (DeBruine & Barr, 2021). A target sample size was predetermined us-
ing a Monte Carlo simulation via the SIMR package in R (Green & MacLeod, 2016). We estimated
the input parameters of our simulation to determine the sample size to have 90 % power to detect
the main effect of causal structure. Our final estimated sample size was 300.

Three hundred and twenty-nine participants were recruited through Prolific Academic and compen-
sated at the average rate of $10/hr. The (∼ 10%) increase in sample size over the simulation was
meant to offset anticipated losses in the degrees of freedom due to inattentive subjects.

We used a data-driven Mahalanobis Distance measure (Leys et al., 2018) to identify non-human
participants and inconsistent or inattentive responses. This step resulted in excluding 6 participants.
We replicated the main results, including those who failed the Mahalanobis exclusion criterion.
Since our secondary attention check excluded a third of the participants, to preserve power, we
limited our exclusion to the data-driven approach explained above. However, the key results were
replicated after excluding subjects who failed the secondary check (see OSF for details). The final
sample of US and UK residents (122 males, 195 females, 5 choosing the “non-binary” option) had
an average age of 37.29 years (SD = 13.02, range: 18 to 76).

2.2 REVIEW OF HYPOTHESES

Figure 2 summarizes the target contrasts examined across theories and CBN types. All the predic-
tions listed except for the Mechanism explanation are included in the OSF preregistration.

Dilution theory (Stephan et al., 2023) predicts that causal strength would be reduced if a cause has
two direct effects rather than one, regardless of other structural features and the effect’s valence.
Therefore, less causal strength is expected in CC and CC(P) conditions where C has two effects,
compared with Chain and Control conditions where it contributes to only one effect. Given that
target effects all have negative valence, the Bane-Boon Theory Sussman & Oppenheimer (2020)
predicts the opposite pattern: CC and CC(P) would be expected to receive higher ratings due to
their wider direct scopes than the Chain and Control conditions. The Mechanism hypothesis, on
the other hand, expects higher causal strength in the Chain condition where subjects may regard
C as a mechanistic cause, which is preferred over covariational ones (Ahn & Bailenson, 1996).
Since no intermediate causes exist in Control and Common Cause conditions, this notion predicts
no difference between them.

2.3 RESULT

Generalized mixed-effects models appropriate for our design’s hierarchical structure were used.
Since the dependent variable was on a 100-point scale, we employed linear mixed-effect models
through the LME4 package in R (Bates et al., 2015). Structure (Chain vs. Common Cause vs.
Control) was a fixed effect, while participants and scenarios served as random effects along with
the ‘maximal’ slopes advocated by prior research (Barr et al., 2013). figure 3 shows the exper-
imental results. Structure’s main effect was significant (b = 8.78,SE = 3.29, z = 2.67, p =
.01, two-tailed test). However, the direction was in contrast to the predictions of Boon-Bane and
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Figure 3: Distribution of responses over conditions. The likelihood in the Chain
Condition (middle row) is significantly higher (i.e., higher likelihood score) than
in the rest of the conditions. However, there is no difference between Control (CP;
CG) and Common Cause (CCP; CCG) networks. Error bars show 95% confidence
intervals.

Dilution accounts, aligning instead with a view of C as a mechanistic cause. To better interpret the
results, we compared Chains to Control and Common Cause networks in separate models. Random
parameters were included as before. We calculated contrasts over estimated marginal means using
emmeans (Lenth et al., 2018). Pairwise contrasts with the Tukey adjustment for multiple compar-
isons showed higher ratings for causes in Chains than Control (b = 7.48,SE = 3.01, z = 2.48, p =
.014, two-tailed test: BF10 = 0.86) and Common Cause (b = 8.74,SE = 3.34, z = 2.61, p =
.010; two-tailed test; BF10 = 0.71). No significant difference was observed between Control and
Common Cause conditions in Generative (b = 2.26,SE = 3.33, z = .67, p = .91, two-tailed test)
or Preventive (b = 1.48,SE = 3.28, z = .47, p = .96, two-tailed test) conditions (figure 3). A simi-
lar pattern across items suggests that prior familiarity with the domain had little influence (figure 4).
Since the lack of Dilution is based on a null effect, a Bayesian mixed-effect analysis was performed
to determine its reliability using the brms package in R (Bürkner, 2017). The Bayesian Mixed Ef-
fect model confirmed the null effect in both Generative (BF10 = 0.96, CI95 = [−1.5, 2.21]) and
Preventative conditions (BF10 = 1.5, CI95 = [−1.93, 1.74]). To further ascertain that the effect
size we observed was close to zero, an equivalence test was performed using the TOSTER package
(Lakens, 2017). The equivalence test confirmed that the distributions of likelihood scores in Com-
mon Cause vs. Control are equivalent (z = 8.9, p < 0.001, two-tailed test), further confirming the
null result.

2.4 DISCUSSION

We compared three explanations for changes in perceptions of causal strength based on network
structure not predicted by normative theory. We limited our comparison to 3-node Chain and Com-
mon Cause structures as canonical network formats for which the hypotheses offered mutually ex-
clusive predictions. We found no evidence of causal strength dilution for nodes with more direct
effects (Stephan et al., 2023) or an increase in perceived strength given negatively valenced material
(Sussman & Oppenheimer, 2020). However, Causal Chains of the canonical form studied received
significantly higher likelihood ratings than Common Cause networks across the board. Of the three
possibilities examined, this finding is consistent with the Mechanism hypothesis (figures 2-3). This
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hypothesis suggests that an intermediate cause in a canonical chain may be seen as a reliable mech-
anism, which is preferred over a covariational cause (Ahn et al., 1995; Park & Sloman, 2013). In
our networks, the influence of C over the final effect is not only more direct than the initial cause
but, if seen as a mechanistic explanation, may be deemed more generalizable to other relevant in-
stances (Johnson & Ahn, 2017). Intermediate causes were missing in the Common Cause networks,
precluding such conjectures.

Figure 4: Distribution of responses across conditions for the various items. The
likelihood in Chains (in Green) is higher than the rest of the generative conditions
across all items. Error bars show 95% confidence intervals.

2.5 LARGE LANGUAGE MODELS

To examine whether the bias observed in human judgments is reflected in LLM responses, we com-
pared our behavioral data with the responses generated by three recent generative models: GPT3.5-
Turbo (OpenAI, 2022), GPT4 (OpenAI, 2023), and Luminous Supreme Control (Aleph Alpha,
2022). Instead of using default hyperparameter values, we systematically adjusted the tempera-
ture settings of these models to explore whether deterministic (zero temperature) or increasingly
non-deterministic behavior more closely matches human reasoning in this task.

2.5.1 METHODS

We queried the models for all conditions and items with temperatures ranging from 0.0 (determin-
istic) to 2.0 (highly non-deterministic; maximum value permitted by the APIs) in 0.1 steps. The
temperature for the Luminous model was scaled by 0.5 to match the GPT models. Surprisingly, Lu-
minous did not show fully deterministic behavior at zero temperature (cf. figure 5; Wasserstein dis-
tance is non-zero). For every condition-temperature-model combination, we sampled 100 answers
for the same query. The queries were highly similar to the scenarios used with humans, except for
the use of a template that encouraged the models to give a number between 0 and 100 as a response.
The prompt template was structured as follows: This is a hypothetical question. <insert human
scenario here>. Given the information above, in your opinion, on a scale of 1 to 100, how
likely is it that <insert the causal statement examined>? Please respond only with
one single number and no text.
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2.6 STATISTICAL ANALYSIS

We used hierarchical mixed-effect models to discern patterns in the responses. To quantify the sim-
ilarity between human and AI judgments, we computed Earthmover’s distance (EMD, also known
as Wasserstein distance (Vaserstein, 1969; Kantorovich, 1960), defined between two distributions u
and v as follows:

EMD = inf
π∈Γ(u,v)

∫
R×R

|x− y|dπ(x, y) (1)

Where Γ(u, v) is the set of all probability distributions with marginals u and v. A key property of
EMD on categorical distributions is its invariance to overall shifts of the distribution, which lets us
focus on the similarity of answer frequencies, between humans and models. More details about the
measure’s calculation, its implementation through Python’s SciPy package, code, LLM responses,
and evaluations are available at https://github.com/MoritzWillig/biasedCausalStrengthJudgments/.

Other commonly used f-divergent metrics (such as Kullback–Leibler (Kullback & Leibler, 1951)
divergence) do not apply to our comparison, as they vary with the overall mean of the distribution and
break down in our scenario of sparsely populated distributions. For instance, with zero temperature,
a single entry receives all the probability mass, rendering KL divergence meaningless. Nonetheless,
to ensure comprehensiveness, we evaluated entropy and KL divergence and have included the results
in the repository. EMD estimates help us gauge the extent to which LLMs’ reasoning aligns with
human judgment and whether their judgments are as diverse or predictable as those of humans.
Note, however, that there are qualitative differences between sampling from N different human
participants and sampling N answers from the latent distribution of a single LLM with varying
temperatures. Despite this distinction, we find that, given certain temperature settings, human and
LLM distributions tend to approach each other.

The mixed effects model with the fixed factor of Condition (Chain, Common Cause, Control) and
the random slope of Model (GPT4, GPT3.5, Luminous) highlighted a bias in the LLMs similar to the
one we found in humans, attributing greater causal strength to the intermediate cause in canonical
causal Chains (µ = 67.59,SD = 20.2) than to the corresponding node in a Common Cause structure
(µ = 64.89,SD = 19.8; b = 3.02,SE = .27, z = 10.89, p < .0001, two-tailed test) and the Control
condition (µ = 55.05,SD = 17.89; b = 12.15,SE = .28, z = 42.6, p < .0001, two-tailed test).
Behavior was particularly similar to humans when the temperature parameter surpassed 1.

Figure 5 shows the effect of switching from a Common Cause to a Chain network on dependent
scores for each model using Wasserstein Distance averaged per scenario. For comparison, we indi-
cate the distance observed in the human data, representing generally higher ratings for Chain than
Common Cause structures, with a red line. For GPT-3.5-Turbo and Luminous, low temperatures cor-
respond to little preference for either condition, but the distance between the condition distributions
increases afterward. Both models eventually converge towards a randomly sampled uniform distri-
bution with distance values below the human reference. The most recent LLM, GPT-4, starts with
zero distance, but the preference for Chains increases with higher temperature. Generally speaking,
temperatures > 1.0 match the human data best on average, while too high of a temperature value
> 1.9 induces too much variance. With temperatures between 1.0 and 1.9, the observed preference
for Chains is remarkably similar to that observed in humans across all three models.

2.7 RESULT

2.8 GENERAL DISCUSSION

We examined the effect of network structure on causal strength judgments in humans and Large Lan-
guage Models (LLMs). Human participants and multiple LLMs - GPT3.5-Turbo (OpenAI, 2022),
GPT4 (OpenAI, 2023), and Luminous Supreme Control (Aleph Alpha, 2022) - considered inter-
mediate causes in chains to be more potent than causes in simple C→B networks, or those with
multiple independent direct effects (i.e., Common Cause), representing a violation of normative
Bayesian reasoning. Varying LLM hyperparameters, we found the closest match for the human bias
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Figure 5: Average effect of switching from CC to CHAIN condition. The effect
is measured as the Wasserstein distance between the Chain and Common Cause
distributions for various ‘temperature’ values.

in variants with higher temperatures, i.e., those incorporating more randomness into the AI response
selection process.

Given that all scenarios involved negative effects, the Bane-Boon Theory (Sussman & Oppenheimer,
2020) predicted that the Chain cause with the narrower direct scope would garner lower ratings than
the Common Cause condition, which contradicts our finding. Our results also contradict Stephan
et al. (2023) experiments, which predicted a “dilution” of causal strength in Common Cause condi-
tions and similar ratings for the target cause in Chain and Control cases due to their identical direct
scopes. While our scope manipulation differed slightly from both prior studies (comparing degrees
of two rather than three with a single-effect baseline), we find this an unlikely explanation for the
discordant results given the generality of the previous researchers’ explanations.

One alternative explanation for the enhanced causal strength of ‘in-between’ causes in canonical
Chains is their representation as mechanism nodes (Menzies, 2012), theorized to have an outsized
effect on causal intuitions compared with co-variational causes (Ahn et al., 1995; Ahn & Bailenson,
1996; Johnson & Ahn, 2017; Zemla et al., 2017; Russo & Williamson, 2007). While the A→C
link in the chain is also part of the mechanistic explanation, the C→B link is the only consistent
element across the network types in our study and, therefore, served as the focus of our evaluation.
If Menzie’s characterization (Menzies, 2012) is accurate, a similar boost in perceived strength should
be seen in judgments of the initial cause in a canonical Chain.

A partially divergent explanation is that the middle node in a chain is considered supported by its own
cause. This perceived support could arise from violating the normative conditional independence
between causes A and B given C. In Chains, the sequence A→B may be perceived as “passing on”
some of its causal strength to or suggest greater regularity for the C→B link, compared to A←C
link, which would not support the independently produced C→B in a Common Cause network.
This line of reasoning leads us to propose what we might term the ”Causal Support Hypothesis,”
which predicts no boost in the perceived strength of the initial cause in a chain (A→C) but enhanced
strength for the downstream link from C to B (C→B).

Future experiments can help differentiate between these accounts by incorporating judgments of the
initial cause. Direct evaluation of whether the intermediate node is seen as a reliable mechanism
would also contribute to this comparison. Better comparisons between generative and preventive
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causal chains can further corroborate such findings. Whatever the explanation may be for the biased
judgment of intermediate causes in Chains, it seems to be reflected in our language use, as Large
Language Models trained predominantly on human-generated text exhibit similar biases.

The implications for domains where causal reasoning is essential, such as medicine and law, could
be far-reaching. If LLM-based decision-support systems in these areas inherit biases like the one
observed in our study, there is a risk of perpetuating errors, especially at higher model temperatures
where biases may be more pronounced and align more closely with human reasoning.

As we increasingly rely on AI for complex decision-making, it becomes more important to study
such biases and mitigate them if needed so that more reliable AI systems can aid human decision-
makers without introducing undue risk. In the realm of causal cognition, our findings prompt further
inquiry into how language shapes or reflects our conceptualization of causality. They suggest that
linguistic data, rich with human experiences and inferential patterns, could play a significant role in
studying causal biases.
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