Under review as a conference paper at ICLR 2026

DYNAMIC RANK ADJUSTMENT FOR ACCURATE AND
EFFICIENT NEURAL NETWORK TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-rank training is a primary strategy for efficient deep learning, but it presents
a fundamental challenge. It reduces computational cost, yet it permanently caps a
model’s representational capacity and accelerates the rank collapse that diminishes
its expressive power during training. We address this with dynamic-rank training,
a framework built on the intuition that a model can temporarily escape its low-
rank constraints to restore its full learning potential. Our approach strategically
interleaves full-rank epochs within a low-rank schedule, with the timing of these
restorative phases aligned with the learning rate’s noise regimes to maximize their
effect. This enables the model to regain expressive power at critical stages of
training by restoring the effective rank of its weights. Our extensive evaluations
across various computer vision and natural language processing benchmarks show
that the dynamic-rank method achieves the accuracy of full-rank models while
retaining the computational advantages of low-rank training.

1 INTRODUCTION

Low-rank reparameterization methods have been actively studied for efficient training of large neu-
ral networks. Low-rank training strategies typically reduce the number of trainable parameters by
applying matrix decompositions to a model’s weight matrices. While this approach lowers train-
ing cost, it permanently caps the maximum attainable rank of those matrices, thereby limiting the
model’s ability to learn complex patterns. Moreover, recent studies report that the effective rank of
the weights tends to decline during training (Xie et al., 2017; Huang et al., 2025). Therefore, to train
large neural networks efficiently while preserving their learning capacity, it is crucial to address the
decline in weight-matrix rank that occurs during low-rank training.

Singular value decomposition(SVD)-based low-rank training (Jaderberg et al., 2014) is among the
most popular re-parameterization techniques. Other tensor factorizations, such as Tucker (Kim et al.,
2015) and CP (Lebedev et al., 2014) decompositions, have likewise been adopted to enable low-rank
training. More recently, low-rank fine-tuning methods have been proposed, including LoRA (Hu
et al., 2022), AdaLoRA (Zhang et al., 2023), LoRA-GA (Wang et al., 2024), DoRA (Liu et al.,
2024), and SLTrain (Han et al., 2024). Although these approaches reduce the number of trainable
parameters, they often overlook the progressive decline in the effective rank of the weights, which in
turn compromises learning capability. Some regularization methods, such as soft orthogonal regular-
izer (Xie et al., 2017) and its variants (Bansal et al., 2018; Kim & Yun, 2022), focus on tackling the
rank decline issue. However, they incur higher computational cost and memory overhead, making
them less practical for training large neural networks.

This study explores how to mitigate the decline in the effective rank of model weights in low-rank
training. Our key finding is that interleaving a few full-rank epochs within low-rank training effec-
tively restores the model’s effective rank. Specifically, we analyze how run-time rank adjustment
affects the singular value spectrum of the model weights, and we present a practical strategy for
adjusting the rank during training to mitigate the decline in effective rank. Our theoretical analysis
and empirical study demonstrate that dynamic rank adjustment matches the accuracy of full-rank
training while retaining the system efficiency of low-rank methods.

Another key finding is that the effectiveness of rank adjustment is closely coupled with the learning
rate. Our study shows that full-rank epochs should be scheduled according to the noise scale induced
by the learning rate. In general, the learning rate tends to be initialized to a large value and then

Under review as a conference paper at ICLR 2026

Table 1: Feature-wise comparison across representative low-rank training methods.

. . Parameter Rank Pre-training ~ Noise-scale ~ Decomposition
Low-rank Training Method -efficient Recovery ~ Compatible Aware Agnostic
SVD-based Low-rank (Jaderberg et al., 2014) 4 X v X X
TKD-CPD (Phan et al., 2020) v X v X X
GKPD (Hameed et al., 2022) v X v X X
Soft Orthogonality (Xie et al., 2017) X v v X v
SRIPT (Kim & Yun, 2022) X v v v v
LoRA (Hu et al., 2022) v X X X v
AdaLoRA (Zhang et al., 2023) v X X X X
PELA (Guo et al., 2024) v X X X v
SLTrain (Han et al., 2024) v X X X v
SparseLoRA (Khaki et al., 2025) v X X X v
Dynamic-rank (proposed) v v v v v

progressively decayed during training. In this study, we analyze how the learning rate affects the
gap between low-rank and full-rank updates and, based on this analysis, propose a general rank
scheduling framework that maximizes the benefits of interleaving full-rank epochs within low-rank
training. Table 1 provides a feature-wise comparison of various low-rank training methods.

To the best of our knowledge, this is the first study to explore the benefits of interleaving full-rank
training with low-rank training and to demonstrate the efficacy of a dynamic rank adjustment tech-
nique. We evaluate the proposed dynamic-rank training framework through extensive empirical
studies on computer vision and natural language processing benchmarks. Furthermore, we bench-
mark our approach against state-of-the-art (SOTA) low-rank training techniques and regularization
methods designed to restore effective rank. Across all experiments, we find that dynamic-rank train-
ing achieves accuracies comparable to full-rank training while significantly reducing computational
costs, similar to conventional low-rank approaches. In addition, our results show that the proposed
method integrates seamlessly with low-rank training when combined with soft-orthogonality (SO)
regularization, confirming that the two techniques are complementary.

2 BACKGROUND

Low-rank Re-parameterization — Low-rank reparameterization is a model approximation tech-
nique that is popularly used in large neural network training. Given a model weight matrix W,
a matrix decomposition method is applied to W before training begins. For example, if SVD is
used, W € R™*"™ is decomposed to two smaller matrices A € R™** and B € R™** such that
W = ABT, where k < m and k < n. As k decreases, the total number of model parameters is
reduced, thereby lowering the computational cost of training. However, the reconstructed weight
matrix can have up to k ranks, resulting in the limited learning capability.

Learning Rate and Noise Scale — In previous works, learning rate is known to play a key role
in determining generalization performance of machine learning models. It has been theoretically
shown that the noise scale ¢ in gradient approximation is determined by the learning rate and batch
size, as follows (Smith et al., 2017): g &= nN/B, where 7 is learning rate, N is the dataset size, and
B is the mini-batch size. This relation links learning rate schedules to the notion of noise scale. In
early training, a large noise scale helps the model explore and shape the decision boundary (Li et al.,
2019; Lee et al., 2023), consistent with the common practice of decaying the learning rate. In this
study, we investigate the relationship between the noise scale and the rank of model’s weights.

3 RELATED WORK

Low-rank Reparameterization Methods — Several studies have explored the use of low-rank re-
parameterization techniques including singular value decomposition, Tucker decomposition, and CP
decomposition methods (Jaderberg et al., 2014; Kim et al., 2015; Lebedev et al., 2014). Recently,
GKPD proposed to re-parameterize the model weights using Kronecker-product decomposition and
demonstrated promising performance (Hameed et al., 2022). PELA applies low-rank training to the
pre-training phase to reduce the computational cost of training (Guo et al., 2024). FLANC uses a
customized tensor decomposition method to enable direct model aggregations across clients in the
context of federated learning (Mei et al., 2022). FedPara combines decomposition methods and the

Under review as a conference paper at ICLR 2026

Full-rank Training Low-rank Training

~
o

7
/
/

o
o

N
o

Maximum ¢ / Minimum o

Maximum ¢ / Minimum o

Figure 1: Comparison of the layer-wise singular-value spectral ratio () across different model
ranks during ResNet20 training on CIFAR-10. The left plot shows layer-wise A curves for full-rank
training, while the right plot shows those for SVD-based low-rank training. We omit the legend
since there are too many layers. Throughout the whole training, most layers in the re-parameterized
model exhibit large A values, indicating convergence to a low-rank space.

Hadamard product to enhance the representation capacity of re-parameterized models (Hyeon-Woo
et al., 2021). TKD-CPD jointly utilize Tucker and CP decompositions (Phan et al., 2020). While
these methods effectively reduce the number of trainable parameters and thus the computational and
communication costs, they do not consider the inherent rank decline issue.

Low-rank Fine-tuning Methods — Low-rank Adaptation (LoRA) (Hu et al., 2022) is one of the
most popular applications of re-parameterization technique, particularly in the context of fine-tuning.
The importance of singular values under LoRA’s context is deeply analyzed in (Ke et al., 2024).
AdalLoRA (Zhang et al., 2023) is a variant of LoORA which dynamically controls the rank of layers
within a fixed total parameter budget. DoRA (Liu et al., 2024) separately fine-tunes the magnitude
and the direction, based on LoRA. SLTrain (Han et al., 2024) leaves a sparse and frozen matrix
besides the adaptor. LORA-GA (Wang et al., 2024) initializes adapters using a subset of eigenvectors
of gradient matrices. SparseLoRA (Khaki et al., 2025) decomposes pretrained weights using SVD.

Rank Recovery Methods — Some regularization methods have been proposed to address the issue
of inherent rank decline. Soft orthogonality (SO) is the basic regularization method which mini-
mizes the difference between Gram matrix of the weight matrix and the identity matrix (Xie et al.,
2017). Double soft orthogonality (DSO) is a variant of SO which considers the regularization with
overcomplete and undercomplete Gram matrices (Bansal et al., 2018). Spectral Restricted Isometry
Property (SRIP) is a variant of RIP (Candes & Tao, 2005) that minimizes the spectral norm of the
difference between the Gram matrix of a weight matrix and the identity matrix. Another study pro-
pose a sine-activated low-rank training strategy that is also designed to restore the model weight’s
rank (Ji et al., 2024). These methods commonly recover the effective rank of model weights, how-
ever, the rank cannot exceed the hard limit imposed by the low-rank reparameterization. In this
study, we focus on how to overcome this limitation by adjusting the model rank at run-time.

3.1 MOTIVATION

Recently, it has been theoretically shown that the rank of gradients tends to decrease as training
progresses (Huang et al., 2025; Xie et al., 2017). Consequently, given a fixed training dataset and
a large number of repeated training steps, the model weights are also expected to exhibit a similar
reduction in rank.

As the singular value spectrum of model weights becomes more skewed, only a few singular vectors
capture most of the information, while those associated with smaller singular values contribute little
to the model’s representational capacity. We empirically verify this tendency by analyzing the ef-
fective rank of neural networks throughout training. To quantify how rapidly the model loses rank,
we define layer-wise singular value spectral ratio, \!, as follows.

ol

N = % le[L], €]

min

where [L] denotes the set of all network layers, and o,

and o' . are the maximum and minimum
singular values of layer [, respectively. Assuming that ¢!, remains reasonably small, an increase
in A indicates that o

min 1S approaching zero, meaning the model is losing its rank.

Under review as a conference paper at ICLR 2026

Figure 1 shows how \! changes during the training of ResNet20 on CIFAR-10. On the left-side (full-
rank model training), only three layers show noticeable rank reduction while the effective ranks of
all other layers remain quite stable throughout the training. On the right side (reparameterized to half
rank at all convolution layers), most layers exhibit much higher A\ values compared to the full-rank
training, resulting in a final model with low ranks in most layers. The full rank training achieves a
validation accuracy of 92.23%, while the low-rank reparameterized training yields 91.08%. Based
on this observation, we conclude that low-rank model reparameterization can significantly reduce
the rank of model weights, thereby harming the model’s representational capacity.

Based on this empirical study, we can derive one critical insight as follows.

As the model is reparameterized to a lower rank,
the rank of its weights tends to decrease more rapidly.

Therefore, having full-rank epochs in the middle of training is expected to mitigate the rapid decline
in the effective rank of model weights. This insight motivates the design of a general model rank
adjustment framework, which we describe in the following section.

4 DYNAMIC-RANK TRAINING FRAMEWORK

In this section, we propose a general dynamic-rank training framework that temporarily increases
the rank of the model’s weight matrices at selected points during training. We first formalize rank
inflation and deflation, then discuss how to schedule rank adjustments. In particular, we provide
two key insights for placing full-rank epochs within low-rank training to maximize rank restoration.
Figure 2 illustrates the proposed framework.

4.1 MODEL RANK ADJUSTMENT

We first define two directions of model rank adjustment, inflation and deflation, as follows. For sim-
plicity, we use the notation of SVD-style low-rank reparameterization, but it can be easily replaced
with other methods such as Tucker or CP decompositions.

Model Inflation — Low-rank train-
ing can be implemented in two dif- Off-line Reparameterization

ferent forms, vanilla low-rank repa- (SVD, Tucker, or CP) T .
rameterization and low-rank adaptation, w=uwT Mﬁfmﬁﬁ 5
LoRA (Hu et al., 2022). Without loss 4 3
. . . Original Model __~ Model Inflation
in generality, we define model infla- I il | -
tion process as follows. Given low- <
rank model weights A € R™** and On-line Rank Adjustment - B
B € R™** and base parameter W € =
R™*™, the model is inflated such that “ Model Deflaton T~ b5
W < W; + AB'. Consequently, the 5
: : PR I Model Inflation Epoch 3
maximum available rank is increased | p. el Defiation Epoch m/iﬁfmﬁﬂ 3
from k to n. If the low-rank model fol- E : Total Training Epochs I S

lows the standard low-rank reparameter-
ization, the initial weight matrix Wy is
set to the zero matrix, i.e., 0,,,x . Please
see Appendix for the case of convolu-
tional layers.

Dynamic-rank Training

Figure 2: A schematic illustration of dynamic-rank train-
ing framework.

Model Deflation — Given a model weight W, the model is deflated by attaching a low-rank adaptor
path next to the original weight such that W; + ABT < W, where W; € R™*" is the given
model weight matrix and A € R™** and B € R"** are low-rank model weights. The provided
weight matrix is frozen as Wy, and only A and B are trained. A and B can be initialized using
either random distributions or zero matrices. Note that this naturally resembles LoRA when SVD is
used as the reparameterization method.

Under review as a conference paper at ICLR 2026

=
g 20 310
Inflate: 50, Deflate: 100 g <
(High-noise regime only) g 1.6 8 08| bl l‘.'""{"uJ i
o | 5 Y ' '“V AT -
Inflate: 75, Deflate: 125 &5 4, 3 W
; = I <
(Both regimes) P c
8 08 o 06 !
Inflate: 100, Deflate: 150 = ¥- s
(Low-noise regime only) 2 S— ® ‘
€ 04 2 04 :
:_,E 0 50 100 150 0 50 100 150
Training Epochs Training Epochs

Figure 3: CIFAR-10 (ResNet20) benchmark with various dynamic-rank schedules. Inflate and
Deflate indicate the epoch where the model rank is increased and decreased, respectively. The best
accuracy is achieved when the full-rank epochs are located in both high-noise and low-noise regimes.

These model rank adjustment procedures incur extra computations during training, however, when
the epoch budget F is sufficiently large, the extra computational cost typically becomes negligible.
We now turn our attention to when the model rank should be inflated or deflated during training.

4.2 MODEL RANK SCHEDULING

Here, we discuss how to determine appropriate timings for adjusting the model rank, taking into
account the common practice of using learning rate decay for noise control in modern deep learning.
Let the total training budget be E epochs. Training begins in a low-rank form, with the rank of the
model weights increased at epoch I and reduced back at epoch D. That is, training is performed
in the full-rank space for D — I epochs and in the low-rank space for the remaining £ — (D — I)
epochs. Under this setting, the key question is what values of I and D are optimal. We first present
two practical principles for choosing I and D to maximize rank recovery.

Full-rank training should be performed in both high-noise and low-noise regimes — We propose
having full-rank epochs both before and after the learning rate decay. This ensures that all ranks are
sufficiently exposed to different learning rates during training. After deflating the model, only &
ranks are updated in the adaptor and the remaining n — k ranks stay frozen until the model is inflated
again. Thus, if the model is deflated before learning rate decay, the n — k ranks do not get trained
under the low-noise regime, potentially causing underfitting and reduced accuracy.

In contrast, if full-rank training is performed only in the low-noise regime, the model is likely to
suffer from poor generalization performance. It has been shown that training in a high-noise regime
during the early phase improves generalization performance (Li et al., 2019; He et al., 2019; Lee
et al., 2023). Therefore, if the model is inflated for the first time in the low-noise regime, the n — k
ranks will be trained only with a small learning rate, potentially degrading the model’s generalization
performance. Moreover, scheduling the full-rank epochs later reduces the training iterations for the
adapter’s k ranks, potentially causing underfitting.

Figure 3 presents empirical results supporting our argument. We trained ResNet20 on CIFAR-10
under three schedules, each with full-rank training epochs inserted at different points. The model is
reparameterized with SVD to reduce its rank by half. Because the learning rate decays after epoch
100, the first and third schedules correspond to full-rank epochs in the high-noise and low-noise
regimes, respectively. As expected, the best accuracy is achieved when full-rank epochs are located
in both noise regimes. The curves spike during deflation as a randomly initialized low-rank adaptor
is attached and begins training. The yellow and orange curves clearly exhibit underfitting and low
accuracy. Based on this analysis, we conclude that full-rank training should be applied in both
high-noise and low-noise regimes to sufficiently train the model.

Full-rank training should be at the end of the high-noise regime and the early low-noise regime
— First, we define the effective rank of W, denoted by r, as the number of singular values that are
significantly greater than zero. We analyze rank bounds of the reconstructed model as follows.

Proposition 1. Suppose model weight matrices: Wo € R™*", A € R™** and B € R"** and a
re-constructed matrix W = W + ABT. Assuming that the effective rank of Wy is r, the rank of
the reconstructed matrix W is bounded between max{0, r — k} and min{m,n,r + k}.

Under review as a conference paper at ICLR 2026

Table 2: Comparison of singular-value spectral ratio () across different rank-adjustment schedules.
The I and D indicate rank inflation and deflation, respectively. ResNet20 was trained on CIFAR-10
for 150 epochs, with the learning rate reduced by a factor of 10 at epochs 100 and 130.

Setting I D Acc. A0 A0 L8

None - 91.14% 9] 7.58 [e'S)

Early 0 50 91.26% 59.32 6.02 76.47
Middle 25 75 91.82% 39.29 4.27 74.18
Late 50 100 91.87% 37.51 4.19 70.36

Proof. First, re-write each matrix as a summation of rank-1 matrices such that Wy = Z;Zl u; va

and ABT = Z§:1 a;jb; . Consequently, W = 3" u;v | + Z?Zl a;b, . The minimum rank of
W is r — k if the k rank-1 matrices in AB" eliminate k rank-1 components of Wy. On the other
hand, the maximum rank of W is r + k if the k rank-1 matrices in ABT are orthogonal to all &k
components of Wy,. Therefore, considering appropriate caps, the rank of the reconstructed matrix

W is bounded between max{0,r — k} and min{m,n,r + k}. O

This analysis suggests that the rank of the reconstructed model weights is closely tied to the rank
of Wy, the frozen weights. In particular, performing full-rank training right before deflating the
model maximizes r, enabling the model to maintain a high effective rank. The full-rank training
budget, D — I, may be smaller than the number of epochs before the first learning rate decay. In
such cases, training will naturally begin with a low-rank reparameterized model, which will then be
inflated before the learning rate decay.

To connect theory and practice, we compare weight ranks under different rank schedules in Table 2.
We perform CIFAR-10 (ResNet-20) training with the learning rate decaying at epoch 100. The
rightmost three columns show A for layers 0, 10, and 18 (near the input, middle, and output). In the
conventional low-rank training (None), Ao and \ig are very large, indicating widely spread spectra
and effective rank loss. As full-rank training is applied later, the singular value spectra become
narrow (smaller A values). These results demonstrate that the full-rank budget should be placed
toward the end of the high-noise regime.

Now, let us discuss the impact of full-rank training in the low-noise regime. Once the learning rate
decays, the rank of the model weights does not dramatically change due to the reduced magnitude
of updates. Instead, what matters more is the extent to which low-rank training pushes the model
away from the full-rank convergence point. The following proposition formalizes this relationship.

Proposition 2. As the learning rate decays, the gap between the full-rank model update and the
low-rank model update is expected to decrease.

Proof. The gradient of adaptor weights, A € R™** and B € R™"** are written as Vf(ABT)B ¢
R™*F and VF(ABT)T A € R"**, respectively. So, the reconstructed model is:
Wi =AB/y
= (A= 7V f(Wi)B,) (B, —nV f(Wo)"A,)
=AB/ —Vf(W)BB/ —AA V(W) +1°Vf(W)BA V(W)

Since AtBtT = W,, the remaining three terms on the right-hand side can be considered as the
low-rank update. For simplicity, we shorten the terms as follows.

X := Vf(W)BB'
Y ;= AATVF(W)
Z = Vf(W)BATVf(W)
Then, the difference between the full-rank update V f (W) and the low-rank update, d becomes:

d = [[Vf(Wye) =0 (=Xe = Yy +0Zy)|| p 2)
Based on triangle inequality, (2) is upper-bounded as follows.
de < [VFW)llp + 01 Xellp + 0 Yellp + 07 [Ze] - 3)

Under review as a conference paper at ICLR 2026

Then, | X;|| r on the right-hand side can be further bounded as follows.
Xi=|Vf(W)BB'|r
<|IVF(Wo)lr- BB
= [IVA(Wo)lr- 1Bl
The same procedure can be applied to the Y and Z terms, yielding
dy <[VF(Wo)llr (1+nllAdlz +nlB:l3)
+ 2 [VEW) e (IVF W)z - [Allz - [1Bell2) -

According to the bound above, the difference d; is expected to decreases as 7 decays. O

For clarity, we omit W from the analysis. Incorporating W, into each step of the proof to recover
LoRA-style low-rank training is straightforward. The above analysis shows that full-rank train-
ing should be performed as early as possible in the low-noise regime to minimize d;. In general,
most popular learning rate schedules monotonically reduce the learning rate over time. Therefore,
scheduling full-rank epochs earlier tends to result in a smaller accumulated difference,) _, d;, over
the remaining training epochs.

4.3 UNIFIED RANK ADJUSTMENT FRAMEWORK

Based on the two key insights discussed above, we build up a general model rank adjustment frame-
work as shown in Figure 2. The training begins in a low-rank space. The model’s rank is adjusted
twice throughout the training, increased in a high-noise regime and then decreased in a low-noise
regime. In our empirical study, we observed reasonably good performance when I is set to the mid-
dle of high-noise regime and D to the middle of low-noise regime. For example, given E = 150,
if learning rate decays at epoch 100, we recommend beginning with I = 50 and D = 125 and then
fine-tune these values to minimize training time while maintaining model accuracy. The pseudocode
is provided in Appendix A.1.

5 EXPERIMENTS

Experimental Settings — We evaluate dynamic-rank training framework on three computer vision
benchmarks: CIFAR-10 (Krizhevsky et al., 2009) (ResNet20), CIFAR-100 (Wide-ResNet28-10),
and TinylmageNet (mnmoustafa & Ali, 2017) (ResNet50), and natural language processing (NLP)
datasets in GLUE (Wang et al., 2018) (DeBERTaV3-base (He et al., 2021)) benchmark. All ex-
periments were conducted on a GPU server with two NVIDIA RTX 4090 GPUs. Each experiment
was repeated at least twice, and we report the mean accuracy with standard deviation. The detailed
hyperparameter settings are presented in the Appendix.

5.1 COMPARATIVE STUDY

Computer Vision Benchmarks — To evaluate the performance of our dynamic-rank training strat-
egy, we compare it with several low-rank reparameterization methods, including SVD, Tucker, and
CP decompositions. We also compare it with TKD-CPD (Phan et al., 2020), a recently proposed
low-rank training method that jointly utilizes Tucker and CP decompositions. Table 3 shows the
results. See Appendix for I and D settings. The Rank Ratio p indicates the ratio of the repa-
rameterized weight rank to the original weight rank. Comp. refers to the average proportion of
trainable parameters during training. Across all benchmarks, low-rank training leads to noticeable
accuracy drops. Increasing p to 0.75 narrows the gap but still falls short of full-rank performance.
In contrast, dynamic-rank training achieves full-rank accuracy at a computational cost similar to
the p = 0.75 setting. TKD-CPD dramatically reduces computation but yields the lowest accuracy
among low-rank methods. Applying dynamic-rank training to TKD-CPD restores its accuracy to a
level comparable to full-rank training.

Natural Language Processing Benchmarks — We validate dynamic-rank training framework by
fine-tuning the DeBERTaV3-base on § datasets from GLUE benchmark (Wang et al., 2018). In fine-
tuning, there is no high-noise regime, as the learning rate is set to a small value and remains in the

Under review as a conference paper at ICLR 2026

Table 3: Comparison of CV benchmarks across various low-rank training methods. The dynamic-
rank method consistently improves accuracy while effectively reducing computational cost.

CIFAR-10 (ResNet20) CIFAR-100 (WRN28-10) Tiny ImageNet (ResNet50)

Method Rank Ratio p Acc. Comp. Acc. Comp. Acc. Comp.

Full-Rank 1.00 92.15+0.1% 1.00 78.82+0.1% 1.00 60.32+0.1% 1.00

SVD 0.50 91.19 £0.1% 0.57 73.57+0.1% 0.56 54.90+0.1% 0.79
0.75 91.56 £0.1% 0.84 76.90+0.1% 0.84 56.16+0.1% 0.92
Dynamic Rank (SVD) 0.50 92.13+0.1% 0.76 78.61+0.2% 0.64 61.80+0.1% 0.85

0.50 90.27+£0.1% 0.41 68.77+0.1% 0.39 60.62+0.1% 0.69

Tucker 0.75 91.50 £0.1% 0.79 79.68 £0.2% 0.77 61.07+0.7% 0.87
Dynamic Rank (Tucker) 050 9210 +0.1% 070 7848 £0.1% 0.66 61.25+0.1% 0.84
o 0.50 88.314+0.1% 031 6555+0.1% 0.30 42.05+0.1% 0.65

075 88.90+0.1% 0.59 65.32+0.1% 0.57 43.12+0.1% 0.78
Dynamic Rank (CP) 0.50 91.33+0.1% 0.61 78.61+0.3% 0.65 59.56+0.5% 0.83

050 87.994+0.1% 021 58.90+0.1% 0.18 34.53+0.1% 0.60
TKD-CPD (Tucker + CP) 0.75 89.62+0.1% 035 60.224+0.1% 0.31 34.84+0.1% 066

Dynamic Rank (TKD-CPD) 0.50 91.24+0.1% 055 173.96+0.3% 059 60.06+0.5% 0.80

Table 4: Comparison of NLP benchmark performance on GLUE (DeBERTaV3-base). The dynamic-
rank method achieves the best accuracy while maintaining substantially lower computational cost.

Method CoLA MNLI ~ MRPC QNLI QQP RTE SST-2 STS-B Avg Comp.
Full Fine-Tuning 0.675 0.9018 0.8995 0.9397 0.9222 0.8375 0.9587 0.9097 100% 1.000
LoRA (Hu et al., 2022) 0.6333 0.8874 0.8799 0.9192 0.8922 0.7978 0.9461 0.9021 97.2% 0.014
AdaLoRA (Zhang et al., 2023) 0.6529 0.8891 0.8431 0.9183 0.8891 0.8086 0.9495 0.8943 97.1% 0.017
DoRA (Liu et al., 2024) 0.6579 0.8929 0.8774 0.9176 0.8924 0.7617 0.9506 0.8970 97.1% 0.014
SLTrain (Han et al., 2024) 0.6652 0.8913 0.8848 0.9174 0.8934 0.7833 0.9461 0.8987 97.6% 0.018

LoRA-GA (Wang et al., 2024) 0.6409 0.8899 0.8602 0.9156 0.8904 0.7617 0.9472 0.8962 96.4% 0.014
SparseLoRA (Khaki et al., 2025) 0.6675 0.8898 0.8898 0.9148 0.8900 0.7653 0.9438 0.8960 97.3% 0.014
Dynamic Rank (SVD) 0.6752 0.8959 0.8886 0.9264 0.9062 0.8267 0.9472 0.9087 99.0% 0.115

low-noise regime throughout training. Therefore, in these experiments, we place full-rank epochs at
the beginning of fine-tuning.

We compare our dynamic-rank method with the following SOTA low-rank fine-tuning methods:
LoRA, AdaLLoRA, DoRA, SLTrain, LORA-GA, and SparseLoRA. AdalLoRA follows a similar prin-
ciple to our dynamic-rank method, adjusting the rank at run time. However, it requires costly SVD
operations during training, whereas our method avoids explicit decomposition of the weight matri-
ces. DoRA and LoRA-GA have exactly the same computational cost as LoRA because they focus
on the initialization of adaptor weights. SparseLoRA has fewer frozen parameters than LoRA, but
the number of trainable parameters is the same.

Table 4 reports the fine-tuning performance on GLUE tasks. The Avg column shows the relative
performance with respect to full fine-tuning, averaged over the 8 tasks. All the SOTA methods
substantially reduce computational cost compared to full fine-tuning. LoRA is the most efficient
but suffers from a noticeable drop in accuracy. Other methods alleviate this drop, however the
gap from full fine-tuning accuracy remains non-negligible. By contrast, the dynamic-rank training
achieves accuracy comparable to the full fine-tuning. This comparison demonstrates that, although
the dynamic-rank scheme slightly increases the computational cost compared to LoRA, it effectively
restores the effective rank of the model weights, thereby improving the fine-tuning accuracy.

Dynamic-rank Training with Regularization
— Our dynamic-rank training strategy is read- Table 5: CIFAR-10 (ResNet20) accuracy compar-
ily applicable to regularization methods de- ison between with and without applying the pro-

signed to restore the reduced effective rank. posed method to SOTA rank recovery methods.
Table 5 shows CIFAR-10 benchmark results

with three regularization methods, soft orthog- Setting Low-rank Dynamic Rank

onality (SO) (Xie et al., 2017), double soft or- 1oy ranksvp (0.5) 91.14 £0.1% 9209 +0.1%

thogonality (DSO) (Bansal et al., 2018), and Low-rank SVD (0.5) + SO 91.61 4+ 0.1% 92.35 + 0.2%

SRIP+ (Ki]ﬂ & Yun ')022) These regu- Low-rank SVD (0.5) + DSO 91.76 £ 0.4% 9249 + 0.1%
. . .- ; Low-rank SVD (0.5) + SRIPT 91.50 4+ 0.0% 92.23 + 0.2%

larizers effectively improve the accuracy of

SVD-based low-rank training. When combined

Under review as a conference paper at ICLR 2026

with dynamic-rank training, they yield consistent accuracy gains across all regularizers. Therefore,
the two are complementary, and their combination achieves high accuracy at low computational cost.
However, these regularizers consume a large amount of memory space to compute Gram matrices,
and the overall memory footprint may substantially increase as they are combined with dynamic-
rank training.

Parameter Heatmap Comparison
— Figure 4 shows a parameter value
comparison between low-rank and
dynamic-rank trainings. We draw
heatmaps with 4-D weight tensors
of size 3 X 3 x 64 x 64 obtained
from the largest convolution layer in
ResNet20. The tensors are reshaped
to 192 x 192 2-D matrices. To show
the difference more clearly, we re- Low-rank Training Dynamic-rank Training
constructed the tensor from the low-

rank reparameterized weights using Figure 4: Parameter comparison between low-rank and
50 singular vectors corresponding to dynamic-rank trainings. The heatmap shows the weights of
the smallest singular values. The the largest convolution layer in ResNet20 after training.
low-rank map exhibits blocky arti-

facts, whereas the dynamic-rank map does not. The presence of the artifacts implies the existence of
anull space in certain directions of the feature space, meaning that variations in the input along those
directions do not affect the output. This result is well aligned with the model accuracy comparisons.
Therefore, we conclude that the dynamic-rank method well restores the effective rank of the model,
thereby better exploiting representation capacity.

Parameter Value
0.07650

Parameter Value

0.0020
0.0012 0.04610
0.0005 0.01570
-0.0003 -0.0147¢
-0.0010 -0.0451(

-0.0017 -0.0755(

5.2 COMPUTATIONAL COST ANALYSIS

Here, we analyze the computational overhead of dynamic-rank training, which is shown in Comp.
columns in Table 3 and 4. First, the full-rank training cost is calculated as

Tp=FE-d, “4)
where E is the total number of epochs and d is the model size. Then, the low-rank training cost is
Tsvp=05 = E-dsvp=os5, ®)

where the subscription SV D = 0.5 indicates the model is reparameterized using SVD and the rank
reduction ratio p = 0.5. Finally, our dynamic-rank training cost is calculated as

Tpr=(D—1)-d+ (E— (D —-1))-dsyp=o.s. (6)

Thus, if p is the same, Tpgr should be higher than Ty p and lower than Tr. E.g., ResNet20
contains 272,762 trainable parameters and the reparameterized model with SVD (p = 0.5) has
155,170 parameters. When E = 150, I = 60, and D = 135, where ¢ = 0.5, Tpr/Tr becomes
0.7844, which is shown in Comp. column in Table 3. Our empirical study shows that a relatively
small D — I, achieved by carefully tuning I and D, yields accuracy comparable to full-rank training,
while bringing the cost close to that of conventional low-rank training.

6 CONCLUSION

In this study, we propose a dynamic-rank training framework that restores the effective rank of
model weights while preserving the efficiency of low-rank training. We also present two key in-
sights for maximizing rank recovery by strategically interleaving full-rank epochs within low-rank
training. Our extensive empirical study demonstrates that scheduling full-rank epochs at the end
of the high-noise regime and the beginning of the low-noise regime maximizes the recovery of the
model’s effective rank, thereby improving accuracy. The proposed dynamic-rank training scheme is
general and readily applicable to any deep learning applications. We believe that harmonizing the
proposed dynamic-rank training and other compute-efficient neural network training methods can be
a promising future work. Additional discussion on potential limitations and future work is provided
in Appendix A.7.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Our experimental software was developed using PyTorch 12.6. The experimental results were col-
lected on a GPU server that contains two NVIDIA RTX 4090 GPUs. The detailed dataset informa-
tion, data pre-processing, and hyper-parameter settings are provided in Appendix A.2. The model
inflation and deflation steps with Tucker and CP decompositions are described in Appendix A.3.
The detailed implementation of model rank adjustment at convolution layers are described in Ap-
pendix A.4. We will make our software publicly available once the paper is published.

REFERENCES

Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. Can we gain more from orthogonality regu-
larizations in training deep networks? Advances in Neural Information Processing Systems, 31,
2018.

Emmanuel J Candes and Terence Tao. Decoding by linear programming. IEEE transactions on
information theory, 51(12):4203-4215, 2005.

Daniel Cer, Mona Diab, Eneko Agirre, Ifiigo Lopez-Gazpio, and Lucia Specia. SemEval-2017 task
1: Semantic textual similarity multilingual and crosslingual focused evaluation. In SemEval,
pp- 1-14, Vancouver, Canada, August 2017. Association for Computational Linguistics. doi:
10.18653/v1/S17-2001. URL https://aclanthology.org/S17-2001/.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
IWP, 2005.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and William B Dolan. The third pascal recog-
nizing textual entailment challenge. In ACLPASCAL, pp. 1-9, 2007.

Yangyang Guo, Guangzhi Wang, and Mohan Kankanhalli. Pela: Learning parameter-efficient mod-
els with low-rank approximation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 15699—15709, 2024.

Marawan Gamal Abdel Hameed, Marzieh S Tahaei, Ali Mosleh, and Vahid Partovi Nia. Convo-
lutional neural network compression through generalized kronecker product decomposition. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 771-779, 2022.

Andi Han, Jiaxiang Li, Wei Huang, Mingyi Hong, Akiko Takeda, Pratik Jawanpuria, and Bamdev
Mishra. Sltrain: a sparse plus low-rank approach for parameter and memory efficient pretraining,
2024. URL https://arxiv.org/abs/2406.02214.

Fengxiang He, Tongliang Liu, and Dacheng Tao. Control batch size and learning rate to generalize
well: Theoretical and empirical evidence. Advances in neural information processing systems,
32,2019.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style
pre-training with gradient-disentangled embedding sharing. arXiv preprint arXiv:2111.09543,
2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. /CLR, 1(2):3, 2022.

Jia-Hong Huang, Yixian Shen, Hongyi Zhu, Stevan Rudinac, and Evangelos Kanoulas. Gradient
weight-normalized low-rank projection for efficient llm training. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39, pp. 24123-24131, 2025.

Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. Fedpara: Low-rank hadamard product for
communication-efficient federated learning. arXiv preprint arXiv:2108.06098, 2021.

Shankar Iyer, Nikhil Dandekar, Kornél Csernai, et al. First quora dataset release: Question pairs.
data. quora. com. 2017.

10

https://aclanthology.org/S17-2001/
https://arxiv.org/abs/2406.02214

Under review as a conference paper at ICLR 2026

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks
with low rank expansions. arXiv preprint arXiv:1405.3866, 2014.

Yiping Ji, Hemanth Saratchandran, Cameron Gordon, Zeyu Zhang, and Simon Lucey. Efficient
learning with sine-activated low-rank matrices. arXiv preprint arXiv:2403.19243, 2024.

Wenjun Ke, Jiahao Wang, Peng Wang, Jiajun Liu, Dong Nie, Guozheng Li, and Yining Li. Unveiling
lora intrinsic ranks via salience analysis. Advances in Neural Information Processing Systems, 37:
131575-131595, 2024.

Samir Khaki, Xiuyu Li, Junxian Guo, Ligeng Zhu, Chenfeng Xu, Konstantinos N. Plataniotis, Amir
Yazdanbakhsh, Kurt Keutzer, Song Han, and Zhijian Liu. Sparselora: Accelerating 1lm fine-tuning
with contextual sparsity, 2025. URL https://arxiv.org/abs/2506.16500.

Taehyeon Kim and Se-Young Yun. Revisiting orthogonality regularization: a study for convolutional
neural networks in image classification. IEEE Access, 10:69741-69749, 2022.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. Com-
pression of deep convolutional neural networks for fast and low power mobile applications. arXiv
preprint arXiv:1511.06530, 2015.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky.
Speeding-up convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553, 2014,

Sunwoo Lee, Chaoyang He, and Salman Avestimehr. Achieving small-batch accuracy with large-
batch scalability via hessian-aware learning rate adjustment. Neural Networks, 158:1-14, 2023.

Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial large
learning rate in training neural networks. Advances in neural information processing systems, 32,
2019.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation, 2024. URL
https://arxiv.org/abs/2402.09353.

Yiqun Mei, Pengfei Guo, Mo Zhou, and Vishal Patel. Resource-adaptive federated learning with all-
in-one neural composition. Advances in Neural Information Processing Systems, 35:4270-4284,
2022.

mnmoustafa and Mohammed Ali. Tiny imagenet. https://kaggle.com/competitions/
tiny-imagenet, 2017. Kaggle.

Anh-Huy Phan, Konstantin Sobolev, Konstantin Sozykin, Dmitry Ermilov, Julia Gusak, Petr
Tichavsky, Valeriy Glukhov, Ivan Oseledets, and Andrzej Cichocki. Stable low-rank tensor de-
composition for compression of convolutional neural network. In European Conference on Com-
puter Vision, pp. 522-539. Springer, 2020.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), EMNLP,
pp. 2383-2392, Austin, Texas, November 2016. Association for Computational Linguistics. doi:
10.18653/v1/D16-1264. URL https://aclanthology.org/D16-1264/.

Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay the learning rate,
increase the batch size. arXiv preprint arXiv:1711.00489, 2017.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,

and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In EMNLP, pp. 1631-1642, 2013.

11

https://arxiv.org/abs/2506.16500
https://arxiv.org/abs/2402.09353
https://kaggle.com/competitions/tiny-imagenet
https://kaggle.com/competitions/tiny-imagenet
https://aclanthology.org/D16-1264/

Under review as a conference paper at ICLR 2026

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In
Proceedings of the 2018 EMNLP Workshop BlackboxNLP, 2018.

Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation,
2024. URL https://arxiv.org/abs/2407.05000.

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
Transactions of the Association for Computational Linguistics (TACL), 7:625-641, 2019.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sen-
tence understanding through inference. In NAACL, pp. 1112-1122, New Orleans, Louisiana,
June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1101. URL
https://aclanthology.org/N18-1101/.

Di Xie, Jiang Xiong, and Shiliang Pu. All you need is beyond a good init: Exploring better solution
for training extremely deep convolutional neural networks with orthonormality and modulation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6176—
6185, 2017.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,

Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023.

12

https://arxiv.org/abs/2407.05000
https://aclanthology.org/N18-1101/

Under review as a conference paper at ICLR 2026

Algorithm 1 Dynamic-rank Training

Require: Model parameters ©, Training dataset D, Total epochs F, low-rank dimension k, Inflation epoch I,
Deflation epoch D, Learning rate schedule 7.
1: Initialize model parameters © in a low-rank form.
2: fort=1— Edo
3: ift = I then

4 // Inflate model to full-rank
5 for low-rank weight (A, B) with base Wy in © do
6: W+ Wi +AB'
7: Replace (Wo, A, B) with W in ©.
8: end for
9: endif
10: ift = D then
11: // Deflate model back to low-rank
12: for each full-rank weight matrix W in © do
13: Freeze the current weight W < W.
14: Initialize new low-rank matrices A, B.
15: Replace W with (W, A, B) in ©.
16: end for
17: endif

18: Train the model on dataset D using © and 7;.
19: Update learning rate 7);41 according to the schedule.
20: end for

A APPENDIX

The appendix is structured as follows:

* Section A.1 presents a pseudocode of the proposed dynamic-rank training framework.

» Section A.2 summarizes experimental settings corresponding to all the experimental results
reported in the main manuscript.

» Section A.3 describes how we inflate and deflate the model weights using Tucker and CP
decompositions.

* Section A.4 describes how we adjust the rank of model weights at convolution layers.

* Section A.5 presents a singular value spectrum ratio comparison among different model
rank adjustment settings.

* Section A.6 provides the results of additional ablation study on the impact of ¢ on model
accuracy.

 Section A.7 summarizes potential limitations of our proposed dynamic-rank training frame-
work.

We declare that an LLM was used to polish the writing. However, its purpose was solely to improve
presentation quality and check grammar.

A.1 ALGORITHM

Algorithm 1 shows a pseudocode of the proposed dynamic-rank training framework. In this pseu-
docode, we assume the model is reparameterized using SVD. It is straightforward to replace SVD
with other decomposition techniques. During E training epochs in total, if the epoch ID ¢ becomes
1, the model is inflated following the previously discussed reconstruction steps (line 5 ~ 8). Like-
wise, if the epoch ID ¢ becomes D, the model is deflated (line 10 ~ 17). Other steps are the same as
general neural network training process. Therefore, it does not have any dependencies on optimizers
or model architectures.

A.2 EXPERIMENTAL SETTINGS

CIFAR-10/CIFAR-100 datasets — We perform the typical image preprocessing used in many previ-
ous works (Lee et al., 2023) for CIFAR-10/100 datasets. 60,000 images with 50,000 images for train

13

Under review as a conference paper at ICLR 2026

Table 6: Hyper-parameter settings for experiments shown in Table 3. The p is the low-rank model’s
rank reduction ratio.

Dataset Batch Size Learning Rate Epochs (E)) LR Decay Inflate/Deflate (I, D) Weight decay P
CIFAR-10 128 150 100, 130 55,120 le — 4
CIFAR-100 0.1 200 150, 180 80, 170 5e — 4 0.5
Tiny ImageNet 64 100 70, 90 30, 80 5e — 4

dataset and 10,000 images for validation dataset. Each image is padded by 4 pixels on every dimen-
sion and then randomly cropped to the original size. Then, we normalize and standardize the values
for all individual pixels. Finally, with probability of 0.5 we randomly flip the image horizontally.

Tiny ImageNet dataset — For Tiny ImageNet with 200 classes, we augment the data samples during
training as follows: aspect ratio adjustment [0.8, 1.25], random resizing [256, 384] pixels on shorter
side, random cropping to 224x224 then resizing to 64 x 64, horizontal flipping with probability of
0.5, and HSV color augmentation (hue +36 degree, saturation/brightness [0.6, 1.4]). We normalize
using ImageNet standard RGB values (mean [0.485, 0.456, 0.406], std [0.229, 0.224, 0.225]). For
validation, we resize to 256 pixels on shorter side, center crop to 64 x 64, and apply the same
normalization. We used 60,000 images with 50,000 images for train dataset and 10,000 images for
validation dataset.

NLP datasets — We report performance on the GLUE development set following AdaLoRA (Zhang
et al., 2023).

* CoLA (Warstadt et al., 2019): Judges if an English sentence is grammatically acceptable.
(Train: 8.5k, Dev: 1k, Metric: Matthews Correlation Coefficient).

e MNLI (Williams et al., 2018): A 3-way classification task (entailment, neutral, contradic-
tion) for sentence pairs across multiple genres. We use matched development set. (Train:
393k, Dev: 9.8k, Metric: Accuracy).

* MRPC (Dolan & Brockett, 2005): A binary classification task to determine if two sen-
tences from online news are paraphrases. (Train: 3.7k, Dev: 408, Metric: Accuracy).

e QNLI (Rajpurkar et al., 2016): A binary classification task to identify if a context sentence
contains the answer to a question. (Train: 105k, Dev: 5.4k, Metric: Accuracy).

* QQP (Iyer et al., 2017): A binary classification task to determine if two questions from
Quora are semantically equivalent. (Train: 364k, Dev: 40k, Metric: Accuracy).

* RTE (Giampiccolo et al., 2007): A smaller, 2-way textual entailment classification task
combining several datasets. (Train: 2.5k, Dev: 276, Metric: Accuracy).

* SST-2 (Socher et al., 2013): A binary sentiment classification task on sentences from movie
reviews. (Train: 67k, Dev: 872, Metric: Accuracy).

* STS-B (Cer et al., 2017): A regression task to predict a semantic similarity score (from 0
to 5) for sentence pairs. (Train: 5.7k, Dev: 1.5k, Metric: Pearson/Spearman Correlation).

Vision Experimental Settings — The Vision experiments detailed in Table 3 follow the configu-
rations summarized in Table 6. We employed SGD optimizer with 0.9 momentum and conducted
a grid search for learning rate, I, and D, executing each setting at least twice. The learning rate
was tuned among 0.2, 0.1, 0.01. The I and D were first set to the midpoints of the high-noise and
low-noise regimes, respectively. Then, each was finely tuned by grid search with a unit of 5. Table 6
presents the overall hyper-parameter settings we tuned.

NLP Experimental Settings — The NLP experiments presented in Table 4 are configured according
to Table 7. We used AdamW optimizer with momentum 0.9, weight decay le-2, beta values (0.9,
0.999), sequence length 128, and 10% warm-up period of total steps. Through grid search performed
at least twice per setting, we tuned learning rate among le-4, Se-5, 2.5e-5, le-5, D from 2, 3, and A
among 0.5, 0.3, 0.1. Table 7 summarizes the highly tuned hyper-parameter settings.

Experimental Settings of Rank Recovery Analysis — The rank recovery experiments outlined in
Table 5 follow the settings summarized in Table 8. We performed grid search for the algorithm-
specific parameter, A (regularizer coefficient), from le-3, Se-4, le-4, Se-5, le-5.

14

Under review as a conference paper at ICLR 2026

Table 7: Hyper-parameter settings for experiments shown in Table 4. The A is the orthogonal
regularizer coefficient in AdaLoRA (Zhang et al., 2023).

Dataset ~ Batch Size Learning Rate Epochs (E) LoRA rank @ Algorithm-specific parameter ~ Deflate (D)

COLA 5e — 5 10 A=05 5
MNLI le—5 5 A=0.1
MRPC le—4 5 A=0.1 s
QNLI le—5 5 A=0.1
QQP 16 le—5 5 16 16 A=0.1
RTE 5e — 5 10 A=0.1 5
SST-2 le—5 5 A=0.1 5
SST-B le—4 5 A=0.1

Table 8: Hyper-parameter settings for experiments shown in Table 5.

Method Batch Size Learning Rate Epochs (E) LR Decay Algorithm-specific parameter Inflate/Deflate (I, D) p

SO A=5e—5
DSO 32 0.1 150 100, 130 A=5e—5 (55, 120) 0.5
SRIPT A =5e—4

Table 9: Hyper-parameter settings for experiments shown in Table 10.
Dataset Batch Size Learning Rate Epochs (E) LR Decay o) Inflate/Deflate (I, D) p

0.1 92,107

0.3 75,120
CIFAR-10 32 0.1 150 100, 130 0.5 60,135 05

0.7 45,150

0.9 15,150

0.1 140, 160

0.3 120, 180
CIFAR-100 32 0.1 200 150, 180 0.5 100,200 0.5

0.7 60, 200

0.9 20, 200

Experimental Settings of Ablation Study on Full-rank Epoch Budget — We conducted an abla-
tion study examining how the number of full-rank epochs affects model accuracy and computational
cost. Table 9 summarizes experimental settings corresponding to Table 10. We follow popularly
used hyperparameter settings (e.g., a batch size of 32 and a learning rate of 0.1, etc.) and adjusted
¢, I, and D. Given a fixed budget of ¢ F full-rank epochs, we allocate half to the high-noise regime
and half to the low-noise regime.

A.3 MODEL INFLATION / DEFLATION WITH VARIOUS DECOMPOSITION TECHNIQUES

Our dynamic-rank training method is compatible with various decomposition techniques. In the
main manuscript, we described how to inflate and deflate models using SVD as an example. Here,
we explain how model weights are reparameterized using Tucker and CP decompositions. Let F'
denote the number of output channels, C' the number of input channels, & the kernel height, w the
kernel width, and k the reduced rank.

Model Inflation with Tucker decomposition — We define the model inflation process with Tucker
decomposition (Kim et al., 2015) as follows. Given low-rank layer weights A € RI*1xCxk
Core € Rixwxkxk B ¢ RIX1xEXF and base parameter W € RPXWXCXF the model is inflated
such that W < W, + ACoreB.

Model Deflation with Tucker decomposition — Given a model weight W, the model is deflated
by attaching a low-rank adaptor path next to the original weight such that W + ACoreB < W,
where W; € RMWXCOXFE 5 the given model weight matrix and A € R"XWXCXF and A €
RIXIXCxk Core € RiXwxkxk and B € R1*X1XkXF gre Jow-rank model weights. The provided
weight matrix is frozen as W and A, Core and B are trained instead. One can initialize A and B
using either random distributions or zero matrices.

15

Under review as a conference paper at ICLR 2026

0 i \i
AL L
A ’W f) V

,f /

50 100 150 50 100 150 50 100 150
Epoch
a) Low-rank (SVD=0.5) b) Inflated (I = 100) c) Inflated (I = 75) d) Inflated (I = 50) e) Full-rank (I = 0)) Dynamic-rank
(I =60,D =120)

150

Figure 5: The singular value spectrum ratio A comparison. The red dotted lines indicate the epoch
where the rank of model weights are adjusted.

Model Inflation with CP decomposition — We define the model inflation process with CP de-
composition (Lebedev et al., 2014) as follows. Given low-rank layer weights A € R!*1xCxk
C, € RixIxkxk C, ¢ R““’Xk” B € RYX1XkXF and base parameter W € R/ XwxOx the
model is inflated such that W < WO + AC;C,B.

Model Deflation with CP decomposition — Given a model weight W, the model is deflated by
attaching a low-rank adaptor path next to the original weight such that Wy + AC1C2B +— W,
where W; € R™>" is the given model weight matrix and A € RIXIXCxk "Gy g RXIxkxk
Cy € RI*wxkxk and B € R !1XkXF are Jow-rank model weights. The provided weight matrix
is frozen as Wy and A, Cy, C2 and B are trained instead. One can initialize A and B using either
random distributions or zero matrices.

A.4 RANK ADJUSTMENT AN CONVOLUTION LAYERS

Let F' denote the number of output channels, C' the number of input channels, h the kernel height,
w the kernel width, and & the reduced rank. Note that we use a SVD-based approach as an example.
Given low-rank convolution layer weights A € R?*wxCxk B ¢ RIX1XEXF apd base convolution
layer weight Wo € R XwXCXF conyolution layer is inflated such that W <~ W+ AB. Note that
we assume k < r < n. If low-rank convolution follows the standard low-rank reparameterization
method, the initial weight matrix Wy is set to zero matrix, i.e., OhxwxcxF. Consequently, the
maximum available rank is increased from k to n by training with inflated convolution layer. The
deflation process follows the same steps, but in reverse order.

A.5 SINGULAR VALUE SPECTRUM RATIO COMPARISON

To analyze the impact of interleaving full-rank epochs within low-rank training, we visualize the
singular value spectrum ratio A', | € [L] with various model inflation settings. Figure 5 presents the
layer-wise A curves of five different inflation settings. As I decreases, the full-rank epochs take up a
large portion of the total epoch budget. We first observe that as I decreases, the A values are more
effectively suppressed, resulting in stable A’ curves across most layers. For example, in the full-rank
curves shown in Figure 5.¢), all curves remain below A! < 20. When the model is inflated too late
(e.g., I = 100), the curves stay relatively high, indicating that the model weights have lost their
rank. As shown in Figure 5.f), when I is sufficiently small, the \! values are significantly reduced
in most layers. Even after the model rank is deflated at D = 120, the \! values remain low until the
end of training. This comparison provides clear insights into how to dynamically adjust the model
rank during training to maximize the rank of the model weights.

Another intriguing observation is that the A\ values at a few layers remain high regardless of rank
adjustment. Notably, these layers consistently include the first and last layers across all experiments.
Since their inputs or outputs remain fixed during training, their weights may rapidly fit to data
patterns. If their rank can be suppressed, the model’s overall capacity may be more effectively
utilized, potentially achieving higher accuracy within the same epoch budget. We consider this an
interesting direction for future research.

16

Under review as a conference paper at ICLR 2026

Table 10: Ablation study on how ¢ = (D — I)/ E affects the performance of dynamic-rank training.
Low-Rank SVD is used for all experiments. When ¢ = 0.0, it becomes the conventional low-rank
training. In contrast, when ¢ = 1.0, it becomes full-rank training. The I and D are set to perform
the same number of full-rank epochs in the high-noise and low-noise regimes.

Rank

Setting Ratio p Comp. CIFAR-10 CIFAR-100
¢ =0.1 0.36 90.54 £0.3% 76.29 £0.1%
¢ =0.3 051 91.434+0.1% 77.03 4+ 0.4%
¢=0.5 025 064 92.014£0.3% 78.61%0.2%
¢ =0.7 0.79 92.08+0.4% 78.75+0.1%
¢ =0.9 093 92.144+0.2% 78.63 +0.3%
¢ =0.1 0.61 91.284+0.1% 76.84+0.1%
¢ =0.3 0.69 91.57+0.1% 77.51 £0.2%
¢=05 05 078 92.114+0.2% 78.41 4+ 0.3%
¢ =0.7 0.87 92.154+0.2% 78.39 £0.1%
¢ =0.9 096 92.114+0.1% 78.47 4+ 0.3%

A.6 ADDITIONAL ABLATION STUDY

In our empirical study, we found that dynamic-rank training performs well when D and I are set
to allocate a similar number of full-rank epochs to both the high-noise and low-noise regimes. We
now conduct a simple ablation study to examine how the number of full-rank epochs affects model
accuracy. Table 10 presents the results. SVD-based low-rank training is evaluated on the CIFAR-10
and CIFAR-100 benchmarks. For convenience, we define ¢ = (D — I)/E as the ratio of full-rank
epochs to the total training budget. When ¢ = 0.0, it corresponds to conventional low-rank training;
when ¢ = 1.0, it becomes full-rank training. On both benchmarks, accuracy starts to drop when
¢ goes below 0.5, particularly in the range ¢ € [0.3,0.5]. We therefore recommend starting with
¢ = 0.5 and adjusting downward as needed.

A.7 POTENTIAL LIMITATIONS AND FUTURE WORK

Potential Limitations — Our proposed method has a relatively more expensive computational cost
compared to the conventional low-rank training methods. Since the number of trainable parameters
increases during D — I full-rank epochs, the overall cost is increased as shown in Comp. column in
Table 3. However, the cost still remains substantially lower than that of the full-rank training, and we
argue that the dynamic-rank training is a practical option for large-scale deep learning applications.

In addition, the extra hyperparameters, I and D, can introduce a non-trivial tuning overhead. How-
ever, Section 4.2 provides useful guidance on how to select good values for I and D based on
learning rate decay schedules. In our empirical study, we find that I and D can be tuned easily
by following our suggestions, leading to substantial accuracy improvement while maintaining low
computational cost.

Future Work — We plan to extend our dynamic-rank training research to automate the inflation and
deflation steps. Our study reveals that the inflation should be located at the end of the high-noise
regime and the deflation should be as early as possible in the low-noise regime. If the noise scale
can be quantified at run time, rather than explicitly mapping it to the learning rate decay schedule,
appropriate timings for increasing and decreasing the model rank can be identified during training.
We believe this will make the dynamic-rank training framework significantly more practical. More-
over, we consider harmonizing the dynamic-rank training framework with other existing compute-
efficient training strategies as a promising direction for future work. Given the ever-increasing model
sizes in deep learning applications (e.g., LLMs), developing neural network training strategies that
balance accuracy and efficiency is a crucial research direction.

17

	Introduction
	Background
	Related Work
	Motivation

	Dynamic-rank Training Framework
	Model Rank Adjustment
	Model Rank Scheduling
	Unified Rank Adjustment Framework

	Experiments
	Comparative Study
	Computational Cost Analysis

	Conclusion
	Appendix
	Algorithm
	Experimental Settings
	Model Inflation / Deflation with Various Decomposition Techniques
	Rank Adjustment an Convolution Layers
	Singular Value Spectrum Ratio Comparison
	Additional Ablation Study
	Potential Limitations and Future Work

