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ABSTRACT

Recent works have shown that distilled data representations can be leveraged for
accelerating the training of DNNs. However, to date, very little is understood
about the effect of these synthetic data representations in the area of architectural
optimization, specifically with Iterative Magnitude Pruning (IMP) and pruning at
initialization. We push the boundaries of pruning with distilled data, matching
the performance of traditional IMP on ResNet-18 & CIFAR-10 while using 150x
less training points to find a sparsity mask. In our novel approach, we find that
distilled data guides IMP to discard parameters contributing to the sharpness of
the loss landscape, fostering smoother landscapes. These synthetic subnetworks
are stable to SGD noise at initialization in settings when the dense model or sub-
networks found with standard IMP are not, such as ResNet-10 on ImageNet-10.
In other words, training from initialization across different shuffling of data will
result in linear mode connectivity, a phenomenon which rarely happens without
some pretraining or weight permutation. This inherent stability proves to be useful
for finding lottery tickets in larger settings, where traditional IMP cannot. Since
synthetic subnetworks are constructed at initialization, these can be used as the
stable starting point for future IMP steps, finding tickets at significantly higher
sparsities than IMP without pretraining. This behavior is heavily linked to the
compressed representation of the data, highlighting the importance of synthetic
data in neural architectural validation. In order to find both a high performing
and robust sparse architecture, a more optimal synthetic data representation is
needed that can compress irrelevant noise like distilled data, yet better maintain
task-specific information from the real data as dataset complexity increases.

1 INTRODUCTION

Sparse neural networks are increasingly important in deep learning to enhance hardware perfor-
mance (e.g., memory footprint, inference time) and reduce environmental impacts (e.g., energy
consumption), especially as state-of-the-art foundational models continue to grow significantly in
parameter count. In parallel, researchers have been exploring how synthetic data representations
such as those generated by dataset distillation methods can be leveraged to efficiently accelerate
deep learning model training. With this in mind, we explore the training dynamics and stability
of sparse neural networks in the context of synthetic data to better understand how we should be
efficiently creating sparsity masks at initialization. Modern pruning methods only reduce compu-
tational costs at inference. When pruning at initialization, we can greatly reduce training costs as
well.

Research on the training dynamics of dense models have led researchers to find that dense models
are connected in the loss landscape through nonlinear paths (Freeman & Bruna, 2017; Draxler et al.,
2019; Garipov et al., 2018). Linear paths or Linear Mode Connectivity (LMC) is an uncommon phe-
nomena that only occurs in rare cases, such as MLPs on subsets of MNIST in Nagarajan & Kolter
(2021) or model intervention with weight permutation (Ainsworth et al., 2023). For large networks,
Frankle et al. (2020) found that pretrained dense models when fine-tuned across different shufflings
of data, are linear mode connected. While these models are “stable” to noise generated through
stochastic gradient descent (SGD), only the smallest dense models are stable at initialization. As for
its relationship with sparse neural networks, Frankle et al. (2020) empirically found that the Lottery
Ticket Hypothesis only holds for stable dense models, those that are linear mode connected across
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data shuffling. They found that these large dense models only become stable early in training, lead-
ing to the conclusion that Iterative Magnitude Pruning (IMP) with weight rewinding, the method to
find such lottery tickets, should instead rewind a model to an early point in training rather than at ini-
tialization. We support these conclusions as we find that both dense and IMP-generated subnetworks
are not stable at initialization. Our work aims to study sparse neural networks at initialization, dif-
ferent than new age lottery ticket literature (Paul et al., 2022), which utilizes some pretraining to find
a good ”initialization”. Finding high performing sparsity masks at creation is the ultimate goal of
neural network pruning for both efficient training and gaining fundamental understanding of sparse
neural networks.

We find that another class of sparse subnetworks exist that are more stable at initialization: synthetic
subnetworks. We define synthetic subnetworks as those produced during pruning with distilled
data. These are found by replacing the traditional data in IMP with distilled data, essentially a
summarized version of the training data consisting of only 1-50 synthetic images per class (see
Sachdeva & McAuley (2023) for a survey). We perform the same training, pruning, and rewinding
to produce the sparsity mask. This mask, as with those produced by IMP, can be applied to the
dense model at initialization to create a high performing sparse neural network after training on real
data. The significance is that synthetic images can be used to pick an appropriate sparsity mask
for a downstream task. These subnetworks have a lower need for rewinding to an early point in
training due to their inherent stability. We find that, with dataset distillation methods such as Kim
et al. (2022), we match performance with IMP when rewinding to initialization. We achieve this
with approximately 150x less training points than traditional IMP to find a sparsity mask. While we
do use a current state-of-the-art distillation method, such methods are still limited to small datasets
like CIFAR-10, CIFAR-100, and ImageNet-10. The representation of this data is purely responsible
for this performance. We explore more in depth how the structural differences in these sparsity
masks provide more stability than IMP-generated masks. We further investigate why synthetic
subnetworks are stable when the dense model is not by generating loss landscapes visualizations
and study what these characteristics could mean for the future of sparse neural network research.
Finally, we apply this inherent stability to find lottery tickets in settings larger than previously
discovered.

2 PRELIMINARIES AND RELATED WORK

2.1 SPARSITY IN NEURAL NETWORKS

The most common form of sparsity can be found in neural network pruning literature (Gale et al.,
2019). In this field, researchers exploit sparsity for computational savings, usually at inference.
Pruning can be divided into two categories based on the parameters being removed: Structured
and Unstructured. Unstructured has no regulation on what can be pruned, the typical example is
removing individual weights. By pruning weights, the weight matrices are still the same size, but
contain zeroed out weights. Structured pruning is removing parameters that make up some physical
pattern, such as removing neurons, channels, attention heads, etc. All of these examples physically
make the weight matrices smaller, since you can remove a whole row or column at once. These lead
to faster inference on general hardware; however, the added restrictions reduce the performance of
the pruned model in comparison to unstructured methods.

When to prune is an entirely other consideration: before training (Lee et al., 2019), during training,
or after training (Han et al., 2015). In order to reduce the cost of training as well, Lee et al. (2019);
Tanaka et al. (2020) explore how to prune at initialization. This is essentially producing optimal
sparse architectures for downstream tasks, the end goal for almost any pruning research. Despite
these great ambitions, pruning at initialization does not perform as we hope (Frankle et al., 2021).
To further understand why this is the case, Frankle & Carbin (2019) propose the Lottery Ticket
Hypothesis: for a sufficiently over-parameterized dense network, there exists a non-trivial sparse
subnetwork that can train in isolation to the full performance of the dense model. They employ
iterative magnitude pruning with weight rewinding to retroactively discover these sparse subnet-
works, named ”Lottery Tickets” due to the lucky nature of winning the initialization lottery. They
empirically proved that pruning at initialization is indeed possible in smaller settings.
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2.2 STABILITY TO STOCHASTIC GRADIENT DESCENT

To uncover why the early iteration of the Lottery Ticket Hypothesis did not apply to large networks,
Frankle et al. (2020) finds that this hypothesis only holds when the dense model is ”stable” to the
effects of data shuffling. At initialization, only the smallest computer vision models on MNIST are
stable to SGD noise without weight permutations (Ainsworth et al., 2023; Entezari et al., 2022).
A model is deemed stable if training across different orders of training data result in models with
linear mode connectivity. Using this knowledge, iterative magnitude pruning can be adapted to
instead rewind to weights back to an early point in training, a point in which the dense model is
stable. This previous work empirically proves that we can prune at some early point in training for
larger models. In our work, we intentionally rewind to initialization rather than early in training in
order to learn how to prune at initialization. Rewinding to early training only empirically proves the
existence of subnetworks with matching performance during early training, but it does not accurately
reflect how sparse networks behave from random initialization.

2.3 DATASET DISTILLATION

We explore the idea of synthetic data in pruning by using current methods under dataset distillation.
In general, dataset distillation optimizes a synthetic dataset to match the performance of a model
trained on real data. This bi-level optimization problem can be defined as minimizing the difference
of average loss over all validation points:

argmin
Dsyn

|L(Φ(Dreal);Dval)− L(Φ(Dsyn);Dval)| (1)

or, the minimizing the supremum of the absolute loss difference across over each validation pair as
proposed in Sachdeva & McAuley (2023), a unifying survey work:

argmin
Dsyn

(
sup{ |L(Φ(Dreal); (x, y))− L(Φ(Dsyn); (x, y))| }(x,y)∼Dval

)
(2)

where Φ is a training algorithm returning optimal parameters for the dataset Dsyn. Many methods
include matching the training trajectories of a student and teacher model (Cazenavette et al., 2022),
meta model matching (Wang et al., 2020), or factoring (Deng & Russakovsky, 2022). A simplifica-
tion of this process for classification tasks is compressing each set of images for a label down into
a few images. While this view of minimizing the performance difference of real data and synthetic
data is constrictive as it never allows for synthetic data to perform better than real data, we show that
it is a reasonable starting point from which we use to explore the training and stability dynamics of
synthetic data representations.

2.4 CHALLENGES WITH DISTILLED DATA

Current dataset distillation methods do not properly maintain relevant information on the down-
stream task for harder datasets, but they do sufficiently minimize the image-specific information
resulting in over-compression. These issues arise as a result of the high computational complexity
of optimizing a synthetic training set. Current methods cannot maintain performance as the dataset
or model complexity increases, limited to convolutional networks on toy datasets like CIFAR and
MNIST. For example, we use Efficient Dataset Condensation (Kim et al., 2022) in this paper which
achieves 50.6, 67.5, or 74.5% accuracy on CIFAR-10 depending the the size of the synthetic dataset
(1,10, or 50 images per class or ipc) or 72.8 & 76.6% accuracy on ImageNet-10 (Russakovsky et al.,
2015). While the aim of dataset distillation literature is to have a small synthetic set to improve
training efficiency on other architectures, less aggressive compression may be needed. We suggest
that efficiency is not the only use case or goal with distilled data. Compressing the training set may
result in better generalization, as long as relevant information is maintained.
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3 DATASET DISTILLATION FOR NEURAL NETWORK PRUNING.

We employ Iterative Magnitude Pruning with Distilled Data for the first time to discover the architec-
tural biases that this data brings. Specifically, we use dataset distillation methods that match training
trajectories to ensure that training on synthetic data yields similar converged results to training on
real data (Kim et al., 2022). We refer to this algorithm as Distilled Pruning.
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Figure 1: Distilled Pruning Algorithm Diagram

As shown in Figure 1, to find a suitable sparsity mask of a randomly initialized model, we first train
the network to convergence on distilled data, prune the lowest magnitude weights, then rewind the
non-pruned weights back to their initialized values, and loop until desired sparsity. The final model
should have its randomly initialize weights with a sparsity mask. We can train the sparse synthetic
subnetwork on real data to achieve sufficient performance at high sparsities. Using distilled data only
to choose our sparsity mask allows us to better understand the biases that this data introduces in the
architecture. We refer to subnetworks found with synthetic or distilled data as synthetic subnetworks
and those with real data as IMP subnetworks.

The only differences of IMP and distilled pruning lie in the sparsity mask they choose. Since each
method uses different datasets for training, their final converged weights will be different. Weights
deemed ”important” for the real dataset may not be important on the distilled data; distilled pruning
may attempt to remove these. This is also true for the other direction. The performance of these
sparsity masks by distilled pruning directly relates to how relevant the distilled data is to the real
data. Figure 2 showcases the performance of this method compared to traditional IMP on CIFAR-10
with ResNet-18.

Figure 2: Performance of Distilled Pruning vs Traditional IMP on ResNet-18 & CIFAR-10. The
distilled dataset consisted of 10 images per class. Error bars are plotted as we average across 4
seeds. The plot on the right measures the amount of data points used in training to find a sparsity
mask at x sparsity. Note that in IMP we are not finding ”lottery tickets” since we rewind back to
initialization for both methods, not to an early point in training.

We see in Figure 2 that lower test accuracy after training on distilled data does not completely
translate in neural network pruning. Despite only achieving 72.8% after training on distilled CIFAR-
10 with 10 ipc from Kim et al. (2022), we can use this low performance to choose weights to prune
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matching the performance on IMP on smaller datasets. To be clear, distilled data is only used to find
a sparsity mask, the sparse model is ultimately trained on real data for validation. As previously
mentioned, this performance does not hold as dataset complexity increases, we find that CIFAR-100
can perform decently at lower sparsities, but does not handle extreme sparsities (> 90%) with larger
models like ResNet-18. In those cases, the distilled data on CIFAR-100 is not maintaining task-
relevant information for the model. Since distilled data contains less outliers, and is a largely more
”generalizable” dataset, we find that the sparsity mask pruned weights that control the fine grained
details of the real data.

4 STABILITY OF SUBNETWORKS.

To understand the training dynamics of sparsity masks chosen via distilled pruning vs IMP, we
conduct an instability analysis. We take a randomly initialized model, generate a sparsity mask
through pruning, and train it across two different orderings of the real training data. We save these
two models and interpolate all the weights between them, measuring the training loss at each point
in the interpolation as shown in Figures 3 and 4. We assess the linear mode connectivity of these
subnetworks to determine if the model is stable to SGD noise. If the loss increases as you interpolate
between two trained versions, then there is a barrier in the loss landscape, implying the trained
models found different minima. In these cases, the ordering of the training data directly impacts
what minima its choosing. If the loss does not increase during interpolation, then this implies they
exist in the same minima or at least the same flat basin.
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Figure 3: Comparison of the stability of synthetic vs. IMP subnetworks at initialization on CIFAR-
10. We show how the loss increases as you interpolate the weights between two trained models.
We measure this for subnetworks of different sparsities. The left column is reserved for subnet-
works found via distilled data, and the middle column is for subnetworks found with real data. We
aggregate all the information in each row for a better comparison. The dark lines in the 3D plots
represents the pruning iteration we used for the combined plot; the dense model is iteration 0.

We see that in simpler scenarios with ConvNet-3 on CIFAR-10 & ResNet-10 on ImageNet-10, we
exhibit full linear mode connectivity. We even see slightly better performance during interpolation in
Figure 4. We find that in some cases of unstable dense models there exists a sparse subnetwork that is
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Figure 4: Comparison of the stability of synthetic vs. IMP subnetworks at initialization on
ImageNet-10 and ResNet-10. An increased loss across interpolation implies instability / trained
networks landing in different minima.

stable at initialization. More importantly, traditional IMP is not able to produce stable subnetworks
in these settings. Sparsity is not necessarily the answer for smoother landscapes, where you induce
sparsity is the main factor. As pruning continues, the results exhibit more stability despite lower
trainability, as seen with higher training losses. We postulate that the parameters pruned on distilled
data, yet still exist in the IMP subnetwork, capture the intricacies of the real data which contribute
to a sharper, but more trainable, landscape. Since IMP subnetworks are not stable, the intricacies it
is learning is order dependent.

4.1 LOSS LANDSCAPE VISUALIZATION

While linear mode connectivity is useful to study the loss landscape, this lightweight method can
only show us a one dimensional slice of the bigger picture. We further examine the landscapes
across two dimensions of parameters as shown in Figure 5.
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Figure 5: Loss Landscape visualization around the neigbhorhood defined by trained models on
different seeds for ConvNet-3 and CIFAR-10.

We trained the same network across 4 different seeds, much like in linear interpolation; however, we
also created 2 orthogonal vectors from this to sample nearby points. This maps the hyperdimensional
parameter space down to two dimensions, since every point shown in our visualization is a linear
combination of the two vectors. For each of the 10,000 points, we recorded the loss validated by
real training data. Since this visualization is created after reference models are trained, reference
models that are closer together will result in “zooming in” on their minima. The spatial distance is
not preserved using this method. This is useful in determining the local area in which these models
are training to. With post-hoc analysis, we find that spatial distance in our plot is mainly maintained,
with slightly lower distances as you prune.
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From these visualizations, IMP chooses subnetworks that exhibit a similar landscape to the dense
model. We see the trained models fall into two separate minima in both the IMP and Dense cases,
explaining the loss barrier in the Figure 3. Subnetworks chosen with distilled data are falling into
the same, flat basin. We also validated these visualizations quantitatively by looking at the diagonal
of the hessian. We find that synthetic subnetworks have a tighter distribution of diagonal hessian
values around zero than both the dense model and IMP subnetworks. Though, sparsity in general
leads to small decreases in sharpness which can also be seen in the Figure 5 visualization 1.

4.2 HESSIAN ANALYSIS

For a more quantitative approach to measuring sharpness of the loss landscape, we measure the
diagonal of the hessian for a batch as computing the full hessian is computationally prohibitive. We
study the diagonal for ConvNet-3 on CIFAR-10.

Subnetwork Sparsity Min/Max Mean ± Std Avg Magnitude

Dense 0 -1.847 / 1.344 .0048± .035 .0067
IMP 60% -3.073 / 4.510 .0051± .0559 .0087
IMP 90% -6.323 / 6.127 .0035± .0594 .0060

Synthetic 60% -0.982 / 2.093 .0047± .0286 .0061
Synthetic 90% -2.338 / 1.730 .0037± .0354 .0053

We see that across every measure of the distribution of the diagonal hessian, small amounts of
pruning in traditional IMP lead to sharper landscapes. This smooths out as we approach higher
sparsities though. With our synthetic subnetworks, the distribution is much closer to zero with less
variance. We see the same pattern of smoother values as sparsity increases. While smoothness from
increased sparsity may be a result of lower dimensionality of the landscape, synthetic subnetworks
are still behaving radically different than IMP-chosen subnetworks at the same sparsity.

4.3 OVERVIEW OF SYNTHETIC SUBNETWORKS

We examine how varying the compression rate of dataset distillation affects the performance and
stability of synthetic subnetworks. Across datasets, performance of synthetic subnetworks will be
compared to its IMP counterpart. Performance is expressed as the ratio of synthetic subnetwork
accuracy over IMP subnetwork accuracy. We compare stability similarly against the IMP subnet-
works. We plot stability as the barrier height ratio between the Synthetic and IMP subnetworks.
Barrier height is measured as the distance between the trained loss and the loss of the interpolated
model from our linear mode connectivity experiments. Both a low and high sparsity example is re-
ported for each setting. 60% sparsity is chosen as the low sparsity as this tends to be when synthetic
subnetworks first achieve general stability. We include a single marker for IMP to showcase what
”equivalent” algorithm to IMP looks like, as the ratio of IMP to itself is 1. Note, on ImageNet-10
we exhibit a negative barrier height at high sparsity.

Across almost all experiments, we see a general trend: subnetworks chosen via distilled pruning
result in a smooth & generalizing loss landscape. As compression ratio increases, we see more
stability than IMP; however, the performance trend largely depends on the distilled accuracy in Kim
et al. (2022). Most notably, we achieve full linear mode connectivity for ConvNet-3 on CIFAR-
10 and ResNet-10 on Imagenet-10. While there are numerous factors at play, Kim et al. (2022)
optimized the synthetic data specifically for these models, hinting that stability is a result of high
performing synthetic data. As distillation methods improve, we expect to maintain label-information
(pushing the points up) and be able to use fewer images per class (pushing the points to the left).

5 STABLE INITIALIZATIONS & THE LOTTERY TICKET HYPOTHESIS

Distilled Pruning does not have to compete with IMP; it can be used in tandem with it. We study how
these The Lottery Ticket Hypothesis only holds when the initialization is stable. Even on settings
as small as ResNet-18 on CIFAR-10, Iterative Magnitude Pruning cannot produce lottery tickets at

1See the appendix for results on the distribution of diagonal hessian values.
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Figure 6: Comparison of synthetic subnetworks and IMP subnetworks across models & datasets.
Both the 60% and 87% sparsity model is chosen for each example and connected with a dotted line.
These are compared to IMP’s 60% and 87% sparsity respectively. The size of the marker represents
the amount of data compression through dataset distillation used to find the sparsity mask. For
example, distilling CIFAR-10 (default 5,000 images per class) down to 10 images per class is a
500x compression ratio. Performance is measured as the ratio of test accuracy between Synthetic
and IMP subnetworks. Loss Barrier Height is measured by subtracting the trained loss and the
halfway interpolated trained loss from linear interpolation experiments.

high sparsities as shown in Fig. 2. To get around this, researchers use weight rewinding to some
point in early training when the model is stable Frankle et al. (2020). We refer to rewinding point
as the kth epoch in training. Since these networks are not pruned at initialization, rewinding instead
to some k > 0, these are not lottery tickets; they are only considered matching subnetworks. Since
synthetic subnetworks are found by rewinding to initialization, we can use this instead as our stable
starting point, no pretraining needed. In combination, distilled pruning removes weights that are
responsible for instability, then IMP can choose a high performing subset of stable weights.

Building on our study of ResNet-10 and Imagenet-10, we use a synthetic subnetwork that is both
stable and high performing as our sparse initialization, then perform traditional iterative magnitude
pruning. Following this criteria, we chose to prune ResNet-10 over 8 iterations or 83% sparsity with
distilled pruning, then performed IMP for 25 iterations. Figure 7 provides a comparison between
this, traditional IMP with rewinding back to initialization (kth epoch is 0), and IMP rewinding to the
3rd epoch.

We demonstrate that using synthetic subnetworks as a stable starting point can produce lottery tick-
ets at higher sparsities than previously thought. Figure 7 also shows that it is possible to regain
performance lost from the synthetic initialization. The results for rewinding to early in training,
k = 3, were previously considered to be a practical upper bound for pruning at initialization.

6 DISCUSSION

Synthetic sparsity masks are a result of pruning irrelevant parameters on an already compressed
dataset. Weights appearing in the IMP subnetworks, but not synthetic, are used to capture the fine-
grained details of the real dataset. The removal of these parameters leads to smoother landscapes;
however, this can lead to worse performance, especially on distilled datasets that are not aligned
well to the training set such as CIFAR-100. Upon analysis of these sparsity masks in isolation, we
could not draw any conclusions about sparsity patterns. Distilled Pruning leads to extremely similar
sparsity per layer, with a seemingly independent distribution of pruned parameters. We invite future
researchers to engage in this analysis. The only differences we observed with these models is how
they learn on real data, such as stability & smoother loss landscapes.
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   0%           67%               89%               96%                99%            99.6%            99.9%

Sparsity

Figure 7: Performance comparison of traditional IMP (k = 0), IMP with weight rewinding to the 3rd
epoch in training (k = 3), and traditional IMP performed on a stable, synthetic subnetwork at 83%
sparsity. We observe synthetic initializations find lottery tickets at higher sparsity than traditional
IMP (k = 0) alone. We emphasize k = 3 is not finding lottery tickets as this is not at initialization.
Each trial ran for 25 iterations with 5 seeds each.

This work is an initial step into exploring the impact of using synthetic data, specifically distilled
data, to improve pruning. We thoroughly assess the linear mode connectivity of these subnetworks
to determine if the model is stable to SGD noise. Since this work shows how the data used to prune
directly impacts the generalizability and robustness of these subnetworks, we aim to rethink the use
of any data in these scenarios, not just synthetic. Potentially more aggressive data augmentations or
even generative approaches can be used only during pruning to create certain effects in the sparse
architecture. We reopen the idea of finding lottery tickets at initialization on larger models by fo-
cusing on pruning parameters leading to instability first. We believe that a new algorithm, not the
naive combination of distilled pruning and IMP, will be essential for uncovering the Lottery Ticket
Hypothesis and validating it on larger settings.

9



Under review as a conference paper at ICLR 2024

REPRODUCIBILITY STATEMENT

We aim to make advanced neural network pruning methods more accessible to a broader range of
researchers and developers, reducing the expertise and compute overhead required to prune high-
performing networks. We provide the source code and configurations for the key experiments in-
cluding instructions on how to use the distilled data, prune the models with distilled pruning, prune
with IMP, and training and validation procedures. Our code is currently available at an anony-
mous URL: https://anonymous.4open.science/r/SyntheticDataForIMP-D0C8/. The data distillation
method we use can be found at https://github.com/snu-mllab/Efficient-Dataset-Condensation. We
used the pre-computed distilled data from the original paper (Kim et al., 2022). We use the same
implementation of ConvNet-3 and ResNet-10 (with batch normalization) as the dataset distillation
method.

ETHICS STATEMENT

Sparse neural networks offer a practical way to reduce the computational overhead for training and
inference which directly translates to lower CO2 emissions and contributes to more sustainable AI
research and development practices. Likewise, our paper highlights that leveraging distilled data
during the neural network pruning process can result in significant computational savings. However,
one possible risk of this approach is the loss of interpretability when using synthetic data (distilled
or generated). Specifically, if a practitioner does not have access to the original source data the
synthetic dataset was derived from, it may be challenging to understand the limitations, outliers,
and biases of that synthetic dataset. To counter the potential risk of unexpected or biased model
performance, it is crucial to define frameworks that thoroughly validate that the models trained on
synthetic data adequately represent the associated real-world problem domains and tasks. While syn-
thetic data representations hold considerable promise for the future enhancement of deep learning,
the drawbacks, nuances, and related mitigation strategies should continue to be carefully studied.
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