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ABSTRACT

Chain-of-Thought (CoT) has demonstrated remarkable problem-solving capabil-
ities in many large language models (LLMs), but their reasoning processes often
exhibit substantial redundancy. To mitigate these issues, various approaches have
been explored to improve reasoning efficiency. In this paper, we focus on early exit
methods which are lightweight and can be seamlessly adapted to various methods.
These methods typically trigger an early exit based on different types of signals,
including localized criteria like single-step confidence scores, as well as stabiliza-
tion of an intermediate trial answer over multiple steps. However, we observe
that they often struggle to confirm whether the underlying reasoning process is
complete or sound. This paper pioneers to diagnose the reasoning state of CoT
through the global dynamics of its entropy. We reveal a consistent pattern: CoT
generation begins in a high-entropy uncertainty region before transitioning to a
stable, low-entropy confidence region. We demonstrate that the transition into this
confidence region strongly correlates with a complete reasoning process. Based
on this insight, we propose COnfidence Region Exits (CORE) to stop the CoT
when the model enters the confidence region. Experiments demonstrate that our
approach achieves a superior trade-off between computational cost and accuracy
among early exit methods across various models including Deepseek-R1-Distill-
Qwen-7B, Qwen3-4B-Thinking-2507, and Qwen3-14B in AIME24, AIME25,
and GPQA datasets 1. We believe that this method can serve as a strong efficient
reasoning method and provide insights for understanding CoT.

1 INTRODUCTION

Chain-of-Thought (CoT) reasoning (Wei et al., 2022) has demonstrated remarkable capabilities in
Large Language Models (LLMs) by solving a wide range of complex tasks (Shao et al., 2024; Guo
et al., 2025; Wang & Chen, 2023; Team et al., 2025; Anil et al., 2023). Instead of directly gener-
ating a final answer, CoT externalizes its reasoning process, articulating a series of intermediate,
logical steps that lead to a conclusion. This methodological shift has unlocked substantial perfor-
mance gains (Merrill & Sabharwal, 2024), particularly tasks requiring multi-step deliberation such
as math, reasoning, and coding. By guiding the model to think step by step, CoT transforms prob-
lems that were previously intractable for LLMs into solvable challenges, marking a pivotal advance
in developing more robust and reliable reasoning systems.

However, enhanced reasoning performance comes at the cost of high token usage (Chen et al., 2024).
This inefficiency creates two critical problems: It drives up economic costs through expensive API
calls and hardware demands (Zellinger & Thomson, 2025), and it degrades the user experience with
high latency in interactive applications (Liang & Tong, 2025). This combined overhead is a key
barrier to the practical, widespread use of our most powerful LLMs.

Many approaches have been proposed to improve the reasoning efficiency of LLMs (Hao et al.,
2024; Zhang et al., 2025b; Shen et al., 2025; Yu et al., 2025; 2024; Tu et al., 2025; Li et al., 2025).
This paper focuses on the early exit framework, which is compelling because of its lightweight and
seamless adaptability to various models. With this framework, existing methods typically rely on
heuristics to dynamically halt generation. Some focus on answer confidence, terminate the process

1Our code will be public once accepted.
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when the model exhibits high confidence (Yang et al., 2025; Huang et al., 2025). Some focus on
stable probing answer, terminate when the same answer is repeatedly generated (Fu et al., 2024).
While effective in certain scenarios, we argue that neither approach provides a definitive measure of
reasoning completion. A high-confidence answer can be prematurely asserted, and a stable answer
may simply indicate a reasoning loop rather than a sound conclusion.

In this paper, we introduce a novel framework for early exit Chain-of-Thought (CoT) reasoning
grounded in its underlying entropy dynamics. To the best of our knowledge, our work is the first
to investigate the evolution of entropy throughout the CoT process. Our key discovery is that the
reasoning process is not monolithic but consistently bifurcates into two distinct region: an initial,
high-entropy uncertainty region for exploration, followed by a stable, low-entropy confidence region
where the reasoning converges. We establish that the transition into this confidence region is a
reliable indicator of a complete reasoning chain. Leveraging this insight, we propose a lightweight,
training-free halting criterion that terminates generation precisely when the model enters confidence
region, effectively identifying the moment reasoning is complete. This principled approach avoids
both premature exits during deliberation and redundant verbosity after a solution is found, ensuring
efficiency without compromising accuracy.

We conduct comprehensive experiments on three LLMs including DeepSeek-R1-Distill-Qwen-
7B, Qwen3-4B-Thinking-2507, and Qwen3-14B across three challenging benchmarks: AIME24,
AIME25, and GPQA Diamond. Experiments demonstrate that our method achieves a Pareto-optimal
trade-off compared to all other early exit methods. We believe this work can provide a novel per-
spective to understand the CoT process. This work offers a novel perspective for understanding the
internal dynamics of the CoT process and provides a more principled and robust method for efficient
reasoning.

2 RISK OF PREVIOUS EARLY EXITING METHOD

LLMs can improve their reasoning capabilities by generating intermediate steps through CoT. In this
manner, the model generates explicit intermediate reasoning steps before producing a final answer
and enables substantial performance gains on complex tasks. For every input X , the model auto-
regressively generates a sequence of reasoning steps T1, T2, · · · , Tn. Each step Ti is a sequence of
tokens (e.g, fixed interval of tokens) sampled from the model’s predictive distribution, conditioned
on the input and all preceding steps:

Ti ∼ LLM(Ti|X,T1:i−1),

where T1:i−1 = T1, T2, · · · , Ti−1. This process continues until a complete reasoning chain T1:n is
formed, which is then used to derive a final answer.

Despite its effectiveness, the generation of the reasoning chain can be computationally costly due
to unnecessarily long traces. To address this issue, many early exit methods are proposed. In this
section, we formalize the early exit mechanism and introduce potential risks of previous methods.

2.1 EARLY EXIT MECHANISM

Current early exit methods for CoT operate within a two-stage framework, which first involves
probing the model’s intermediate explicit reasoning state for a trial answer, and subsequently applies
a stopping criterion to determine generation halt for immediate final answer derivation.

Intermediate Answer Probing. This mechanism aims to quantitatively monitor the CoT process
by eliciting intermediate answers from intermediate thoughts. Specifically, following each step Ti,
we prompt LLMs for an intermediate answer Ai by appending an answer-inducing prompt, PINDUCE.

Ai ∼ LLM(X,T1, T2, · · · , Ti, PINDUCE). (1)

For example, PINDUCE can be token sequence “</think> The answer is \boxed”. This
allows for an ongoing assessment of the model’s conclusion.

Stability-Based Stopping Criterion. Through this criterion, the early exit mechanism stops the
CoT when the model produces the same intermediate answer for k consecutive steps (Fu et al.,
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Figure 1: Dynamics of Entropy and Accuracy across Reasoning Stages, and Illustrative Fail-
ure Modes. (a) Entropy and Accuracy Dynamics: This plot illustrates the typical trajectory of
probing entropy and corresponding accuracy over reasoning steps. It clearly delineates two dis-
tinct regions: an initial Uncertainty Region characterized by high entropy and low accuracy, fol-
lowed by a Confidence Region where entropy is low and accuracy consistently stabilizes at a high
level. The transition between these regions is marked by a sharp drop in entropy. (b) Illustrative
Halting Failure Modes: This panel presents two representative cases in confidence-based halting
and stability-based halting. Green (red) background means correct (wrong) answer, the bottom bar
means the probed answer during reasoning steps. Case 1 shows a scenario where the model exhibits
momentary low entropy spike (high confidence), leading to a confidently incorrect early exit if solely
relying on a single-step confidence. Case 2 depicts a situation where the model’s answer stabilizes
for several steps (high entropy for the answer), yet the answer is persistently incorrect, highlighting
the need for robust confidence criteria beyond mere answer stability.

2024). Formally, generation is terminated at step i if:
stop if Ai = Ai−1 = · · · = Ai−k+1. (2)

Confidence-Based Stopping Criterion. Alternatively, one could also halts the chain-of-thought
as soon as the model’s predictive confidence in the intermediate answer exceeds a pre-defined
threshold, thereby avoiding redundant reasoning steps. To quantify the model’s certainty about
this intermediate answer, the most common approach is to calculate its entropy, H(Ai, |X,T1:i). A
lower entropy value signifies higher confidence. Formally, if the answer Ai consists of m tokens
(ai,1, . . . , ai,m), its entropy is defined as the average token-level negative log-likelihood:

H(Ai|X,T1:i) = − 1

m

m∑
j=1

∑
v∈V

Pj(v|·) log2 Pj(v|·), (3)

where V is the vocabulary and Pj(v|·) = P (v|X,T1:i, PINDUCE, ai,1:j−1) is the probability of token
v conditioned on all preceding text. This entropy value, H(Ai, |X,T1:i) represents the model’s
uncertainty regarding its answer after i steps of reasoning. (Other metrics based on normalized
probabilities or geometric means also exist (Yang et al., 2025; Huang et al., 2025)).

This approach terminates generation as soon as the confidence of an intermediate probed answer Ai

exceeds a predefined threshold. Using entropy H(Ai|X,T1:i) as an inverse measure of confidence,

3
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the halting condition is:
stop if H(Ai|X,T1:i) ≤ τconf , (4)

where τconf is a predefined threshold. Methods like DEER (Yang et al., 2025) and the work by
Huang et al. (2025) exemplify this strategy.

2.2 LIMITATIONS OF HEURISTIC STOPPING CRITERIA

While these heuristics represent important initial steps toward improving CoT efficiency, their re-
liance on localized signals—specifically, single-step confidence or answer stability—introduces fun-
damental limitations. These shortcomings arise because such signals often fail to reliably indicate
the true completion and soundness of the underlying reasoning process. Specifically, for confidence-
based stopping criterion, the core assumption is that a high-confidence score (low entropy) directly
correlates with the a complete reasoning. This heuristic, however, is susceptible to ”premature con-
fidence,” where a model exhibits a momentary spike in confidence for an answer that is plausible
but ultimately flawed upon further deliberation as shown in the first case of Figure 1b. For stability-
based stopping criterion, the underlying assumption is that stability indicates convergence to a final
solution. Yet, this heuristic can be unreliable. The unreliability of this heuristic stems from its in-
ability to consider the model’s confidence. In the initial analysis phase, for example, a model might
produce a sequence of same, high-entropy (uncertain) answers. A stability-based stopping criterion
on its own cannot differentiate between a model converging on a well-reasoned, low-entropy answer
and one that is simply stuck repeating an early, high-entropy guess as shown in the second failure
case of Figure 1b.

3 METHOD: CONFIDENCE REGION DETECTION AND EARLY EXIT OF COT

This paper presents the first systematic characterization of the global dynamics underlying the CoT
reasoning process in LLMs. While prior work has primarily employed entropy as a local, stepwise
confidence score, our work departs from this granular view. We introduce a global analysis that cap-
tures the full temporal progression of entropy, enabling us to move beyond transient fluctuations and
toward a principled understanding of how LLMs converge on a solution. This holistic perspective is
the key to delineating distinct phases of reasoning and identifying the precise points of commitment
to a final answer.

Table 1: Statistical Analysis of Halting Signals in High and Low-Entropy Regions across 100 Sam-
ples.

Reasoning Region Low-Entropy Points Stable Answer Sequences

Total Correct Accuracy Total Correct Accuracy

High-Entropy Region 33 3 9.0% 65 17 26.2%
Low-Entropy Region 72 43 59.7% 65 48 73.8%

3.1 CONFIDENCE REGION OF COT

To quantitatively track the LLM’s reasoning state, we monitor the dynamics of its predictive entropy
throughout the generation process. First, we sample 100 instances from the Bespoke-Stratos-17k
dataset (Labs, 2025), a heterogeneous collection spanning domains such as coding, mathematics,
science, and logic puzzles, to ensure the diversity of our analysis. An initial observation across
these samples reveal a consistent pattern in their entropy evolution: an initial phase of high entropy,
followed by a sharp decrease, and finally settling into a low-entropy plateau (see Figure 7 in Ap-
pendix for individual examples). To visualize this universal phenomenon in aggregate, we present
the average entropy dynamics for Qwen3-4B-Thinking-2507 in Figure 1a. To enable a meaningful
comparison across samples of varying lengths, we normalize the temporal axis of each reasoning
process. We identify the point of sharpest entropy decrease as a critical point for each sample. Then,
using linear interpolation, we align all samples at this decrease point and normalize the lengths of
the high-entropy (pre-transition) and low-entropy (post-transition) phases, respectively.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

As illustrated in Figure 1a, this aggregation clearly reveals a distinct two-region structure within the
CoT process, connected by a sharp drop in entropy. We analyze the characteristics of high- and
low-entropy regions by evaluating the accuracy of prior early-exit methods in each phase, with a
statistical summary provided in Table 1. Our key findings are as follows:

• Probing answers in the high-entropy region are unreliable. This is visually corroborated
by Figure 1a, which demonstrates that the overall probing accuracy remains consistently
low throughout this phase. Furthermore, our analysis of low entropy points and stable
answer sequences in this region (Table 1) reveals that confidence-based halting achieves an
accuracy of only 9.0%, while stability-based halting is correct merely 26.2% of the time.

• Probing answers in the low-entropy region are highly reliable. In stark contrast, once the
process transitions into the low-entropy region where Figure 1a clearly shows the accuracy
plateauing at a high level. Furthermore, our analysis of low entropy points and stable
answer sequences in this region (Table 1) reveals that the accuracy of confidence-based
halting jumps to 59.7%, and the accuracy of stability-based halting reaches 73.8% (Table
1).

• The low-entropy region is often excessively long. Although the correct answer is typically
found early in this phase, Figure 1a shows that the model continues to generate a substantial
number of tokens in this confident state. This post-solution verbosity is the primary source
of redundancy that our method aims to eliminate.

Based on these observations, we posit that the high-entropy phase corresponds to the model’s Uncer-
tainty Region, whereas the low-entropy phase represents its Confidence Region. The confluence
of reliable answers in the Confidence Region, unreliable answers in the Uncertainty Region, and the
inherent verbosity of the Confidence Region leads to our central conclusion: a superior strategy is
to perform an early exit precisely when the model has transitioned into the Confidence Region, while
explicitly avoiding premature exits from the Uncertainty Region.

3.2 CORE: CONFIDENCE REGION EXIT

Question: What is the next number in the sequence: 1, 4, 9, 16, 25, ___?

Step 1
<think> This looks 
like a sequence of 
squares. Let‘s 
verify each term.

Step 2
The first term is 
1 squared (1*1), 
the second is 2 
squared (2*2).

Step 3
So the numbers 
are n*n. The last 
given term is 5 
squared (5*5=25).

Step 4
Therefore, the 
next number 
should logically be 
6 squared (6*6).

Step 5
6 squared is 36. 
Wait, Is 36 really 
the square of 6? 
How to calculate it?

Reasoning Steps

Entropy: 1.2, Ans: 4 
Action: Continue

Entropy: 1.1, Ans: 4 
Action: Continue

Entropy: 1.3, Ans: 4 
Action: Continue

Entropy: 0.3, Ans: 36 
Action: Continue

Entropy: 0.2, Ans: 36 
Action: Exit

1 2 3 4 5
Reasoning Step

0

1

En
tro

py

Confidence Region Early Exit
Probed Entropy
Threshold  = 0.35
Exit Point
Exit Window (w=2)

Figure 2: This figure illustrates the step-by-step operation of the CORE algorithm using a sam-
ple reasoning trace. The top panel shows the model’s generated answer, probed entropy, and the
CORE algorithm’s decision (”Continue” or ”Exit”) at each step. The bottom panel visualizes the
corresponding entropy curve over reasoning steps, along with the predefined confidence threshold
(β = 0.35) and window size (w = 2). The algorithm effectively identifies and triggers an early exit
only when the entropy consistently falls below the threshold within the specified window, thereby
avoiding premature exits based on spurious confidence dips.

While it is straightforward to distinguish between the uncertainty and confidence regions based on
sharply decread point when the entire Chain of Thought (CoT) is known, this is not feasible during
inference as the global entropy landscape is unavailable. Consequently, identifying the transition
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into the confidence region using relative entropy is challenging. To address this, we propose a
method that utilizes a threshold and a sliding window to determine whether the model has entered
the confidence region, triggering an early exit if it has.

At each generation step i, the algorithm first determines the current reasoning region, Si. This is
achieved by monitoring the probed entropy signal, H(A|X,T1:i), which reflects the model’s cer-
tainty about the final answer. Based on a predefined threshold β, the stage is identified as:

Si =

{
Confidence Region if

∑i
max(1,i−w+1) H(A|X,T1:j)

max(i,w) ≤ β,

Uncertainty Region otherwise,
(5)

Once the chain-of-thought enters the Confidence Region, generation is immediately halted and the
current trial answer is emitted as the final prediction.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Setup Our experiments utilize three representative open-source LLMs of varying sizes:
DeepSeek-R1-Distill-Qwen-7B, Qwen3-4B-Thinking-2507, and Qwen3-14B. We evaluate these
models on four challenging reasoning benchmarks: AIME24, AIME25, and GPQA-Diamond (Rein
et al., 2024). For all models, we adhere to their standard prompting strategies, with full details pro-
vided in Figure 6 of the appendix. To ensure robust and stable performance estimates, we vary the
number of evaluation runs based on the dataset size. For the large-scale GPQA-Diamond bench-
mark, we report results averaged over 4 random runs. For the smaller competition math datasets
(AIME24 and AIME25), we perform 16 random runs per dataset to mitigate the effects of sampling
variance.

Hyperparameter Settings For each model, we tune hyperparameters on the Bespoke-Stratos-17k
dataset. These optimized settings were then applied directly to the test datasets for final evaluation.
Detailed hyperparameter configurations are provided in the Appendix C.1.

Baselines We compare our method with two representative early exit method: DEER (Yang et al.,
2025), Dynasor (Fu et al., 2024).

Table 2: Main results on aggressive early exit.

Methods AIME25 AIME24 GPQA Average
Acc ↑ Tokens ↓ Acc ↑ Tokens ↓ Acc ↑ Tokens ↓ Acc ↑ Tokens ↓

DeepSeek-R1-Distill-Qwen-7B
Vanilla 41.04 14556 55.63 13313 38.38 8637 45.02 12169
DEER 35.21 10934 45.2 9858 30.05 6104 36.82 8965
Dynasor 32.22 10863 49.33 9761 17.4 6239 32.98 8954
Ours 36.46 10965 51.25 9540 42.80 6243 43.50 8916

Qwen3-4B-Thinking-2507
Vanilla 81.04 22613 77.29 19178 64.65 9442 74.32 17078
DEER 64.32 16925 66.97 14348 61.5 6600 64.26 12624
Dynasor 65.02 16930 66.32 14623 62.38 6463 64.57 12672
Ours 63.75 16953 68.33 14554 62.34 6421 64.81 12643

Qwen3-14B
Vanilla 71.67 16727 81.46 13872 67.93 5988 73.69 12196
DEER 55.0 11043 62.0 9003 63.64 3854 60.21 7967
Dynasor 54.25 11231 62.12 9032 59.09 3926 58.49 8063
Ours 60.63 10958 65.21 8980 63.64 4192 63.16 8043
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Table 3: Main results on conservative early exit.

Methods AIME25 AIME24 GPQA Average
Acc ↑ Tokens ↓ Acc ↑ Tokens ↓ Acc ↑ Tokens ↓ Acc ↑ Tokens ↓

DeepSeek-R1-Distill-Qwen-7B
Vanilla 41.04 14556 55.63 13313 38.38 8637 45.02 12169
DEER 40.0 13508 50.62 11184 35.73 7227 42.12 10639
Dynasor 37.78 13544 52.67 11215 19.32 7342 36.59 10700
Ours 40.83 13634 55.0 11806 40.53 7160 45.45 10867

Qwen3-4B-Thinking-2507
Vanilla 81.04 22613 77.29 19178 64.65 9442 74.32 17078
DEER 74.17 20384 72.67 17272 62.84 8450 69.89 15369
Dynasor 73.33 20362 73.0 17125 64.65 8367 70.33 15285
Ours 76.25 20164 74.38 17270 64.27 8492 71.63 15309

Qwen3-14B
Vanilla 71.67 16727 81.46 13872 67.93 5988 73.69 12196
DEER 68.5 14424 70.42 11454 61.87 5368 66.93 10415
Dynasor 68.67 14305 71.56 11866 61.74 5317 67.32 10496
Ours 68.75 14351 76.04 11358 65.91 5123 70.23 10277
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Figure 3: Pareto-frontier on AIME25 dataset.

4.2 BETTER EFFICACY-EFFICIENCY TRADE-OFF

Given the trade-off between accuracy and generated tokens, comparing Pareto-optimal frontiers is
an effective evaluation method. To generate points along these frontiers, we vary the number of
tokens by adjusting key hyperparameters for each method: the confidence threshold for DEER, the
stable answer threshold for Dynasor, and the window size for CORE. For computational efficiency,
we focus our Pareto frontier analysis on the most challenging dataset, AIME25. On other datasets,
we evaluate model performance at two distinct operational points: an aggressive early exit setting
targeting a 25% token reduction, and a conservative early exit setting with a 10% token reduction.
The results are presented in Tables 2 and 3.

In aggressive early exit scenarios (Table 2), CORE proves highly efficient compared to previous
methods. For instance, on average with the DeepSeek-R1-Distill-Qwen-7B model, it achieves
43.50% accuracy using only 8916 tokens, outperforming both DEER (36.82%) and Dynasor
(32.98%). When more computational budget is allowed (Table 3), CORE not only delivers the
highest accuracy but also reduces token usage by approximately 10% compared to the Vanilla base-
line for comparable performance. This unique adaptability in managing the accuracy-cost trade-off
holds consistently across all tested models, proving CORE is a robust and effective inference opti-
mization framework. As illustrated in Figure 3, CORE clearly achieves a superior Pareto frontier
compared to the other methods.
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Figure 4: Performance of CORE on the AIME25 dataset across different problem difficulties and
model sizes. The charts show CORE’s token and accuracy ratios relative to a vanilla baseline.
For easy problems, CORE demonstrates token reduction with a much smaller sacrifice in accuracy
across all models. For difficult problems, the method’s effectiveness varies by model architecture:
on DeepSeek-R1-Distill-Qwen-7B model, it simultaneously delivers dramatic token savings while
significantly boosting accuracy. In contrast, on the more powerful Qwen3 models, the token savings
are accompanied by a roughly proportional decrease in accuracy.

4.3 ANALYSIS ON DIFFERENT DIFFICULTY LEVELS

To investigate our method’s performance, we analyze its accuracy and token consumption across
problems categorized as ’easy’ or ’difficult’ based on the model’s vanilla inference accuracy on
AIME25 dataset. We then evaluate CORE’s performance ratios against the vanilla baseline as a
function of increasing window size in Figure 4. For easy problems, CORE demonstrates token
reduction with a much smaller sacrifice in accuracy across all models. This efficiency gain is no-
tably prominent in Qwen3-14B, demonstrating CORE’s effectiveness in easy problems. On difficult
problems, CORE’s impact varies by model: for the distilled DeepSeek-R1-Distill-Qwen-7B, it dra-
matically saves tokens while concurrently achieving a significant accuracy boost, effectively prun-
ing error accumulation from misguided multi-step explorations. Conversely, for the more powerful
Qwen3 models, token savings are generally met with a proportional accuracy decrease, suggesting
their vanilla reasoning on difficult problems is already more optimized and contains less redundancy.

4.4 COST ANALYSIS
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Figure 5: Cost analysis.

A potential drawback of probing is the introduction of ad-
ditional inference latency, which might partially offset the
efficiency gains achieved by shortening CoT sequences.
To precisely quantify this trade-off, we conduct an em-
pirical analysis on the Qwen3-4B-Thinking-2507 model
using the AIME25 dataset. We compare the total infer-
ence time for scenarios employing our conservative and
aggressive early exit strategies against the vanilla CoT
baseline. As depicted in Figure 5, our analysis reveals
that despite the inherent overhead associated with prob-
ing, the additional inference latency introduced by CORE
is remarkably minimal. This strongly suggests that the
substantial efficiency gains derived from reduced token
usage are largely preserved, making our method a net positive in terms of overall runtime.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 RELATED WORK

Improving the efficiency of Chain-of-Thought (CoT) reasoning is a critical area of research. Previ-
ous work can be categorized into training-based and training-free approaches. Our work builds upon
the latter. In this section, we provide a brief review of previous methods.

5.1 TRAINING-BASED METHODS

Training-based methods seek to enhance efficiency by fine-tuning a model’s parameters to produce
more concise reasoning. These approaches generally fall into three main categories. One major
line of work focuses on representation, compressing reasoning steps into a continuous latent space
rather than explicit text (Continuous CoT) (Hao et al., 2024; Zhang et al., 2025b; Shen et al., 2025).
Another prominent strategy involves Supervised Fine-Tuning (SFT), where models are trained on
datasets of curated, concise CoTs, often distilled from longer, more verbose examples (Yu et al.,
2025; 2024; Kang et al., 2025). A third category utilizes Reinforcement Learning (RL) to explicitly
incentivize brevity, typically by incorporating length-based penalties into the reward function or
using preference optimization to favor shorter, correct answers (Tu et al., 2025; Li et al., 2025; Dai
et al., 2025; Xu et al., 2025b; Yu et al., 2025; Hou et al., 2025; Zhang et al., 2025a; Liu et al., 2025;
Arora & Zanette, 2025).

5.2 TRAINING-FREE METHODS

Training-free methods offer a lightweight, model-agnostic alternative for dynamic CoT termination
by employing various heuristics. Some methods are confidence-based, halting generation when a
single answer’s confidence is high (Yang et al., 2025). Others are stability-based, terminating when
an intermediate answer is repeated consecutively (Fu et al., 2024). A third approach focuses on
exploration suppression; rather than directly halting, it discourages further deliberation by reducing
the probability of ”exploration” tokens when the model is already confident (Huang et al., 2025). Fi-
nally, another category of methods uses prompt engineering to elicit more succinct answers from the
model (Xu et al., 2025a). We consider such approaches to be model-specific and thus do not explore
them further in this work. However, we argue that the aforementioned halting-based approaches
predominantly rely on heuristic criteria and lack a principled understanding of the CoT process.

6 CONCLUSIONS

In this paper, we introduce a novel, entropy-driven early exit framework designed to enhance the ef-
ficiency of Chain-of-Thought (CoT) reasoning in Large Language Models. Our foundational insight
stems from pioneering an empirical investigation into the dynamic evolution of entropy during the
CoT process. We conclusively demonstrate a consistent pattern: CoT generation transitions from
an initial high-entropy uncertainty region, characterized by exploration, to a stable, low-entropy
confidence region, signaling the convergence of reasoning. Leveraging this robust correlation be-
tween the entry into the low-entropy confidence region and the completion of a sound reasoning
process, we propose a lightweight, training-free halting criterion. This principled approach allows
models to terminate generation precisely when reasoning is concluded, effectively avoiding both
premature exits that compromise accuracy and redundant verbosity that inflates computational costs.
Our comprehensive experiments across diverse LLMs (DeepSeek-R1-Distill-Qwen-7B, Qwen3-4B-
Thinking-2507, and Qwen3-14B) and challenging benchmarks (AIME24, AIME25, GPQA) affirm
the efficacy of our method. We demonstrate that our approach achieves a superior Pareto-optimal
trade-off between computational cost and accuracy when compared to existing training-free early
exit methods. This work not only offers a novel, information-theoretic perspective for understand-
ing the internal dynamics of the CoT process but also provides a more principled and robust method
for efficient reasoning. We believe these insights will pave the way for developing more econom-
ically viable and performant LLMs, fostering further research into the inherent predictability and
controllability of complex reasoning patterns.
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A THE USE OF LLMS

In the preparation of this manuscript, LLMs were utilized as a writing assistant to enhance clarity,
refine phrasing, and improve overall readability. Specifically, LLM tools were employed for:

• Grammar and Style Refinement: Identifying and correcting grammatical errors, improving
sentence structure, and suggesting more concise or academic phrasing.

• Vocabulary Enhancement: Proposing alternative word choices to avoid repetition and en-
rich the lexical diversity of the text.

• Conciseness: Restructuring sentences or paragraphs to ensure that arguments are presented
in a clear and succinct manner.

It is important to note that LLMs were used solely for editorial support and linguistic enhance-
ment. All research ideas, experimental design, data analysis, interpretation of results, and the core
scientific content presented in this paper are the original work of the authors. The LLM’s role was
strictly limited to improving the articulation of these original contributions, not to generate any sci-
entific content or insights. The authors have meticulously reviewed and approved all LLM-assisted
revisions to ensure accuracy and alignment with their intended meaning.

B ETHICS STATEMENT

This research aims to enhance the computational efficiency and understanding of LLM reasoning.
All experiments utilized publicly available, non-sensitive benchmark datasets (AIME24, AIME25,
GPQA) and pre-trained models within their respective licenses.

We acknowledge the potential for dual-use concerns, as increased efficiency could inadvertently
lower the barrier for malicious LLM applications, such as large-scale misinformation generation.

However, the primary impact of our work is to significantly reduce computational overhead, thereby
promoting more environmentally sustainable AI and democratizing access to advanced LLM rea-
soning for researchers with limited resources. We are committed to responsible AI development and
believe our contributions offer clear positive value to the community.

C REPRODUCIBILITY STATEMENT

To facilitate the reproducibility of our findings, we provide a detailed account of our methodology,
implementation, and experimental setup. The core logic and formulation of our proposed method,
CORE, are described in Section 3. For implementation-specific details, the exact prompts used for
different dataset is in Figure 6 in the Appendix. A comprehensive list of all hyperparameters, includ-
ing the window size (w) and confidence threshold (β) used for each model, is provided in Appendix
C.1. All datasets used in our evaluation (AIME25, AIME24, and GPQA) are publicly available. To
ensure the stability and robustness of our findings, all experiments were repeated multiple times, and
the averaged results are reported. Our source code will be made publicly available upon acceptance
of this manuscript.

C.1 HYPER-PARAMETER SETTINGS

Our approach introduces only two fine-tuned hyper-parameters: the entropy threshold β and the
sliding-window size w. We tune β directly on the Bespoke-Stratos-17k training split and show the
final decision in Table 4. For w, we grid-search the values [10,20,30,40,50] and select the two
settings whose CoT early-exit rates fall closest to 75% and 85%; these two checkpoints are reported
as our main experimental results. Then we plot the pareto frontier for AIME25 using all the five
points.

D EXPERIMENTS

D.1 EMPIRICAL VISUALIZATION OF COT
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Table 4: Hyper-parameter settings.

Model β

DeepSeek-R1-Distill-Qwen-7B 0.2
Qwen3-4B-Thinking-2507 0.05
Qwen3-14B 0.02

Prompt for AIME24 and AIME25
<|im_start|>system
Please reason step by step, and put your final answer within \\boxed{}.
<|im_end|>
<|im_start|>user
{{content}}
<|im_end|>
<|im_start|>assistant

Prompt for GPQA Diamond
<|im_start|>system
Return your final response within \\boxed{{}} and only include the 
letter choice (A, B, C, or D) as your final response. 
<|im_end|>
<|im_start|>user
{{content}}
<|im_end|>
<|im_start|>assistant

Figure 6: Prompt for different dataset.
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Figure 7: An illustration of reasoning dynamics across four different scenarios. In each subplot, the
blue line tracks the model’s entropy (y-axis) at each reasoning step (x-axis). Background shading
indicates the correctness of the intermediate answer when compared to the ground truth (green for
correct, red for incorrect). Purple stars mark the exact steps where the model modifies its answer.
The subplots show: (a) (b) (c) shows that stopping at high confidence (low entropy) may lead to
uncomplete answer . (c) and (d) also shows that premature convergence on an incorrect answer.
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