
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DYNAMIC RANK ADJUSTMENT FOR ACCURATE AND
EFFICIENT NEURAL NETWORK TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-rank training is a primary strategy for efficient deep learning, but it presents
a fundamental challenge. It reduces computational cost, yet it permanently caps a
model’s representational capacity and accelerates the rank collapse that diminishes
its expressive power during training. We address this with dynamic-rank training,
a framework built on the intuition that a model can temporarily escape its low-
rank constraints to restore its full learning potential. Our approach strategically
interleaves full-rank epochs within a low-rank schedule, with the timing of these
restorative phases aligned with the learning rate’s noise regimes to maximize their
effect. This enables the model to regain expressive power at critical stages of
training by restoring the effective rank of its weights. Our extensive evaluations
across various computer vision and natural language processing benchmarks show
that the dynamic-rank method achieves the accuracy of full-rank models while
retaining the computational advantages of low-rank training.

1 INTRODUCTION

Low-rank reparameterization methods have been actively studied for efficient training of large neu-
ral networks. Low-rank training strategies typically reduce the number of trainable parameters by
applying matrix decompositions to a model’s weight matrices. While this approach lowers train-
ing cost, it permanently caps the maximum attainable rank of those matrices, thereby limiting the
model’s ability to learn complex patterns. Moreover, recent studies report that the effective rank of
the weights tends to decline during training (Xie et al., 2017; Huang et al., 2025). Therefore, to train
large neural networks efficiently while preserving their learning capacity, it is crucial to address the
decline in weight-matrix rank that occurs during low-rank training.

Singular value decomposition(SVD)-based low-rank training (Jaderberg et al., 2014) is among the
most popular re-parameterization techniques. Other tensor factorizations, such as Tucker (Kim et al.,
2015) and CP (Lebedev et al., 2014) decompositions, have likewise been adopted to enable low-rank
training. More recently, low-rank fine-tuning methods have been proposed, including LoRA (Hu
et al., 2022), AdaLoRA (Zhang et al., 2023), LoRA-GA (Wang et al., 2024), DoRA (Liu et al.,
2024), and SLTrain (Han et al., 2024). Although these approaches reduce the number of trainable
parameters, they often overlook the progressive decline in the effective rank of the weights, which in
turn compromises learning capability. Some regularization methods, such as soft orthogonal regular-
izer (Xie et al., 2017) and its variants (Bansal et al., 2018; Kim & Yun, 2022), focus on tackling the
rank decline issue. However, they incur higher computational cost and memory overhead, making
them less practical for training large neural networks.

This study explores how to mitigate the decline in the effective rank of model weights in low-rank
training. Our key finding is that interleaving a few full-rank epochs within low-rank training effec-
tively restores the model’s effective rank. Specifically, we analyze how run-time rank adjustment
affects the singular value spectrum of the model weights, and we present a practical strategy for
adjusting the rank during training to mitigate the decline in effective rank. Our theoretical analysis
and empirical study demonstrate that dynamic rank adjustment matches the accuracy of full-rank
training while retaining the system efficiency of low-rank methods.

Another key finding is that the effectiveness of rank adjustment is closely coupled with the learning
rate. Our study shows that full-rank epochs should be scheduled according to the noise scale induced
by the learning rate. In general, the learning rate tends to be initialized to a large value and then

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Feature-wise comparison across representative low-rank training methods.

Low-rank Training Method Parameter Rank Pre-training Noise-scale Decomposition
-efficient Recovery Compatible Aware Agnostic

SVD-based Low-rank (Jaderberg et al., 2014) ✓ ✗ ✓ ✗ ✗
TKD-CPD (Phan et al., 2020) ✓ ✗ ✓ ✗ ✗
GKPD (Hameed et al., 2022) ✓ ✗ ✓ ✗ ✗
Soft Orthogonality (Xie et al., 2017) ✗ ✓ ✓ ✗ ✓

SRIP+ (Kim & Yun, 2022) ✗ ✓ ✓ ✓ ✓
LoRA (Hu et al., 2022) ✓ ✗ ✗ ✗ ✓
AdaLoRA (Zhang et al., 2023) ✓ ✗ ✗ ✗ ✗
PELA (Guo et al., 2024) ✓ ✗ ✗ ✗ ✓
SLTrain (Han et al., 2024) ✓ ✗ ✗ ✗ ✓
SparseLoRA (Khaki et al., 2025) ✓ ✗ ✗ ✗ ✓
Dynamic-rank (proposed) ✓ ✓ ✓ ✓ ✓

progressively decayed during training. In this study, we analyze how the learning rate affects the
gap between low-rank and full-rank updates and, based on this analysis, propose a general rank
scheduling framework that maximizes the benefits of interleaving full-rank epochs within low-rank
training. Table 1 provides a feature-wise comparison of various low-rank training methods.

To the best of our knowledge, this is the first study to explore the benefits of interleaving full-rank
training with low-rank training and to demonstrate the efficacy of a dynamic rank adjustment tech-
nique. We evaluate the proposed dynamic-rank training framework through extensive empirical
studies on computer vision and natural language processing benchmarks. Furthermore, we bench-
mark our approach against state-of-the-art (SOTA) low-rank training techniques and regularization
methods designed to restore effective rank. Across all experiments, we find that dynamic-rank train-
ing achieves accuracies comparable to full-rank training while significantly reducing computational
costs, similar to conventional low-rank approaches. In addition, our results show that the proposed
method integrates seamlessly with low-rank training when combined with soft-orthogonality (SO)
regularization, confirming that the two techniques are complementary.

2 BACKGROUND

Low-rank Re-parameterization – Low-rank reparameterization is a model approximation tech-
nique that is popularly used in large neural network training. Given a model weight matrix W,
a matrix decomposition method is applied to W before training begins. For example, if SVD is
used, W ∈ Rm×n is decomposed to two smaller matrices A ∈ Rm×k and B ∈ Rn×k such that
W = AB⊤, where k < m and k < n. As k decreases, the total number of model parameters is
reduced, thereby lowering the computational cost of training. However, the reconstructed weight
matrix can have up to k ranks, resulting in the limited learning capability.

Learning Rate and Noise Scale – In previous works, learning rate is known to play a key role
in determining generalization performance of machine learning models. It has been theoretically
shown that the noise scale g in gradient approximation is determined by the learning rate and batch
size, as follows (Smith et al., 2017): g ≈ ηN/B, where η is learning rate, N is the dataset size, and
B is the mini-batch size. This relation links learning rate schedules to the notion of noise scale. In
early training, a large noise scale helps the model explore and shape the decision boundary (Li et al.,
2019; Lee et al., 2023), consistent with the common practice of decaying the learning rate. In this
study, we investigate the relationship between the noise scale and the rank of model’s weights.

3 RELATED WORK

Low-rank Reparameterization Methods – Several studies have explored the use of low-rank re-
parameterization techniques including singular value decomposition, Tucker decomposition, and CP
decomposition methods (Jaderberg et al., 2014; Kim et al., 2015; Lebedev et al., 2014). Recently,
GKPD proposed to re-parameterize the model weights using Kronecker-product decomposition and
demonstrated promising performance (Hameed et al., 2022). PELA applies low-rank training to the
pre-training phase to reduce the computational cost of training (Guo et al., 2024). FLANC uses a
customized tensor decomposition method to enable direct model aggregations across clients in the
context of federated learning (Mei et al., 2022). FedPara combines decomposition methods and the

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

0 50 100 150 0 50 100 150

50

Epoch Epoch

M
a
x
im

u
m

 𝜎
/ 
M

in
im

u
m

 𝜎

M
a
x
im

u
m

 𝜎
/ 
M

in
im

u
m

 𝜎

25

50

25

7575

Full-rank Training Low-rank Training

Figure 1: Comparison of the layer-wise singular-value spectral ratio (λ) across different model
ranks during ResNet20 training on CIFAR-10. The left plot shows layer-wise λ curves for full-rank
training, while the right plot shows those for SVD-based low-rank training. We omit the legend
since there are too many layers. Throughout the whole training, most layers in the re-parameterized
model exhibit large λ values, indicating convergence to a low-rank space.

Hadamard product to enhance the representation capacity of re-parameterized models (Hyeon-Woo
et al., 2021). TKD-CPD jointly utilize Tucker and CP decompositions (Phan et al., 2020). While
these methods effectively reduce the number of trainable parameters and thus the computational and
communication costs, they do not consider the inherent rank decline issue.

Low-rank Fine-tuning Methods – Low-rank Adaptation (LoRA) (Hu et al., 2022) is one of the
most popular applications of re-parameterization technique, particularly in the context of fine-tuning.
The importance of singular values under LoRA’s context is deeply analyzed in (Ke et al., 2024).
AdaLoRA (Zhang et al., 2023) is a variant of LoRA which dynamically controls the rank of layers
within a fixed total parameter budget. DoRA (Liu et al., 2024) separately fine-tunes the magnitude
and the direction, based on LoRA. SLTrain (Han et al., 2024) leaves a sparse and frozen matrix
besides the adaptor. LoRA-GA (Wang et al., 2024) initializes adapters using a subset of eigenvectors
of gradient matrices. SparseLoRA (Khaki et al., 2025) decomposes pretrained weights using SVD.

Rank Recovery Methods – Some regularization methods have been proposed to address the issue
of inherent rank decline. Soft orthogonality (SO) is the basic regularization method which mini-
mizes the difference between Gram matrix of the weight matrix and the identity matrix (Xie et al.,
2017). Double soft orthogonality (DSO) is a variant of SO which considers the regularization with
overcomplete and undercomplete Gram matrices (Bansal et al., 2018). Spectral Restricted Isometry
Property (SRIP) is a variant of RIP (Candes & Tao, 2005) that minimizes the spectral norm of the
difference between the Gram matrix of a weight matrix and the identity matrix. Another study pro-
pose a sine-activated low-rank training strategy that is also designed to restore the model weight’s
rank (Ji et al., 2024). These methods commonly recover the effective rank of model weights, how-
ever, the rank cannot exceed the hard limit imposed by the low-rank reparameterization. In this
study, we focus on how to overcome this limitation by adjusting the model rank at run-time.

3.1 MOTIVATION

Recently, it has been theoretically shown that the rank of gradients tends to decrease as training
progresses (Huang et al., 2025; Xie et al., 2017). Consequently, given a fixed training dataset and
a large number of repeated training steps, the model weights are also expected to exhibit a similar
reduction in rank.

As the singular value spectrum of model weights becomes more skewed, only a few singular vectors
capture most of the information, while those associated with smaller singular values contribute little
to the model’s representational capacity. We empirically verify this tendency by analyzing the ef-
fective rank of neural networks throughout training. To quantify how rapidly the model loses rank,
we define layer-wise singular value spectral ratio, λl, as follows.

λl =
σl
max

σl
min

, l ∈ [L], (1)

where [L] denotes the set of all network layers, and σl
max and σl

min are the maximum and minimum
singular values of layer l, respectively. Assuming that σl

max remains reasonably small, an increase
in λl indicates that σl

min is approaching zero, meaning the model is losing its rank.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1 shows how λl changes during the training of ResNet20 on CIFAR-10. On the left-side (full-
rank model training), only three layers show noticeable rank reduction while the effective ranks of
all other layers remain quite stable throughout the training. On the right side (reparameterized to half
rank at all convolution layers), most layers exhibit much higher λ values compared to the full-rank
training, resulting in a final model with low ranks in most layers. The full rank training achieves a
validation accuracy of 92.23%, while the low-rank reparameterized training yields 91.08%. Based
on this observation, we conclude that low-rank model reparameterization can significantly reduce
the rank of model weights, thereby harming the model’s representational capacity.

Based on this empirical study, we can derive one critical insight as follows.

As the model is reparameterized to a lower rank,
the rank of its weights tends to decrease more rapidly.

Therefore, having full-rank epochs in the middle of training is expected to mitigate the rapid decline
in the effective rank of model weights. This insight motivates the design of a general model rank
adjustment framework, which we describe in the following section.

4 DYNAMIC-RANK TRAINING FRAMEWORK

In this section, we propose a general dynamic-rank training framework that temporarily increases
the rank of the model’s weight matrices at selected points during training. We first formalize rank
inflation and deflation, then discuss how to schedule rank adjustments. In particular, we provide
two key insights for placing full-rank epochs within low-rank training to maximize rank restoration.
Figure 2 illustrates the proposed framework.

4.1 MODEL RANK ADJUSTMENT

We first define two directions of model rank adjustment, inflation and deflation, as follows. For sim-
plicity, we use the notation of SVD-style low-rank reparameterization, but it can be easily replaced
with other methods such as Tucker or CP decompositions.

Original Model

Off-line Reparameterization

(SVD, Tucker, or CP)

𝑊 = 𝑈Σ𝑉⊤

E

I

D

On-line Rank Adjustment

F
u
ll-

ra
n
k

L
o
w

-r
a
n
k

L
o
w

-r
a
n
k

Dynamic-rank Training

Model Inflation

Model Deflation

I :

D :

E :

Model Inflation Epoch

Model Deflation Epoch

Total Training Epochs

Figure 2: A schematic illustration of dynamic-rank train-
ing framework.

Model Inflation – Low-rank train-
ing can be implemented in two dif-
ferent forms, vanilla low-rank repa-
rameterization and low-rank adaptation,
LoRA (Hu et al., 2022). Without loss
in generality, we define model infla-
tion process as follows. Given low-
rank model weights A ∈ Rm×k and
B ∈ Rn×k and base parameter W0 ∈
Rm×n, the model is inflated such that
W ←W0 +AB⊤. Consequently, the
maximum available rank is increased
from k to n. If the low-rank model fol-
lows the standard low-rank reparameter-
ization, the initial weight matrix W0 is
set to the zero matrix, i.e., 0m×n. Please
see Appendix for the case of convolu-
tional layers.

Model Deflation – Given a model weight W, the model is deflated by attaching a low-rank adaptor
path next to the original weight such that Wf + AB⊤ ← W, where Wf ∈ Rm×n is the given
model weight matrix and A ∈ Rm×k and B ∈ Rn×k are low-rank model weights. The provided
weight matrix is frozen as Wf , and only A and B are trained. A and B can be initialized using
either random distributions or zero matrices. Note that this naturally resembles LoRA when SVD is
used as the reparameterization method.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2.0

1.6

1.2

0.8

0.4
0 50 100 150 50 100 150

1.0

0.8

0.6

0.4V
a
lid

a
ti
o
n
 A

c
c
u
ra

c
y
 (

%
)

T
ra

in
in

g
 L

o
s
s
 (

C
ro

s
s
 E

n
tr

o
p
y
)

Training Epochs

Inflate: 50, Deflate: 100

(High-noise regime only)

Inflate: 75, Deflate: 125

(Both regimes)

Inflate: 100, Deflate: 150

(Low-noise regime only)

0

Training Epochs

Figure 3: CIFAR-10 (ResNet20) benchmark with various dynamic-rank schedules. Inflate and
Deflate indicate the epoch where the model rank is increased and decreased, respectively. The best
accuracy is achieved when the full-rank epochs are located in both high-noise and low-noise regimes.

These model rank adjustment procedures incur extra computations during training, however, when
the epoch budget E is sufficiently large, the extra computational cost typically becomes negligible.
We now turn our attention to when the model rank should be inflated or deflated during training.

4.2 MODEL RANK SCHEDULING

Here, we discuss how to determine appropriate timings for adjusting the model rank, taking into
account the common practice of using learning rate decay for noise control in modern deep learning.
Let the total training budget be E epochs. Training begins in a low-rank form, with the rank of the
model weights increased at epoch I and reduced back at epoch D. That is, training is performed
in the full-rank space for D − I epochs and in the low-rank space for the remaining E − (D − I)
epochs. Under this setting, the key question is what values of I and D are optimal. We first present
two practical principles for choosing I and D to maximize rank recovery.

Full-rank training should be performed in both high-noise and low-noise regimes – We propose
having full-rank epochs both before and after the learning rate decay. This ensures that all ranks are
sufficiently exposed to different learning rates during training. After deflating the model, only k
ranks are updated in the adaptor and the remaining n−k ranks stay frozen until the model is inflated
again. Thus, if the model is deflated before learning rate decay, the n − k ranks do not get trained
under the low-noise regime, potentially causing underfitting and reduced accuracy.

In contrast, if full-rank training is performed only in the low-noise regime, the model is likely to
suffer from poor generalization performance. It has been shown that training in a high-noise regime
during the early phase improves generalization performance (Li et al., 2019; He et al., 2019; Lee
et al., 2023). Therefore, if the model is inflated for the first time in the low-noise regime, the n− k
ranks will be trained only with a small learning rate, potentially degrading the model’s generalization
performance. Moreover, scheduling the full-rank epochs later reduces the training iterations for the
adapter’s k ranks, potentially causing underfitting.

Figure 3 presents empirical results supporting our argument. We trained ResNet20 on CIFAR-10
under three schedules, each with full-rank training epochs inserted at different points. The model is
reparameterized with SVD to reduce its rank by half. Because the learning rate decays after epoch
100, the first and third schedules correspond to full-rank epochs in the high-noise and low-noise
regimes, respectively. As expected, the best accuracy is achieved when full-rank epochs are located
in both noise regimes. The curves spike during deflation as a randomly initialized low-rank adaptor
is attached and begins training. The yellow and orange curves clearly exhibit underfitting and low
accuracy. Based on this analysis, we conclude that full-rank training should be applied in both
high-noise and low-noise regimes to sufficiently train the model.

Full-rank training should be at the end of the high-noise regime and the early low-noise regime
– First, we define the effective rank of W, denoted by r, as the number of singular values that are
significantly greater than zero. We analyze rank bounds of the reconstructed model as follows.

Proposition 1. Suppose model weight matrices: W0 ∈ Rm×n, A ∈ Rm×k, and B ∈ Rn×k and a
re-constructed matrix W = W0 +AB⊤. Assuming that the effective rank of W0 is r, the rank of
the reconstructed matrix W is bounded between max{0, r − k} and min{m,n, r + k}.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Comparison of singular-value spectral ratio (λ) across different rank-adjustment schedules.
The I and D indicate rank inflation and deflation, respectively. ResNet20 was trained on CIFAR-10
for 150 epochs, with the learning rate reduced by a factor of 10 at epochs 100 and 130.

Setting I D Acc. λ0 λ10 λ18

None - - 91.14% ∞ 7.58 ∞
Early 0 50 91.26% 59.32 6.02 76.47
Middle 25 75 91.82% 39.29 4.27 74.18
Late 50 100 91.87% 37.51 4.19 70.36

Proof. First, re-write each matrix as a summation of rank-1 matrices such that W0 =
∑r

j=1 ujv
⊤
j

and AB⊤ =
∑k

j=1 ajb
⊤
j . Consequently, W =

∑r
j=1 ujv

⊤
j +

∑k
j=1 ajb

⊤
j . The minimum rank of

W is r − k if the k rank-1 matrices in AB⊤ eliminate k rank-1 components of W0. On the other
hand, the maximum rank of W is r + k if the k rank-1 matrices in AB⊤ are orthogonal to all k
components of W0. Therefore, considering appropriate caps, the rank of the reconstructed matrix
W is bounded between max{0, r − k} and min{m,n, r + k}.

This analysis suggests that the rank of the reconstructed model weights is closely tied to the rank
of W0, the frozen weights. In particular, performing full-rank training right before deflating the
model maximizes r, enabling the model to maintain a high effective rank. The full-rank training
budget, D − I , may be smaller than the number of epochs before the first learning rate decay. In
such cases, training will naturally begin with a low-rank reparameterized model, which will then be
inflated before the learning rate decay.

To connect theory and practice, we compare weight ranks under different rank schedules in Table 2.
We perform CIFAR-10 (ResNet-20) training with the learning rate decaying at epoch 100. The
rightmost three columns show λ for layers 0, 10, and 18 (near the input, middle, and output). In the
conventional low-rank training (None), λ0 and λ18 are very large, indicating widely spread spectra
and effective rank loss. As full-rank training is applied later, the singular value spectra become
narrow (smaller λ values). These results demonstrate that the full-rank budget should be placed
toward the end of the high-noise regime.

Now, let us discuss the impact of full-rank training in the low-noise regime. Once the learning rate
decays, the rank of the model weights does not dramatically change due to the reduced magnitude
of updates. Instead, what matters more is the extent to which low-rank training pushes the model
away from the full-rank convergence point. The following proposition formalizes this relationship.

Proposition 2. As the learning rate decays, the gap between the full-rank model update and the
low-rank model update is expected to decrease.

Proof. The gradient of adaptor weights, A ∈ Rm×k and B ∈ Rn×k are written as ∇f(AB⊤)B ∈
Rm×k and ∇f(AB⊤)⊤A ∈ Rn×k, respectively. So, the reconstructed model is:

Wt+1 = At+1B
⊤
t+1

= (At − η∇f(Wt)Bt)
(
Bt − η∇f(Wt)

⊤At

)⊤
= AtB

⊤
t − η∇f(Wt)BtB

⊤
t − ηAtA

⊤
t ∇f(Wt) + η2∇f(Wt)BtA

⊤
t ∇f(Wt).

Since AtB
⊤
t = Wt, the remaining three terms on the right-hand side can be considered as the

low-rank update. For simplicity, we shorten the terms as follows.

X := ∇f(W)BB⊤

Y := AA⊤∇f(W)

Z := ∇f(W)BA⊤∇f(W)

Then, the difference between the full-rank update∇f(Wt) and the low-rank update, d becomes:

dt := ∥∇f(Wt)− η (−Xt −Yt + ηZt)∥F (2)

Based on triangle inequality, (2) is upper-bounded as follows.

dt ≤ ∥∇f(Wt)∥F + η ∥Xt∥F + η ∥Yt∥F + η2 ∥Zt∥F . (3)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Then, ∥Xt∥F on the right-hand side can be further bounded as follows.

Xt = ∥∇f(Wt)BB⊤∥F
≤ ∥∇f(Wt)∥F · ∥BB⊤∥2
= ∥∇f(Wt)∥F · ∥B∥22

The same procedure can be applied to the Y and Z terms, yielding

dt ≤ ∥∇f(Wt)∥F
(
1 + η∥At∥22 + η∥Bt∥22

)
+ η2∥∇f(Wt)∥F (∥∇f(Wt)∥2 · ∥At∥2 · ∥Bt∥2) .

According to the bound above, the difference dt is expected to decreases as η decays.

For clarity, we omit W0 from the analysis. Incorporating W0 into each step of the proof to recover
LoRA-style low-rank training is straightforward. The above analysis shows that full-rank train-
ing should be performed as early as possible in the low-noise regime to minimize dt. In general,
most popular learning rate schedules monotonically reduce the learning rate over time. Therefore,
scheduling full-rank epochs earlier tends to result in a smaller accumulated difference,

∑
t dt, over

the remaining training epochs.

4.3 UNIFIED RANK ADJUSTMENT FRAMEWORK

Based on the two key insights discussed above, we build up a general model rank adjustment frame-
work as shown in Figure 2. The training begins in a low-rank space. The model’s rank is adjusted
twice throughout the training, increased in a high-noise regime and then decreased in a low-noise
regime. In our empirical study, we observed reasonably good performance when I is set to the mid-
dle of high-noise regime and D to the middle of low-noise regime. For example, given E = 150,
if learning rate decays at epoch 100, we recommend beginning with I = 50 and D = 125 and then
fine-tune these values to minimize training time while maintaining model accuracy. The pseudocode
is provided in Appendix A.1.

5 EXPERIMENTS

Experimental Settings – We evaluate dynamic-rank training framework on three computer vision
benchmarks: CIFAR-10 (Krizhevsky et al., 2009) (ResNet20), CIFAR-100 (Wide-ResNet28-10),
and TinyImageNet (mnmoustafa & Ali, 2017) (ResNet50), and natural language processing (NLP)
datasets in GLUE (Wang et al., 2018) (DeBERTaV3-base (He et al., 2021)) benchmark. All ex-
periments were conducted on a GPU server with two NVIDIA RTX 4090 GPUs. Each experiment
was repeated at least twice, and we report the mean accuracy with standard deviation. The detailed
hyperparameter settings are presented in the Appendix.

5.1 COMPARATIVE STUDY

Computer Vision Benchmarks – To evaluate the performance of our dynamic-rank training strat-
egy, we compare it with several low-rank reparameterization methods, including SVD, Tucker, and
CP decompositions. We also compare it with TKD-CPD (Phan et al., 2020), a recently proposed
low-rank training method that jointly utilizes Tucker and CP decompositions. Table 3 shows the
results. See Appendix for I and D settings. The Rank Ratio ρ indicates the ratio of the repa-
rameterized weight rank to the original weight rank. Comp. refers to the average proportion of
trainable parameters during training. Across all benchmarks, low-rank training leads to noticeable
accuracy drops. Increasing ρ to 0.75 narrows the gap but still falls short of full-rank performance.
In contrast, dynamic-rank training achieves full-rank accuracy at a computational cost similar to
the ρ = 0.75 setting. TKD-CPD dramatically reduces computation but yields the lowest accuracy
among low-rank methods. Applying dynamic-rank training to TKD-CPD restores its accuracy to a
level comparable to full-rank training.

Natural Language Processing Benchmarks – We validate dynamic-rank training framework by
fine-tuning the DeBERTaV3-base on 8 datasets from GLUE benchmark (Wang et al., 2018). In fine-
tuning, there is no high-noise regime, as the learning rate is set to a small value and remains in the

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Comparison of CV benchmarks across various low-rank training methods. The dynamic-
rank method consistently improves accuracy while effectively reducing computational cost.

Method Rank Ratio ρ
CIFAR-10 (ResNet20) CIFAR-100 (WRN28-10) Tiny ImageNet (ResNet50)

Acc. Comp. Acc. Comp. Acc. Comp.

Full-Rank 1.00 92.15 ± 0.1% 1.00 78.82 ± 0.1% 1.00 60.32 ± 0.1% 1.00

SVD 0.50 91.19 ± 0.1% 0.57 73.57 ± 0.1% 0.56 54.90 ± 0.1% 0.79
0.75 91.56 ± 0.1% 0.84 76.90 ± 0.1% 0.84 56.16 ± 0.1% 0.92

Dynamic Rank (SVD) 0.50 92.13 ± 0.1% 0.76 78.61 ± 0.2% 0.64 61.80 ± 0.1% 0.85

Tucker 0.50 90.27 ± 0.1% 0.41 68.77 ± 0.1% 0.39 60.62 ± 0.1% 0.69
0.75 91.50 ± 0.1% 0.79 79.68 ± 0.2% 0.77 61.07 ± 0.7% 0.87

Dynamic Rank (Tucker) 0.50 92.10 ± 0.1% 0.70 78.48 ± 0.1% 0.66 61.25 ± 0.1% 0.84

CP 0.50 88.31 ± 0.1% 0.31 65.55 ± 0.1% 0.30 42.05 ± 0.1% 0.65
0.75 88.90 ± 0.1% 0.59 65.32 ± 0.1% 0.57 43.12 ± 0.1% 0.78

Dynamic Rank (CP) 0.50 91.33 ± 0.1% 0.61 78.61 ± 0.3% 0.65 59.56 ± 0.5% 0.83

TKD-CPD (Tucker + CP) 0.50 87.99 ± 0.1% 0.21 58.90 ± 0.1% 0.18 34.53 ± 0.1% 0.60
0.75 89.62 ± 0.1% 0.35 60.22 ± 0.1% 0.31 34.84 ± 0.1% 0.66

Dynamic Rank (TKD-CPD) 0.50 91.24 ± 0.1% 0.55 73.96 ± 0.3% 0.59 60.06 ± 0.5% 0.80

Table 4: Comparison of NLP benchmark performance on GLUE (DeBERTaV3-base). The dynamic-
rank method achieves the best accuracy while maintaining substantially lower computational cost.

Method CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B Avg Comp.

Full Fine-Tuning 0.675 0.9018 0.8995 0.9397 0.9222 0.8375 0.9587 0.9097 100% 1.000

LoRA (Hu et al., 2022) 0.6333 0.8874 0.8799 0.9192 0.8922 0.7978 0.9461 0.9021 97.2% 0.014
AdaLoRA (Zhang et al., 2023) 0.6529 0.8891 0.8431 0.9183 0.8891 0.8086 0.9495 0.8943 97.1% 0.017
DoRA (Liu et al., 2024) 0.6579 0.8929 0.8774 0.9176 0.8924 0.7617 0.9506 0.8970 97.1% 0.014
SLTrain (Han et al., 2024) 0.6652 0.8913 0.8848 0.9174 0.8934 0.7833 0.9461 0.8987 97.6% 0.018
LoRA-GA (Wang et al., 2024) 0.6409 0.8899 0.8602 0.9156 0.8904 0.7617 0.9472 0.8962 96.4% 0.014
SparseLoRA (Khaki et al., 2025) 0.6675 0.8898 0.8898 0.9148 0.8900 0.7653 0.9438 0.8960 97.3% 0.014
Dynamic Rank (SVD) 0.6752 0.8959 0.8886 0.9264 0.9062 0.8267 0.9472 0.9087 99.0% 0.115

low-noise regime throughout training. Therefore, in these experiments, we place full-rank epochs at
the beginning of fine-tuning.

We compare our dynamic-rank method with the following SOTA low-rank fine-tuning methods:
LoRA, AdaLoRA, DoRA, SLTrain, LoRA-GA, and SparseLoRA. AdaLoRA follows a similar prin-
ciple to our dynamic-rank method, adjusting the rank at run time. However, it requires costly SVD
operations during training, whereas our method avoids explicit decomposition of the weight matri-
ces. DoRA and LoRA-GA have exactly the same computational cost as LoRA because they focus
on the initialization of adaptor weights. SparseLoRA has fewer frozen parameters than LoRA, but
the number of trainable parameters is the same.

Table 4 reports the fine-tuning performance on GLUE tasks. The Avg column shows the relative
performance with respect to full fine-tuning, averaged over the 8 tasks. All the SOTA methods
substantially reduce computational cost compared to full fine-tuning. LoRA is the most efficient
but suffers from a noticeable drop in accuracy. Other methods alleviate this drop, however the
gap from full fine-tuning accuracy remains non-negligible. By contrast, the dynamic-rank training
achieves accuracy comparable to the full fine-tuning. This comparison demonstrates that, although
the dynamic-rank scheme slightly increases the computational cost compared to LoRA, it effectively
restores the effective rank of the model weights, thereby improving the fine-tuning accuracy.

Table 5: CIFAR-10 (ResNet20) accuracy compar-
ison between with and without applying the pro-
posed method to SOTA rank recovery methods.

Setting Low-rank Dynamic Rank

Low-rank SVD (0.5) 91.14 ± 0.1% 92.09 ± 0.1%
Low-rank SVD (0.5) + SO 91.61 ± 0.1% 92.35 ± 0.2%
Low-rank SVD (0.5) + DSO 91.76 ± 0.4% 92.49 ± 0.1%

Low-rank SVD (0.5) + SRIP+ 91.50 ± 0.0% 92.23 ± 0.2%

Dynamic-rank Training with Regularization
– Our dynamic-rank training strategy is read-
ily applicable to regularization methods de-
signed to restore the reduced effective rank.
Table 5 shows CIFAR-10 benchmark results
with three regularization methods, soft orthog-
onality (SO) (Xie et al., 2017), double soft or-
thogonality (DSO) (Bansal et al., 2018), and
SRIP+ (Kim & Yun, 2022). These regu-
larizers effectively improve the accuracy of
SVD-based low-rank training. When combined

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

with dynamic-rank training, they yield consistent accuracy gains across all regularizers. Therefore,
the two are complementary, and their combination achieves high accuracy at low computational cost.
However, these regularizers consume a large amount of memory space to compute Gram matrices,
and the overall memory footprint may substantially increase as they are combined with dynamic-
rank training.

-0.0017

-0.0010

-0.0003

0.0005

0.0012

0.0020

Parameter Value

-0.07550

-0.04510

-0.01470

0.01570

0.04610

0.07650

Parameter Value

Low-rank Training Dynamic-rank Training

Figure 4: Parameter comparison between low-rank and
dynamic-rank trainings. The heatmap shows the weights of
the largest convolution layer in ResNet20 after training.

Parameter Heatmap Comparison
– Figure 4 shows a parameter value
comparison between low-rank and
dynamic-rank trainings. We draw
heatmaps with 4-D weight tensors
of size 3 × 3 × 64 × 64 obtained
from the largest convolution layer in
ResNet20. The tensors are reshaped
to 192× 192 2-D matrices. To show
the difference more clearly, we re-
constructed the tensor from the low-
rank reparameterized weights using
50 singular vectors corresponding to
the smallest singular values. The
low-rank map exhibits blocky arti-
facts, whereas the dynamic-rank map does not. The presence of the artifacts implies the existence of
a null space in certain directions of the feature space, meaning that variations in the input along those
directions do not affect the output. This result is well aligned with the model accuracy comparisons.
Therefore, we conclude that the dynamic-rank method well restores the effective rank of the model,
thereby better exploiting representation capacity.

5.2 COMPUTATIONAL COST ANALYSIS

Here, we analyze the computational overhead of dynamic-rank training, which is shown in Comp.
columns in Table 3 and 4. First, the full-rank training cost is calculated as

TF = E · d, (4)

where E is the total number of epochs and d is the model size. Then, the low-rank training cost is

TSV D=0.5 = E · dSV D=0.5, (5)

where the subscription SV D = 0.5 indicates the model is reparameterized using SVD and the rank
reduction ratio ρ = 0.5. Finally, our dynamic-rank training cost is calculated as

TDR = (D − I) · d+ (E − (D − I)) · dSV D=0.5. (6)

Thus, if ρ is the same, TDR should be higher than TSV D and lower than TF . E.g., ResNet20
contains 272,762 trainable parameters and the reparameterized model with SVD (ρ = 0.5) has
155,170 parameters. When E = 150, I = 60, and D = 135, where ϕ = 0.5, TDR/TF becomes
0.7844, which is shown in Comp. column in Table 3. Our empirical study shows that a relatively
small D−I , achieved by carefully tuning I and D, yields accuracy comparable to full-rank training,
while bringing the cost close to that of conventional low-rank training.

6 CONCLUSION

In this study, we propose a dynamic-rank training framework that restores the effective rank of
model weights while preserving the efficiency of low-rank training. We also present two key in-
sights for maximizing rank recovery by strategically interleaving full-rank epochs within low-rank
training. Our extensive empirical study demonstrates that scheduling full-rank epochs at the end
of the high-noise regime and the beginning of the low-noise regime maximizes the recovery of the
model’s effective rank, thereby improving accuracy. The proposed dynamic-rank training scheme is
general and readily applicable to any deep learning applications. We believe that harmonizing the
proposed dynamic-rank training and other compute-efficient neural network training methods can be
a promising future work. Additional discussion on potential limitations and future work is provided
in Appendix A.7.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Our experimental software was developed using PyTorch 12.6. The experimental results were col-
lected on a GPU server that contains two NVIDIA RTX 4090 GPUs. The detailed dataset informa-
tion, data pre-processing, and hyper-parameter settings are provided in Appendix A.2. The model
inflation and deflation steps with Tucker and CP decompositions are described in Appendix A.3.
The detailed implementation of model rank adjustment at convolution layers are described in Ap-
pendix A.4. We will make our software publicly available once the paper is published.

REFERENCES

Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. Can we gain more from orthogonality regu-
larizations in training deep networks? Advances in Neural Information Processing Systems, 31,
2018.

Emmanuel J Candes and Terence Tao. Decoding by linear programming. IEEE transactions on
information theory, 51(12):4203–4215, 2005.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. SemEval-2017 task
1: Semantic textual similarity multilingual and crosslingual focused evaluation. In SemEval,
pp. 1–14, Vancouver, Canada, August 2017. Association for Computational Linguistics. doi:
10.18653/v1/S17-2001. URL https://aclanthology.org/S17-2001/.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
IWP, 2005.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and William B Dolan. The third pascal recog-
nizing textual entailment challenge. In ACLPASCAL, pp. 1–9, 2007.

Yangyang Guo, Guangzhi Wang, and Mohan Kankanhalli. Pela: Learning parameter-efficient mod-
els with low-rank approximation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 15699–15709, 2024.

Marawan Gamal Abdel Hameed, Marzieh S Tahaei, Ali Mosleh, and Vahid Partovi Nia. Convo-
lutional neural network compression through generalized kronecker product decomposition. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 771–779, 2022.

Andi Han, Jiaxiang Li, Wei Huang, Mingyi Hong, Akiko Takeda, Pratik Jawanpuria, and Bamdev
Mishra. Sltrain: a sparse plus low-rank approach for parameter and memory efficient pretraining,
2024. URL https://arxiv.org/abs/2406.02214.

Fengxiang He, Tongliang Liu, and Dacheng Tao. Control batch size and learning rate to generalize
well: Theoretical and empirical evidence. Advances in neural information processing systems,
32, 2019.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style
pre-training with gradient-disentangled embedding sharing. arXiv preprint arXiv:2111.09543,
2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Jia-Hong Huang, Yixian Shen, Hongyi Zhu, Stevan Rudinac, and Evangelos Kanoulas. Gradient
weight-normalized low-rank projection for efficient llm training. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39, pp. 24123–24131, 2025.

Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. Fedpara: Low-rank hadamard product for
communication-efficient federated learning. arXiv preprint arXiv:2108.06098, 2021.

Shankar Iyer, Nikhil Dandekar, Kornél Csernai, et al. First quora dataset release: Question pairs.
data. quora. com. 2017.

10

https://aclanthology.org/S17-2001/
https://arxiv.org/abs/2406.02214


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks
with low rank expansions. arXiv preprint arXiv:1405.3866, 2014.

Yiping Ji, Hemanth Saratchandran, Cameron Gordon, Zeyu Zhang, and Simon Lucey. Efficient
learning with sine-activated low-rank matrices. arXiv preprint arXiv:2403.19243, 2024.

Wenjun Ke, Jiahao Wang, Peng Wang, Jiajun Liu, Dong Nie, Guozheng Li, and Yining Li. Unveiling
lora intrinsic ranks via salience analysis. Advances in Neural Information Processing Systems, 37:
131575–131595, 2024.

Samir Khaki, Xiuyu Li, Junxian Guo, Ligeng Zhu, Chenfeng Xu, Konstantinos N. Plataniotis, Amir
Yazdanbakhsh, Kurt Keutzer, Song Han, and Zhijian Liu. Sparselora: Accelerating llm fine-tuning
with contextual sparsity, 2025. URL https://arxiv.org/abs/2506.16500.

Taehyeon Kim and Se-Young Yun. Revisiting orthogonality regularization: a study for convolutional
neural networks in image classification. IEEE Access, 10:69741–69749, 2022.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. Com-
pression of deep convolutional neural networks for fast and low power mobile applications. arXiv
preprint arXiv:1511.06530, 2015.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky.
Speeding-up convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553, 2014.

Sunwoo Lee, Chaoyang He, and Salman Avestimehr. Achieving small-batch accuracy with large-
batch scalability via hessian-aware learning rate adjustment. Neural Networks, 158:1–14, 2023.

Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial large
learning rate in training neural networks. Advances in neural information processing systems, 32,
2019.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation, 2024. URL
https://arxiv.org/abs/2402.09353.

Yiqun Mei, Pengfei Guo, Mo Zhou, and Vishal Patel. Resource-adaptive federated learning with all-
in-one neural composition. Advances in Neural Information Processing Systems, 35:4270–4284,
2022.

mnmoustafa and Mohammed Ali. Tiny imagenet. https://kaggle.com/competitions/
tiny-imagenet, 2017. Kaggle.

Anh-Huy Phan, Konstantin Sobolev, Konstantin Sozykin, Dmitry Ermilov, Julia Gusak, Petr
Tichavskỳ, Valeriy Glukhov, Ivan Oseledets, and Andrzej Cichocki. Stable low-rank tensor de-
composition for compression of convolutional neural network. In European Conference on Com-
puter Vision, pp. 522–539. Springer, 2020.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), EMNLP,
pp. 2383–2392, Austin, Texas, November 2016. Association for Computational Linguistics. doi:
10.18653/v1/D16-1264. URL https://aclanthology.org/D16-1264/.

Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay the learning rate,
increase the batch size. arXiv preprint arXiv:1711.00489, 2017.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In EMNLP, pp. 1631–1642, 2013.

11

https://arxiv.org/abs/2506.16500
https://arxiv.org/abs/2402.09353
https://kaggle.com/competitions/tiny-imagenet
https://kaggle.com/competitions/tiny-imagenet
https://aclanthology.org/D16-1264/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In
Proceedings of the 2018 EMNLP Workshop BlackboxNLP, 2018.

Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation,
2024. URL https://arxiv.org/abs/2407.05000.

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
Transactions of the Association for Computational Linguistics (TACL), 7:625–641, 2019.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sen-
tence understanding through inference. In NAACL, pp. 1112–1122, New Orleans, Louisiana,
June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1101. URL
https://aclanthology.org/N18-1101/.

Di Xie, Jiang Xiong, and Shiliang Pu. All you need is beyond a good init: Exploring better solution
for training extremely deep convolutional neural networks with orthonormality and modulation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6176–
6185, 2017.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023.

12

https://arxiv.org/abs/2407.05000
https://aclanthology.org/N18-1101/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Algorithm 1 Dynamic-rank Training
Require: Model parameters Θ, Training dataset D, Total epochs E, low-rank dimension k, Inflation epoch I ,

Deflation epoch D, Learning rate schedule η.
1: Initialize model parameters Θ in a low-rank form.
2: for t = 1→ E do
3: if t = I then
4: // Inflate model to full-rank
5: for low-rank weight (A,B) with base W0 in Θ do
6: W←W0 +AB⊤

7: Replace (W0,A,B) with W in Θ.
8: end for
9: end if

10: if t = D then
11: // Deflate model back to low-rank
12: for each full-rank weight matrix W in Θ do
13: Freeze the current weight Wf ←W.
14: Initialize new low-rank matrices A,B.
15: Replace W with (Wf ,A,B) in Θ.
16: end for
17: end if
18: Train the model on dataset D using Θ and ηt.
19: Update learning rate ηt+1 according to the schedule.
20: end for

A APPENDIX

The appendix is structured as follows:

• Section A.1 presents a pseudocode of the proposed dynamic-rank training framework.
• Section A.2 summarizes experimental settings corresponding to all the experimental results

reported in the main manuscript.
• Section A.3 describes how we inflate and deflate the model weights using Tucker and CP

decompositions.
• Section A.4 describes how we adjust the rank of model weights at convolution layers.
• Section A.5 presents a singular value spectrum ratio comparison among different model

rank adjustment settings.
• Section A.6 provides the results of additional ablation study on the impact of ϕ on model

accuracy.
• Section A.7 summarizes potential limitations of our proposed dynamic-rank training frame-

work.

We declare that an LLM was used to polish the writing. However, its purpose was solely to improve
presentation quality and check grammar.

A.1 ALGORITHM

Algorithm 1 shows a pseudocode of the proposed dynamic-rank training framework. In this pseu-
docode, we assume the model is reparameterized using SVD. It is straightforward to replace SVD
with other decomposition techniques. During E training epochs in total, if the epoch ID t becomes
I , the model is inflated following the previously discussed reconstruction steps (line 5 ∼ 8). Like-
wise, if the epoch ID t becomes D, the model is deflated (line 10 ∼ 17). Other steps are the same as
general neural network training process. Therefore, it does not have any dependencies on optimizers
or model architectures.

A.2 EXPERIMENTAL SETTINGS

CIFAR-10/CIFAR-100 datasets – We perform the typical image preprocessing used in many previ-
ous works (Lee et al., 2023) for CIFAR-10/100 datasets. 60,000 images with 50,000 images for train

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 6: Hyper-parameter settings for experiments shown in Table 3. The ρ is the low-rank model’s
rank reduction ratio.

Dataset Batch Size Learning Rate Epochs (E) LR Decay Inflate/Deflate (I , D) Weight decay ρ

CIFAR-10 128 0.1
150 100, 130 55, 120 1e − 4

0.5CIFAR-100 200 150, 180 80, 170 5e − 4
Tiny ImageNet 64 100 70, 90 30, 80 5e − 4

dataset and 10,000 images for validation dataset. Each image is padded by 4 pixels on every dimen-
sion and then randomly cropped to the original size. Then, we normalize and standardize the values
for all individual pixels. Finally, with probability of 0.5 we randomly flip the image horizontally.

Tiny ImageNet dataset – For Tiny ImageNet with 200 classes, we augment the data samples during
training as follows: aspect ratio adjustment [0.8, 1.25], random resizing [256, 384] pixels on shorter
side, random cropping to 224×224 then resizing to 64 × 64, horizontal flipping with probability of
0.5, and HSV color augmentation (hue ±36 degree, saturation/brightness [0.6, 1.4]). We normalize
using ImageNet standard RGB values (mean [0.485, 0.456, 0.406], std [0.229, 0.224, 0.225]). For
validation, we resize to 256 pixels on shorter side, center crop to 64 × 64, and apply the same
normalization. We used 60,000 images with 50,000 images for train dataset and 10,000 images for
validation dataset.

NLP datasets – We report performance on the GLUE development set following AdaLoRA (Zhang
et al., 2023).

• CoLA (Warstadt et al., 2019): Judges if an English sentence is grammatically acceptable.
(Train: 8.5k, Dev: 1k, Metric: Matthews Correlation Coefficient).

• MNLI (Williams et al., 2018): A 3-way classification task (entailment, neutral, contradic-
tion) for sentence pairs across multiple genres. We use matched development set. (Train:
393k, Dev: 9.8k, Metric: Accuracy).

• MRPC (Dolan & Brockett, 2005): A binary classification task to determine if two sen-
tences from online news are paraphrases. (Train: 3.7k, Dev: 408, Metric: Accuracy).

• QNLI (Rajpurkar et al., 2016): A binary classification task to identify if a context sentence
contains the answer to a question. (Train: 105k, Dev: 5.4k, Metric: Accuracy).

• QQP (Iyer et al., 2017): A binary classification task to determine if two questions from
Quora are semantically equivalent. (Train: 364k, Dev: 40k, Metric: Accuracy).

• RTE (Giampiccolo et al., 2007): A smaller, 2-way textual entailment classification task
combining several datasets. (Train: 2.5k, Dev: 276, Metric: Accuracy).

• SST-2 (Socher et al., 2013): A binary sentiment classification task on sentences from movie
reviews. (Train: 67k, Dev: 872, Metric: Accuracy).

• STS-B (Cer et al., 2017): A regression task to predict a semantic similarity score (from 0
to 5) for sentence pairs. (Train: 5.7k, Dev: 1.5k, Metric: Pearson/Spearman Correlation).

Vision Experimental Settings – The Vision experiments detailed in Table 3 follow the configu-
rations summarized in Table 6. We employed SGD optimizer with 0.9 momentum and conducted
a grid search for learning rate, I , and D, executing each setting at least twice. The learning rate
was tuned among 0.2, 0.1, 0.01. The I and D were first set to the midpoints of the high-noise and
low-noise regimes, respectively. Then, each was finely tuned by grid search with a unit of 5. Table 6
presents the overall hyper-parameter settings we tuned.

NLP Experimental Settings – The NLP experiments presented in Table 4 are configured according
to Table 7. We used AdamW optimizer with momentum 0.9, weight decay 1e-2, beta values (0.9,
0.999), sequence length 128, and 10% warm-up period of total steps. Through grid search performed
at least twice per setting, we tuned learning rate among 1e-4, 5e-5, 2.5e-5, 1e-5, D from 2, 3, and λ
among 0.5, 0.3, 0.1. Table 7 summarizes the highly tuned hyper-parameter settings.

Experimental Settings of Rank Recovery Analysis – The rank recovery experiments outlined in
Table 5 follow the settings summarized in Table 8. We performed grid search for the algorithm-
specific parameter, λ (regularizer coefficient), from 1e-3, 5e-4, 1e-4, 5e-5, 1e-5.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 7: Hyper-parameter settings for experiments shown in Table 4. The λ is the orthogonal
regularizer coefficient in AdaLoRA (Zhang et al., 2023).

Dataset Batch Size Learning Rate Epochs (E) LoRA rank α Algorithm-specific parameter Deflate (D)

COLA

16

5e − 5 10

16 16

λ = 0.5 5
MNLI 1e − 5 5 λ = 0.1

2MRPC 1e − 4 5 λ = 0.1
QNLI 1e − 5 5 λ = 0.1
QQP 1e − 5 5 λ = 0.1
RTE 5e − 5 10 λ = 0.1 5
SST-2 1e − 5 5 λ = 0.1 2SST-B 1e − 4 5 λ = 0.1

Table 8: Hyper-parameter settings for experiments shown in Table 5.
Method Batch Size Learning Rate Epochs (E) LR Decay Algorithm-specific parameter Inflate/Deflate (I , D) ρ

SO
32 0.1 150 100, 130

λ = 5e − 5
(55, 120) 0.5DSO λ = 5e − 5

SRIP+ λ = 5e − 4

Table 9: Hyper-parameter settings for experiments shown in Table 10.
Dataset Batch Size Learning Rate Epochs (E) LR Decay ϕ Inflate/Deflate (I , D) ρ

CIFAR-10 32 0.1 150 100, 130

0.1 92, 107

0.5
0.3 75, 120
0.5 60, 135
0.7 45, 150
0.9 15, 150

CIFAR-100 32 0.1 200 150, 180

0.1 140, 160

0.5
0.3 120, 180
0.5 100, 200
0.7 60, 200
0.9 20, 200

Experimental Settings of Ablation Study on Full-rank Epoch Budget – We conducted an abla-
tion study examining how the number of full-rank epochs affects model accuracy and computational
cost. Table 9 summarizes experimental settings corresponding to Table 10. We follow popularly
used hyperparameter settings (e.g., a batch size of 32 and a learning rate of 0.1, etc.) and adjusted
ϕ, I , and D. Given a fixed budget of ϕE full-rank epochs, we allocate half to the high-noise regime
and half to the low-noise regime.

A.3 MODEL INFLATION / DEFLATION WITH VARIOUS DECOMPOSITION TECHNIQUES

Our dynamic-rank training method is compatible with various decomposition techniques. In the
main manuscript, we described how to inflate and deflate models using SVD as an example. Here,
we explain how model weights are reparameterized using Tucker and CP decompositions. Let F
denote the number of output channels, C the number of input channels, h the kernel height, w the
kernel width, and k the reduced rank.

Model Inflation with Tucker decomposition – We define the model inflation process with Tucker
decomposition (Kim et al., 2015) as follows. Given low-rank layer weights A ∈ R1×1×C×k ,
Core ∈ Rh×w×k×k, B ∈ R1×1×k×F and base parameter W0 ∈ Rh×w×C×F , the model is inflated
such that W←W0 +ACoreB.

Model Deflation with Tucker decomposition – Given a model weight W, the model is deflated
by attaching a low-rank adaptor path next to the original weight such that Wf +ACoreB←W,
where Wf ∈ Rh×w×C×F is the given model weight matrix and A ∈ Rh×w×C×F and A ∈
R1×1×C×k , Core ∈ Rh×w×k×k, and B ∈ R1×1×k×F are low-rank model weights. The provided
weight matrix is frozen as Wf and A, Core and B are trained instead. One can initialize A and B
using either random distributions or zero matrices.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0 50 150100 50 150100 50 150100 50 150100 50 150100 50 150100

50

150

100

𝜆

Epoch

a) Low-rank (SVD=0.5) b) Inflated (𝐼 = 100) c) Inflated (𝐼 = 75) d) Inflated (𝐼 = 50) e) Full-rank (𝐼 = 0) f) Dynamic-rank

(𝐼 = 60, 𝐷 = 120)

Figure 5: The singular value spectrum ratio λ comparison. The red dotted lines indicate the epoch
where the rank of model weights are adjusted.

Model Inflation with CP decomposition – We define the model inflation process with CP de-
composition (Lebedev et al., 2014) as follows. Given low-rank layer weights A ∈ R1×1×C×k ,
C1 ∈ Rh×1×k×k, C2 ∈ R1×w×k×k, B ∈ R1×1×k×F and base parameter W0 ∈ Rh×w×C×F , the
model is inflated such that W←W0 +AC1C2B.

Model Deflation with CP decomposition – Given a model weight W, the model is deflated by
attaching a low-rank adaptor path next to the original weight such that Wf + AC1C2B ← W,
where Wf ∈ Rm×n is the given model weight matrix and A ∈ R1×1×C×k , C1 ∈ Rh×1×k×k,
C2 ∈ R1×w×k×k, and B ∈ R1×1×k×F are low-rank model weights. The provided weight matrix
is frozen as Wf and A, C1, C2 and B are trained instead. One can initialize A and B using either
random distributions or zero matrices.

A.4 RANK ADJUSTMENT AN CONVOLUTION LAYERS

Let F denote the number of output channels, C the number of input channels, h the kernel height,
w the kernel width, and k the reduced rank. Note that we use a SVD-based approach as an example.
Given low-rank convolution layer weights A ∈ Rh×w×C×k, B ∈ R1×1×k×F and base convolution
layer weight W0 ∈ Rh×w×C×F , convolution layer is inflated such that W←−W0+AB. Note that
we assume k < r ≤ n. If low-rank convolution follows the standard low-rank reparameterization
method, the initial weight matrix W0 is set to zero matrix, i.e., 0h×w×C×F. Consequently, the
maximum available rank is increased from k to n by training with inflated convolution layer. The
deflation process follows the same steps, but in reverse order.

A.5 SINGULAR VALUE SPECTRUM RATIO COMPARISON

To analyze the impact of interleaving full-rank epochs within low-rank training, we visualize the
singular value spectrum ratio λl, l ∈ [L] with various model inflation settings. Figure 5 presents the
layer-wise λ curves of five different inflation settings. As I decreases, the full-rank epochs take up a
large portion of the total epoch budget. We first observe that as I decreases, the λl values are more
effectively suppressed, resulting in stable λl curves across most layers. For example, in the full-rank
curves shown in Figure 5.e), all curves remain below λl < 20. When the model is inflated too late
(e.g., I = 100), the curves stay relatively high, indicating that the model weights have lost their
rank. As shown in Figure 5.f), when I is sufficiently small, the λl values are significantly reduced
in most layers. Even after the model rank is deflated at D = 120, the λl values remain low until the
end of training. This comparison provides clear insights into how to dynamically adjust the model
rank during training to maximize the rank of the model weights.

Another intriguing observation is that the λ values at a few layers remain high regardless of rank
adjustment. Notably, these layers consistently include the first and last layers across all experiments.
Since their inputs or outputs remain fixed during training, their weights may rapidly fit to data
patterns. If their rank can be suppressed, the model’s overall capacity may be more effectively
utilized, potentially achieving higher accuracy within the same epoch budget. We consider this an
interesting direction for future research.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 10: Ablation study on how ϕ = (D− I)/E affects the performance of dynamic-rank training.
Low-Rank SVD is used for all experiments. When ϕ = 0.0, it becomes the conventional low-rank
training. In contrast, when ϕ = 1.0, it becomes full-rank training. The I and D are set to perform
the same number of full-rank epochs in the high-noise and low-noise regimes.

Setting Rank Comp. CIFAR-10 CIFAR-100Ratio ρ

ϕ = 0.1

0.25

0.36 90.54 ± 0.3% 76.29 ± 0.1%
ϕ = 0.3 0.51 91.43 ± 0.1% 77.03 ± 0.4%
ϕ = 0.5 0.64 92.01 ± 0.3% 78.61 ± 0.2%
ϕ = 0.7 0.79 92.08 ± 0.4% 78.75 ± 0.1%
ϕ = 0.9 0.93 92.14 ± 0.2% 78.63 ± 0.3%

ϕ = 0.1

0.5

0.61 91.28 ± 0.1% 76.84 ± 0.1%
ϕ = 0.3 0.69 91.57 ± 0.1% 77.51 ± 0.2%
ϕ = 0.5 0.78 92.11 ± 0.2% 78.41 ± 0.3%
ϕ = 0.7 0.87 92.15 ± 0.2% 78.39 ± 0.1%
ϕ = 0.9 0.96 92.11 ± 0.1% 78.47 ± 0.3%

A.6 ADDITIONAL ABLATION STUDY

In our empirical study, we found that dynamic-rank training performs well when D and I are set
to allocate a similar number of full-rank epochs to both the high-noise and low-noise regimes. We
now conduct a simple ablation study to examine how the number of full-rank epochs affects model
accuracy. Table 10 presents the results. SVD-based low-rank training is evaluated on the CIFAR-10
and CIFAR-100 benchmarks. For convenience, we define ϕ = (D − I)/E as the ratio of full-rank
epochs to the total training budget. When ϕ = 0.0, it corresponds to conventional low-rank training;
when ϕ = 1.0, it becomes full-rank training. On both benchmarks, accuracy starts to drop when
ϕ goes below 0.5, particularly in the range ϕ ∈ [0.3, 0.5]. We therefore recommend starting with
ϕ = 0.5 and adjusting downward as needed.

A.7 POTENTIAL LIMITATIONS AND FUTURE WORK

Potential Limitations – Our proposed method has a relatively more expensive computational cost
compared to the conventional low-rank training methods. Since the number of trainable parameters
increases during D − I full-rank epochs, the overall cost is increased as shown in Comp. column in
Table 3. However, the cost still remains substantially lower than that of the full-rank training, and we
argue that the dynamic-rank training is a practical option for large-scale deep learning applications.

In addition, the extra hyperparameters, I and D, can introduce a non-trivial tuning overhead. How-
ever, Section 4.2 provides useful guidance on how to select good values for I and D based on
learning rate decay schedules. In our empirical study, we find that I and D can be tuned easily
by following our suggestions, leading to substantial accuracy improvement while maintaining low
computational cost.

Future Work – We plan to extend our dynamic-rank training research to automate the inflation and
deflation steps. Our study reveals that the inflation should be located at the end of the high-noise
regime and the deflation should be as early as possible in the low-noise regime. If the noise scale
can be quantified at run time, rather than explicitly mapping it to the learning rate decay schedule,
appropriate timings for increasing and decreasing the model rank can be identified during training.
We believe this will make the dynamic-rank training framework significantly more practical. More-
over, we consider harmonizing the dynamic-rank training framework with other existing compute-
efficient training strategies as a promising direction for future work. Given the ever-increasing model
sizes in deep learning applications (e.g., LLMs), developing neural network training strategies that
balance accuracy and efficiency is a crucial research direction.

17


	Introduction
	Background
	Related Work
	Motivation

	Dynamic-rank Training Framework
	Model Rank Adjustment
	Model Rank Scheduling
	Unified Rank Adjustment Framework

	Experiments
	Comparative Study
	Computational Cost Analysis

	Conclusion
	Appendix
	Algorithm
	Experimental Settings
	Model Inflation / Deflation with Various Decomposition Techniques
	Rank Adjustment an Convolution Layers
	Singular Value Spectrum Ratio Comparison
	Additional Ablation Study
	Potential Limitations and Future Work


