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ABSTRACT

Individual treatment effect (ITE) estimation has important applications in fields
such as healthcare, economics and education, hence attracted increasing attention
from both research and industrial community. However, most existing models may
not perform well in practice due to the lack of robustness of the ITE estimation
predicted by deep neural networks when an imperceptible perturbation has been
added to the covariate. To alleviate this problem, in this paper, we first derive an
informative generalization bound that demonstrate the expected ITE estimation
error is bounded by one of the most important term, the Lipschitz constant of
ITE model. In addition, in order to use Integral Probability Metrics (IPM) to
measure distances between distributions, we also obtain explicit bounds for the
Wasserstein (WASS) and Maximum Mean Discrepancy (MMD) distances. More
specifically, we propose two types of regularizations called Lipschitz Regularization
and reproducing kernel Hilbert space (RKHS) Regularization for encouraging
robustness in estimating ITE from observational data. To the best of our knowledge,
this is the first work on robustness for ITE estimation. Extensive experiments on
both synthetic examples and standard benchmarks demonstrate our framework’s
effectiveness and generality. To benefit this research direction, we release our
project at https://github-rite.github.io/rite/.

1 INTRODUCTION

Understanding the Individual Treatment Effect (ITE) of an treatment T (e.g., a plan of drug) on an
individual with features X (e.g., demographic characteristics ) is of great importance across many
domains, such as healthcare Shalit (2020), computer vision Santurkar et al. (2019); Elsayed et al.
(2018) and recommender system Wang et al. (2021; 2022). It basically aims to discover the underlying
patterns of the outcome Y (e.g., patient’s blood pressure) when receiving a specific treatment plan.
Ideally, practitioners can measure the ITE based on randomized controlled trials (RCTs) in which the
treatment assignment is randomized, and thus it is independent of the individual’s features. However,
RCTs are often a time-consuming process, and sometimes they are even unethical or illegal Qin et al.
(2021). To solve this issue, both academic researchers and industrial practitioners tend to use easily
accessed and available observational data for doing ITE estimation. The observational data usually
consist of unit’s covariates, treatments and outcomes. In the binary treatment case, the group of units
receiving the treatment is called treated group, and others the control group. Due to the fact that the
generating process of observational data is not under control, there exists an imbalanced distributions
between treated and control groups, which hinders the estimation of ITE accurately and correctly. In
the past few years, quite a lot of promising ITE models have been proposed and achieved impressive
performance. For example, the representative CFR Shalit et al. (2017) method enforce the similarity
between the distributions of treated and control groups in the representation space by a penalty term
IPM.

In observational studies, however, robustness model for ITE is of great importance. Indeed when
presented with a malicious individual’s features that consist of an imperceptible perturbation to
model, they can predict incorrect treatment effects with high-confidence and further make a wrong
decision. For example, in one scenario where an imperceptible and malicious error is randomly added
to the Electrocardiogram (ECG) data for the heart patients. Accroding to that results, doctors could
make a wrong treatment plans, which would lead to disastrous consequences. Additionally, when
we attempt to balance the distribution between treated and control groups, the lack of robustness
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hinders the applications of MMD and WASS to achieve the optimal distribution alignment. To
alleviate this problems, in this paper, we propose a novel and effective framework to achieve Robust
Individual Treatment Effect estimation (called RITE for short). The RITE framework enhence the
robustness of ITE models, improving the generalization performance of ITE estimation. Driven by the
aforementioned examples, we first derive an informative generalization error bound of the expected
Precision in Estimation of Heterogeneous Effect (PEHE) loss, which demonstrate the expected ITE
estimation error is bounded by one of the most important term, the Lipschitz constant of ITE model.
And then, in order to apply IPM to balance the distributions between treated and control groups, we
also obtain explicit generalization bounds for the WASS and MMD distances. The theoretical analysis
clearly indicate that taking into account the Lipschitz constant of ITE model, along with empirical
factual losses and the discrepancy between treated and control groups, we can greatly reduce the
bounds of target loss function. Based on the above theory, we proposed two types of regularization
called Lipschitz regularization and RKHS regularization respectively. The former aims to reduce
the overall Lipschitz constant of ITE model by constraining its parameters towards the conditions
of orthonormality, such that we can make WASS adaptive to the upper bound of objective . More
concretely, we sum all layers constrain and add it to the target loss and by a hyperparameter to control
its weight. While the latter is mainly focused on the constraint of products on RKHS, such that we
can instantiate MMD in our settings. Analogous to Lipschitz regularization, we also add it to the
target loss. The proposed two regularization are both to make IPM metric effective for encouraging
robustness in estimating ITE from observational data.

In a summary, the main contributions of this paper can be concluded as follows: (1) We examine the
problem of robustness in estimating ITE, deriving an informative generalization error bound for the
PEHE loss. The derived bound can connect the robustness with adversarial machine learning and it
is instructive for reducing the Lipschitz constant of ITE model. To the best of our knowledge, this
is the first work on robustness for ITE estimation; (2) We obtain explicit bounds for the WASS and
MMD distances; (3) According to the theoretical analysis, we propose a computationally efficient
framework for encouraging robustness in estimating ITE from observational data; (4) We conduct
extensive experiments based on both synthetic examples and standard benchmark datasets to validate
its effectiveness.

2 PROBLEM FORMULATION

2.1 PROBLEM SETUP

We formulize our problems using the Neyman-Rubin potential outcomes framework Rubin (2005), as
follows. Let x ∈ X denotes a unit features or covariates, t ∈ T stands for a treatment or intervention
on a unit. Throughout this paper, we focus on the binary treatment case, where T = {0, 1} and y ∈ Y
represents the factual outcome. In practice, we can only observe the factual outcome with respect
to treatment assignment, i.e., y = Y0 if t = 0, otherwise y = Y1, where Yt denotes the potential
outcome for treatment t. The Individual Treatment Effect (ITE) on a unit x, or also known as the
conditional average treatment effect (CATE) Shalit et al. (2017):

τ(x) := E[Y1 − Y0|x] (1)
The fundamental problem of causal inference is that for any unit x in our settings we only observe Y1

or Y0, but never both. Following recent works Qin et al. (2021); Wager & Athey (2018), we implicitly
assume that there exists plenty of observable data. Formally, Let D = {(xi, ti, yi)}mi=1 denote the
training data drawn from the obserational data distribution D, i.e. D ∈ D. In order to guarantee
that the potential outcomes are identifiable from factual observational data, the four assumptions
are required: Stable Unit Treatment Value Assumption(SUTVA), Consistency, Ignorability and
Positivity Yao et al. (2021). Based on above assumptions, we can formulate the problem of estimating
ITE as: τ(x) = E[Y |x, t = 1] − E[Y |x, t = 0], which only involve statistic quantities that can be
derived from observational data.

2.2 ROBUSTNESS IN CAUSAL INFERENCE

In this work, we aim to enhance the robustness of the ITE model that usually consists of multi-layers
neural networks, improving the generalization performance of individual treatment effect estimation.
The more rich literature about the robuestness and lipschitz constants of neural networks are presented
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in Appendix, and interested readers can refer to it. We consider a l-layer feed-forward neural network
f(x) : Rn0 → Rnl+1 , employed to extract the representations of units in estimating ITE, which was
described by the following recursive equations:

x0 = x, xk+1 = ϕ(W kxk + bk) for k = 0, ..., l − 1, f(x) = W lxl + bl (2)

where x ∈ Rn0 is an unit features to the network and ϕ denotes the activation functions. W kxk + bk,
W k ∈ Rnk+1×nk and bk ∈ Rnk=1 are the transformation function, weight matrix and bias vector for
the k-th layer respectively. From the network structure we consider, for each layer transformation
and the corresponding takes values, the Lipschitz constant denoted by Λk with respect to p-norm,
satisfies:

||W kxk −W kx̃k||p ≤ Λk||xk − x̃k||p (3)
where x, x̃ ∈ Rn0 are any unit features.

According to the composition rules in estimating the Lipschitz constants Tsuzuku et al. (2018), The
Lipschitz constant of f denoted by Λp satisfies:

Λp ≤
l∏

k=1

Λk (4)

Thus the Lipschitz constant of the network f can grow exponentially along with its depth l. We
now give the loss function used in ITE model. Assume there exists a function L : Y × Y → R that
measures the loss of f on an example (x, y). A common choice for L in causal inference is || · ||p
loss:

L(y, f(x)) = ||y − f(x)||p (5)
For || · ||p loss function, the Lipschitz constant denoted by λp satisfies:

||L(y, z)− L(y, z̃)||p ≤ λp||z − z̃||p, ∀z, z̃ ∈ R,∀y ∈ Y (6)
The arguments that we develop above depend only on the Lipschitz constant of the loss, with respect
to the norm of interest. And we can directly derive that λp ≤ 1. Throughout this paper, we employ
the squared loss as our loss function.

2.3 ADVERSARIAL EXAMPLES

In practice, given an unit’s features x and the corresponding factual outcome y, an adversarial example
is defined as x̃ = x+δx where δx is a small enough perturbation or error to the original features x. As
we demonstrated in above example, the contaminated and nearly undistinguishable ECG data would
result in predicting incorrect treat effects with high-confidence by the ITE model for heart patients.
Therefore, under observational studies, robustness model for ITE estimation is vary important and
indispensable. For the parameters and structure f(·,W ) of the ITE model, the adversarial example
with respect to p-norm is formally defined as:

x̃ = argmax
||x̃−x||p≤ϵ

L(f(x̃,W ), y) (7)

where ϵ is to control the perturbation radius. In other words, the strength of the adversary goes down
as ϵ becomes smaller. For an extreme case, when we set ϵ to 0, the adversarial example x̃ returns to x.
It is a non-trivial problem to reduce the perturbation to the original exmple in real-world settings. Our
goal is to eliminate the impact of adversarial examples to ITE model. By doing that, we provide an
informative generalization errors bound with respect to the Lipschitz constant of ITE model, and then
propose two types of regularizations called Lipschitz Regularization and reproducing kernel Hilbert
space Regularization for mitigating the influence of perturbation while encouraging robustness to
ITE model .

3 THEORETICAL INSIGHTS

In this section, we will list the common definitions and theoretical results in the ITE estimation.
Based on that, we make the relationship between robustness to adversarial examples and the Lipschitz
constant of the ITE model, and then give our theoretical results. The complete proofs and details are
presented in the Appendix.
Definition 1. Let Φ : X → R be a representation function, f : R× {0, 1} → Y be an hypothesis
predicting the outcome of a unit’s features x given the representation covariates Φ(x) and the treatment
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assigment t. Let L : Y ×Y → R+ be a loss function. The expected factual and Counterfactual losses
of Φ and f are:

ϵF (f,Φ) =

∫
X×T ×Y

L(y, f(Φ(x), t))p(x, t, y)dxdtdy

ϵCF (f,Φ) =

∫
X×T ×Y

L(y, f(Φ(x), 1− t))p(x, 1− t, y)dxdtdy

(8)

It can be seen that ϵF measures how well do f and Φ predict the factual outcomes based on unit
features and treatment sampled from the same distribution as our data sample. While ϵCF aims to
measure the counterfactual outcomes based on the same unit features but the opposite treatment.

Definition 2. The expected factual treated and control losses are:

ϵt=1
F (f,Φ) =

∫
X×Y

L(y, f(Φ(x), 1))p(x, y|T = 1)dxdy

ϵt=0
F (f,Φ) =

∫
X×Y

L(y, f(Φ(x), 0))p(x, y|T = 0)dxdy

(9)

Accordingly, we can obtain an immediate results ϵF (f,Φ) = p(t = 1)ϵt=1
F (f,Φ) + p(t =

0)ϵt=0
F (f,Φ).

Definition 3. For the adversarial examples, the expected factual loss of f and Φ is :

ϵFadv(f,Φ, ϵ) =

∫
X×T ×Y

max
||x̃−x||p≤ϵ

L(y, f(Φ(x̃), t))p(x, t, y)dxdtdy (10)

It can be seen that ϵFadv measures how well our prediction with f and Φ would do if the inputs are
replaced by the adversarial examples. According to these definitions, we now give the generalization
bound of the expected factual loss of f and Φ with respect to the adversarial examples,

Theorem 1. Let ϵ denotes the strength of the adversary. Let λp denotes the Lipschitz constant of L
loss and Λp stands for the Lipschitz constant of f and Φ defined in Definition 1, then we have:

ϵFadv(f,Φ, ϵ) ≤ ϵF (f,Φ) + λpΛpϵ

Remark. Theorem 1 provides an upper bound for the L loss with the Lipschitz constant based on
adversarial samples, which suggests that the vulnerability of ITE model to adversarial examples can
be controlled by its Lipschitz constant.

Definition 4. The estimation of treatment effect by an hypothesis f and a representation function Φ
for unit x is:

τ̂(x) = f(Φ(x), 1)− f(Φ(x), 0) (11)

Definition 5. The expected Precision in Estimation of Heterogeneous Effect (PEHE) Hill (2011) loss
of f and Φ is:

ϵPEHE(f) =

∫
X
(τ̂(x)− τ(x))2p(x)dx (12)

Definition 6. Integral Probability Metric (IPM). For two probability density functions p, q defined
over S ∈ Rd, and for a function family G of functions g : S → R, The IPM is Shalit et al. (2017):

IPMG(p, q) := sup
g∈G

∣∣∣∣∫
S
g(s)(p(s)− q(s))ds

∣∣∣∣ (13)

From the definition we can see that IPM measures the distance between two distributions. For rich
enough function families G, IPM is a true metric over the corresponding set of probabilities Shalit
et al. (2017); Qin et al. (2021). When we let G satisfy the family of 1-Lipschitz functions, i.e., G =
{g : ||g||p ≤ 1} we obtain the Wasserstein distance denote by WassG(·, ·) between distributions.
While G = {g ∈ H s.t. ||g||H ≤ 1}, we derive Maximum mean discrepancy denote by MMDG(·, ·)
between distributions. WhereH represents a reproducing kernel Hilbert space(RKHS) Sriperumbudur
et al. (2009). In the rest of the paper, we consider an estimation for ITE in the form of f(Φ(x), 1)−
f(Φ(x), 0). Next is the generalization bound for PEHE loss derived in Shalit et al. (2017).

Proposition 1. Shalit et al. (2017). Let Φ : X → R be a one-to-one representation function and
f : R× T → Y be an hypothesis. Let G be a family of functions g : R → Y . Assume that there
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exists a ℓ2 loss, L : Y × Y → R+, and a constant CΦ > 0, such that for fixed t ∈ {0, 1}, the per-
unit expected loss function ℓf,Φ(x, t) =

∫
Y L(Yt, f(Φ(x), t))p(Yt|x)dYt obey 1

CΦ
· ℓf,Φ(x, t) ∈ G.

Then,
ϵPEHE(f,Φ) ≤ 2(ϵCF (f,Φ) + ϵF (f,Φ)− CY )

≤ 2
(
ϵt=0
F (f,Φ) + ϵt=1

F (f,Φ)
)
+ 2

(
CΦ · IPMG(p

t=1
Φ , pt=0

Φ )− CY

)
where pt=1

Φ = p(Φ(x)|t = 1), pt=0
Φ = p(Φ(x)|t = 0) are the treated and control distributions define

overR separately, and CY is a constant induced over the variance of the outcomes Yt.

Remark. Proposition 1 provides an upper bound for the expected ITE estimation error of a represen-
tation, which is bounded by the sum of the standard regression generalization error on treated and
control groups and the distance between the treated and control distributions. In practice, the distance
is measured by MMD. While the promising explicit bounds for MMD or WASS distances are derived
by the authors, the rules for the function family G are not satisfied to transform IPM to MMD or
WASS distances metrics without considering the Lipschitz constant of f and Φ in estimation of ITE.
To alleviate this problem, we first derive a generalization bound for the expected factual loss, and
further derive the new generalization bound for the expected ITE estimation error. In order to use
IPM to measure the distances between treated and control distributions, we also obtain two explicit
bounds for WASS and MMD distances respectively. We find that all the bounds are bounded by
one of the most important terms, the Lipschitz constant of ITE model. The results are presented as
follows.

Theorem 2. Let Cp(D, γ) be the covering number of D using γ-balls for || · ||p. Let Cd =
supx,t,W,y L(y, f(Φ(x), t)), where W is the parameters of f and Φ. Then for any δ > 0, with
probability at least 1− δ over the i.i.d. samples {(xi, ti, yi)}mi=1, we have:

ϵF (f,Φ) ≤
1

m

m∑
i=1

L(yi, f(Φ(xi), ti)) + λpΛpγ + Cd

√
2Cp(D, γ) ln 2 + 2 ln(1/δ)

m

Remark. Theorem 2 provide an upper bound for the expected factual loss that is crucial for bounding
the ITE estimation error demonstrated in Proposition 1. This bound indicates that the Lipschitz
constant of f and Φ can control the difference between the average empirical factual loss on the
training set and the generalization performance. In addition, the covering numbers of λ-balls tends to
increase exponentially with the dimension of unit features x becomes larger. Thus, the bound above
show that it is critical to reduce the Lipschitz constant of ITE model for both good generalization
and robustness to adversarial examples. In the following, we now give the informative generalization
bound for the expected ITE estimation error.

Theorem 3. Under the conditions of Definition 1, Proposition 1 and Theorem 2, with probability at
least 1− δ,

ϵPEHE(f,Φ) ≤
4

m

m∑
i=1

L (yi, f(Φ(xi), ti))

+ 4

(
λpΛpλ+ Cd

√
2Cp(D, γ) ln 2 + 2 ln(1/δ)

m

)
+ 2

(
CΦ · IPMG(p

t=1
Φ , pt=0

Φ )− CY

)
Remark. Theorem 3 provides an upper bound for PEHE loss , which mainly consists of the empirical
regression losses on training set, the Lipschitz constant of f and Φ, the covering numbers of λ-balls
and the distance between the treated and control distributions induced by Φ. Except for the Lipschitz
constant term, all of which can be empirically estimated or approximated by some deep learning
tricks. The upper bound decreases as the Lipschitz constant Λp gets small. Therefore, Theorem 3
instructs us to constrain the parameters of f and Φ that can obtain a robust ITE model with a small
Lipschitz constant, even less than or equal to 1.

Theorem 4. Let Φ : X → R be a one-to-one representation function and f : R × T → Y be
an hypothesis. Let G be a family of functions g : R → Y . Assume that there exists a ℓ2 loss,
L : Y × Y → R+, ℓf,Φ(x, t) ∈ G for t = 0, 1. if the Lipschitz constant of ℓf,Φ(x, t) ∈ G is upper
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bounded by 1, then,

ϵPEHE(f,Φ) ≤
4

m

m∑
i=1

L (yi, f(Φ(xi), ti))

+ 4

(
λpΛpλ+ Cd

√
2Cp(D, γ) ln 2 + 2 ln(1/δ)

m

)
+ 2

(
WASSG(p

t=1
Φ , pt=0

Φ )− CY

)
if the function space G satisfies G = {g ∈ H s.t. ||g||H ≤ 1}, in whichH be a reproducing kernel

Hilbert space, then,

ϵPEHE(f,Φ) ≤
4

m

m∑
i=1

L (yi, f(Φ(xi), ti))

+ 4

(
λpΛpλ+ Cd

√
2Cp(D, γ) ln 2 + 2 ln(1/δ)

m

)
+ 2

(
MMDG(p

t=1
Φ , pt=0

Φ )− CY

)
Remark. In Theorem 4, the upper bound for PEHE loss is similar to the bound derived in Theorem 3,
except for the distance metric. Actually, we use WASS and MMD distance metric to substitute
for the IPM distance metric, repsectively, while deriving a lower bound. In order to employ the
specific distance metrics to balance the distribution between treated and control groups and lowering
the bounds of PEHE loss, we propose two types of regularizations called Lipschitz Regularization
and RKHS Regularization. The former is able to provide a appropriate functions family for WASS
distance, i.e., G = {g : ||g||p ≤ 1}, while reducing the Lipschitz constant of f and Φ, and the latter
can give the a satisfactory functions family for MMD distance, i.e., G = {g ∈ H s.t.|||g||H ≤ 1}.

4 THE PROPOSED METHOD

In this section, we first give the details about the two types of regularizations and then introduce the
algorithm for ITE estimation.

4.1 LIPSCHITZ REGULARIZATION

According to Theorem 4, in order to guarantee the WASS distance works well while controlling
Lipschitz constant of ITE model, we need to maintain the spectral norm of the weight matrix of each
transformation layer at 1. We now give the Lipschitz constants of standard layers as a function of
their parameters.
Definition 7. The Lipschitz constant for each transformation layer is:

||W k||p = sup
||z||p=1

||W kz||p (14)

where ||W k||2 is the maximum singular value W k, which called the spectral norm of W k . Then for
the l-layer feed-forward neural network, its Lipschitz constant satisfies:

Λp ≤
l∏

k=1

||W k||p (15)

Motivated by the works of parseval tightness theory in Kovačević et al. (2008); Cisse et al.
(2017),which demonstrates that the orthonormality of weight matrices are sufficient to control
the spectral norm. we aim to constrain the parameters with orthonormality for each transformation
layer:

ℜk(f) =
β

2
||W kTW k − I||22 (16)

where I refers to the identity matrix. The gradient of this regularization term is ∇Wkℜk(f) =

β(W kW kT − I)W k. Consequently, we perform this gradient in each update step to update the
parameters W k. For the l-layer feed-forward neural network f , we constrain:

ℜ(f) =
l∑

k=1

ℜk(f) (17)
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which is regarded as a Lischits regularization to optimization objective in ITE estimation prob-
lem. With the orthogonality constrains, the Lipschitz constant of each transformation layer is then
approximately less than or equal to 1.

4.2 RKHS REGULARIZATION

According to Theorem 4, we aim to guarantee the MMD distance metric works well in balancing the
distributions by a representation between the treated and control groups. Consequently, we perform
a product constrains to the outputs of the last transformation layer. Formally, product constrains is
defined as:

ℜ(f) = β

2
||ℓf,Φ(x, t)||H − 1 (18)

whereH reprensents the RKHS. The gradient of this regularization term is βℓf,Φ(x, t). In practice,
we update the parameters of f and Φ in a chain rules by the last outputs of f . With the RKHS
regularization, the functions family G are then approximately satisfied for MMD distance metric.

4.3 ALGORITHM FOR ESTIMATING ITE

According to the above theoretical analysis in Section 3, we propose a framework called RITE to
minimize the upper bounds in Theorem 3 and Theorem 4. We follow the commonly used form of
objective function to measure the ITE. The optimization problem in our framework is shown as the
following:

min
f,Φ

1

m

m∑
i=1

wi · L(yi, f(Φ(xi), ti)) + β · ℜ(f) + α · IPMG(p̂
t=1
Φ , p̂t=0

Φ )

s.t wi =
ti
2u

+
1− ti

2(1− u)
, where u =

1

m

m∑
i=1

ti

(19)

where u = p(t = 1) is simply the proportion of treated units in the population, the weights wi

compensates for the difference in treatment group size Shalit et al. (2017), p̂t=1
Φ and p̂t=0

Φ are learned
high-dimensional representation for treated and control groups respectively. Note that IPMG(·, ·) is
the distance metric and the specific implementations of it depends on the proposed regularization
ℜ(f). If we let ℜ(f) Lipschitz regularization, then IPMG(·, ·) becomes WASS distance metric.
If we set ℜ(f) to RKHS regularization, we obtain the MMD distance metric. We refer to the
model minimizing equation 19 with Lipschitz regularization as RITEWASS and the variant with
RKHS regularization as RITEMMD. Both models are trained by the adaptive moment estimation
(Adam) Kingma & Ba (2014). The details are described in Appendix.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

ITE estimation is more difficult compared to machine learning tasks, the reason is that we rarely
have access to ground-truth treatment effect in real-world scenario. In order to measure the proposed
framework, we conduct experiments based on one synthetic examples, Sim, and two standard
benchmark datasets, ACIC Dorie et al. (2019) and IHDP Dorie et al. (2019). We compare our
model with the following 11 representative baselines: Random Forests (RF) Breiman (2001), Causal
Forests (CF) Wager & Athey (2018), Causal Effect Variational Autoencoder (CEVAE) Louizos
et al. (2017), DragonNet Shi et al. (2019), Meta-Learner algorithms S-Learner Nie & Wager (2021)
and T-Learner Künzel et al. (2019), Balancing Neural Network (BNN) Johansson et al. (2016),
Treatment-Agnostic Representation Network (TARNet) Shalit et al. (2017) as well as Counterfactual
Regression with the Wasserstein metric (CFRWASS) Shalit et al. (2017) and the squared linear
MMD metric (CFRMMD) Shalit et al. (2017), along with a extension of CRF method Query-based
Heterogeneous Treatment Effect estimation (QHTE) Qin et al. (2021). The detailed description
about implementations and datasets are shown in Appendix. One also can find more details about
the implementation of all adopted baselines and our methods and full experimental settings at
https://github-rite.github.io/rite/.
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Table 1: Individual treatment effect estimation on ACIC, IHDP and Sim test set. The top module
consists of baselines from recent works. The bottom module consists of our proposed methods. In
each module, we present each of the result with form mean ± standard deviation and we use bold
fonts to label the best performance. Lower is better.

Datasets ACIC IHDP Sim
Metric

√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

√
ϵPEHE ϵATE

RF 3.09 ± 1.48 1.16 ± 1.40 4.61 ± 6.56 0.70 ± 1.50 3.36 ± 0.01 3.87 ± 0.01
CF 1.86 ± 0.73 0.28 ± 0.27 4.46 ± 6.53 0.81 ± 1.36 1.81 ± 0.04 0.08 ± 0.06

S-learner 3.86 ± 1.45 0.41 ± 0.35 5.76 ± 8.11 0.96 ± 1.8 1.92 ± 0.05 0.06 ± 0.05
T-learner 2.33 ± 0.86 0.79 ± 0.68 4.38 ± 7.85 2.16 ± 6.17 0.57 ± 0.02 0.03 ± 0.02
CEVAE 5.63 ± 1.58 3.96 ± 1.37 7.87 ± 7.41 4.39 ± 1.63 1.92 ± 0.05 0.12 ± 0.18

BNN 2.00 ± 0.86 0.43 ± 0.36 3.17 ± 3.72 1.14 ± 1.7 1.08 ± 0.09 0.26 ± 0.15
DragonNet 1.26 ± 0.32 0.15 ± 0.13 1.46 ± 1.52 0.28 ± 0.35 0.43 ± 0.05 0.09 ± 0.07

TARNet 1.30 ± 0.46 0.15 ± 0.12 1.49 ± 1.56 0.29 ± 0.40 0.45 ± 0.04 0.09 ± 0.06
CFRMMD 1.24 ± 0.31 0.17 ± 0.14 1.51 ± 1.66 0.3 ± 0.52 0.46 ± 0.04 0.09 ± 0.07
CFRWASS 1.27 ± 0.38 0.15 ± 0.12 1.43 ± 1.61 0.27 ± 0.41 0.49 ± 0.05 0.10± 0.07

QHTE 1.32 ± 0.41 0.19 ± 0.18 1.83 ± 1.9 0.34 ± 0.43 0.51 ± 0.06 0.18 ± 0.06
RITEMMD 1.00 ± 0.23 0.15 ± 0.12 0.45 ± 0.06 0.12 ± 0.09 0.44 ± 0.06 0.06 ± 0.04
RITEWASS 0.97 ± 0.28 0.14 ± 0.11 1.34 ± 1.53 0.28 ± 0.39 0.37 ± 0.06 0.06 ± 0.05

Figure 1: Influence of the imbalance penalty α on our model performance in terms of
√
ϵPEHE and

ϵATE . The performances of different distance metric implementations are labeled with different
colors. Lower is better.

5.2 OVERALL RESULTS

The overall comparison results are presented in Table 1, from which we can see: Compared to the
synthetic datasets, the performance of all the models are a little higher on real-world benchmark
datasets, which is because of the imbalanced distribution nature between treated and control groups ,
and verifies the difficulties of the ITE estimation task itself. Representation learning methods like
DragonNet can usually obtain better performance than the traditional machine learning method like
RF, which agrees with the previous work Qin et al. (2021); Shalit et al. (2017), and verifies the
usefulness of predicting the ITE by a deep neural network. Among representation learning models,
the best performance is usually achieved when the model is based on the IPM distance metric. This is
as expected, since the IPM distance metric based on the studied representation can effectively reduce
the distribution shift between treated and control groups, improving the generalization performance
of ITE estimation. Encouragingly, our model can achieve the best performance on all the metrics
across different datasets, where the improvements are mostly significant. The result is consistent
to our theoretical analysis in section 3. Comparing with the baselines, we introduce the Lipschitz
regularization and RKHS regularization separately to reduce the Lipschitz constant of ITE model,
improving the generalization performance of ITE estimation. Between the different implementations
of IPM distance metric, we find that WASS is a little superior than MMD in most cases. We
speculate that WASS is more suitable for balancing the representation distributions, which can be
more appropriate for the real-world datasets.

5.3 ROBUSTNESS CERTIFICATION

In this section, we aim to demonstrate the validity of the robustness of our model from the perspective
of experiment. In order to achieve a fair comparison performance, we adopt the representative deep
learning methods BNN, DragonNet, TARNet, CFRWASS , CFRMMD, and our methods to conduct
this experiments. More concretely, for given a test data point x, we generate a new one x′ = x+ δX
to substitute for the original test data point. In practice, we add noise in {U(−1, 1)}dim(x) to each
data point. The results are presented in Table 2. By imposing a small perturbation values on the input
point, we can find that all of the performance across dataset ACIC and IHDP have been degraded
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Figure 2: Influence of the regularization penalty β on our model performance in terms of
√
ϵPEHE

and ϵATE . The performances of different distance metric implementations are labeled with different
colors. Lower is better.

Table 2: Performance comparison between the model testing in the original test sets and with small perturbation
in test sets. We use “X-Noisy” to represent the test set with noisy when the model is “X”. We highlight the best
performance with bold fonts. Lower is better.

Datasets ACIC IHDP
Metric

√
ϵPEHE ϵATe

√
ϵPEHE ϵATe

BNN-Noisy 4.84 ± 0.15 1.50 ± 0.46 3.25 ± 0.39 3.03 ± 0.55
DragonNet-Noisy 1.55 ± 0.10 0.21 ± 0.16 0.65 ± 0.08 0.15 ± 0.11

TARNet-Noisy 1.48 ± 0.10 0.22 ± 0.17 0.67 ± 0.08 0.17 ± 0.11
CFRMMD-Noisy 1.48 ± 0.10 0.21 ± 0.16 0.67 ± 0.08 0.16 ± 0.12
CFRWASS-Noisy 1.52 ± 0.10 0.23 ± 0.16 0.63 ± 0.08 0.17 ± 0.12
RITEMMD-Noisy 1.17 ± 0.07 0.16 ± 0.12 0.48 ± 0.06 0.12 ± 0.09
RITEWASS-Noisy 1.04 ± 0.06 0.15 ± 0.11 0.56 ± 0.08 0.16 ± 0.11

jointly comparing with Table 1. It is encouraging to see that our framework can still outperform the
base models in all cases. This observation suggests that our framework can indeed improve the model
robustness even if the input points have been perturbed. For our framework, the strategies of Lipschitz
regularization and RKHS regularization seem to have different advantages under different settings,
and they alternatively achieve the best performances, which is analogous to the results observed in
Table 1. Based on this observation, we speculate that, for larger datasets application scenarios, the
CFRWASS method can be leveraged to build more robust treatment effect model. Otherwise, the
CFRMMD may also be competitive.

5.4 PARAMETER STUDY

As detailed in the above sections, our main optimization objective is composed of many terms.
Readers may be interest in how different terms contribute the final performance. In order to answer
this question and illustrate the influence of different terms, in this section, we conduct the parameter
studies, where the hyper-parameters settings follow the above experiments and we compare our
model by varying the imbalance penalty α and regularization penalty β. For optimization objective
( 19), the regularization influence will decrease when the regularization penalty β becomes smaller. It
is analogous to the distance metric IPM term. We tune α and β both in [0,1e-4,1e-2,1,1e2,1e4]. The
results are presented in Figure 1 and 2. We can see: the best performance is usually achieved when α
and β is moderate. This agrees with our opinion in section 3, i.e., too small α and β may introduce
too imbalance representation into the training process, while too large α and β may severely impact
the predictions made by the ITE model . By tunning α and β in proper ranges, we are allowed to
achieve better trade-offs to improve the ITE estimation performance.

6 CONCLUSION

In this paper, we propose to enhance robustness and generalization performance in estimating ITE by
adversarial machine learning. To achieve this goal, we first theoretically analyze the bound of the
PEHE loss, and then design two types of regularizations for encouraging robustness in estimating
ITE according to specific distance metric. In the experiments, we evaluate our framework based on
both synthetic and semi-synthetic datasets to demonstrate its effectiveness and generality. This paper
makes a first step on applying the idea of adversarial machine learning to the field of estimating ITE.
There is still much room for improvement. To begin with, one can incorporate more sophisticated
model to extract the representation of covariates, and at the same time devise effective mechanism
for encouraging robustness to causal inference. In addition, in order to reduce the time-comsuming,
people can also choose more specific layers to constrain its parameters.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375,
2018.

Serge Assaad, Shuxi Zeng, Chenyang Tao, Shounak Datta, Nikhil Mehta, Ricardo Henao, Fan Li, and
Lawrence Carin. Counterfactual representation learning with balancing weights. In International
Conference on Artificial Intelligence and Statistics, pp. 1972–1980. PMLR, 2021.

Peter C Austin. An introduction to propensity score methods for reducing the effects of confounding
in observational studies. Multivariate behavioral research, 46(3):399–424, 2011.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Parseval
networks: Improving robustness to adversarial examples. In International Conference on Machine
Learning, pp. 854–863. PMLR, 2017.

Yashar Deldjoo, Tommaso Di Noia, and Felice Antonio Merra. A survey on adversarial recommender
systems: from attack/defense strategies to generative adversarial networks. ACM Computing
Surveys (CSUR), 54(2):1–38, 2021.

Vincent Dorie, Jennifer Hill, Uri Shalit, Marc Scott, and Dan Cervone. Automated versus do-it-
yourself methods for causal inference: Lessons learned from a data analysis competition. Statistical
Science, 34(1):43–68, 2019.

Gamaleldin Elsayed, Shreya Shankar, Brian Cheung, Nicolas Papernot, Alexey Kurakin, Ian Good-
fellow, and Jascha Sohl-Dickstein. Adversarial examples that fool both computer vision and
time-limited humans. Advances in neural information processing systems, 31, 2018.

Christian Fong, Chad Hazlett, and Kosuke Imai. Covariate balancing propensity score for a continuous
treatment: Application to the efficacy of political advertisements. The Annals of Applied Statistics,
12(1):156–177, 2018.

Jennifer L Hill. Bayesian nonparametric modeling for causal inference. Journal of Computational
and Graphical Statistics, 20(1):217–240, 2011.

Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and J Doug Tygar. Ad-
versarial machine learning. In Proceedings of the 4th ACM workshop on Security and artificial
intelligence, pp. 43–58, 2011.

Kosuke Imai and Marc Ratkovic. Covariate balancing propensity score. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 76(1):243–263, 2014.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015.

Fredrik Johansson, Uri Shalit, and David Sontag. Learning representations for counterfactual
inference. In International conference on machine learning, pp. 3020–3029. PMLR, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.
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A APPENDIX

A.1 PROOF OF THEORY 1

Proof. For the expected factual loss of Φ and f over the adversarial samples , we have:
ϵfadv − ϵF ≤ |ϵfadv − ϵF |

and hence,

ϵfadv ≤ ϵF + |ϵfadv − ϵF |

≤ ϵF +

∫
X×T ×Y

max
||x̃−x||p≤ϵ

|L(y, f(Φ(x̃), t))

− L(y, f(Φ(x), t))| p(x, t, y)dxdtdy
≤ ϵF + λpΛpϵ

A.2 PROOF OF THEORY 2

Proof. We reformulate the expected factual loss of Φ and f as:
ϵF (f,Φ) = E(x,t,y)∼D[L(y, f(Φ(x)), t)]

and its empirical factual loss is:

ϵ̂F (f,Φ) =
1

m

m∑
i=1

L(yi, f(Φ(xi), ti))

Let Cp(D, γ) be the covering number of D using γ-balls for || · ||p. In our paper, we focus on
the binary treatment case where t ∈ {0, 1}. Therefore, we can partition D into 2N (γ/2,X , || ·
||p) × N (γ/2,Y, || · ||p) subsets where N (γ/2,X , || · ||p) is the γ/2-covering number of X and
N (γ/2,Y, || · ||p) is the γ/2-covering numer of Y . For two samples x1 and x2 who belong to a
same subset Di, then we have ||x1 − x2||p ≤ γ, and the corresponding outcomes y1 and y2 satifies:
||y1 − y2||p ≤ γ.

Definition 8. Let K be the covering numer of D using γ-balls for || · ||p and {D1, ...,DK} be the
partitioned subsets of D as defined above. Let D = {(xi, ti, yi)}mi=1 be the observational data. Let
Ni be the set of index of points of the observational sample (x, t, y) that fall into the Di. Note that
{|N1|, ..., |NK |} is an IID multinomial random variable with parameters m and {µ(D1), ..., µ(DK)}.
By the Breteganolle-Huber-Carol inequality Xu & Mannor (2012), the following holds with probabil-
ity at least 1− δ:

K∑
i=1

∣∣∣∣ |Ni|
m
− µ(Di)

∣∣∣∣ ≤
√

2K ln 2 + 2 ln(1/δ)

m

12
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Then, We have
|ϵF (f,Φ)− ϵ̂F (f,Φ)|

=

∣∣∣∣∣
K∑
i=1

E [L(y, f(Φ(x), t))|(x, t, y) ∈ Di]µ(Di)−
1

m

m∑
i=1

L(yi, f(Φ(x), ti))

∣∣∣∣∣
≤

∣∣∣∣∣
K∑
i=1

E [L(y, f(Φ(x), t))|(x, t, y) ∈ Di]
|Ni|
m
− 1

m

m∑
i=1

L(yi, f(Φ(x), ti))

∣∣∣∣∣
+ |

K∑
i=1

E [L(y, f(Φ(x), t))|(x, t, y) ∈ Di]µ(Di)

−
K∑
i=1

E [L(y, f(Φ(x), t))|(x, t, y) ∈ Di]
|Ni|
m
|

≤

∣∣∣∣∣∣ 1m
K∑
i=1

∑
j∈Ni

max
(x,t,y)∈Di

|L(yj , f(Φ(xj), tj))− L(y, f(Φ(x), t))|

∣∣∣∣∣∣
+

∣∣∣∣∣ max
(x,t,y)∈D

|L(y, f(Φ(x), t))|
K∑
i=1

∣∣∣∣ |Ni|
m
− µ(Di)

∣∣∣∣
∣∣∣∣∣

≤ λpΛpϵ+ Cd
K∑
i=1

∣∣∣∣ |Ni|
m
− µ(Di)

∣∣∣∣
By integrating Definition 8, the proof of Theorem 2 is done.

A.3 PROOF OF THEORY 3

Proof. The result is derived by bounding the two ϵtF (f,Φ) terms in Proposition 1 with the inequality
in Theorem 2.

A.4 RELATED WORK

Estimating individual treatment effect. How to effectively and correctly measure individual
treatment effect has recently attracted increasing attention from the research community. It basically
aims to discover the underlying patterns of the distribution between treated and control group.
To model this character, early methods are based on re-weighting methods Austin (2011); Imai &
Ratkovic (2014); Fong et al. (2018) that is an effective approach to overcome the selection bias induced
by the existence of covariates in observational studies. Another widely used techniques for individual
treatment effect inference are traditional machine learning, including Bayesian Additive Regression
Trees (BART) Hill (2011), Random Forests (RF) Breiman (2001), Causal Forests (CF) Wager &
Athey (2018), etc. These methods have more flexibility and predictive ability in balancing the
distribution between treated and control groups compared to re-weighting methods. In addition, some
promising works like S-Learner Nie & Wager (2021) and R-Learner Künzel et al. (2019) are based
on meta-learning to utilize any supervised learning or statistical regression methods to estimate ITE.
Recent years have witnessed many studies on adapting more sophisticated mechanisms to causal
effect inference, and in particular to measure individual level treatment effect. For example, Causal
Effect Variational Autoencoder (CEVAE) Louizos et al. (2017) leverage Variational Autoencoders
to obtain the unobserved confounders and simultaneously infer causal effects, DragonNet Shi et al.
(2019) design three-head components to predict the treatment effects as well as adjust the distribution
by a process of inferring treatments. Besides, more cutting-edge mechanism like Integral Probability
Metric (IPM) Qin et al. (2021); Johansson et al. (2016) are applied to minimize generalization bound
for ITE estimation, which is composed of factual loss and the discrepancy between the treated and
control distributions. The representative CFR Shalit et al. (2017) method enforce the similarity
between the distributions of treated and control groups in the representation space by a penalty term
IPM. While the boundary of estimation of individual treatment effect from observational data has
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been pushed by these models, an important problem is still under-explored, that is the robustness of
the treatment effect predicted by deep neural networks when their input is subject to an adversarial
perturbation. In this paper, we bridge this gap by proposing two types of regularizations called
Lipschitz regularization and RKHS regularization to the original causal models for encouraging
smoothness as well as improving the generalization performance.

Adversarial machine learning. Adversarial machine learning is a concept describing the study of
robust machine learning techniques against an adversarial perturbations Huang et al. (2011). In the
past few years, in order to facilitate the security and robustness of a model, adversarial machine
learning has been widely applied to the machine learning community. For example, Cisse et al.
(2017); Virmaux & Scaman (2018); Zhang et al. (2021) incorporated some adversarial examples
or robustness regularization into original objective for tackling sensitive issues in neural networks.
In addition to that, some works Deldjoo et al. (2021); Tian & Xu (2021) attempt to enhance the
robustness of recommender system and audio-visual learning model respectively and simultaneously
improve its generalization performance via a way of adversarial optimization framework. Another
important application is in computer vision Santurkar et al. (2019); Elsayed et al. (2018), in which
the adversarial examples are used to enhance the parameters of original model. We realize the idea
of adversarial machine learning in the field of causal inference for estimating individual treatment
effect . More importantly, we provide theoretical analysis on the expected precision in estimation of
heterogeneous effect (PEHE) loss and design two types of regularizations for encouraging robustness.

A.5 IMPLEMENTATION DETAILS.

We implement our methods based on QHTE Qin et al. (2021). We use the same set of hyperparameters
for RITE across three datasets. More specifically, we adopt 3 fully-connected exponential-linear layers
for the representation function Φ and 3 similar architecture layers for the ITE prediction function f .
The difference is that layer sizes are 200 for former, and 100 for latter. Batch normalization Ioffe
& Szegedy (2015) is applied to facilitate training, and all but the output layer use ReLU (Rectified
Linear Unit) Agarap (2018) as activation functions whose Lipschitz constant is less than or equal
to 1. In the main optimization objective, we set α and β both to 1. The more details about the
implementation of all adopted baselines and our methods and full experimental settings are presented
at https://github-rite.github.io/rite/. As introduced in section 4, we use the Wasserstein (RITEWASS)
and the squared linear MMD (RITEMMD) distances to penalize imbalance. To overcome the lack
of robustness in network for RITEMMD method, we also add the robustness regularization to the
main optimization objective. The commonly used metrics including Rooted Precision in Estimation
of Heterogeneous Effect (PEHE) Hill (2011) and Mean Absolute Error (ATE) Shalit et al. (2017) are
applied for evaluating the quality of individual treatment effects. Formally, they are defined as:

√
ϵPEHE =

√√√√ 1

n

n∑
i=1

(τ̂i − τi)
2
, ϵATE = | 1

n

n∑
i=1

(τ̂)− 1

n

n∑
i=1

(τ)| (20)

where τ̂i and τi stand for the predicted ITE and the ground truth ITE for the i-th instance respectively.

ACIC 2016. This is a common benchmark dataset introduced by Dorie et al. (2019), which was
developed for the 2016 Atlantic Causal Inference Conference competition data Dorie et al. (2019).
It comprises 4,802 units (28% treated, 72% control) and 82 covariates measuring aspects of the
linked birth and infant death data (LBIDD). The dataset are generated randomly according to the
data generating process setting. We conduct experiments over randomly picked 100 realizations with
63/27/10 train/validation/test splits.

IHDP. Hill (2011) introduced a semi-synthetic dataset for causal effect estimation. The dataset was
based on the Infant Health and Development Program (IHDP), in which the covariates were generated
by a randomized experiment investigating the effect of home visits by specialists on future cognitive
scores. it consists of 747 units(19% treated, 81% control ) and 25 covariates measuring the children
and their mothers. Following the common settings in Qin et al. (2021); Shalit et al. (2017), We
average over 1000 replications of the outcomes with 63/27/10 train/validation/test splits.

Data Simulation. In order to verify the effectiveness of our framework in unbiased data, we adopt the
generation process proposed in Assaad et al. (2021); Louizos et al. (2017) to simulate the treatment
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Figure 3: t-SNE visualizations of the balanced representations of ACIC learned by our algorithms
RITEMMD and RITEWASS

Figure 4: t-SNE visualizations of the balanced representations of IHDP learned by our algorithms
RITEMMD and RITEWASS

effect as:

xi ∼ N (µX , σ2
X); ti|xi ∼ Bernoulli(σ(xT

i βT ))

ϵi ∼ N (0, σ2
Y ); yi(0) = xTi β0 + ϵi

yi(1) = xTi β0 + xTi β1 + θ + ϵi

(21)

where σ is the logistic sigmoid function. This generation process satisfies the assumptions of
ignorability and positivity. We randomly construct 100 replications of such datasets with 10,000 units
(50% treated, 50% control) and 50 covariates by setting σX and σY both to 0.5, βT , β0 and β1 are
sampled from N (0, 1).

A.6 LEARNED REPRESENTATIONS

In order to provide more intuitive understandings on the provided explanations of the learned
representations between treated and control groups, in this subsection, we conduct the representations
studies, where one replication are randomly picked from ACIC and IHDP, respectively, and all of
hyperparameters are remained in the default state. We compare the learned representations generated
by minimizing our main objective with α = 0 and β = 0, RITEWASS and RITEMMD method in
terms of

√
ϵPEHE and ϵATE . From the results shown in Figure 3 and 4, we can see: compared to the

original data distribution, both RITEWASS and RITEMMD can perform several regions where the
representations are indeed balanced, so that they appear equal in high-dimension space. Furthermore,
between RITEWASS and RITEMMD methods, we can find that some regions illustrated in WASS
distributions appear a strip-like representation, whereas the linear MMD give rise to a rod-like shape
in regions where overlap is small.

A.7 PSEUDO-CODE OF RITE

The complete algorithm and detailed information about datasets are presented in Algorithm 1 and
Table 3.
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Algorithm 1: Learning algorithm of our model
1 Indicate the observational data (x1, t1, y1), ..., (xm, tm, ym).
2 Indicate the scaling parameter α and β .
3 Initialize all the model parameters.
4 Indicate the epoch number E.
5 Compute u = 1

m

∑m
i=1 ti.

6 Compute wi =
ti
2u + 1−ti

2(1−u) for i = 1, ...,m

7 for e in [0, E] do
8 Sample mini-batch data B from D
9 Compute the gradients of the regularization:

g1 = ∇WβR(f)

10 Compute the gradients of the IPM term:

g2 = ∇WαIPMG(p̂
t=1
Φ , p̂t=0

Φ )

11 Compute the gradients of the empirical loss:

g3 = ∇W
1

|B|

|B|∑
i=1

wiL(yi, f(Φ(xi), ti))

12 Obtain the step size scalar η with the Adam
13 Update the parameters:

W ←W − η(g1 + g2 + g3)

14 end

Table 3: Statistics of the datasets used in our experiments.
Dataset #Replications #Units #Covariates Treated Ratio Control Ratio
ACIC 100 4,802 82 28% 72%
IHDP 1,000 747 25 19% 81%
Sim 100 10,000 50 50% 50%
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