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Abstract—Recent years have seen a proliferation of research
on adversarial machine learning. Numerous papers demonstrate
powerful algorithmic attacks against a wide variety of machine
learning (ML) models, and numerous other papers propose
defenses that can withstand most attacks. However, abundant
real-world evidence suggests that actual attackers use simple
tactics to subvert ML-driven systems, and as a result security
practitioners have not prioritized adversarial ML defenses.

Motivated by the apparent gap between researchers and
practitioners, this position paper aims to bridge the two domains.
We first present three real-world case studies from which we
can glean practical insights unknown or neglected in research.
Next we analyze all adversarial ML papers recently published in
top security conferences, highlighting positive trends and blind
spots. Finally, we state positions on precise and cost-driven threat
modeling, collaboration between industry and academia, and
reproducible research. We believe that our positions, if adopted,
will increase the real-world impact of future endeavours in adver-
sarial ML, bringing both researchers and practitioners closer to
their shared goal of improving the security of ML systems.

Index Terms—Threat Model, Economics, Cybersecurity, Ma-
chine Learning, Research, Practice, Adversarial

I. INTRODUCTION

Several recent surveys indicate that protecting machine
learning (ML) models is not a leading security concern for
practitioners [1]–[5]. According to the few recorded accounts
of security failures “in the wild,” ML systems can be broken
by naı̈ve attackers that are not systematically exploiting the
vulnerabilities of ML, but rather are developing attacks by
guessing—either indiscriminately or by some coarse heuris-
tic [6], [7]. Red-team exercises on ML systems often take
advantage of security gaps that are agnostic to the existence
of an ML model, and subsequent defensive recommendations
are likewise more broad than, e.g., adversarial training [8],
[9]. Additionally, the ML models deployed in production-
grade ML systems are often not directly observable (and are
sometimes even unreachable) by most attackers [10].

On the other hand, researchers assert that real ML imple-
mentations should not follow the principle of “security by
obscurity” [11], and that security evaluations of ML models
should assume worst-case scenarios [12]–[14]. Indeed, no one
can exclude the possibility of future powerful adversaries
turning their attention to the ML models embedded in real
systems. Fueled by such “what ifs,” thousands of papers [15]
have showcased successful security violations of ML models

by means of sophisticated strategies such as gradient-based
algorithms [16].

These few anecdotes suggest that the field of ML secu-
rity suffers from a mismatch between the priorities of
practitioners and the focus of researchers. In this position
paper we argue that the gap between adversarial ML research
and practice is real and identify several underlying causes.
We aim to reduce this gap by proposing guidelines for future
endeavours that reflect our observations of aspects overlooked
by, or inconsistent within, existing literature.

To reach our goal, we first revisit the fundamentals of ML
security (§II). We argue that real deployed ML models are
part of complex ML systems whose architectures are unknown
to researchers, and that cybersecurity is rooted in economic
considerations for both attackers and defenders.

To assist researchers in understanding crucial facets of oper-
ational ML security, we then present three original case studies
from the real-world (§III) that elucidate: (a) the architecture of
a complex ML system deployed in an online social network;
(b) the lack of evidence of adversarial examples against a
commercial ML system for phishing webpage detection; and
(c) the role of time and domain expertise in devising sophis-
ticated attacks during an acclaimed ML evasion competition.

Next we turn our attention to the research domain and
take a snapshot of the current landscape of adversarial ML
as portrayed in scientific papers (§IV). After surveying the
proceedings of the “Top-4” security conferences from 2019
to 2021, we systematically analyze all 88 papers that consider
attacks against ML or corresponding defenses. Of these papers,
89% only evaluate algorithms based on neural networks, 63%
focus on computer vision, and 80% perform their experiments
on “benchmarks”. We discover several inconsistencies in the
terminology adopted in reputable prior work. We also identify
several positive trends, such as an increasing amount of papers
envisioning attackers who “ignore” the ML model and reach
their goal by targeting other elements of the ML system.

Finally, we coalesce all our observations by stating four
positions that researchers and practitioners in ML security can
adopt to close the gap between these domains (§V). We en-
courage the community to (a) adapt threat models to ML sys-
tems, (b) integrate threat models with cost-driven assessments,
(c) build collaborations between industry and academia, and
(d) embrace a “just culture” for source-code disclosure.



In summary, we make three major contributions:
• We present three real-world case studies, showing prac-

tical insights unknown or neglected in research.
• We analyze all recent adversarial ML papers in top secu-

rity venues, highlighting positive trends and blind spots.
• We state four positions that, if adopted, will help bridge

the gap between research and practice in ML security.
Our contributions also include extended discussions (Ap-
pendix A) and the detailed findings of our literature review
(Appendix B). Our resources can be found in our website [17].

II. REVISITING MACHINE LEARNING SECURITY

We begin by reviewing the foundations of the three pillars
of our paper: machine learning systems (§II-A), security of
machine learning (§II-B), and practical cybersecurity (§II-C).
We also compare our paper with related work (§II-D).

A. Overview of Machine Learning (Systems)

Machine learning in one paragraph. The fundamental
goal of machine learning (ML) is to create “machines that
can make decisions by learning from data” [18]. At its core,
the process entails applying a learning algorithm to training
data, which yields a machine learning model. The purpose
of any ML model is to generalize to new data: given an
input, the ML model produces an output that can be used
to accomplish a given task, such as predicting future trends,
detecting malware, recognizing speech patterns, or inferring
objects in images [18], [19]. The effectiveness of an ML model
is measured during a validation phase, during which the ML
model analyzes test data and its predictions aer compared to
some known ground truth (e.g., labels [20]). Effectiveness
can be measured through various metrics (e.g., accuracy).
Informally, an ML model belongs to either of two “paradigms”
that characterize the underlying learning algorithm. Those
based on neural networks [19] are denoted as deep learning
(DL), whereas others are broadly denoted as shallow learning
and include, e.g., SVMs and tree-based algorithms [21].

Using ML in practice. If an ML model is determined
to be effective, it can be integrated into a machine learning
system, which itself can be a component of some product or
service. Indeed, an ML model by itself is usually insufficient
for operational deployment. First, it must receive an input that
may itself be derived from a separate component (e.g., signal
capture or preprocessing1). Second, the ML model’s output
may be further analyzed for decision making. We illustrate an
ML system with a linear data-processing pipeline in Fig. 1.

Input Preprocessing ML model... ... Output

Machine Learning System

Fig. 1: An ML system. The system receives an input, which is preprocessed
and then fed to an ML model, the results of which may be further processed
before providing the system’s final output.

1Preprocessing steps can be complex. They can entail, e.g., transformations,
filtering, normalization, feature extraction, and/or noise reduction.

Real ML systems may include pipelines having various
components, each potentially having its own applications of
ML (e.g., image scaling [22], word embeddings [23]). Some
ML systems require constant updates, which can be done in
an automated fashion [24], while others may adopt company-
specific guidelines [25]. It is even possible that a given input
never reaches any ML model within the system. This out-
come is typical, e.g., in Network Intrusion Detection Systems
(NIDS), wherein samples matching known “signatures” are put
into an alternate pipeline that does not include any ML [26].

OBSERVATION: A machine learning model is merely a
single component within a machine learning system.

Types of ML systems. Many IT infrastructures already rely
on ML systems at either small or large scales. Without loss
of generality we identify two main categories of ML systems,
characterized by the relationship (i.e., knowledge and degree
of interaction) between the ML system and its users.

• OPEN. The source code of these ML systems is publicly
available. This category may include custom-built ML
systems where the code is subsequently released. Obvi-
ously, any ML system is OPEN for its developers.

• CLOSED. These ML systems are developed in a propri-
etary setting and distributed to their end users, who can
inspect neither (i) the underlying source code, nor (ii) the
components enclosed in the ML system. These ML
systems are either unrestricted, if they can be freely used;
or restricted, if their use is subject to some restriction,
such as a fee or a threshold based on queries.

We provide some examples of these ML systems in Table I.

TABLE I: Types of ML systems with example products and research papers.

Type of
ML system

Example Application

Product / Company Use case Related Work

OPEN
OpenPilot [27] Autonomous Driving Sato [28]

GPT2 [29] Natural Language Carlini [30]

CLOSED
Google Translate [31] Translation (unrestricted) Pajola [32]

ClarifAI [33] MLaaS (restricted) Yu [34]

Both OPEN and CLOSED ML systems resemble the schematic
shown in Fig. 1: they receive an input and provide an output.
Typically, the users of an ML system can control the input and
can observe the output (e.g., via an API [35]). Such properties,
however, may not hold for some special cases, which we
denote as INVISIBLE ML systems. Control and configuration of
INVISIBLE ML systems are reserved for “high-privilege” users
(e.g., developers or sys-admins), for whom the ML system
can be either OPEN or CLOSED. The functionality of these
systems depends on the interactions of “low-privilege” users
(e.g., employees or customers), to whom the operation of the
ML system is not readily apparent. A low-privilege user may
receive some feedback based on the ML system’s output, but
such feedback may be influenced by other systems or may
arrive after a long and/or unpredictable delay. Simply put,
low-privilege users of INVISIBLE ML systems may not know
(i) if something happened, (ii) when it happened, (iii) why it
happened, and/or (iv) what changed. We provide a schematic
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of an INVISIBLE ML system for network management in Fig. 2
(two of our case studies in §III entail INVISIBLE ML systems).
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Fig. 2: An INVISIBLE ML system. The low privileged users in the environment
interact with the ML system, the output of which can be used in diverse
ways by its managers. For example, the alarms of a NIDS may be inspected
by sysadmins and then used to block suspicious hosts; whereas a network
management system can dynamically allocate available resources (e.g., band-
width). In some cases the output does not trigger any immediate action.

B. Security of Machine Learning

Adversarial Machine Learning. Thousands of papers [15]
have addressed the security of machine learning, a research
field typically denoted as “adversarial machine learning” [36].
Although work in this field has existed for nearly 20 years [37],
adversarial ML became popular when Szegedy et al [38]
showed that deep learning is vulnerable to adversarial exam-
ples, which are examples that are “similar” to “normal” inputs
but induce a given ML model to behave incorrectly [39].

Adversarial examples can certainly be used in malicious
ways: for instance, an attacker can craft an adversarial example
that evades an ML model powering a security system, e.g., a
malware classifier [40]. (We provide the definition of evasion
attacks in Appendix A-A.) Nevertheless, we will show that
adversarial examples are only one of a myriad of threats that
can violate the security of ML systems.

Threat Model. Security assessments require the definition
of a threat model, which establishes the relationship between
an attacker and their target [10]. The seminal paper by Huang
et al. [36] was among the first to formalize the potential
threats to ML. Since then, more efforts followed—some more
general (e.g., [39], [41]), others more specific (e.g., [42], [43]).
In the ML context, threat models characterize an attacker’s
relationship to an ML model through four elements: GOAL,
KNOWLEDGE, CAPABILITIES, and STRATEGY.

GOAL. Attackers can have diverse GOALS, such as violating
the integrity or the availability of the ML model [44]. They can
also, however, attempt to “steal” the ML model [45], or extract
private data from it via membership inference [46] attacks that
infer whether a person’s data is in the model’s training set.

KNOWLEDGE. Srndiç and Laskov [43] pointed out that the
attacker’s KNOWLEDGE spans over three elements of an ML
model: the training data, the feature set, and the algorithm.
Depending on the information available to the attacker, most
literature adopts a “box” terminology [41]: “white-box,” when
the attacker knows everything; “black-box,” when the attacker
knows nothing; and “gray-box,” for intermediate cases [42].2

CAPABILITIES. Existing literature shows that attackers
use various CAPABILITIES to tamper with ML models. For

2We acknowledge that such color-based terminology may offend some
people. We use it when discussing prior work to preserve fidelity to the
original sources, but we propose that future work refrain from using it (§V).

instance, they can interfere with the training phase of the
ML model [47]; they can control inputs to a (trained)
ML model and observe its output [48]; and/or they can
operate from diverse spaces of the data pipeline of a ML sys-
tem (the so-called “problem/input” and “feature” spaces [49]).
In some circumstances [50], the attacker cannot interact with
the ML model, but they can obtain a “surrogate” ML model—
which is used, e.g., to transfer adversarial examples [44].

STRATEGY. To reach their GOAL, attackers exploit their
KNOWLEDGE and CAPABILITIES and enact a STRATEGY, e.g.:
attackers that fully know a deep learning model can use its
gradient to craft adversarial examples [51], while attackers
who can manipulate training data may add a backdoor [52].

We observe, however, that the terminology above has a
limitation: it focuses exclusively on the ML model (the inner,
dotted box in Fig. 1), which is just a single component of the
much more complex ML system (the outer box in Fig. 1). We
will elaborate on how to overcome this limitation in §V.

Adversarial ML in practice. Several researchers have
investigated whether the explosive popularity of adversarial
ML in research papers has been received with equal interest
from industry practitioners. Let us trace the major findings
since 2020:

(2020) Kumar et al. [3] conducted a survey of 28 companies.
Participants were asked about their perspectives on adver-
sarial ML. Most participants did not know how to respond
and were primarily worried about poisoning attacks.

(2021) The following year, Boenisch et al. [2] raised an im-
portant warning: many ML developers confessed that “I
never thought about securing my ML models.”

(2021) Sun et al. [1] studied ML models deployed on mobile
apps and (perhaps unsurprisingly) found that: “41% of
ML apps do not protect their models at all.”

(2022) A year later, Bieringer et al. [4] interviewed developers of
ML and concluded that “most lack adequate understand-
ing to secure ML systems in production”, even though
one third “feel insecure about adversarial ML.”

(2022) Grosse et al. [5] interviewed hundreds of practitioners
asking their opinion on countermeasures to adversarial
ML attacks. The general consensus was “Why do so?”

We find it surprising that the viewpoint of practitioners has
barely changed, even in spite of warnings from sources beyond
the research domain. For example, in 2020 Gartner predicted
that “by 2022, 30% of cyberattacks will leverage training-data
poisoning, model theft, or adversarial examples.” [53]

OBSERVATION: Despite abundant evidence showing that
ML models are vulnerable, practitioners persist in treating
such threats as low priority.

C. (Economics of) Cybersecurity

An elementary principle. It is well known that “there
is no such thing as a foolproof system” [54] (the actual
quote is from a renowned con artist [55]). Given a suffi-
cient amount of resources, any attacker can succeed in their
goal [56]. Indeed, the purpose of security mechanisms is
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to raise the cost sustained by the attacker [57], either by
requiring more resources (e.g., time to succeed) or by increas-
ing the consequence of failure (e.g., getting caught). How-
ever, countermeasures also have costs (e.g., implementation
efforts, periodic evaluations, maintenance, and computational
resources [58], [59]) that must be factored into any decision
about whether to build or deploy them. Simply put, operational
cybersecurity is rooted in economics [56], [60].

Cybersecurity in practice. Let us substantiate our pre-
vious claims with public statements made by cybersecurity
professionals. On July 22nd, 2022, a tweet [61] by a Sophos
AI employee revealed that “Adversarial examples are not the
primary concern at Sophos.” This tweet inspired an insightful
discussion between renowned researchers and practitioners in
this field. Konstantin Berlin, Head of AI at Sophos, explains
his thinking about adversarial examples [62] as follows:
Head of Sophos AI: “If you look at cybercrime in economical
terms (as you should because it is a business) the optimization
for an adversarial ex. is not the expensive part, it is the
engineering part of building a tool that can create a diverse
set of attacks with no obvious watermarks.” (source: [63])

Berlin also stated that “Given the existence of an already
large number of more prevalent attacks that do bypass detec-
tions, why prioritize this one?” Such a simple (and recent)
use-case shows that operational decisions are dictated by
economics, and many practitioners prioritize threats that are
deemed to be more important for their businesses.

OBSERVATION: Economics is the main driver of practical
cybersecurity—both for attackers and defenders.

We report the rest of the discussion of such Twitter thread in
Appendix A-B, where we will also provide our own viewpoint.

D. Related Work

Many papers share our goal of improving the security of
real-world ML systems. The authors of [14] and [64] provide
practical guidelines on ML for security—whereas we focus
on the security of ML. Some related papers (e.g., [2]–[5])
focus exclusively on the industry perspective; while most
literature surveys (e.g., [39], [41], [65]) focus just on the
research perspective. We consider both perspectives, because
we aim to bridge the existing gap between these two sides.
Perhaps the closest effort to our paper is the (unpublished)
work by Gilmer et al. [66], which attempts to contextualize
the implications of adversarial ML in the real-world. Despite
sharing our goal, [66] has two limitations: first, it mostly
focuses on computer vision and deep learning—which, as
we will show, represent only a subset of the conceivable
applications of ML in reality; second, the remarks made in [66]
relate to papers published before 2018—i.e., almost five years
ago, when ML deployments were not as popular as today.

We briefly summarize two orthogonal research areas to
our paper. (i) The performance of ML tends to degrade over
time [67]-[68]. This phenomenon (called “concept drift”) is
due to changes in the data distribution that are physiological

in nature and sometimes even beyond an attacker’s control.
(ii) ML can also be used as an attack vector (e.g., “deep-
fakes” [69], or “attribute inference” [70]). This research area
(i.e., “offensive ML”) is outside our scope, because we focus
on the protection of ML systems.

To the best of our knowledge, ours is the first position
paper (on ML security) whose main arguments stem from
observations based on (i) a systematic analysis of recent
research, and on (ii) case studies from real experience.

III. CASE STUDIES (REAL EXPERIENCE)

We now describe three case studies fostering the contri-
bution of industry practitioners. Our intent is twofold: (i)
to elucidate some practical aspects that may be obscure to
researchers, and (ii) to induce practitioners to be more open
with their techniques.

The first case study (§III-A) presents the architecture of a
real INVISIBLE ML system deployed at Facebook, the largest
online social network (OSN). The second (§III-B) describes
the triaging of phishing webpages that confused a security
company’s ML detector. The third (§III-C) sheds light on
the role of time and domain expertise in devising query-
efficient attacks during an ML evasion challenge organized
by renowned tech companies. In Appendix A-D, we provide
a fourth case study showing that even “adversarially aware”
malware detectors can easily be fooled with expert knowledge.

Because our case studies consider ML systems for cy-
berthreat detection, this section will focus on “evasion” at-
tacks, i.e., misclassifications of malicious input at test time.

A. “The four A’s of abuse fighting”: ML Systems in an OSN

This case study reflects the experience of Facebook, a real
OSN that makes ample use of ML (in various forms) to
manage its services and, in particular, to fight spam abuse.

Scenario. An attacker attempts to spread spam on Face-
book; for example, they want to post a pornographic image
with some text, which may lure a user to click on an embed-
ded URL. Facebook does not allow these activities on their
platform, and hence employs an ML system to prevent this
type of content from appearing. The attacker—aware of the
existence of the ML system—tries to evade the detector by
perturbing the content and/or changing their behavior.

Problem. On the surface, this scenario represents the “evad-
ing the ML spam detector” setting that is typically envisioned
in research papers (e.g. [71], [72]). However, most such papers
assume that the ML system consists of (i) a single ML
classifier that (ii) analyzes content and (iii) outputs the decision
to either block or allow the content—a decision which (iv) is
readily observable by the content’s author (e.g., [73]). Such a
“black-box” scenario (which has also been envisioned in its
“white-box” variant [74]) assumes an adversary who can send
an arbitrary number of requests to the ML model and use its
response to craft adversarial examples—potentially with the
added constraint of preserving the original input semantics.

Reality. Production systems however, are far more complex
(see §II-A). In fact, Facebook views content classification
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(block/allow) as the last line of defense in an entire funnel
of countermeasures that work in concert to provide defense
at different layers; to be successful, an attacker must evade
each layer in the funnel. We denote this funnel as “the four
A’s of abuse fighting”: AUTOMATION, ACCESS, ACTIVITY, and
APPLICATION. We provide an overview in Fig. 3 and explain
each term below. Without loss of generality we can assume
that the input to the ML system is an action (e.g., posting an
image) executed by a given entity (e.g., user account).

Automation

Access

Activity

Application

Increasing 
amount of data 
available

Increasing harm 
per incident

Increasing
magnitude of 

problem

Increasing speed 
of detection

E.g. scripts, bots, extensions, emulators

E.g. fake/compromised accounts, access tokens

E.g. spam, fake engagement, scraping

E.g. hate, terrorism, nudity

1

2

3

4

Fig. 3: Example of Facebook’s ML system for spam detection. The system
consists of a “funnel” of four interconnected defensive layers, each with its
own logic. The attacker must bypass all layers to be successful.

1) AUTOMATION layer. At the top of the funnel is a simple
question: “is the action due to automation?” Anti-automation
is the most general defense because it applies to both read
and write surfaces and to logged-in and logged-out traffic.
Indeed, Facebook is constantly targeted by bots and automated
scripts [75]. The AUTOMATION layer automatically prevents
“black-box” attack strategies based on repeatedly querying the
system over short time frames.

2) ACCESS layer. Automation detection is Facebook’s prin-
cipal defense against logged-out reads at scale. In contrast, an
account is required for writes (e.g., posting content) or logged-
in scraping. Most malicious activity is perpetrated by fake or
compromised user accounts [76]. An attacker can, however,
find other ways (e.g., fake advertiser accounts or stolen access
tokens) to obtain the required permissions to launch an offense.
Simply put, the role of the ACCESS layer is to analyze any
write request and determine whether the corresponding write
permission was obtained legitimately by the requesting entity.

3) ACTIVITY layer. If Facebook fails to stop a malicious
action just for being automated (in the AUTOMATION layer)
and does not catch the bad actor when they obtain access
(in the ACCESS layer), then the next opportunity is when they
begin carrying out their (malicious) activity. To reach their
goal, spammers and other abusers must act in fundamentally
different ways from normal users (see Appendix A-G1 for an
explanation). Such differences include how they interact with
the social graph [77], the distribution of the actions they take,
and/or how fast they execute their actions.

4) APPLICATION layer. The first three layers of the funnel
are generic and mostly boil down to well-known cybersecurity
practices, some of which may not require ML. However, if the

funnel ended at the third layer, two concerns would arise: (i)
What happens if an attacker bypasses all three layers? and (ii)
What about specific prohibited content such as nudity, hate
speech, or gun sales—which are activities that, despite being
against Facebook’s policies, can be produced by “benign”
users? To address these concerns, Facebook has a fourth,
APPLICATION layer. Assuming that the above layers are mostly
effective (i.e., low false positives/false negatives), most of the
violations in this layer will be small-scale and driven by real
users. This layer is where the deep learning models typically
targeted in research papers [74] (e.g., nudity detectors or hate-
speech classifiers) can really shine.

Complexity. Facebook’s spam-detection system has numer-
ous additional complexities not shown in Fig. 3. For example,
a blocked attacker typically has no way of knowing which
layer “caught” them and therefore must try many different
evasion strategies. Each layer itself may contain both shallow
learning and deep learning methods as well as heuristic rules,
further complicating the attacker’s task. The layers can inform
each other even if an attacker is not blocked—for example,
an account may be given a smaller rate limit threshold
(ACTIVITY layer) if a fake-account detector (ACCESS layer)
returns a “suspicious” score but is not confident enough to
block outright. Finally, even if some layers output a decision
of “malicious,” such output is postprocessed by a response
layer that decides which action to take: Ban the user? Remove
the content? Show a CAPTCHA? Wait and see? The attacker
may even observe different responses from multiple instances
of the same input, depending on factors beyond the attacker’s
control—a characteristic of an INVISIBLE ML system (§II-A).

OBSERVATION: Real ML systems include many compo-
nents, not necessarily all using ML. Attackers must bypass
all components to be successful.

We remark, however, that the complexity of real ML
systems does not necessarily mean that such systems are
“omnipotent.” The following case study will reveal that even
full-fledged ML detectors can be thwarted via simple tactics.

B. Are there Adversarial Examples in the Wild (Web)?

To assess the prevalence and nature of adversarial examples
“in the wild” (i.e., in the real-world), we first consulted
the AI Incident Database [78], containing over 1 600 reports
of AI failures (as of Aug. 2022). Unfortunately, querying
the database with the keywords “evasion” and “adversarial
machine learning” yielded only 2 and 6 results, respectively.
Apparently, only a limited number of (reported) incidents
involve the types of attacks typically portrayed in adversarial
ML papers. To gain further insight, we asked a leading
cybersecurity company whether they encounter adversarial
examples when manually triaging security incidents. This case
study provides their answer.

Context. We consider the problem of phishing webpage
detection. Similarly to the previous case study, the ML system
is a commercial-grade detector, composed of diverse modules,
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all with the underlying goal of “catching phish.” Specifically,
the ML system (which is CLOSED and INVISIBLE to the at-
tacker3) consists of an ensemble of image classifiers, each
responsible for a specific task (e.g., logo attribution, visual
comparison, input form detection). The ML system leverages
the principle of active learning [79]: For each input, the output
is a “phishing confidence” score that is used (i) to make an
automated dection (i.e., block/allow) and (ii) to improve the
ML system by triaging to security analysts inputs for which
the ML system is “uncertain.” Such a setting fits our objective:
most related research focuses on computer vision (§IV-A) and
the ML system naturally suggests to the analysts which inputs
can be linked to adversarial examples.

Method. We searched for adversarial examples in the ML
system’s usage logs, restricting ourselves to the 40 domains
that (according to the cybersecurity company) were most
commonly targeted4 by phishing campaigns in July 2022.
During this month the ML system analyzed hundreds of
thousands of inputs, and among these 9 174 were flagged as
“uncertain” by the ML system and required manual triage. We
used this set as a starting point, and we began to review all
such samples (i.e., screenshots). To make our in-depth analysis
humanly feasible, as we visually inspected each sample we
asked ourselves “can this be an adversarial example?” and
decided to stop once we obtained a positive answer for 100

samples. We reached this number after going through 4 600

samples (half of our initial population). The discarded samples
had nothing in common with adversarial examples, due to
being “out of distribution” [80]—i.e., they were significantly
different from any sample included in the training data of
the ML system (e.g., a domain using a new logo, or shifting
backgrounds—typical of, e.g., Netflix). We then used the 100

positive samples as basis for our in-depth analysis. Our aim
was to determine the causes of the ML system’s “uncertain”
response and, in particular, if any cause could be traced back to
the gradient-based techniques typical of adversarial examples.
This entire process (first inspection and in-depth analysis) was
conducted by two authors who worked independently and had
regular meetings to resolve issues and arrive at a consensus.

Results. Our analysis suggests that attackers rely on an
arsenal of relatively simple, yet often effective, strategies. We
quantify the prevalence of these strategies in Table II and show
their effects on real webpages (“in the wild”) in Fig. 4.

TABLE II: Frequency of different evasive strategies in 100 phishing pages
that were poorly analyzed by a commercial ML-driven detector.

Evasive Strategy Count Evasive Strategy Count

Company name style 25 Logo stretching 11
Blurry logo 23 Multiple forms - images 10
Cropping 20 Background patterns 8
No company name 16 “Log in” obfuscation 6
No visual logo 13 Masking 3
Different visual logo 12

3The attacker can only inspect the output by subscribing to the company’s
security product, fetching the phishing page, and waiting for the back end to
recognize the webpage as phishing and eventually add it to a blocklist.

4We use the term “targeted” to denote a phishing webpage that is crafted
so as to resemble a (benign) page of a specific website.

The most prevalent attacks include cropping, masking,
stretching, and/or blurring techniques, all of which induce
optical character recognition (OCR) algorithms to incorrectly
extract text from the page. Such “anti-OCR” techniques have
been employed for decades by phishers [81] and can (still) ably
fool ML systems without relying on gradient computations.
These methods typically target the company name when it
is part of a logo, mostly by manipulating the logo’s visual
representation. We also found samples with a different logo
altogether, as well as “company name style” attacks that alter
the logo’s company name. Even more rudimentary attacks
simply remove the logo and/or the company name (or even
both of them in 6 cases). In rarer cases, we encountered
“multiple form/image” attacks, which either overlay duplicate
forms on top of one another or provide a grid of forms or
background images; and “background pattern” attacks, which
alter the background (especially behind company logos).

Fig. 4: Four evasive phishing samples, depicting the use of masking, cropping,
blurring, and misspellings to disrupt the detection of company names, logos,
and login-related keywords (e.g., “Passwrd”).

Considerations. Our analysis clearly indicates that real
adversaries do attempt to evade anti-phishing ML systems that
use image classification, and do so with some degree of suc-
cess. Although our results suggest that the strategies employed
by real attackers have little in common with gradient-based
adversarial examples, we cannot make such claims with cer-
tainty. Indeed, proving whether a given “evasive sample” is a
true adversarial example or just the result of educated guessing
is extremely difficult today. This problem could potentially be
addressed with digital forensics techniques (which are covered
by two recent works in the context of adversarial ML [82],
[83]). In a sense, the only way to be 100% certain that a sample
has been generated with a gradient-based strategy would be
to ask the attacker directly (i.e., a “probatio diabolica”).
Nonetheless, we are confident in the results of our analysis: the
strategies we described above are simple yet effective. Hence,
it is sensible to conclude that an attacker would opt for these
methods over more computationally expensive ones.

OBSERVATION: to evade phishing ML detectors, attackers
employ tactics relying on cheap but effective methods that
are unlikely to result from gradient computations.

As an additional contribution, we release (in our website [17])
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the 100 evasive webpages analyzed in this case study.

C. In-Depth Analysis of an ML Evasion Competition

We now turn our attention to an “anti-phishing evasion”
competition organized by industry practitioners in ML secu-
rity [84], who provided us with data from the competition. Our
intention is to emphasize the role of time and domain expertise
in evading a ML detector. Although most contestants were
security enthusiasts, the rules of this competition resembled a
constrained and likely scenario simulating a real attack.

Rules. Contestants were given ten phishing webpages (as
HTML) and were challenged to manipulate them in such
a way as to preserve the original rendering while evading
seven ML phishing detectors. These detectors are CLOSED ML
systems: contestants could input any webpage to the detectors,
which provided a “phishing probability” (within [0–1]) as
output. Winners were determined on two criteria: the number
of successful evasions (probability below 0.1) and the number
of queries issued to the detectors. Contestants could send an
unlimited amount of submissions (i.e., sets of manipulated
webpages). A public leader board was regularly updated to
reflect the current rankings, showing the number of successful
evasions and queries by each contestant. The challenge started
on Aug. 6, 2021 and ended on Sept. 17 (42 days in total).

Results (high-level). Four teams crafted variants of all ten
phishing webpages that evaded all seven detectors, thereby
achieving a perfect score of 70 points. In order of ranking,
these teams made 320, 343, 608, and 9 982 queries [85]. The
1st-place (two scientists from Kaspersky) and 3rd-place (a
single individual) teams published their methodologies [86],
[87]. We can reasonably assume that the strategy of the
4th-place team involved some automation that resulted in
thousands of queries. Using query count as a cost metric (as
researchers often do, e.g., [34]), leads to the conclusion that the
winning solution had the lowest cost: only 320 queries, i.e., an
improvement of 47% over the 3rd-place (608 queries) and of
97% over the 4th-place (9 982 queries). However, an in-depth
analysis shows that this viewpoint is quite misleading.

Results (low-level). The organizers of this competition
provided us with details about the temporal distribution of
the submissions made by the four top-ranked teams, whose
cumulative submission history is shown in Fig. 5. We can as-
sume that the last submission made by each team corresponds
to the point in time in which they “finished” their attack.
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Fig. 5: Temporal distribution of cumulative submissions (y-axis) during the
phishing MLSEC in 2021 (started on Aug. 6th). Each line indicates a team
(q=queries). A detailed explanation of this Figure is in Appendix A-C).

The 3rd-place team (green line in Fig. 5) was the first to
arrive at a perfect evasion, requiring 608 queries with the first
submission on day 5 and the last on day 12. In contrast, the
perfect evasion achieved by the 1st-place team (blue line in
Fig. 5) was the last to be submitted—they made their last
submission after 42 days, i.e., on the last day of the challenge.
Indeed, the winning team reported adopting a “wait-and-see”
approach, i.e., one that took into account the results of other
participants. Originally this team wanted to use typical “black-
box” techniques based on model replication (e.g., [88]), which
are query-intensive. However, they changed their mind [86]
when they noticed that the current leader (who ultimately
finished 2nd) only had made a few hundred queries. Hence, to
win they needed to be very conservative with their API calls.
The winning strategy involved sophisticated manipulations of
the HTML, rooted in extensive domain expertise. In contrast,
the 4th-place team (red line in Fig. 5) made a large number
of queries and submissions, but these were all automated and
(likely) required little human effort. Moreover, the 3rd-place
team required 12 days for a single person to achieve a perfect
evasion, while the 1st-place team required 42 days by two
people—an 8x increase in absolute time.

OBSERVATION: Measuring attack efficiency with query
counts alone does not reveal the amount of time and domain
expertise required to devise a successful offense.

We have posted on our website (with permission) the code
and anonymized data used in our analysis [17]).

Further Considerations. So far, we have presented an ob-
jective analysis of the evidence available on this competition.
However, we believe that there is more to be learned from this
case study. We provide further analysis in Appendix A-C, and
in particular we attempt to derive the human effort entailed
in this competition. Finally, we point the reader to our fourth
case study in Appendix A-D, which further emphasizes the
importance of domain expertise on both the offensive and
defensive sides of an anti-malware evasion competition.

IV. SNAPSHOT OF ADVERSARIAL ML RESEARCH

We now turn our attention to the research domain. We
systematically analyze all papers within our scope that have
been recently published in selected “top” scientific venues.
Our objective is twofold: (i) to identify research trends and
(ii) to pinpoint blind spots that may inspire novel studies.

We first present an overview of our analysis (§IV-A), and
then focus on some positive trends of the threat models
envisioned in prior work (§IV-B for attack papers, and §IV-C
for defense papers); we then highlight some inconsistent
terminology adopted in research (§IV-D). Appendix B contains
a detailed description of our study.
Disclaimer: Our study is not a finger-pointing exercise; it is a
holistic review of prior peer-reviewed work aimed at reducing
the gap between researchers and practitioners.
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A. Overview

Methodology. We are inspired by Arp et al. [14] and
Apruzzese et al. [79]. We consider papers accepted in four
venues: ACM Conference on Computer and Communications
Security (CCS), USENIX Security Symposium (SEC), Net-
work and Distributed Systems Security Symposium (NDSS),
and IEEE Symposium on Security and Privacy (SP). Because
we want to focus on recent trends, we consider the papers
published in the last three years: 2019, 2020, 2021. We omit
2022 because (at the time of writing) it is still in progress and
we want to see yearly trends. We identified 88 papers within
our scope (shown in Table IV), which we then analyzed.

Main Findings. We report below the most relevant discov-
eries, which we will use to support some of the positions taken
in this work (§V). Out of 88 papers:

• 72% focus on attacks (28% on defenses);
• 52% envision “evasion” attacks;
• 89% consider only deep learning algorithms;
• 27% do not make any mention of economics;
• 51% publicly release their source code;
• 63% carry out their evaluations on image data (only 5%

consider malware, phishing, or intrusion detection);
• 20% reproduce a pipeline by building an ML model only;
• 20% experiment on real ML systems.

Positive Light: Taken individually, all of these papers are
correct. For example, it is legitimate to perform experiments
on a self-developed ML system represented by a single ML
model that analyzes image data by means of DL. However,
some general directions taken by the whole body of research
generate blind spots—which we attempt to illuminate.

For additional description, interpretation, and figures showing
ongoing trends we refer the reader to Appendices B-B to B-H.

B. Positive findings in Threat Models of Attack Papers

Constrained Adversaries. More and more attack papers are
considering threat models that incorporate constrained adver-
saries. For instance, the adversary may have limited knowledge
of the targeted ML system, they may have restricted query
budgets, or they may be able to observe (or interact with)
only a specific segment of the data processing pipeline. The
underlying principle is that showing successful attacks in
constrained (and thus more realistic) environments is more
impactful. In particular, we highlight:

• Nasr et al. [89] consider attacks against an ML-NIDS.
Specifically, they envision a “blind” adversary whose per-
turbations can only be applied on live network traffic, i.e.,
without knowledge of the packets that will be generated
after those manipulated—because such packets will be
generated in the (unpredictable) future. This work depicts
an exemplary attack against an INVISIBLE ML system.

• Barradas et al. [90] propose FlowLens, an ML system
for website fingerprinting. Here, the authors first consider
attackers that are oblivious of the existence of FlowLens
itself (which are unsuccesful), and then proceed to in-
crease the knowledge/capability of the attacker. Despite

it not being surprising that attackers with limited power
have little success, we believe it is important to also
consider cases of unsuccessful attacks (which is also done
in [54]). These evaluations are useful in practice, because
they portray attacks that are more likely to occur in the
wild due to a lower entry barrier.

We do, however, advocate caution in assuming threat models
that envision extremely constrained adversaries. Successful
attacks stemming from weak adversaries (in terms of KNOWL-
EDGE and CAPABILITIES), but requiring sophisticated STRATE-
GIES, may not be very realistic—i.e., if the attacker can achieve
the same GOAL with simpler STRATEGIES (see §V-B).

Unusual Strategies. In the context of evasion attacks, some
papers propose STRATEGIES that have very little in common
with established techniques for traditional adversarial exam-
ples (e.g., those using gradients [48]). We highlight two such
papers, both of which consider attacks against ML systems for
automated speech recognition (ASR).

• Chen et al. [91] aim to generate samples that trick both
the ML system and humans. To do this, however, they
rely on domain expertise, because prior attacks are useless
against real ASR. We quote [91]: “However, even with the
estimated gradients, none of the existing gradient-based
white-box methods can be directly used to attack ASR.”

• Zheng et al. [92] also consider adversaries who (i) know
nothing about and (ii) cannot query the target ML
system—which is a real ASR. The attack is perpetrated
through educated guesses stemming from expertise in the
audio domain. Indeed, we quote from [92]: “[because] the
ultimate goal of ASR is [...] converting natural speech
into text, we believe that the inclusion of the charac-
teristics of natural command audios in the constructed
adversarial examples may improve their transferability.”

We are pleased to see some research papers that propose
evasion strategies that are outside the traditional realm of
adversarial ML (which typically focuses on images). Indeed,
real attackers heavily rely on their domain expertise (§III-B).

Broader Goals. Some papers envision threat models
wherein the attack succeeds despite the ML model’s correct
response. We share two such results targeting production-grade
ML systems:

• Xiao et al. [22] “evade” an ML model for object recog-
nition by eliciting an incorrect response of the prepro-
cessing component of the broader ML system. What
is intriguing is that the ML model makes the correct
prediction (i.e., it outputs the correct label) for the sample
received as input—but only because the ground truth of
the input sample was changed after preprocessing. This
example demonstrates how an attacker can succeed by
fooling the ML system but not the ML model.

• Nassi et al. [25] target the ML-based object detector em-
bedded in autonomous cars. Here, the authors (correctly)
guess that such systems are often tuned to prioritize
silhouettes of humans (crucial for decision-making in
autonomous driving), meaning that these systems can
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be tricked via “phantom” figures with no spatial depth.
The authors prove their hypotheses by showing that real
autonomous cars stop when a “phantom” appears. In this
case, the entire ML system makes the correct response,
but the attacks are successful due to specific policies
adopted by the system’s developers.

Simply put, attackers’ goals need not require fooling the ML
model or even the entire ML system. We are encouraged to
see research that is exploring these scenarios.

OBSERVATION: Assuming constrained adversaries is com-
mon. Increasingly more attacks leverage domain expertise.
In some cases, attackers’ goals go beyond merely causing
ML models to misclassify samples.

C. Positive Findings in Threat Models of Defense Papers

Only 24 papers (out of 88) consider defenses. Compared
with attack papers, defense papers tend to put a stronger focus
on the cost of the countermeasure, typically by measuring its
overhead (i.e., baseline performance degradation).

Defending against knowledgeable attackers. A common
approach in defensive papers is to consider adversaries with
perfect knowledge (e.g., [93], [94]). Such “white-box” attacks
can be difficult to stage in reality (as also hinted in §IV-B)
because acquiring complete knowledge of the targeted ML
system can be expensive. In some cases, however, such knowl-
edge can be easily acquired, especially if the targeted ML
system is OPEN (see, e.g., the attacks by Sato et al. [28]). In-
deed, creating an OPEN ML system is increasingly dangerous,
because doing so exposes the system to attacks at different
layers. For instance, Bagdasaryan and Shmatikov [95] show
how to “poison” an ML system by manipulating its source
code, i.e., without any change to the training data.

Defenses against limited-knowledge attackers. Tang et
al. [96] propose a defense that considers (and is evaluated
against) attackers who are powerful, but not omniscient; a
similar “black-box” threat model is adopted also in SIGL [97].
Some (e.g., [13], [14]) may argue that similar defenses violate
the “Kerchoff principle” [98], but we believe that the line of
research taken by these works ([96], [97]) is worthy of being
pursued due to its high value for real-world deployments of
ML. Indeed, attackers without perfect knowledge are a likely
threat in the wild, and hence corresponding defenses also de-
mand attention in research. Notably, some works have shown
that attackers with limited knowledge may be as dangerous
as omniscient ones: Song and Mittal [99] show that “the
gap between white-box attack accuracy and black-box attack
accuracy is much smaller than previous estimates [100].”

OBSERVATION: Most defenses assume attackers with perfect
knowledge by default. Some, however, are tailored for
attackers with limited knowledge.

We further discuss and motivate our stance on defenses
tailored for limited-knowledge attackers in Appendix A-G2.

D. Inconsistencies that May Harm Future Research

During our analysis, we focused our attention on the defini-
tions of the threat models envisioned in each paper. We report
some of the confusion we encountered, with a focus on the
KNOWLEDGE and CAPABILITIES of the envisioned adversaries.

What does the attacker know? The (very common) terms
“white-box” and “black-box” are used in different works to
denote significantly different degrees of attacker KNOWLEDGE.
We highlight such inconsistencies by reporting (verbatim,
emphasis ours) the descriptions provided in some papers, all
of which focus on “evasion” attacks (for consistency).

• According to Co et al. [101]: “In white-box settings,
the adversary has complete knowledge of the model
architecture, parameters, and training data.[...] In a black-
box setting, the adversary has no knowledge of the target
model and no access to surrogate datasets.” This descrip-
tion aligns with the one by Srndic and Laskov [43].

• Shan et al. [102], however, consider a different “white-
box” setting: “We assume a basic white box threat model,
where adversaries have direct access to the the ML model,
its architecture, and its internal parameter values [...] but
do not have access to the training data.”

• Xiao et al. [22] do not specify anything about the training
data: “In this paper, we focus on the white-box adversarial
attack, which means we need to access the target model
(including its structure and parameters).” As a matter of
fact, Xiao et al. [22] also consider “black-box” attacks,
which target an unknown ML model but which is trained
on the exact same dataset as the “white-box” scenario.

• Suya et al. [103] assume a “black-box” attacker that “does
not have direct access to the target model or knowledge
of its parameters,” but that “has access to pre-trained local
models for the same task as the target model” which could
be “directly available or produced from access to similar
training data.” Such a definition is in stark contrast to
the “black-box” one by Co et al. [101].

We also report the definition of the “gray-box” setting of Hui
et al. [104] which “gives full knowledge to the adversary in
terms of the model details. Specifically, except for the training
data, the adversary knows almost everything about the model,
such as the architecture and the hyper-parameters used for
training. Note that the adversary cannot know the training data
(called a whitebox).” This definition aligns with that of Shan
et al. [102]—for a “white-box” threat model!

What is the “box”? Whenever “box”-based terminology
is used, it is crucial to establish what is actually denoted by
the “box.” Recall that in the real world, attackers interact with
ML systems (i.e., the dotted rectangle in Fig. 1) and not with
ML models. Hence, a “white-box” attacker (resp. “black-box”)
should have complete (resp. zero) knowledge of the entire
system. This consideration is overlooked in research papers:
for instance, Zhao et al. [105] aim to attack “real world object
detectors” and propose “white-box”/“black-box” attacks—but
only consider the perspective of the single ML model. A
similar case can be made for the descriptions by Demontis
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et al. [44]: here the attackers’ goal is first presented in terms
of “system operation,” but ten lines later the knowledge is
presented with a “white-box” terminology defined as follows:
“the attacker has full knowledge of the target classifier.” Ad-
ditional confusion stems from the so-called “no-box” attacks
envisioned by Abdullah et al. [106], whose definition conflicts
with the original one by Li et al. [50]. Specifically, the “no-
box” attacker in Abdullah et al. [106] knows nothing, which is
the de facto assumption of “black-box” attackers. In contrast,
Li et al. [50] shift the focus from the KNOWLEDGE of the
attacker to their CAPABILITIES: they cannot interact with the
box (i.e., the ML model), but know that it behaves similarly
to a surrogate ML model developed by the attacker, who also
knows a subset of its training data.

What can the attacker do? The attacker’s CAPABILITIES

were also difficult to identify. In some cases, this confusion
resulted from imprecise usage of the term “access.” For
example, Shan et al. [102] state that their attacker must
have “direct access to the ML model” but do not specify
whether such access includes read or write privileges; Suya et
al. [103] state that the (“black-box”) attacker has “no access
to the target model,” but has “API access to the target model”
(both statements are in the same sentence). Another issue we
encountered concerns the format of the output received by a
given attacker in query-based strategies. Output can come in
many forms [107], but most papers merely state that the output
is “a probability” without providing additional details.

OBSERVATION: Definitions of the KNOWLEDGE and CAPA-
BILITIES of the envisioned attackers are inconsistent, espe-
cially when using “box”-based terminology.

V. RECOMMENDATIONS

Insofar, we have made a number of observations, stem-
ming from our preliminary discussion (§II), our real-world
case studies (§III), and our detailed analysis of recent re-
search (§IV). We summarize these observations in Table III.

TABLE III: List of original OBSERVATIONS made in our paper.

# OBSERVATION Ref.

1 ML models are only one component of ML systems. §II-A
2 Academia and industry perceive adversarial ML differently. §II-B
3 Economics is the main driver of practical cybersecurity. §II-C
4 Evasion is achieved by bypassing all layers of an ML system. §III-A
5 Evidence of adversarial examples in the wild is scarce. §III-B
6 Queries are not always an effective measure of attack cost. §III-C
7 Attackers use domain expertise and have broad goals. §IV-B
8 Defenses can envision either strong or weak attackers. §IV-C
9 Terminology is often imprecise and/or inconsistent. §IV-D

10 Evading some ML systems can be very simple. App.A-D

We can now link all these contributions and use them to
support four actionable positions: adapting threat models to
ML systems (§V-A), integrating threat models with cost-driven
assessments (§V-B), encouraging industry and academia to
collaborate (§V-C), and embracing a “just culture” for repro-
ducible research (§V-D).

Disclaimer: We phrase all our positions with “must” because
this is what we advocate to bridge the gap between research
and practice. However, not embracing any of our positions
does not invalidate future contributions.

A. Adapting Threat Models to ML Systems

Our first position is motivated by the (unintended) inac-
curacies shown in some papers (§IV-D), as well as by most
papers tunnel-visioning on a single ML model (§IV-A) and
overlooking the much more complex ML systems (§III-A).
Note, however, that complexity does not imply robustness to
evasion (as shown in our case study in Appendix A-D).

POSITION: Threat models must precisely define the view-
point of the attacker on every component of the ML system.

Holistic vision. The elements typically used when describ-
ing ML threat models (i.e., GOAL, KNOWLEDGE, CAPABILITY,
STRATEGY) must be extended to cover the entire ML system.

GOAL+. Real attackers have broader GOALS than just attack-
ing a single ML model. For example, they may want to cause
damage to all tenants of an ML system [10], or simultaneously
fool humans and ML classifiers [108], [109].

KNOWLEDGE+. To better portray real threats, KNOWLEDGE

assumptions should cover all components of ML systems, e.g.,
any preprocessing steps [49]. For instance, an attacker who
has perfect knowledge of an ML model but zero knowledge
of the preprocessing will have limited knowledge of the ML
system. (We provide our viewpoint on the interplay between
KNOWLEDGE and domain expertise in Appendix A-G3.)

CAPABILITIES+. As with KNOWLEDGE, attacker CAPABIL-
ITIES must consider all components of the ML system. For
example, attackers should only be assumed to have the ability
to give arbitrary inputs to the ML model (e.g., irrespective of
preprocessing) if doing so is possible in reality (especially if
operating only in the feature space [42]). Moreover, the output
of the ML system must be explicitly defined (e.g., label-only,
label-and-score, top-k-scores, all-scores, logits [107]). Finally,
manipulations of the training dataset should also consider the
components of the ML system that collect such data.

STRATEGY+. By extending their vision to the whole ML
system, an attacker can adopt STRATEGIES that “ignore” the
specific ML models. For example, Hong et al. [110] apply
manipulations at the hardware layer, Bagdasaryan et al. [95]
manipulate the source code used to develop the ML model,
and Batina et al. [111] derive additional information by spying
on electromagnetic side-channels. Notably, Rakin et al. [112]
describe their threat model (in terms of KNOWLEDGE and CA-
PABILITIES) both from the system and the ML perspectives—a
promising first step towards more holistic threat models.

Precise terminology. As the foundation of every security
assessment, a threat model must be unambiguous—especially
in research papers. A poorly defined threat model is detrimen-
tal because it can lead to wrong estimations of attack power
(e.g., the attacker may appear weaker), as well as unfair com-
parisons by future work. In particular, we identify four terms
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that are subject to misinterpretation from either a researcher-
to-researcher or a researcher-to-practitioner viewpoint. These
terms are: BOX, ACCESS, EVASION, ADVERSARIAL.

BOX. We have already highlighted inconsistencies revolving
around “box”-based terminology (§IV-D). Our stance is that
researchers should refrain from using this terminology. In-
stead, we recommend (i) using perfect, limited, and/or zero to
define the attacker’s KNOWLEDGE, and (ii) precisely specifying
the components of the system to which the terms apply.

ACCESS. We have already discussed some issues with this
term (§IV-D). Our stance is that researchers should (i) be
precise when categorizing access (e.g., read or write), avoiding
ambiguous terms such as “direct” or “internal,” and (ii) specify
the type of access for every component of the ML system.5

EVASION. In related literature, this term denotes attacks
which (i) cause misclassifications and which (ii) occur “at
test time.” In contrast, the generic definition of “evasion” in
cybersecurity is to bypass a detection mechanism [113], i.e.,
to cause a malicious sample to be classified as benign.6 For
instance, backdoor attacks [52] are considered to be “poison-
ing” in the literature [39], not “evasion.” However, from a
security standpoint, a (real) attacker does not want to “poison”
a dataset—rather, they may use “poisoning” (e.g., backdoors)
to achieve their goal of evading the ML system. Our stance
is that “evasion” should be used exclusively to denote the
attacker’s GOAL, which can be achieved via many strategies
(e.g., poisoning [52], exploiting adversarial examples [114],
or by ignoring the ML model completely [110]).

ADVERSARIAL. In research, it is typical to link the term
“adversarial” with the ML context—most likely due to the
popularity of “adversarial examples.” In many conversations
with practitioners, however, we found that this term generates a
lot of confusion: in a security context, “everything is adversar-
ial.” Our stance is to use this term only when referring to estab-
lished notions,7 such as “adversarial example” or “adversarial
ML.” Nonetheless, we make an important remark, inspired
by [64]: adversarial examples are not malicious per-se; what
is malicious is crafting and using an adversarial example.
Studying adversarial examples can have uses orthogonal to
security, such as improving robustness of ML methods [115].

B. Cost-driven Security Assessments
Our second statement is motivated by the poor consideration

given by recent papers (see §IV-A and Appendix B-E) to the
economics of cybersecurity: 27% do not mention “cost” at all.

POSITION: Threat models must include cost-driven assess-
ments for both the attacker and the defender.

Context. Biggio and Roli [39] point out that the best way
to approach cybersecurity is through proactive defense: the

5An attacker can, for example, have query access to the ML system,
meaning that they can only send an input and observe the output of the
entire system; or the attacker can have write access to only the training data,
implying no access to any other component of the ML system.

6In statistics terminology, an evasion corresponds to a “type II error.”
7“Adversarial attack” and “adversarial threat model” are tautologies and can

be replaced with “attack against ML” and “threat model” (Appendix A-G4).

system designer should first model the adversary, simulate
the attack, and then develop a countermeasure “if the attack
has a relevant impact.” We stress, however, that all of these
steps should also account for the cost to both the attacker and
the defender. For instance, developing a countermeasure just
because an attack has “high impact” may not be wise if the
corresponding attack is unlikely to happen in the first place.
System designers, when conducting their security assessments,
prioritize threats that are more likely to occur in the wild (see
§III-B). Real attackers, as pointed out by Wilson et al. [60],
operate with a cost/benefit mindset: they will only attempt to
evade a detector if they perceive the benefits to outweigh the
costs. At the same time, no defense is foolproof [54].
Disclaimer: From a research perspective, it is appropriate to
assume (and evaluate) attackers with perfect knowledge who
break any ML system. From a practical perspective, however,
security evaluations are costly, and it is reasonable that real
companies prioritize more common threats [116].

Proposal. To promote future research that has a greater
impact in practice, we extend the recommendations of Biggio
and Roli [39] with respect to cost-driven threat modeling. We
provide an overview in Fig. 9. When establishing a given
threat model, the system designer (i.e., the researcher) weighs
the potential benefit to the attacker and the corresponding
cost to reap such benefit (Fig. 6a). This preliminary analysis
yields the likelihood of the attack [116]. The designer can
then simulate the attack and gauge the corresponding damage,
yielding the risk [117]–[119] of the attack (Fig. 6b, left). Fi-
nally, the designer can conceive of any given countermeasure,
estimate its costs (e.g., implementation, overhead, upkeep),
and—depending on the risk of the corresponding attack—
assess whether each countermeasure should be deployed or
not (Fig. 6b, right). Simply put, quoting from [64], the driver
of cybersecurity is “Paying x (for the defense) to avoid paying
y (if the attack succeeds), with y ≫ x.”

Unlikely

LikelyVery
Likely

ATTACKER: 
"will I launch an attack?"

Likely

High Benefit

Low Benefit

Low atk 
Cost 

High atk 
Cost 

(a) Attacker perspective:
very likely threats yield
high benefit with low cost.

High 
Risk

Low 
Risk

DEFENDER: 
"what is the risk of an attack?"

Mild 
Risk

Mild 
Risk Maybe

Maybe

DEFENDER: 
"should I make a countermeasure?"

No

Yes

Low atk 
Damage 

High atk 
Damage 

Low atk Likelihood

High atk Likelihood

Low def 
Cost 

High def 
Cost 

Low atk Risk

High atk Risk

(b) Defender perspective. The attack’s risk is assessed via
its likelihood and its potential damage. On the basis of such
risk, a countermeasure is developed if its cost is acceptable.

Fig. 6: Cost-driven threat modeling. The proactive security lifecycle [39]
should include economic considerations for both the attacker and the defender.

We make three remarks on our cost-driven threat modeling:

• Although 57% of papers attempt to measure the “cost”
of an attack/defense, they often overlook the human
cost factor (e.g., time and expertise (§III-C)). Hence we
encourage future studies to account for human effort. A
possible (albeit imperfect) way of doing so is by comput-
ing the time needed to write the source code for a given
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attack/defense [120].8 This computation can be facilitated
by, e.g., using GIT repository’s commit history [123],
[124] or by process-mining techniques [125].

• It is wrong to consider the attacker/defender battle as
a zero-sum game in economical terms. Indeed, in many
cases, the gain of a (successful) attacker may not corre-
spond to an equal loss by a (broken) defender. We discuss
a (toy) use-case in Appendix A-E that makes use of the
fact that cybersecurity is typically outsourced [126].

• Researchers proposing “novel” attacks should assume the
viewpoint of a real adversary. An attack will not be
launched if—despite initial success—the attack can be
defused via simple heuristics.

Finally, a precise and holistic threat model (§V-A) is greatly
beneficial for cost-driven assessments in research. Future work
can use such descriptions to estimate the (cumulative) cost of
the attack at a later point in time, and then use such an estimate
as reference for comparison (even if the threat model envisions
a nation-state adversary—see Appendix A-G5).

C. Collaborations between Industry and Academia

Our third position stems from the facts that (i) only 20% of
our analyzed papers (§IV-A) consider real ML systems, and
(ii) 90% of papers only consider deep learning algorithms,
which are not necessarily those used in practice (e.g., owing to
a long history of tabular data stored in production databases).

POSITION: Practitioners and academics must actively col-
laborate to pursue their common goal of improving the
security of ML systems.

The gap between research and practice would diminish if
researchers had easier access to production-grade ML systems.
Indeed, most real ML systems are INVISIBLE or CLOSED, pre-
venting researchers from truly understanding how they work
(as also mentioned in the Sophos Twitter thread—see [61]
and Appendix A-B). For example, a researcher can reasonably
assume that an OSN uses an (INVISIBLE) ML system for
spam detection (e.g., §III-A); however, without knowing its
internal architecture, they could hardly develop a “realistic”
ML system with equivalent functionality. Similar issues exist
also for CLOSED ML systems. Consider the attack by Pajola
et al. [32], in which specific character modifications induce
Google Translate to output a wrong translation. From the
researcher’s viewpoint, it is impossible to determine precisely
why the attack was successful. (E.g., was it due to a bug in
the preprocessing phase or in the ML model itself?)

We acknowledge that asking tech companies to publicly
release their own ML systems is unrealistic (although some
do, e.g., [127]). However, companies can still make it easier
for academics to do security assessments. For instance, a
significant barrier faced by researchers is getting in contact
with practitioners. A potential compromise could be to of-
fer “bug-bounty” programs that clearly define guidelines for

8An intriguing question is: are defenses with low computational overhead
in research (e.g., [121], [122]) also cheap to deploy in practice?

interaction between researchers and platforms (e.g., [128]),
and/or dedicating resources to processing researcher requests
(e.g., [129]); in both cases companies benefit by gaining thor-
ough, independent security assessments of their ML systems.
Another possibility would be providing high-level schematics
of ML systems (as in §III-A), inspiring researchers to run
experiments on more realistic ML pipelines.

D. Just Culture and Reproducible Research

Our last position stems from the observation that only half
of the papers we analyzed release their source code (§IV-A).
We acknowledge that there may be legitimate reasons to avoid
complete disclosure (see Appendix A-F), but we conjecture
that this low number is in part due to fear of being criticized.

POSITION: In ML security, source-code disclosure must be
promoted with a just culture [130].

A “just culture” [130] denotes an approach in which mis-
takes are assumed to occur and derive from organizational
issues. Mistakes are avoided by understanding their root causes
and using them as constructive learning experiences. This
definition is in contrast to a blame culture [131], which
seeks to avoid mistakes by actively blaming the perpetrators,
with the intention of discouraging individuals from making
mistakes out of fear of reputational damage. We believe that
our community should avoid the latter and embrace the former.

A just culture encourages source-code disclosure, enabling
the gradual improvement that is the foundation of research. In
the ML security context, some attacks (or defenses) may be
incorrectly implemented or evaluated, as was the case with
DeepSec [132], whose evaluation was found to be flawed
after its publication [133]. Some of these flaws, however, were
spotted because the implementation of [132] was publicly ac-
cessible. Fear of criticism could have induced its authors [132]
to not disclose the details of their platform—but they rightly
released their code, and our community learned from such
mistakes, turning a negative result into a positive outcome.
(We are glad that [132] is still included in SP19’s proceedings.)

Although we endorse future researchers to apply as much
rigor as possible when performing their evaluations (i.e.,
before submitting their papers), we believe that authors should
not be afraid of publicly releasing their source code due to
the risk of others discovering flaws. Indeed, there is much to
learn from flawed implementations: the ML domain constantly
evolves, and errors can be systematized into practical guide-
lines (e.g., [134]) to help future research avoid mistakes.

VI. CONCLUSIONS

As our positions are adopted, we hope to see (i) more
reproducible research that (ii) describes threat models for
entire ML systems using precise terminology, (iii) makes cost-
driven assessments factoring in human effort, and (iv) fosters
active collaboration with practitioners from industry. As a final
remark, we also endorse the development of novel techniques
for the forensics of ML incidents: perhaps real attackers do
compute gradients—but we cannot prove it yet!
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APPENDIX A
ADDITIONAL CASE STUDIES AND CONSIDERATIONS

A. Evasion via Adversarial Examples (and Perturbations)

We provide here the formal definition of an evasion attack
via adversarial examples and discuss the perturbations typi-
cally used to craft an adversarial example.

Definition. Let M be a (trained) ML model taking inputs in
some vector space V and producing predictions in some label
set L. An adversarial example is a tuple (x, ε) ∈ V × V with
the following properties:

1) x′ = x+ ε has the same ground truth label as x.
2) M outputs the correct label for x (i.e., if y ∈ L is the

ground truth label for x, then M(x) = y).
3) M outputs an incorrect label for x′ (i.e., if y is as in (2),

then M(x′) ̸= y).
We call x the original input, ε the adversarial perturbation,
and x′ the adversarial example.

This notation describes an “evasion attack” against ML; i.e.,
a misclassification at test time. Given x, finding a suitable
perturbation can be expressed as an optimization problem (i.e.,
computing ε subject to some constraints).

Consideration. In related literature, the adversarial per-
turbation ε used to craft an adversarial example is typically
very “small” (i.e., imperceptible by humans [41]). However,
as pointed out by several works [13], [64], this constraint does
not hold universally. Some attackers may want adversarial
examples to be noticed by humans [109]), while in other
domains (e.g., malware [49]) humans do not inspect inputs
to the ML model, meaning that perturbations can be of higher
magnitude—as long as they are physically realizable [114].

B. Researchers vs Practitioners (Twitter thread in §II-C)

We document here the Twitter thread [61] mentioned in
§II-C and provide our viewpoint on this discussion.

Discussion (verbatim). We consider the comments between
Battista Biggio (B), a well-known researcher in adversarial
ML [39], [47]; Joshua Saxe (J), chief scientist at Sophos AI;
and Konstantin Berlin (K), head of Sophos AI.
J1) Why robustness to adversarial examples isn’t a first-priority

concern on the Sophos AI team. [image showing the ‘simplistic’
vision of a ML malware detector by researchers, compared with
the ‘complex’ pipeline of a real ML malware detector.]

B1) I’d tend to agree. But still optimizing over a set of transforma-
tions in a black-box manner may help find blind spots even in
more complex systems – surely lp norms are not that useful
here – I am talking about combinations of more interesting
transformations that abuse the PE.

K1) Given the existence of an already large number of more preva-
lent attacks that do bypass detections why prioritize this one?

B2) The goal of all these defenses in the end is about raising the
bar for the attacker, and this work in my opinion is useful in
that direction. It is important that people know that ML is not
learning what we expect it should learn. . .

K2) If you look at cybercrime in economical terms (as you should
because it is a business) the optimization for an adversarial ex.

is not the expensive part, it is the engineering part of building
a tool that can create a diverse set of attacks with no obvious
watermarks. [follows] Think of Sophos as human adversarial
attackers against your adversarial attack. My bet is that if you
deployed most published ML adversarial attacks at scale Sophos
would block you within a few hours in such a way that you
would have to rewrite your PE generator, no ML will help.

B3) It depends. The transformations used are perfectly legit (e.g.
adding sections). Btw we never thought of bypassing a real AV
pipeline, we know that is more complicated. We only wanted
to show that some ideas (using DL from raw bytes) are much
more insecure and need improvement.

The last message (B3) was sent on July 24, 2022 at 10:06
AM, while the first message (J1) was sent on July 22, 2022
at 8:17 PM (both times are GMT+1).

Our viewpoint. This discussion underscores our observa-
tion that researchers and practitioners are solving different
problems, or at least are working in different threat models.
The tip-off is one specific term in K2: “if you deployed most
published ML adversarial attacks at scale.” Our first case study
(§III-A) offers an example of threats that operate “at scale”
being prioritized by companies, and it is not surprising that
Sophos would likely do the same. However, the attackers en-
visioned in many adversarial ML papers (and, more generally,
in many security papers [136]–[138]) tend to be subtle. Hence,
both sides are making valid points, but they do not appear to
agree because they are not talking about the same thing.

Despite this gap (which our paper attempts to close), we
believe that B3’s point is valid. Clearly (§V-C), a better
cooperation between industry and academia would kick-start
novel research efforts that assess the robustness of full-fledged
ML systems against adversarial examples. However, there is
still much to learn from the results of recent literature, despite
the fact that the envisioned ML systems are often inaccurate
representations of real ones.

C. Further Considerations on our third case study (§III-C)

To allow a more complete understanding of our anti-
phishing evasion case study (§III-C), we provide a further
description of the rules of this competition. We also provide
our interpretation of the events that transpired during the
challenge when taking into account the human effort (and
decision making) required by each top-ranked team.

1) Queries and Submissions: We clarify Fig. 5 by ex-
plaining the difference between a “submission” (y-axis) and
a “query” (legend). During the challenge, participants could
either: query the detectors—either a single one or all of them
(there were 7 detectors in total); or submit their (adversarial)
webpages. The latter counts as a “submission” (y-axis) and
automatically generates 7 queries for each webpage included
in the submission. For example, a participant that submits
2 webpages automatically triggers 14 queries, because each
webpage is analyzed by all 7 detectors (to determine how
much points to award). The organizers of MLSEC logged each
submission but not the individual queries (i.e., the single API
calls). This is why the plot in Fig. 5 shows the submissions
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in the y-axis. We are aware that a more fine-grained analysis
would consider the history of the individual queries. However,
as is evident by Fig. 5, there is a strong correlation between
number of submissions and number of queries (although,
technically, one could issue 10k queries and make only one
submission), so we reported submissions in the y-axis.

2) Interpretation (human effort): Let us summarize the
facts (for brevity, we denote the teams as 1st, 2nd, 3rd, 4th).

• On day 0 all teams had a common objective, to use as
few queries as possible.

• On day 5, 3rd made his first submission.
• On day 12, 3rd made his last submission, thereby com-

pleting his attack and leading the ranking with 608

queries. This information was publicly available: after this
moment, all teams teams knew that, to win, they had to
use fewer than 608 queries.

• From day 17 to day 42, 4th made various submissions
and reached a perfect evasion by making 9 982 queries.

• On day 31, both 1st and 2nd made their first submission.
(This does not mean that they did nothing before day 31.)

• On day 41, 2nd made their last submission, producing a
perfect evasion with 343 queries. This information was
publicly available.

• On day 42, 7 hours after 2nd’s last submission, 1st made
their second submission, which included 9 webpages (out
of 10), all of which evaded all the ML detectors.

• Also on day 42, 1st made their last submission, producing
a perfect evasion with 320 queries.

• At the end of the challenge, 1st stated [86]: “At first, we
thought of attempting a classic model replication attack
[...] but as we started working on the competition, we
noted that the leader had already achieved the highest
possible score using just 343 API calls”

Now, let us interpret these facts. Firstly, the statement by
1st is technically incorrect, because the first submission by
1st was on day 31, and during this time-frame (i.e., between
day 31 and day 42 – but also before day 31) 1st were able
to do anything (though there is no record of what they did).
Furthermore, 1st knew that 3rd had been leading with 608

queries since day 12: with such knowledge, why would 1st
even consider attempting a “model replication attack” on day
41? Finally, the second submission of 1st (on day 42) occurred
only 7 hours after the last submission by 2nd (on day 41), and
this submission included 9 webpages that all achieved perfect
evasion. Hence, we find it hard to believe that 1st “started
working on the competition” only after noticing that the leader
had 343 calls (but of course we cannot be 100% certain).

Secondly, we observe that 2nd arrived at their perfect eva-
sion after knowing that they needed fewer than 608 queries (the
leading score, from 3rd). Hence we conjecture that without the
efforts of 3rd, it is unlikely that 2nd would have reached their
perfect evasion in 343 queries; 2nd knew they were constrained
to at most 607 queries and hence had to be more careful. Next,
2nd made their first submission on day 31 and their last on
day 41, taking at least 19 days to reach the same result that
3rd had achieved in 12 days (although 2nd required roughly

half the queries). We can hence conclude that “3rd required
less time than 2nd to accomplish the attack.”

Finally, let us go back to 1st; specifically, we focus (again)
on their public statement [86]. They stated that they wanted to
do a model replication (which we can conjecture required “less
effort”), but they changed their mind after seeing the score of
2nd, who themselves achieved after the efforts of 3rd.

Conclusions. By connecting all these observations, we
conclude that without the effort of 3rd, the perfect evasions by
1st and 2nd (with 320 queries and 343 queries, respectively)
would (likely) not have been achieved. Alternatively, had the
leaderboard not been publicly visible, 1st may have opted for
a model replication attack (as they themselves stated!). We do
not know what 2nd would have done, but 3rd would (likely)
still have used their domain expertise to reach their solution—
in only 12 days, and requiring 608 queries (3rd was the first
contestant to reach a perfect evasion).

From a different perspective: model replication attacks
require more queries (as clearly shown by 4th place), but may
require less human effort (as can be extrapolated from 1st
actions and statement).

D. Case Study: Malware Competition (2020)

We extend our set of case studies with an in-depth analysis
of the Malware Competition organized in the 2020 edition
of MLSEC. Here, we elucidate how “competition-grade” ML
malware detectors can be both hardened and evaded.

Rules. This competition had two phases, each with a
specific challenge: the first focused on defense, the second
on attack. Let us describe what each challenge entailed.

• (Defense) In the first phase, participants were asked to
submit ML systems for malware detection. Submitted
solutions had to meet some performance metrics: at most
1% false positive rate, at least 90% true positive rate, and
at most 5 seconds response time—all of which were mea-
sured on an unknown test set. Winners were determined
depending on how well their solutions performed against
the attacks launched in the second phase.

• (Attack) In the second phase, participants (which could
be different from those of the first phase) were given 50
portable executable (PE) malware samples and allowed to
manipulate them in any way that preserved the original
malicious functionality. The manipulated PE had to evade
as many ML-based detectors as possible—including those
accepted in the previous defense phase. These “attackers”
were given API access to the detectors, which resembled
CLOSED ML systems: attackers could only submit an
input and observe the output (i.e., the probability that
the sample was malicious). Winners were determined on
the basis of how each of the 50 manipulated malware
samples performed against all the considered detectors.

What did the winners do? Let us focus our attention on
the methodologies adopted by the winners of each challenge.

• (Defense) Quiring et al. [139] won the defensive chal-
lenge. Their solution integrated typical approaches to
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counter malware, such as signature-matching and ML-
based detection based on static analysis; surprisingly,
however, they also integrated a defensive layer for antic-
ipating adaptive attackers querying the detector—i.e., the
actions of the participants in the second challenge. The
solution of [139] stopped 77% of the malware submitted
during the attacker’s challenge.

• (Attack) Ceschin et al. [140] won the attacker chal-
lenge by inducing all of their samples to evade all the
considered detectors, including the winning submission
by Quiring et al. [139]. Notably, the strategy adopted
by [140] was simple: they observed that “embedding
the malware payload into another binary eliminates most
detection capabilities presented by the models.” Indeed,
to quote from [140]: “[although] there are approaches
for adversarial attacks generation based on complex tech-
niques [...] we show that it is possible to generate attacks
using known, simple techniques.”

OBSERVATION: Bypassing some ML systems may not re-
quire sophisticated techniques (e.g., those based on gradi-
ents) commonly adopted in research papers.

E. Example: Gains and Losses is not a zero-sum game

The gain of an attacker may not correspond to the loss of
a defender. Consider, for example, a company D whose main
business is the development of ML-based malware detectors
and who sells their products to a customer C. Now consider
an attacker A that successfully evades one of the detectors
developed by D and manages to inject some ransomware to
the systems owned by customer C, asking for a ransom in the
amount of R. Two scenarios can occur:

• Pay. If C pays the ransom, then C loses R while A gains
R. However, D (the developer of the ‘evaded’ detector)
loses very little. In most cases, the contract between D
and C protects D in case of “faults” in their systems. In
contrast, if the contract determines that D is liable for the
losses incurred by C, then D will pay R to C; however, in
this case, D is typically insured by other companies, who
will reimburse R to D. Hence, if the ransom is paid to
A, then A gains R, and D loses nothing (assuming that
C regains control of their systems).

• Recover. If C does not pay the ransom, then A gains
nothing (actually, A may lose something, e.g., the time
spent to carry out the attack). However, C will incur a
loss, because their systems are compromised. Two cases
can follow, depending on the contract terms:
– If D is liable, then they must help C to recover their

data, and D themselves may either incur a loss (e.g.,
human labour), or not (e.g., if they are insured).

– If D is not liable, then D may gain something, for
example if C asks (and pays) D to assist in the recovery
of their systems.

Simply put, when looking at cybersecurity from the economic
(and operational) viewpoint there are many nuances that can

influence the decision to deploy a countermeasure in an ML
system. Such considerations further complicate the decision
of whether to develop a countermeasure in the first place. The
latter decision is made by the system designer, whose main
goal is to benefit their bottom line and for whom customer
considerations are secondary. (Of course, instilling trust and
attracting future customers by having the best system is always
an important consideration!)

F. Unreproducible Papers

Unavoidable truth. The ideal of a publication that releases
all its source code and uses public datasets containing attacks
from the real world is difficult to meet in practice, espe-
cially in cybersecurity. The most common and understandable
constraint is that of user privacy: real-world data is tied to
consumers or employees, and custodians of this data must
respect its confidentiality. The employers of security and
ML practitioners may also impose constraints with regard to
releasing source code, e.g., to avoid giving attackers complete
vision of an ML system or a portion thereof. When constraints
of this nature do not exist, researchers and practitioners must
provide both descriptive details and technical artifacts that
maximize reproducibility.

What can be done. Publications that face privacy con-
straints and/or cannot release their source code can, however,
still be valuable so long as they work within those constraints
to make reproducibility a priority. To this purpose, we propose
the following actionable principles, which can be adopted by
research papers to improve their scientific value:

1) ML systems and models should be described with suffi-
cient clarity that a reader can re-create the model with a
high degree of accuracy after reading the paper. Features
used by the model should be described in detail.

2) Practitioners should evaluate their models on public
datasets whenever data that is sufficiently similar to the
private data is available. This recommendation need not
prevent additional evaluation on private datasets.

3) Papers should describe as many of the nuances of private
datasets as possible (e.g., examples of feature values and
their distributions, correlation between features, and other
properties of the data) while not providing individual data
points when doing so would violate user privacy.

4) Attacks that appear in private datasets should be released
when possible. If they are not releasable, they should
be described with sufficient detail to enable researchers
to reproduce similar attacks in their own studies and to
understand attacker threats that appear in real systems.

We observe, however, that providing all such details can be
tough in a research paper: as highlighted in [64], some venues
(especially conferences) have a strict page limit. Hence, we
endorse conference organizers to remove such limits when they
are used to provide additional technical details that are not part
of the paper’s contribution but which are crucial to provide at
least some form of reproducibility.
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G. Discussion (with the Reviewers)
For informational purposes, we record here some of the
discussion we had with our paper’s (anonymous) reviewers,
since other readers may have similar questions. Transcripts
have been lightly edited for clarity.

1) Spammers and regular users: According to the de-
scription in §III-A, the malicious user wishing to upload a
problematic image seems to perform a very similar action
to millions of users uploading any sort of images every day
on any OSN. Hence, although some malicious user’s action
pattern may appear different from those of normal users
(especially when automated tooling is used to perform such
actions) this is far from being an universal truth.

Our Response: This statement is correct, and we will
happily clarify. Ultimately, “professional spammers” are trying
to make money. They may do this by, e.g., posting links to
counterfeit goods; “phishing” legitimate users and selling their
account credentials; engaging in 419 scams [141]; or in other
ways. Since the expected value of a single spam post is very
low (most people don’t buy fake Ray-Bans!), spammers need
to post a lot to reach their goal. So they necessarily need
to turn to techniques—usually, but not always, automation—
that allow them to distribute content quickly across a wide
audience. This type of behavior does not match that of a typical
Facebook user. Clearly, low-volume spammers who invest a
lot of effort in mimicking the behaviour of legitimate users
are harder to detect (with or without ML). However, since (a)
such an attack requires a high resource investment; (b) the
expected value (to the spammer) of a single spam post is still
low; and (c) most (but not all) spammers are economically
rational, such attacks will be rare and it’s acceptable for the
ACTIVITY layer to miss them. (Of course, the spammy content
may still be caught by the APPLICATION layer.)

2) Defenses vs. limited-knowledge attackers (§IV-C): It is
true that perfect-knowledge attacks are rare, but we should be
very careful to draw a distinction between “defenses that are
robust in a query-only setting” (a reasonable threat model) and
“defenses that only work because the attacker doesn’t know
what the defender is doing” (an unreasonable threat model).

Our Response: This observation is legitimate. We do not
advocate that “all (defensive) papers must consider attackers
without perfect knowledge.” Clearly, it would be beneficial
if all papers proposed defenses that work against perfect-
knowledge attackers. Our intention, however, is to emphasize
that “real” attackers may not have perfect knowledge, and
hence we find it positive that some papers propose defenses
specifically addressed at such attackers. Put differently, we
think it is unfair that papers may be rejected because “the
threat model considers an attacker without perfect knowledge”:
if the threat is (justified to be) likely to occur in reality, then
an effective defense can be beneficial to the real world. We
believe there is much to learn from these evaluations as well!

3) Domain Expertise: In §III-C, the 1st–3rd place teams
all reached a perfect evasion by exploiting their domain
knowledge. Does assuming attackers with different degrees
of domain knowledge describe different threat models?

Our Response: Tough question. In this case study, all partic-
ipants had the same KNOWLEDGE, i.e., they knew nothing of the
ML system (aside from that it analyzed webpages in the form
of HTML). However, clearly, all participants had different
“knowledge” of the respective domain. Note, however, that
such knowledge is impossible to quantify: maybe they all
perfectly knew the in-and-outs of HTML, but a participant
was simply “lucky enough” to make a correct initial guess,
which they then leveraged to build the remaining parts of the
attack. In a sense, this case study (§III-C) shows that guessing
is a crucial part of a real attack (and we find promising that
increasingly more papers are incorporating guessing in their
attacks, e.g., [10], [95]). Yet, we believe that such different
degrees of “domain knowledge” should not be classified as
different threat models. From a security standpoint, it is crucial
to envision an attacker that is expert in the general domain.
Note, however, that this is different from assuming that the
attacker has “perfect KNOWLEDGE of the target ML system”!
Hence, we conclude that the threat model should simply state
the KNOWLEDGE of the attacker with respect to the ML system,
and then assume that the attacker is an expert in any of the
components of such ML system that they are aware of.

4) “Adversarial” in practice: Can you clarify what you
meant by “everything is adversarial” in §V-A?

Our Response: From the perspective of a security practi-
tioner, an event is either “benign” or “malicious”; i.e., either
the system is under attack or it is not. Hence, the term
“adversarial attack” is redundant: if there is an attack, then by
definition there is an adversary and the attack is “adversarial.”
Similarly, a “threat model” implicitly assumes that there is “a
threat” (i.e., an attacker) which is obviously adversarial.

In our conversations, security practitioners are often con-
fused when we refer to “adversarial attacks.” From a research
perspective this term refers to “attacks that exploit the vul-
nerability of ML models to adversarial examples,” while from
a practitioner perspective the focus is just “attack.” In other
words: the term “adversarial attack” implicitly means that
some attacks are not “adversarial” — which is illogical.

To provide examples, sometimes in our exchanges with
practitioners (P), the following occurs:

• P: “Our systems are constantly under attack.”
• Us: “Are the attacks adversarial?”
• P: “Well of course they are!”

Alternatively:
• Us: “Do you test your systems against adversarial at-

tacks?”
• P: “Are there attacks that are not adversarial?”

(An even more awkward situation would arise from asking
practitioners, “Are you more scared of adversarial attacks, or
of non-adversarial attacks?”)

We believe that a more precise (i.e., less redundant) usage
of the term “adversarial” will benefit bridging the gap between
research and practice in the context of...adversarial ML!

5) Nation-state adversaries: If we consider nation-state
adversaries, is human cost measurable here (or relevant)?
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Our Response: It depends. Generally speaking, if a “nation-
state adversary” is assumed to have unlimited resources, then
we agree that it makes little sense to report such a cost
measure. However, such (extreme) cases should be reported
in the paper when presenting the threat model. For instance,
a paper should state “we assume an attacker that is backed
by an entire country, and which is hence willing to invest
a large amount of resources to carry out their strategy.”
Explicitly stating this assumption would automatically put
such a paper in a different bracket with respect to attacker
cost. As an aside, if such a “nation-state–sponsored attack” is
found to be “devastating” (e.g., it leads the entire ML system
to malfunction) then real companies would be more interested
in studying the corresponding paper and devising appropriate
countermeasures. (In a sense, what we have just described
is a use case of “Adapting Threat Models to ML Systems”
presented in §V-A). Nevertheless, in reality, even nation-state
adversaries do not have unlimited resources: hence, making
such an assumption by default is not very realistic.

APPENDIX B
STATE-OF-THE-ART: LITERATURE REVIEW

In this Appendix we describe in more depth our literature
review summarized in §IV. Given the detailed methodology,
the systematic analysis, and the original interpretations, we
consider this appendix to be a complementary contribution of
our position paper.

A. Methodology

Inspired by by [14] and by [79], we carry out our review by
adopting a structured approach split into two phases, selection
and inspection. Both phases involved exchanges of opinions
among the authors of this paper, aimed at ensuring fairness in
the review process and removing potential sources of bias.

1st phase: Selection. We conducted our survey in July and
August 2022. During this time frame we performed two steps:
we acquired the proceedings and filtered them.

i) Acquire. We downloaded the proceedings of the “Top
4” security conferences (SEC, NDSS, CCS, SP). We
considered the editions of these conferences held in the
previous three years, i.e., in 2019, 2020, and 2021. We
only consider the papers published in the main event
(i.e., we do not consider workshops). Overall, these
proceedings contained 435 papers for 2019, 470 for 2020,
and 644 for 2021.

ii) Filter. To identify papers within our scope, we started by
considering papers included in those sections of the pro-
ceedings that specifically focused on “machine learning.”
We then extended our search by also performing a sum-
mary scan of the titles and abstracts of the remainder of
the proceedings, identifying additional candidate papers.9

At the end of this step, we obtained 30 papers for 2019,
35 papers for 2020, and 66 papers for 2021.

9E.g., the paper [142] is included in the “Malware 2” section of NDSS20,
but it (also) considers attacks against ML-based malware detectors

2nd phase: Inspection. We analyzed these 131 papers, with
two objectives: filtering those papers that, despite being related
to ML security, were beyond our scope; and distilling the
knowledge that we wanted to communicate in our work.

i) Filter. Our focus is on papers on the security of ML
and, in particular, on attacks (and defenses) against ML
systems. We have already discussed (see §II-D) some
orthogonal research areas. Upon inspecting our candidate
papers, however, we found 3 additional areas to exclude
from our main analysis due to assumptions that signifi-
cantly deviate from our main focus. These three areas are
federated learning [143], where the corresponding issues
(such as byzantine fault tolerance [144]) mostly pertain to
the distributed systems domain; robust, efficient, or secure
computation, because they mostly focus on technical
implementations and do not propose or consider any
adversarial ML attack; and high-level analyses, because
they do not propose any original attack or defense in the
ML security context. Eventually,10 we obtained 23 papers
for 2019, 24 papers for 2020, and 41 papers for 2021.

ii) Distill. Finally, we thoroughly analyzed the final set of
88 papers by going through each paper and answering a
set of 12 questions. Each question focused on deriving
knowledge significant for our position paper, as well as
for promoting future work in this research field. Although
most of our questions can be easily answered, some are
not straightforward (as we will discuss). To minimize the
likelihood of errors and reduce subjective bias, we carried
out our analysis in pairs: two authors independently
reviewed each paper and then discussed the findings in a
series of meetings. We repeated this process five times.

Before we delve deeper into our analysis, we provide some
interesting trivia. In 2019, most of the relevant papers were
put in sessions entirely devoted to “ML security.” In 2021,
however, we found sessions entirely dedicated to specific
attacks (e.g., “attacks on speech recognition” or “inference”
at SP2021). Some papers have very similar contributions
across the same conference. For instance, [91] and [145] (both
at SP21) propose attacks on speech recognition (and both,
surprisingly, evaluate their proposals also on real humans);
whereas [146] (SEC20) and [24] (CCS20) propose member-
ship inference attacks that leverage the updates of ML models.

B. Research Questions

We inspected 88 papers by asking ourselves 12 research
questions, divided into two groups.

Generic Questions (G). The first eight (G1 to G8) are
generic, and are meant to provide a broad overview of the
latest trends in research—some of which are reported in our
main paper (§IV). For each of the 88 works, we ask ourselves:
G1) Does the paper focus on an attack or on a defense?
G2) What is the main attack family (i.e., poisoning, stealing,

evasion, membership inference)?

10We provide in our website [17] the list of 43 papers that we excluded.
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G3) What paradigm of the ML model that is subject to the
attacks (i.e., does it rely on shallow or deep learning)?

G4) Are the costs taken into account (in any way)?
G5) What are the data-types (i.e., images, audio, text, or other)

considered in the evaluation?
G6) Has the source-code been publicly released?
G7) Has a complex pipeline been reproduced in the evaluation

(i.e., does the ML system consist in just an ML model)?
G8) Does the paper consider an ML system deployed in the

real world (and, if yes, what is its type)?
The answers to G1 to G8 are shown in Figs. 7 to 13, all sharing
the same structure. Each figure refers to a specific question,
and presents four stacked bars, one per year [2019–2021] while
the rightmost bar is an aggregate. Each stacked bar reports
the answers to the corresponding question, both in terms of
relative (y-axis) and absolute (written on the specific bar)
frequency over a given stack. Descriptions and interpretations
on these results are provided in appendices B-C to B-G.

Threat-Model Questions (T). The last four (T1 to T4) relate
to the threat model envisioned in the paper. Specifically, we
consider the weakest (we explain our reason in Appendix B-I)
attacker assumed in a paper, and then ask ourselves:
T1) Does the attacker know the ML model’s parameters?
T2) Does the attacker know the semantics of the input data

fed to the ML model?
T3) Can the attacker observe the output of the ML model

(and, if yes, how)?
T4) Does the attacker have any power on the training set?
We explain how we answered T1 to T4 in Appendix B-H.

The answers to all our questions for all our considered
papers are provided in Table IV, described in Appendix B-I.

C. Answers to G1 and G2: Focus, and Attack Family

The answers to the first two questions are shown in Figs. 7.
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Fig. 7: Answers to G1 and G2.

G1: Focus. This question is straightforward to answer: does
the paper focus on attacks against ML, or on defenses to
attacks against ML? In some rare cases, some papers simply
proposed a ML method to solve a given task (e.g., intrusion
detection [147]) but also evaluated this method against some
evasion attacks: we considered these as attack papers, because
the proposed ML method is not typically designed to withstand
adversarial ML attacks. From Fig. 7a, we can see that 75% of
papers put a stronger emphasis on the attack—although most
of these papers (e.g., [54]) also discuss some countermeasures
to the corresponding attack. This result is not surprising,
as ‘attack papers’ are typically considered to have a higher

novelty value—because the attack stems from a different threat
model, or considers a new domain.

G2: Attack Family. Inspired by [4], we consider four main
attack families: poisoning, model stealing, evasion, as well as
membership inference. Fig. 7b shows that most papers envision
evasion attacks (∼50%), whereas poisoning, model stealing,
and membership inference attacks are less prominent (20%,
10% and 20%, respectfully). However, we can see a decreasing
trend of evasion, and a rising trend for poisoning attacks,
especially in 2021. We conjecture that this phenomenon is
due to the 2020 paper by Kumar et al. [3], highlighting that
industry is particularly worried about poisoning.

D. Answer to G3: ML paradigm

This question is also straightfoward: is the underlying
algorithm used by the ‘targeted’ ML model based on shallow
or deep learning? The results are in Fig. 8.
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Fig. 8: G3: what is the considered ML paradigm?

It is apparent that most papers consider ML systems exclu-
sively based on DL (i.e., those using neural networks). Only
10 papers (out of 88) evaluate ML systems based on shallow
learning (SL) algorithms (interestingly, two papers consider
only SL: [49] and [90]). We believe that future efforts should
put more focus on SL, for a twofold reason:

• in some domains, SL is better than DL [21], [148].
E.g., we quote from [142]: “Even though in our ex-
periments we used SVM, deep neural networks, and
different variants of decision-tree learners, like random
forest, we only discuss the results of the random forest
approach as (1) we observed similar findings for these
approaches, with random forest being the best classifier in
most experiments, and (2) random forest allows for better
interpretation of the results compared to neural networks.”

• SL exhibit different properties than DL. We find insight-
ful to quote a statement by Xu et al. [149] (emphasis
ours): “we mainly detect AI Trojans on neural networks.
We do not include other ML models in our discussion
mainly because there is no current research showing that
they suffer from backdoor attacks.” Moreover, some SL
methods (e.g., Decision Trees) do not employ gradients,
meaning that some gradient-based attacks (as well as
gradient-based defenses) may not work on them.

We also mention that our case study (§III-A) elucidated that
SL methods are used also in commercial-grade ML systems.
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E. Answer to G4: Cost

As we discussed (§II-C), the cost (i.e., the economical
factor) plays a crucial role in operational cybersecurity. When
analyzing prior work, we considered three possible answers
to G4: whether a paper measured the cost in some way (e.g.,
performance tradeoff, required queries); whether this cost was
at least mentioned or discussed; and whether no consideration
on the cost was made. These answers can cover both attack
and defense papers. The results are shown in Fig. 9.
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Fig. 9: G4: are the costs taken into account (in any way)?.

These results show a positive trend. In 2019, less than 30%
of the papers did some measurements of the cost, and 30%
made no consideration whatsoever. The prevalence changes
in 2020 and 2021, as less than 25% papers did not take
into account the economical factor, whereas more than 60%
performed actual measurements.

Cost: Attack papers. We highlight three papers which
attempted to quantify the cost of an attack in real currency.

• (Equipment) Lovisotto et al. [150] evade object detectors
via artificial light manipulation through commercial pro-
jectors. Some of these projectors have an MSRP of few
hundreds dollars, whereas others are more expensive.

• (Queries) The authors of [34] and [148] alongside mea-
suring the cost of the proposed attack in terms of API
calls (i.e., queries), but also quantified the actual cost
required to make these API calls. Specifically, they con-
sidered the prices of popular MLaaS, and derived that
their attacks only necessitate few dollars.

Cost: Defensive papers. The most typical way to measure
the cost in defensive papers is via the ‘tradeoff’, i.e., the
change in performance after applying a given countermeasure
(e.g., [151]). We mention two works that make insightful
considerations on the ‘defensive’ cost—or rather, on how the
principle of a defense is to increase the ‘cost’ of the attacker.

• Chen et al. [152] propose to measure the cost of feature
manipulation against shallow ML models. The intuition
is to carry out the measurements during the evaluation
of ML models, with the underlying principle of “if an
attacker wants to evade an ML model by doing a, they
have to spend ca; and if they want to do b, they have

to spend cb.” We remark, however, that [152] does not
evaluate any attack: the main contribution is measuring
the (computational) effort in manipulating some features.
(which is why we do not include [152] in our Table IV.)

• Heisenhofer et al. [153] acknowledge that attackers can
use adversarial examples to evade a ML system for au-
tomated speech recognition. Hence, they aim to increase
the cost of the attacker to craft such adversarial examples.

An alternative formulation of the “raise the attacker’s cost”
is intrinsic of papers that focus on the detection of security
violations. We observe, however, that this detection can occur
at different granularities. For instance, some papers aim to
detect individual adversarial examples (e.g., [93]) or poisoned
ML models (e.g., [96]); whereas others have a broader scope
and aim to detect attackers (e.g., [102]).

F. Answers to G5 and G6: Data-type and Source-code

We now turn the attention to G5 and G6, which are strongly
related to the reproducibility [154] of research. We make a
statement on this subject at the end of our main paper (§V-D).

G5: Data-type. Past research investigated a plethora of ap-
plication domains of ML, which we divide in four categories.
Three correspond to the broad areas of images (e.g., computer
vision), text (e.g., natural language processing), audio (e.g.,
automated speech recognition); the fourth includes all other
domains (e.g., malware). These results are in Fig. 10; some
papers (e.g., [99]) consider multiple domains, which is why
the y-axis goes above 1. More details are shown in Table IV.
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Fig. 10: What are the data-types considered in the evaluation?

We can see an interesting trend from Fig. 10: in 2019,
over 75% of the papers focused on images (typically using
well-known datasets such as MNIST and CIFAR), whereas
the percentage dropped to 50% in 2021. The audio domain
has also been neglected in 2019, but became prominent in
2021. In particular, papers of 2021 covered much more ‘novel’
domains, such as graphs [155] or games [156].

G6: Source-code. We looked for links pointing to the
source-code of the experiments carried out in all our consid-
ered papers. The results are in Fig. 11.

We can see an encouraging trend, as 75% of papers did not
release their source-code in 2019, whereas only 35% did not
do so in 2021. To facilitate future research, we provide also
the actual links to every open code repository of each paper in
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Fig. 11: Has the source-code been publicly released?

Table IV. Nonetheless, we stress that even those papers that do
not make their evaluation publicly accessible had valid reasons
for doing so. For instance, [54] describes plenty of details, uses
well-known public datasets, and mostly rely on existing and
publicly accessible code. On the other hand, the experiments
in [147] are based on sensitive data that cannot be disclosed.

G. Answers to G7 and G8: pipeline and type of ML system

The last generic questions pinpoint the degree of ‘realism’
considered in the evaluations of prior work. Answering these
two questions was not simple: the authors who took part in
this activity had several debates before reaching a consensus.

G7: processing pipeline. This question was among the
hardest to answer during our survey. Our goal was determining
whether a given paper (i) envisioned a ML system, and
(ii) developed more components of the ML system than just an
ML model. For example, if a paper considered a ML system
(by, e.g., providing a schematic), but the evaluation spanned
over a single ML model, the answer to G7 was negative. The
answer was also negative if the paper made some preliminary
checks to the inputs of the ML model (e.g., to ensure that the
samples do not violate domain constraints [157]). Simply put,
to answer G7 we embraced Abdullah et al. [145] statement,
which we quote: “Processing pipelines for modern systems
are comprised of signal preprocessing and feature extraction
steps, whose output is fed to a machine-learned model. Prior
work has focused on the models, using white-box knowledge
to tailor model-specific attacks.” Answers to G7 are in Fig. 12.
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Fig. 12: Has a complex pipeline been reproduced in the evaluation?

As expected, nearly 80% of papers perform their attacks by
considering a single ML model. Even some papers that attack
MLaaS (e.g., [158]) ultimately simply have the MLaaS train
a given ML model, and then attempt to violate this model
without reproducing a real pipeline. Nonetheless, there are
some notable efforts, such as [49] and [22]. These works repro-
duce a custom ML system by developing also a preprocessing
component: this component represents an additional layer that
an attacker must bypass to reach the actual ML model that
will be ultimately targeted. However, we find it concerning
that the overall trend shown in Fig. 12 is stable. We strongly
endorse future work to start developing more components

G8: type of ML system. This question is split in two
parts. First, we asked ourselves whether, in any part of the
evaluation of a given paper, there was an ML model that can
be considered as ‘deployed in practice’. For example, papers
that attack commercial ML systems (e.g., [25]) automatically
fall into this category; however, we also considered papers
that used ‘extremely popular’ ML models (e.g., Yolo [159])
that have been shown to have realistic applications besides
benchmarking. The answers to the ‘first’ part of G8 are
shown in Fig. 13. Conversely, if a paper used some ‘popular’
techniques as a form of preprocessing but the attacked ML
model is trained on benchmarks, then the answer to our
question was negative—this is the case, e.g., of [49]. Then, if
the answer to the first part of G8 was positive (i.e., the paper
attacked a ‘deployed’ ML system), we proceeded to identify
the type of (real) ML system. Recall (§II-A) that there exist
two main types of ML systems: OPEN and CLOSED (and also
INVISIBLE). The answer to the second part of G8 is in Table IV.
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Fig. 13: Does the paper consider an ML model deployed in the real world?

By observing Fig. 13, we are not surprised to find out that
over 80% of the papers attack ML models (or ML systems)
that are entirely self-developed—either by using private data,
or by using well-known benchmark datasets. We conjecture
that this is due to the difficulty of researchers to acquire
permission to use ‘commercial’ ML systems for research.
For example, the notable work by Nassi et al. [25] clearly
explains what the authors had to do in order to attack the ML
system for object recognition integrated in real autonomous
cars. We commend the work by Nassi et al. [25], but similar
experiments may be “outside the reach” of most researchers.

Nevertheless, a detailed look at Table IV reveals that, among
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those papers that attack real ML systems, there is not a single
one which is INVISIBLE. This makes sense: such systems are
typically protected by NDA and researchers can hardly use
them for experimental purposes. We hope that our position
(§V-C) will promote practitioners to collaborate more actively
with researchers, so that future works can assess the robustness
of real ML systems against against security violations.

H. Answers to the Threat-Model Questions

There is a remarkable lack of clarity in the way that research
papers present their threat models (as also hinted in §IV-D).

T1: Parameters. We focused on determining whether the
attacker knew anything about the ML model itself, such as
the underlying algorithm (e.g., a Decision Tree or a Neural
Network), its initial configuration (e.g., the learning rate or
the architecture of the neural network) or its learned weights.
However – for those papers in which the attacker was assumed
to have some knowledge on the ML model – it was difficult to
specifically determine what was known. Hence, we considered
three possible answers to this question: full, zero and interme-
diate knowledge. An exemplary case of the latter is the work
by Tang et al. [96], stating that their (“black-box”) attacker:
“does not have information about the inner parameters of the
target model [but] he knows the target model’s architecture,
used optimization algorithm and hyper-parameters.”.

T2: Semantics. We consider whether the attacker was
aware of the input data-type received by the ML model. For
instance: does the attacker know that the ML model analyzes
images/malware/text? The answer was binary: yes or no. In
most cases, the answer was positive. However, in some rare
occurrences the attacker was also oblivious of this information.
An example is [110], in which the attacker simply does not
need this knowledge because the manipulation affects the ML
system at the hardware layer.

T3: Output. The main difficulty we encountered when
answering this question was the format in which the attacker
received the output of the ML system. As highlighted by
Jagielski et al. [107], an attacker can receive many forms of
feedback by a given ML system. For simplicity, we considered
four answers: decision (e.g., [12]) if the attacker can only ob-
serve the decision of the whole ML system; label (e.g., [160]),
if the attacker received the class with the highest probability;
probability, if the attacker received any additional information
beyond the label (e.g., [105]); as well as none, when the
attacker did not receive any feedback (or was not needed).

T4: Training. As stated in our main paper (see §IV-D),
identifying if the attacker had some knowledge on the training
data was very confusing. To be as specific as possible, we
considered the following answers: full, if the attacker had full
access (read and write) to the training data; read, if the attacker
can observe the entire training set; subset (e.g., [52], if the
attacker had a subset of the actual training dataset; surrogate
(e.g., [146]), if the attacker had samples not included in the
training data, but having the same distribution; distribution
(e.g., [161]), if the attacker only knows the class distribution
of the training data; and none if the attacker knows nothing.

Remark: Quantitative analyses that take into account the
cumulative answers to T1 to T4 are not possible: every paper
ultimately considers a different scenario. Therefore, we refrain
from deriving any ‘trend’ from T1 to T4. Considerations
should be made on a paper-by-paper basis, and we discuss
some of them in the main paper (§IV-B and §IV-C). The in-
dividual answers to these questions are provided in Table IV.

I. Complete Table

We summarize our complete literature review in Table IV.
This table11 lists each of the 88 papers considered in our anal-
ysis, presented in temporal order: from 2019 until 2021, and
from NDSS (typically held in January) until CCS (typically
held in November). For each paper, we report the first author
name, as well as concise answers to our 12 questions.

Generic Questions (G1 to G8). Most of these are straight-
forward. For readability, every ‘negative’ answer is denoted
with a blank cell. For G1 (focus), an asterisk denotes a paper
whose main contribution is a ML-based solution to a given
problem, which is also evaluated in adversarial scenarios
(e.g., [142]). For G4 (cost), we use: ✗ when no consideration
is made; when it is just mentioned; and ✓ when some
measurement is performed. For G5, we also provide the
specific data-type (e.g., malware) in the ‘other’ column (if
there are more than one ‘other’ data-type, we report ‘+’).
For G6 (source code), the ✓ is a link that leads to the actual
repository. For G7, we use ✓ if the paper develops an actual
pipeline, i.e., at least another component besides the ML
model (an asterisk denotes attacks at a different layer of the
pipeline—e.g., hardware [110]).

Threat-Model Questions (T1 to T4). For T1 (parameters),
we use ✗ if nothing is known, ✓ if the ML model is
fully known, and if the attacker knows a portion of its
architecture, or has a surrogate model. For T11 (output), we
use l if it is the actual label, p if it is a probability, s if
it is the decision of the whole ML system, and ✓ if it is
not needed. For T11 (training data), we use: ✓ if the attacker
has complete read and write access; R if they have complete
knowledge of the training data; ⊂ if the attacker has a subset
of the training data; and S if they have a surrogate dataset of
the same distribution; and D if they only know the distribution
of the training set; ✗ if they know (and can do) nothing about
the training data. However, if the answer to T2 is ‘poisoning’,
it is implicitly assumed that the attacker always has some form
of write access to the training data (the only exception is [95]).

11We note that some (actually, most) papers envisioned attackers conform-
ing to diverse threat models. Due to some of statements made in our main
paper (V-B), we show in Table IV the assumptions that correspond to weakest
attackers (e.g., if a paper considers both a black- and white-box attacker,
we will report the description of the black-box attacker in Table IV). The
motivation is that attacks stemming from weaker adversaries tend to be more
representative of the real world. Moreover, some papers consider dual attacks
(e.g., [44] and [162]). In these cases, we only report the one that is given a
greater emphasis in the paper.
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TABLE IV: The 88 papers considered in our analysis. Each column reports the answer to one of the 12 research questions we used during our survey. If
available, the G6 column provides the hyperlink to the websites hosting the source-code of a given paper. Explanations are in Appendix B-I.

Year
(subs)

Venue
(subs)

Paper
(1st author)

G1 G2 G3 G4 G5 (Evaluation Data) G6 G7 G8 T1 T2 T3 T4
Focus Attack Paradigm Cost Img Text Audio Other Code Pipeline Type Param. Sem. Output Training

2019
(23/435)

NDSS
(4/89)

Salem [158] atk Member. DL ✓ ✓ ✓ CLOSED ✗ ✓ p ✗
Li [138] atk Evasion DL ✓ ✓ ✓ ✓ ✓ ✗ R
Ma [163] def Evasion DL ✓ ✓ ✓ p ✗
Li [161] atk Evasion DL+SL ✓ ✓ CLOSED ✗ ✓ p D

SP
(3/84)

Ling [132] def Evasion DL ✓ ✓ ✓ ✓ ✓ p ✗
Wang [164] def Poison. DL ✓ ✓ ✓ ✓ ✓ ✗ ✓
Nasr [100] atk Member. DL ✗ ✓ Finance ✗ ✓ p D

SEC
(6/113)

Tong [114] def Evasion DL+SL ✓ Malware ✓ ✗ ✓ p ✗
Demontis [44] atk Evasion DL+SL ✗ ✓ Malware ✗ ✓ p S

Xiao [22] atk Evasion DL ✗ ✓ ✓ CLOSED ✗ ✓ p ✗
Quiring [165] atk Evasion DL+SL ✗ ✓ ✗ ✓ p ✗
Hong [110] atk Evasion DL ✗ ✓ * ✗ ✗ p ✗
Batina [111] atk Stealing DL ✓ * ✗ ✓ p ✗

CCS
(10/149)

Song [166] atk Member. DL ✗ ✓ ✓ ✗ ✓ p ✗
Jia [167] def Member. DL ✗ ✓ + ✗ ✓ p ✗
Co [101] atk Evasion DL ✓ ✓ ✗ ✓ p ✗
Liu [168] def Poison. DL ✓ ✓ ✓ ✓ p ✓

Baluta [169] def Poison. DL ✓ ✓ ✓ ✓ p ✓
Zhao [105] atk Evasion DL ✗ ✓ ✓ OPEN ✗ ✓ p S
Tramer [12] atk Evasion DL ✓ ✓ ✓ CLOSED ✗ ✓ s ✗
Wang [170] atk Evasion DL ✓ Graphs ✗ ✓ ✗ ⊂

Yao [52] atk Poison. DL ✓ ✓ p ⊂
Yang [171] atk Stealing DL ✓ CLOSED ✗ ✓ p D

2020
(24/470)

NDSS
(2/88)

Aghakhani [142] atk Evasion* DL+SL ✗ Malware ✓ ✗ ✓ ✗ D
Yu [34] atk Stealing DL ✓ ✓ CLOSED ✗ ✓ p D

SP
(4/104)

Schuster [172] atk Poison. DL ✓ ✓ ✗ ✓ ✗ ⊂
Pierazzi [49] atk Evasion SL ✓ Malware ✓ ✓ ✓ ✓ p R

Chen [88] def Evasion DL ✓ ✓ ✓ ✗ ✓ l ✗
Jan [147] atk Evasion* DL ✓ Network ✗ ✓ p ⊂

SEC
(8/157)

Salem [146] atk Member. DL ✗ ✓ Location ✓ p S
Chandrasekaran [148] atk Stealing DL+SL ✓ ✓ ✓ + ✓ p ✗

Suya [103] atk Evasion DL ✓ ✓ ✓ ✗ ✓ p S
Jagielski [107] atk Stealing DL ✓ ✗ ✓ l D
Quiring [173] atk Evasion DL ✗ ✓ ✓ ✓ ✗ ✓ p ✗

Li [151] def Evasion DL ✓ ✓ ✗ ✓ p D
Leino [174] atk Member. DL ✓ ✓ + ✓ ✓ p ✗
Zhang [175] atk Evasion DL ✗ ✓ ✓ ✓ p ✗

CCS
(10/121)

Nassi [25] atk Evasion DL ✗ ✓ ✓ ✓ CLOSED ✗ ✓ s ✗
Li [176] atk Evasion DL ✗ ✓ ✓ ✓ p ⊂

Shan [102] def Evasion DL ✓ ✓ ✓ ✓ p ✗
Pang [162] atk Poison. DL ✓ ✓ ✓ ✓ ✓ p ✓

Abdelnabi [177] atk Evasion* DL ✗ ✓ Phishing ✓ ✓ ✗ ✓ ✗ ✗
Li [178] atk Evasion DL ✓ ✓ ✓ ✓ p ✗
Lin [179] atk Poison. DL ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

Chen [180] atk Member. DL ✓ ✓ ✗ ✓ p D
Zanella [24] atk Member. DL ✓ ✓ ✓ ✗ ✓ p ✗
Song [23] atk Member. DL ✓ ✓ ✗ ✓ p S

2021
(41/644)

NDSS
(3/87)

Hui [104] atk Member. DL ✗ ✓ + ✓ ✗ ✓ p ✗
Huang [181] atk Poison. DL ✓ Ratings ✗ ✓ ✗ ⊂
Barradas [90] atk Evasion* SL ✓ Network ✓ ✗ ✗ ✗ ✗

SP
(5/115)

Xu [149] def Poison. DL ✓ ✓ ✓ ✓ ✓ ✓ p ✓
Abdelnabi [182] atk Evasion DL ✓ ✓ ✓ ✗ ✓ p ✗

Chen [91] atk Evasion DL ✓ ✓ ✓ ✓ (both) ✗ ✓ s S
Abdullah [145] atk Evasion DL ✓ ✓ ✓ CLOSED ✗ ✓ ✗ ✗

Nasr [35] def Evasion DL ✓ ✓ Finance ✗ ✓ p ✗

SEC
(24/246)

Sato [28] atk Evasion DL ✓ ✓ ✓ ✓ OPEN ✓ ✓ p ✗
Nasr [89] atk Evasion DL ✓ Network ✓ ✓ ✗ ✓ p D
He [183] atk Member. DL Graph ✗ ✓ p ✗

Severi [184] atk Poison. DL+SL ✓ Malware ✓ ✗ ✓ p ✓
Bagdasaryan [95] atk Poison. DL ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

Xi [155] atk Poison. DL ✓ Graph ✓ ✓ ✗ S
Tang [96] def Poison. DL ✗ ✓ ✓ ✓ p ⊂

Schuster [185] atk Poison. DL ✓ ✓ OPEN ✗ ✓ ✗ ⊂
Carlini [54] atk Poison. DL ✓ ✓ ✗ ✓ ✗ ⊂

Vicarte [186] atk Poison. DL ✓ ✓ ✗ ✓ p ✗
Lovisotto [150] atk Evasion DL ✓ ✓ ✓ OPEN ✗ ✓ ✗ ⊂

Carlini [30] atk Member. DL ✓ ✓ ✓ OPEN ✗ ✓ p ✗
Han [97] atk Evasion* DL ✗ Graph ✗ ✓ p ✗

Eisenhofer [153] def Evasion DL ✓ ✓ ✓ ✓ OPEN ✓ ✓ p R
Wu [156] atk Poison. DL ✓ Games ✓ ✗ ✓ s ✗
He [187] atk Stealing DL ✓ ✓ ✗ ✓ l S

Rakin [112] atk Evasion DL ✓ ✓ ✓ * ✗ ✓ p ✗
Jia [188] def Stealing DL ✓ ✓ ✓ ✓ ✓ l ⊂

Zhu [189] def Stealing DL ✗ ✓ * ✗ ✓ p ✗
Xiang [190] def Evasion DL ✓ ✓ ✓ ✓ ✓ p ✗

Lin [191] atk Evasion * DL ✓ ✓ Phishing ✓ ✓ ✗ ✓ p ✗
Azizi [192] def Poison. DL ✗ ✓ ✓ ✓ ✓ p ✓

Hussain [93] def Evasion DL ✗ ✓ ✓ ✓ ✓ p ✗
Song [99] def Member. DL ✓ ✓ + ✓ ✗ ✓ l ✗

CCS
(9/196)

Zheng [92] atk Evasion DL ✓ ✓ CLOSED ✗ ✓ ✗ ✗
Mu [193] atk Evasion DL ✓ Graphs ✗ ✓ l ✗

Bahramali [194] atk Evasion DL ✓ Network ✗ ✓ ✗ S
Sheatsley [157] atk Evasion DL ✗ Network ✓ ✓ p R

Du [94] def Evasion DL ✓ ✓ ✓ ✓ ✓ p R
Li [195] def Evasion DL ✓ ✓ ✓ ✗ ✓ ✗ ✗
He [196] def Member. DL ✗ ✓ ✓ ✓ l S
Li [160] atk Member. DL ✓ ✓ ✓ ✗ ✓ l ✗

Chen [197] def Member. DL+SL ✗ ✓ + ✓ ✗ ✓ p ✗

Year
(subs)

Venue
(subs)

Paper
(1st author)

Focus Attack Paradigm Cost Img Text Audio Other Code Pipeline Type Param. Sem. Output Training
G1 G2 G3 G4 G5 (Evaluation Data) G6 G7 G8 T1 T2 T3 T4
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https://github.com/AhmedSalem2/ML-Leaks
https://github.com/sli057/Video-Perturbation
https://github.com/ryderling/DEEPSEC
https://github.com/bolunwang/backdoor
https://github.com/mzweilin/PDF-Malware-Parser
https://github.com/inspire-group/privacy-vs-robustness
https://teobaluta.github.io/NPAQ/
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https://github.com/ftramer/ad-versarial
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https://github.com/TemporaryAcc0unt/composite-attack
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https://github.com/AI-secure/semantic-randomized-smoothing
https://github.com/xinleihe/ContrastiveLeaks
https://github.com/zhenglisec/Decision-based-MIA
https://github.com/MinChen00/UnlearningLeaks
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