
Under review as submission to TMLR

CAE: Repurposing the Critic as an Explorer in Deep Rein-
forcement Learning

Anonymous authors
Paper under double-blind review

Abstract

Exploration remains a fundamental challenge in reinforcement learning, as many existing
methods either lack theoretical guarantees or fall short in practical effectiveness. In this
paper, we propose CAE, i.e., the Critic as an Explorer, a lightweight approach that re-
purposes the value networks in standard deep RL algorithms to drive exploration, without
introducing additional parameters. CAE leverages multi-armed bandit techniques combined
with a tailored scaling strategy, enabling efficient exploration with provable sub-linear regret
bounds and strong empirical stability. Remarkably, it is simple to implement, requiring only
about 10 lines of code. For complex tasks where learning reliable value networks is difficult,
we introduce CAE+, an extension of CAE that incorporates an auxiliary network. CAE+
increases the parameter count by less than 1% while preserving implementation simplicity,
adding roughly 10 additional lines of code. Extensive experiments on MuJoCo, MiniHack,
and Habitat validate the effectiveness of CAE and CAE+, highlighting their ability to unify
theoretical rigor with practical efficiency.

1 Introduction

Exploration in reinforcement learning (RL) remains a fundamental challenge, particularly in environ-
ments with complex dynamics or sparse rewards. Although algorithms such as DQN (Mnih et al., 2015),
PPO (Schulman et al., 2017), SAC (Haarnoja et al., 2018), DDPG (Lillicrap et al., 2016), TD3 (Fujimoto
et al., 2018), IMPALA (Espeholt et al., 2018), and DSAC (Duan et al., 2021; 2023) have demonstrated
impressive performance on tasks like Atari games (Mnih et al., 2013; 2015), StarCraft (Vinyals et al., 2019),
Go (Silver et al., 2017), etc., they often depend on rudimentary exploration strategies. Common approaches,
such as ϵ-greedy or injecting noise into actions, are typically inefficient and struggle in scenarios with delayed
or sparse rewards.

For decades, exploration with proven optimality in tabular settings has been available (Kearns & Singh,
2002). More recently, methods with provable regret bounds have been developed for scenarios involving
function approximation, including linear functions (Osband et al., 2016; 2019; Jin et al., 2018; 2020; Kamyar
& Animashree, 2018; Agarwal et al., 2020), kernels (Yang et al., 2020), and neural networks (Yang et al.,
2020). However, while linear and kernel-based approaches make strong assumptions about the RL functions,
provable methods based on neural networks suffer from prohibitive computational costs, specifically O(n3),
where n is the number of parameters in the RL network. Moreover, some studies (Ash et al., 2022; Ishfaq
et al., 2024a) propose algorithms with theoretical guarantees under the linearity assumption and attempt
to extend them directly to deep RL without further proof. Other works (Ishfaq et al., 2021; 2024b) provide
provable bounds for deep RL, but they are either practically burdensome or rely on unknown sampling errors.

More practical approaches to exploration rely on heuristics, giving rise to several practically successful
methods, including Pseudocount (Bellemare et al., 2016), ICM (Pathak et al., 2017), RND (Burda et al.,
2019b), RIDE (Raileanu & Rocktäschel, 2020), NovelD (Zhang et al., 2021a), AGAC (Flet-Berliac et al.,
2021), and E3B (Henaff et al., 2022; 2023). These approaches typically introduce internally generated
bonuses to incentivize exploration of novel states based on predefined metrics. For instance, RND uses the
prediction error of a randomly initialized target network as the bonus. Despite their practical success, such

1

Under review as submission to TMLR

Figure 1: Comparison of existing methods, such as E3B, with CAE and CAE+. Lb represents the Bellman
loss to update the value function, while Lf refers to the loss of the auxiliary network. E3B requires additional
networks to generate exploration bonuses, while CAE utilizes the embedding layers of the value network
for bonuses. CAE+ extends CAE by incorporating a compact auxiliary network f = f̄ ◦ U to enhance
performance in very sparse reward environments, with a minor increase in parameters.

methods often introduce bias into the environment’s external reward signal and lack theoretical guarantees.
In contrast, potential-based reward shaping methods, such as Liberty (Yiming et al., 2023) and EME (Yiming
et al., 2024), offer stronger theoretical underpinnings, but are difficult to implement in practice. Moreover,
all of the aforementioned methods typically require training auxiliary networks in addition to the standard
value and policy networks in deep RL, leading to significantly increased computational overhead.

In this work, we aim to combine the strengths of both theoretically grounded and empirically effective
exploration methods. Provably efficient approaches are fundamentally rooted in the theory of Multi-Armed
Bandits (MAB) (Li et al., 2010; Chu et al., 2011; Agrawal & Goyal, 2013; Wen et al., 2015; Zhang et al.,
2021b; Zhou et al., 2020). Building on this foundation, we hypothesize that advanced techniques from
neural MAB can be effectively adapted for exploration in deep RL. Recent studies (Zahavy & Mannor,
2019; Riquelme et al., 2018; Xu et al., 2022) suggest that decoupling deep representation learning from
exploration strategies holds promise for achieving efficient exploration in neural MAB settings.

Motivated by these insights, we propose CAE. Unlike existing methods that train additional embedding
networks to generate exploration bonuses, CAE leverages the embedding layers of the value networks in
the RL algorithms and employs MAB techniques to produce exploration bonuses. To ensure the practical
stability of CAE, we adopt an appropriate scaling strategy (Welford, 1962; Elsayed et al., 2024) to process the
bonuses. Consequently, CAE introduces no additional parameters beyond those in the original algorithms,
showcasing that RL algorithms inherently possess strong exploration capabilities if their learned networks
are effectively leveraged. Moreover, CAE is simple to implement, requiring only about 10 lines of code. A
comparison between CAE and existing methods is in Figure 1.

For tasks with complex dynamics and sparse rewards, learning effective value networks is challenging, im-
peding exploration based on them. Accordingly, we propose an extended version CAE+, as illustrated in
Figure 1. CAE+ integrates a small auxiliary network to facilitate the learning process. The structure of
the auxiliary network is carefully designed to prevent severe coupling between the environment dynamics
and the returns, thereby further enhancing the performance of CAE+. Remarkably, this addition increases
the parameter count by less than 1% and requires only about 10 extra lines of code, thus preserving the
simplicity and lightweight nature.

Our experiments cover a diverse set of benchmarks, i.e., MuJoCo, MiniHack, and Habitat, representing
dense-reward, sparse-reward, and reward-free environments. CAE improves the performance of state-of-the-
art baselines such as PPO (Schulman et al., 2017), SAC (Haarnoja et al., 2018), TD3 (Fujimoto et al., 2018),
and DSAC (Duan et al., 2021; 2023). Additionally, CAE+ demonstrates robust performance, consistently
outperforming E3B Henaff et al. (2022; 2023), the state-of-the-art exploration method for MiniHack and

2

Under review as submission to TMLR

Table 1: Method comparison. Linear function indicates whether the theoretical guarantees apply to
RL algorithms with linear value function approximation. Network-based function specifies whether the
proof extends to RL algorithms using network-based function approximation. Toy tasks denotes whether the
method can be effectively applied to very simple deep RL tasks. Practical complex tasks assesses whether
the method remains computationally feasible when deployed in realistic, large-scale deep RL settings.

Method Provable Empirical with Deep RL
Linear function Network-based function Toy tasks Practical complex tasks

LSVI-UCB (Jin et al., 2020) ✓ ✗ ✗ ✗
NN-UCB (Yang et al., 2020) ✓ ✓ ✗ ✗
OPT-RLSVI (Andrea et al., 2020) ✓ ✗ ✗ ✗
LSVI-PHE (Ishfaq et al., 2021) ✓ ✓ ✓ ✗
BDQN (Kamyar & Animashree, 2018) ✓ ✗ ✓ ✓
ACB (Ash et al., 2022) ✓ ✗ ✓ ✓
LMCDQN (Ishfaq et al., 2024a) ✓ ✗ ✓ ✓

CAE ✓ ✓ ✓ ✓
CAE+ ✓ ✓ ✓ ✓

Habitat, across all evaluated tasks. These results highlight the superior reliability and effectiveness of CAE
and CAE+ in diverse RL scenarios.

In summary, we make three key contributions. First, we propose lightweight CAE and CAE+, which enable
the use of linear MAB techniques for exploration in deep RL. By adopting a scaling strategy and carefully
designing the small auxiliary network, we ensure both practical stability and functionality in environments
with dense and sparse rewards. Second, our theoretical analysis demonstrates that any deep RL algorithm
with CAE or CAE+ achieves a sub-linear regret bound over episodes. Finally, experiments on MuJoCo,
MiniHack, and Habitat validate the effectiveness of CAE and CAE+, showcasing their superior performance.

2 Related Work

Multi-armed bandits. MAB algorithms address the exploration-exploitation dilemma by making se-
quential decisions under uncertainty. LinUCB (Li et al., 2010) assumes a linear relationship between arm
contexts and rewards, enabling efficient exploration via uncertainty quantification in the estimated parameter
space and ensuring a sub-linear regret bound (Chu et al., 2011). To relax the linearity assumption, Ker-
nelUCB (Valko et al., 2013; Chowdhury & Gopalan, 2017) and NegUCB (Li et al., 2024) transform contexts
into high-dimensional spaces and apply LinUCB to the mapped contexts. Neural-UCB (Zhou et al., 2020)
and Neural-TS (Zhang et al., 2021b) leverage neural networks to model the complex relationships between
contexts and rewards. However, their computational complexity of O(n3), where n denotes the number of
network parameters, limits their scalability in real-world applications. Neural-LinTS (Riquelme et al., 2018)
and Neural-LinUCB (Xu et al., 2022) mitigate this limitation by decoupling representation learning from
exploration, improving the practicality of neural MAB.

Provable exploration in RL. Provably efficient exploration methods (Kearns & Singh, 2002; Osband
et al., 2016; 2019; Jin et al., 2018; 2020; Agarwal et al., 2020; Cai et al., 2020; Daniil et al., 2022; 2023) often
face empirical limitations or are primarily theoretical, lacking applicability in deep RL. Some studies (Alessio
& Filippo, 2024; Kamyar & Animashree, 2018; Ash et al., 2022; Ishfaq et al., 2024a) propose methods with
theoretical guarantees under a tabular or linearity assumption and directly extend them to deep RL settings.
Other works (Ishfaq et al., 2021; 2024b) offer provable bounds for deep RL, while they are either practically
burdensome or rely on unknown sampling errors. A comparative analysis of representative provably efficient
exploration methods is in Table 1.

Practical exploration in deep RL. Practically successful methods (Bellemare et al., 2016; Pathak et al.,
2017; Burda et al., 2019a; Raileanu & Rocktäschel, 2020; Burda et al., 2019b; Zhang et al., 2021a; Flet-Berliac
et al., 2021; Henaff et al., 2022; 2023; Jarrett et al., 2023; Yuan et al., 2023) typically employ exploration

3

Under review as submission to TMLR

bonuses to encourage agents to visit novel states. However, these approaches often lack rigorous theoretical
foundations. In contrast, methods inspired by potential-based reward shaping (Andrew et al., 1999), such
as Liberty (Yiming et al., 2023) and EME (Yiming et al., 2024), offer stronger theoretical grounding, but
are challenging to implement in practice. Moreover, both classes of methods generally require training a
substantial number of additional parameters. In comparison, CAE and CAE+ utilize MAB techniques,
assisted by embedding layers within the RL value networks, providing empirical benefits with minimal
additional parameters. Figure 1 illustrates the differences between various exploration methods, while Table 2
summarizes their additional networks and parameters.

Table 2: Comparison of exploration methods on MiniHack. Networks: additional networks beyond those in
the base RL algorithm IMPALA (Espeholt et al., 2018), which contains 25, 466, 652 parameters; # Params:
the number of additional parameters introduced by the exploration method. Networks in bold represent
those with significant parameters, while those in gray indicate substantially fewer parameters.

Method Networks # Params Params ↑
ICM (Pathak et al., 2017) Embedding + Forward dynamics + Inverse dynamics 16, 074, 512 +2, 110, 464 + 527, 371 73%
RND (Burda et al., 2019b) Embedding 16, 074, 512 63%
RIDE (Burda et al., 2019b) Embedding + Forward dynamics + Inverse dynamics 16, 074, 512 +2, 110, 464 + 527, 371 73%
NovelD (Zhang et al., 2021a) Embedding 16, 074, 512 63%
E3B (Henaff et al., 2022; 2023) Embedding + Inverse dynamics 16, 074, 512 +527, 371 65%
CAE - - 0
CAE+ Inverse dynamics 199, 819 0.8%

3 Methodology

Unless otherwise specified, bold uppercase symbols denote matrices, while bold lowercase symbols represent
vectors. I refers to an identity matrix. Frobenius norm and l2 norm are denoted by ∥·∥2. Mahalanobis norm
of x based on A is ∥x∥A =

√
xTAx. For integer K > 0, the set of integers {1, 2, ..., K} is denoted by [K].

3.1 Preliminary

An episodic Markov Decision Process is formally defined as a tuple (S,A, H,P, r), where S denotes the
state space and A is the action space. Integer H > 0 indicates the duration of each episode. Functions
P : S × A × S → [0, 1] and r : S × A → [0, 1] are the Markov transition and reward functions, respectively.
During an episode, the agent follows a policy π : S×A → [0, 1]. At each time step h ∈ [H] in the episode, the
agent observes the current state sh ∈ S and selects an action ah ∼ π(·|sh) to execute, then the environment
transits to the next state sh+1 ∼ P(·|sh, ah), yielding an immediate reward rh = r(sh, ah). At time step h,
the action-value Q(sh, ah) approximates the accumulative return obtained by taking action ah at state sh

and subsequently following policy π:

Q(sh, ah) ≈
H∑

t=h

γt−hrt (1)

where 0 ≤ γ ≤ 1 is the discount parameter.

Many algorithms have been developed to learn the optimal policy π∗ for the agent to select and execute
actions at each time step h in the episode, thus ultimately maximizing the accumulative return

∑H
h=1 γh−1rh.

Notable algorithms include DQN (Mnih et al., 2015), PPO (Schulman et al., 2017), SAC (Haarnoja et al.,
2018), TD3 (Fujimoto et al., 2018), IMPALA (Espeholt et al., 2018), DSAC (Duan et al., 2021; 2023),
and others. A common component of these algorithms is using a network to approximate the action-value
function1 Q under a specific policy as Equation 2, where ϕ(·, ·|W) is the embedding layers, θ and W are
trainable parameters of the network.

1In some algorithms, the state-value function, rather than the action-value function, is learned. However, this does not affect
the implementation and conclusion of our method, as will be seen in subsection 3.2.

4

Under review as submission to TMLR

Q(s, a) = θTϕ(s, a|W) (2)

Bellman loss as Equation 3 is often employed to update the action-value function. Using the most recent
action-value function, the policy can be updated in various ways, depending on the specific algorithm.
Since CAE focuses on leveraging Equation 2 for efficient exploration while preserving the core techniques of
existing RL algorithms, we introduce CAE within the context of DQN for simplicity. However, it can be
easily adapted to other RL algorithms.

LB =
(

Q(sh, ah)− Esh+1∼P(·|sh,ah)

[
rh + γ ·max

ah+1
Q(sh+1, ah+1)

])2
(3)

3.2 CAE: the Critic as an Explorer

For a state-action pair (s, a), the approximated action-value Q(s, a) is subject to an uncertainty term β(s, a),
arising from the novelty or limited experience with the particular state-action pair. Similar to MAB problems,
it is essential to account for this uncertainty when utilizing the latest approximated action-value function.
Incorporating the uncertainty term encourages exploration, ultimately improving long-term performance.
Consequently, the action-value function adjusted for uncertainty is as Equation 4, where α ≥ 0 is the
exploration coefficient. Notably, in some literature, uncertainty is also referred to as a bonus, and we use
these terms interchangeably when unambiguous.

Q(s, a) = θTϕ(s, a|W) + αβ(s, a) (4)

However, defining β(s, a) remains challenging. Provably efficient methods often attempt to address this by
either assuming a linear value function (Jin et al., 2018) or requiring O(n3) computation time (Yang et al.,
2020) in terms of the number of parameters n in the value network. Both of these approaches have drawbacks,
i.e., linearity fails to capture the complexity of tasks while the O(n3) computational cost is impractical.

To overcome these limitations, we draw inspiration from Neural-LinUCB (Xu et al., 2022) and Neural-
LinTS (Riquelme et al., 2018), which effectively decouple representation learning from exploration strategies.
Building on this idea and following the standard value network structure in Equation 2, CAE decomposes
the action-value function into two distinct components.

• Network ϕ(s, a|W) extracts the embedding of the state-action pair (s, a);

• Q(s, a) = θTϕ(s, a|W) is a linear function of the embedding ϕ(s, a|W) with parameter θ.

Consequently, after appropriate modifications, MAB theory under the linearity assumption can be adapted
to work with the embeddings ϕ(s, a) for ∀s ∈ S and ∀a ∈ A. Simultaneously, the action-value function retains
its representational capacity through the embedding layers ϕ(s, a), ensuring promising practical performance.
While various MAB techniques can be adapted to the embeddings, we illustrate CAE using the two most
representative ones. Other techniques can be utilized similarly, showcasing that CAE is a generalizable
framework rather than a fixed method.

Upper Confidence Bound (UCB) is an optimistic exploration strategy in MAB. It defines the uncertainty
term as Equation 5, where A denotes the Gram matrix, initialized as A = λI with λ being the ridge
regularization parameter. After each time step executing action a under state s, A is updated according to
Equation 6, where ϕ(·, ·) represents the latest embedding layers.

β(s, a) =
√

ϕ(s, a)TA−1ϕ(s, a) (5)

A← A + ϕ(s, a)ϕT(s, a) (6)

5

Under review as submission to TMLR

Thompson Sampling is a randomized exploration strategy that samples the value function, adjusted for
uncertainty, from a posterior distribution. It defines the uncertainty term as Equation 7, where the Gram
matrix A is initialized and updated in the same manner as in UCB.

∆θ ∼ N(0, A−1); β(s, a) = (∆θ)Tϕ(s, a) (7)

As the value network undergoes continuous updates, exploration based on the ever-changing embedding
layers ϕ(·, ·) can become highly unstable, significantly impairing practical performance. Inspired by existing
scaling strategies (Welford, 1962; Elsayed et al., 2024), we adopt an appropriate one for the generated
uncertainty at each time step, ensuring both stability and practical functionality, as detailed in Algorithm
1. This scaling strategy normalizes the generated uncertainty at each time step using the running standard
deviation, which, despite its simplicity, has a profound impact on the performance of CAE. The critical
importance of this design is further highlighted through ablation studies presented in Appendix E.

Adapting CAE to General RL Algorithms Depending on the RL algorithm employed, we may
sometimes learn the state- instead of the action-value network. As a result, the value network can only
derive state embeddings rather than state-action pair embeddings. Even when learning the action-value
network, it may still output only state embeddings if it is designed to take states as input and produce
values for multiple actions. In such cases, the embedding of the next state is utilized as a proxy for the
current state-action embedding when computing uncertainty.

Algorithm 1 Scaling strategy for the uncertainty
1: Input: Uncertainty b, running mean µ, running variance ν2, and running count of samples N
2: Update the sample count N ← N + 1
3: Compute δ = b− µ
4: Update the running mean µ← µ + δ

N

5: Update the running variance ν2 ← ν2 + δ×(b−µ)
N

6: Output: Scaled uncertainty b
ν

, and updated µ, ν2, and N

3.3 CAE+: Enhancing CAE with Minimal Overhead

For tasks with complex dynamics or very sparse rewards, learning high-quality value networks is particularly
challenging, which in turn hinders exploration reliant on them. Accordingly, we propose CAE+, an extension
of CAE that incorporates a lightweight auxiliary network, introducing less than 1% additional parameters.

Specifically, we utilize the Inverse Dynamics Network (IDN) (Pathak et al., 2017; Raileanu & Rocktäschel,
2020; Henaff et al., 2022) to enhance the learning of the embedding layers contained in the value network. This
is achieved by a compact network f that infers the distribution p(ah) over taken actions given consecutive
states sh and sh+1, which is trained by maximum likelihood estimation as Equation 8.

Lf = − log p(ah|sh, sh+1) (8)

To introduce minimal additional parameters, we utilize the embedding layers as follows:

• If the value network is an action-value network with embedding layers ϕ(s, a), a constant default value
ä is assigned to the action input, while the actual states are used; then the resulting outputs are treated
as state embeddings.

• If the value network is a state-value network with embedding layers ϕ(s), the actual states are directly
fed in to generate their embeddings.

These state embeddings are subsequently transformed by a linear layer U , followed by a small network f̄ ,
which processes the transformed consecutive embeddings to infer the action. Equation 9 illustrates this
procedure for the case of embedding layers ϕ(s, a).

6

Under review as submission to TMLR

p(ah|sh, sh+1) = f(ϕ(sh, ä), ϕ(sh+1, ä)) = f̄(Uϕ(sh, ä), Uϕ(sh+1, ä)) (9)

Although incorporating the IDN loss can accelerate the learning of the embedding layers by leveraging
knowledge of environment dynamics, the resulting strong coupling with the dynamics restricts the flexibility
of exploration. In CAE+, to address this limitation, we adopt the transformerd embeddings Uϕ(s, a) instead
of the original ones ϕ(s, a) to calculate the uncertainty. Consequently, by replacing ϕ(s, a) with Uϕ(s, a),
Equations 5 and 7, which are used in CAE to generate uncertainty, are modified into Equation 10, with the
Gram matrix A updated according to Equation 11. Complete procedure of CAE+ is in Algorithm 2.

β(s, a) ≜


√

ϕT(s, a)UTA−1Uϕ(s, a) UCB

(∆θ)TUϕ(s, a)
∣∣
∆θ∼N (0,A−1) Thompson Sampling

(10)

A← A + Uϕ(s, a)ϕT(s, a)UT (11)

In CAE+, the structure of the network f offers several advantages. First, the transformation U decouples
environment dynamics from returns, mitigating interdependencies that could hinder flexibility and thereby
enhancing empirical performance, as evidenced by the ablation studies in section 5. Second, since U is a
simple linear transformation, it preserves the theoretical guarantees of UCB- and Thompson Sampling-based
exploration strategies, ensuring both rigor and stability in practice. Third, by projecting ϕ(s, a) into a lower-
dimensional embedding with d̄ < d, the approach not only reduces the number of additional parameters but
also lowers the computational complexity of uncertainty estimation at each time step, i.e., from O(d3) to
O(d̄3), making the method more efficient.

Speed Up CAE+ with Rank−1 Update According to Algorithm 2, the Gram matrix A needs to be
inverted at each step, which is cubic in dimension. Alternatively, we can use the Sherman-Morrison matrix
identity (Sherman & Morrison, 1950; Henaff et al., 2022) to perform rank−1 updates of A−1 in quadratic
time as Equation 12.

A−1 ← A−1 − A−1Uϕ(s, a)ϕT(s, a)UT(A−1)T

1 + ϕT(s, a)UTA−1Uϕ(s, a) (12)

4 Theoretical Analysis

Under the optimal policy π∗, assume the corresponding action-value function Q∗ is structured as in Equa-
tion 2 and parameterized by θ∗ and W ∗. In Algorithm 2, the policy executed in episode m ∈ [M] is πm,
with its action-value function denoted as Qπm . Cumulative regret of Algorithm 2 is as Definition 1.
Definition 1. Cumulative Regret. After M episodes of interactions with the environment, the cumulative
regret of CAE or CAE+ is defined as Equation 13, where um

1 is the optimal action at state sm
1 generated by

policy π∗ while am
1 is that selected by the executed policy πm.

RM =
M∑

m=1

Q∗(sm
1 , um

1) − Qπm (sm
1 , am

1) (13)

Cumulative regret measures the gap between the optimal return and the actual return accumulated over M
episodes. As discussed earlier, CAE draws inspiration from Neural-LinUCB (Xu et al., 2022) and Neural-
LinTS (Riquelme et al., 2018). While Neural-LinUCB is supported by theoretical guarantees, Neural-LinTS
has so far only been validated empirically. In this work, we complete the regret analysis for Neural-LinTS
and subsequently derive the regret bound of CAE. Before stating Theorem 1, we introduce the standard

7

Under review as submission to TMLR

Algorithm 2 CAE+ with action-value network
1: Input: Ridge parameter λ > 0, exploration parameter α ≥ 0, episode length H, episode number M

2: Initialize: Gram matrix A = λI, initial policy π(·) and value function Q(·, ·), network f(·|U), running mean µ = 0,
running variance ν2 = 0, running count N = 0

3: for episode m = 1 to M do
4: Receive the initial state sm

1 from the environment
5: for step h = 1, 2, ..., H do
6: Conduct action am

h ∼ π(sm
h) and observe the next state sm

h+1 and receive immediate reward rm
h

7: Generate bonus β(sm
h , am

h) by Equation 10

8: Provide β(sm
h , am

h), µ, ν2, and N as inputs to Algorithm 1 to obtain scaled bonus βm
h and updated µ, ν2, and N

9: Reshape the reward r̃m
h = rm

h + αβm
h

10: Update the Gram matrix A by Equation 11
11: end for
12: Sample a batch B = {sh, ah, sh+1, r̃h} , h ∈ [1, H − 1]
13: Calculate the IDN loss Lf by Equation 8 and the Bellman loss LB by Equation 3 on batch B
14: Update value function Q(·, ·) and network f jointly by minimizing the combined loss min(Lf + LB)
15: Update the policy π(·) based on the latest value function Q(·, ·)
16: end for

assumptions in the literature of deep representation and shallow exploration (Xu et al., 2022) in Neural MAB
as Assumption 1, Assumption 2, and Assumption 3.

Assumption 1. Assume that ∥(s; a)∥2 = 1 for ∀s ∈ S, ∀a ∈ A, and that the entries of (s; a) satisfy
Equation 14, where D represents the dimension of (s; a).

(s; a)j = (s; a)j+ D
2

(14)

Notably, even if the original state-action pairs (s; a) do not satisfy this assumption, they can be preprocessed
by transforming them into (s; a; s; a) and applying an appropriate scaling to ensure the assumption holds.
Assumption 2. For ∀s1, s2 ∈ S and ∀a1, a2 ∈ A, there is a constant lLip > 0, such that:∥∥∇W ϕ(s1, a1|W 1

h)−∇W ϕ(s2, a2|W 1
h)

∥∥
2 ≤ lLip ∥(s1; a1)− (s2; a2)∥2 (15)

Assumption 3. The neural tangent kernel H of the action-value network is positive definite.

Neural tangent kernel H is defined in accordance with a recent line of research (Jacot et al., 2018; Arora
et al., 2019; Xu et al., 2022) and is essential for the analysis of overparameterized neural networks. A
detailed discussion of these assumptions is deferred to Appendix D.2, where we show that they are mild and
commonly adopted in the literature. In the following, we present the regret guarantee of CAE.
Theorem 1. Suppose Assumption 1, Assumption 2, and Assumption 3 hold, ∥θ∗∥2 ≤ 1 and ∥(sh; ah)∥2 ≤ 1.
For any σ ∈ (0, 1), assume the number of parameters ι in each of the L layers of ϕ(·, ·) satisfies
ι = poly(L, d, 1

σ , log M |A|
σ), where |A| means the action space size and poly(·) means a polynomial func-

tion depending on the incorporated variables. Let:

α =

√
2(d · log(1 + M · log |A|

λ
) − log σ) +

√
λ

η ≤ C1(ι · d2M
11
2 L6 · log M |A|

σ
)−1

then with probability at least 1− σ, it holds that:

RM ≤ C2αH

√
Mdlog(1 + M

λd
) + C4H

√
MHlog 2

σ
+

C3HL3d
5
2 M

√
log(ι + 1

σ
+ M|A|

σ
) ∥q − q̃∥H−1

ι
1
6

8

Under review as submission to TMLR

where C1, C2, C3, C4 are constants; q and q̃ are the target value vector and the estimated value vector of the
action-value network, respectively. More discussions of these notations are in Appendix B and Appendix D.

Specifically, we assume ∥θ∗∥2 ≤ 1 and ∥(sh; ah)∥2 ≤ 1 to make the bound scale-free. From this theorem, we
can conclude that the upper bound of the cumulative regret grows sub-linearly with the number of episodes
M , i.e., Õ(

√
M) where Õ(·) hide constant and logarithmic dependence of M , indicating that the executed

policy improves over time. Since MAB techniques are applied to the linear layer on top of the embedding
layers, the cumulative regret naturally consists of two components, i.e., the exploration regret from the linear
layer, and the error induced by the network’s estimation, which appears as the last term in the regret bound.
It involves a trade-off between M and ι. Moreover, as the estimation error |q − q̃|H−1 decreases over time,
this term typically becomes negligible.

5 Experiment

Benchmarks. In our experiments, we evaluate CAE and CAE+ on MuJoCo, MiniHack, and Habitat,
which are characterized by dense rewards, sparse rewards, and reward-free setting, respectively.

Baselines. In our experiments, we evaluate our approach against nine baselines, i.e., SAC (Haarnoja
et al., 2018), PPO (Schulman et al., 2017), TD3 (Fujimoto et al., 2018), DSAC (Duan et al., 2021; 2023),
ICM (Pathak et al., 2017), RND (Burda et al., 2019b), RIDE (Raileanu & Rocktäschel, 2020), NovelD (Zhang
et al., 2021a), and E3B (Henaff et al., 2022; 2023).

For MuJoCo tasks, we evaluate SAC, PPO, TD3, and DSAC, both with and without CAE. Notably, the
other baselines are excluded from the MuJoCo experiments, as they are rarely applied to dense reward
settings. Moreover, a fair comparison is infeasible due to the lack of publicly available implementations.
Since CAE introduces no additional parameters, it is meaningful to assess whether it can improve existing
RL algorithms without increasing training overhead.

For MiniHack and Habitat tasks, we adopt IMPALA (Espeholt et al., 2018) and PPO as the base RL
algorithms, respectively, following the standard configurations in the open-source codebases. We compare
CAE and CAE+ against ICM, RND, RIDE, NovelD, and E3B. Since E3B achieves state-of-the-art perfor-
mance on both MiniHack and Habitat, we report only the results of E3B. For results of ICM, RND, RIDE,
and NovelD, refer to the E3B paper (Henaff et al., 2022; 2023).

All the experiments are based on open-source codebases from E3B, CleanRL (Huang et al., 2022), DSAC,
and Habitat-lab (Savva et al., 2019; Andrew et al., 2021; Xavi et al., 2023). Core code and hyperparameters
are provided in Appendix A and E, respectively. Experiments were conducted on an Ubuntu 22.04 LTS
system equipped with a 13th Gen Intel Core i9-13900KF CPU and an NVIDIA RTX 4090 GPU.

5.1 MuJoCo tasks with Dense Rewards

Table 3: Experimental results after 1e6 interaction steps on MuJoCo-v4 tasks, except for the Humanoid
task, whose results are evaluated after 4e6 interaction steps. RPI represents the Relative Performance
Improvement achieved by CAE. Refer to Appendix E for experimental figures.

Env
Alg. PPO PPO + CAE RPI % TD3 TD3 + CAE RPI % SAC SAC + CAE RPI %

Swimmer 99± 11.5 107± 6.47 8.08 78± 15.4 130± 14.2 66.7 61± 35.2 161± 26.9 164
Hopper 2503± 786.6 2453± 673.2 −2.00 3044± 574.0 3244± 226.3 6.57 2908± 600.8 3188± 485.2 9.63
Walker2d 3405± 842.0 3554± 928.0 4.38 3764± 234.4 4251± 567.1 12.9 4362± 405.5 4742± 484.4 8.71
Ant 1762± 540.0 2378± 843.4 35.0 3492± 1745.7 5074± 519.3 45.3 4846± 1306.4 5482± 511.9 13.1
HalfCheetah 2636± 1344.3 3104± 926.0 17.8 10316± 193.8 10473± 563.4 1.52 11154± 457.1 11587± 418.3 3.88
Humanoid 619± 92.1 646± 127.1 4.36 5973± 257.7 6275± 483.2 5.06 5261± 186.4 5218± 228.4 −0.82
RPI Mean - - 11.3 - - 23.0 - - 33.1

9

Under review as submission to TMLR

MuJoCo testbed is a widely used physics-based simulation environment. MuJoCo provides a suite of continu-
ous control tasks where agents must learn to perform various actions, such as locomotion, manipulation, and
balancing, within simulated robotic environments. Since comparisons among state-of-the-art RL baselines,
such as PPO, SAC, TD3, and DSAC on MuJoCo, have been extensively covered in previous studies, our
focus is on investigating how CAE can enhance these algorithms.

Table 4: Experimental results after 1e6 steps on
MuJoCo-v3, except for the Humanoid task, which is
evaluated after 2e6 steps.

Env
Alg. DSAC DSAC + CAE RPI %

Swimmer 131± 14.8 150± 7.96 14.5
Hopper 2417± 541.6 2845± 594.5 17.7
Walker2d 5550± 624.0 6069± 422.1 9.35
Ant 5912± 809.7 6305± 322.7 6.65
HalfCheetah 16036± 439.1 16338± 249.1 1.88
Humanoid 10059± 996.1 10333± 1104.4 2.72
RPI Mean - - 8.80

Results are summarized in Table 3, using seeds
{1, 2, 3, 4, 5}, demonstrating that CAE consistently
improves the performance of PPO, TD3, and SAC
across most MuJoCo tasks. Notably, TD3 and SAC,
when enhanced with CAE, show significantly better
performance on the Swimmer task. While this task
is not typically regarded as particularly challenging,
standalone implementations of TD3 and SAC have
achieved limited performance.

In Table 4, we summarize the performance of DSAC
with and without CAE. It is important to note
that these experiments are conducted on MuJoCo-
v3 rather than MuJoCo-v4 solely because the open-
source DSAC codebase is based on MuJoCo-v3. As
shown, incorporating CAE consistently improves the performance of DSAC on the MuJoCo benchmark.

5.2 MiniHack tasks with Sparse Rewards

(a) Horn-Restricted (b) N6-Locked

Figure 2: Ablation study to U on MiniHack. Horizon-
tal axis denotes the steps in multiples of 1e7.

MiniHack (Samvelyan et al., 2021) is built on the
NetHack Learning Environment (Küttler et al.,
2020), a challenging video game where an agent nav-
igates procedurally generated dungeons to retrieve
a magical amulet. MiniHack tasks present a diverse
set of challenges, such as locating and utilizing mag-
ical objects, traversing hazardous environments like
lava, and monsters. These tasks are characterized
by sparse rewards, and the state provides a wealth
of information, including images, texts, and more,
though only a subset is relevant to each specific task.

As shown in Table 2, CAE+ introduces only a 0.8%
increase in parameters compared to the base RL
algorithm, IMPALA. In contrast, the other explo-
ration baselines, such as RIDE and E3B, require 60% − 80% additional parameters, underscoring the
lightweight design of CAE+. Experimental results for E3B and CAE+, using seeds {1, 2, 3}, are summa-
rized in Table 5, where their performance is evaluated across nine representative tasks, i.e., five navigation
tasks and four skill tasks. The results demonstrate that CAE+ consistently outperforms E3B. Notably, on
challenging tasks such as N6-Locked and LavaCross, CAE+ achieves substantial performance improvements
of 348% and 282%, respectively, highlighting its strong exploration capabilities.

Ablation study to CAE on MiniHack. Results of CAE on MiniHack tasks are provided in Table 5.
As shown, CAE successfully solves a subset of tasks and even surpasses CAE+ in certain cases. However,
it struggles to achieve positive performance in others, such as N6-Locked, etc., which pose significant explo-
ration challenges. This limitation stems from the difficulty of training effective value networks in complex
environments, adversely affecting exploration reliant on them.

Ablation study to the transformation U . Additionally, we present experimental results for CAE+
without the transformation matrix U in the auxiliary network f . As shown in Figure 2, CAE+ without U
occasionally outperforms E3B, though there are instances where it does not. Importantly, it consistently

10

Under review as submission to TMLR

underperforms compared to the full CAE+ with U . Moreover, CAE+ introduces more additional parameters
without matrix U , specifically 2.1%.

Wall-clock running time analysis. RL experiments involve both network training and environment
interaction on CPUs; therefore, wall-clock time is typically not regarded as a standard evaluation metric.
Nevertheless, to provide a clear picture of the practical efficiency of CAE, we report wall-clock running times
on MiniHack tasks. CAE requires approximately 17 hours to complete training on each task, whereas E3B
takes around 22 hours, demonstrating the superior efficiency of CAE.

Table 5: Experimental results after 2e7 − 3e7 interaction steps on nine MiniHack tasks, whose detailed
descriptions are in Appendix E.2. RPI quantifies the improvement of CAE+ compared to E3B. Since E3B is
the state-of-the-art on MiniHack (Henaff et al., 2022), and CAE+ consistently outperforms it, we conclude
that CAE+ ≻ E3B, ICM, RND, RIDE, NovelD. Refer to Appendix E for experimental figures.

Alg.
Env N4 N4-Locked N6 N6-Locked N10-OD Horn Random Wand LavaCross

E3B 0.86± 0.010 0.72± 0.090 0.75± 0.019 −0.31± 0.403 0.71± 0.042 0.47± 0.071 0.57± 0.071 0.49± 0.201 0.22± 0.412
CAE 0.93± 0.014 0.84± 0.041 −0.46± 0.193 −0.37± 0.310 −0.84± 0.216 0.92± 0.022 0.93± 0.022 0.93± 0.030 0.16± 0.394

CAE+ 0.97± 0.006 0.87± 0.017 0.94± 0.014 0.77± 0.093 0.86± 0.023 0.84± 0.055 0.80± 0.040 0.65± 0.131 0.84± 0.024
RPI % 12.79 20.83 25.3 348.39 21.13 78.72 40.35 32.65 281.82

5.3 Reward-free Habitat task

Habitat (Savva et al., 2019; Andrew et al., 2021; Xavi et al., 2023) is a platform for embodied AI research
that supports agent navigation and interaction within simulations of real-world indoor environments. The
experiments in this subsection are designed to evaluate exploration capabilities in visually rich, realistic
settings. We employ the HM3D dataset (Santhosh et al., 2021), which comprises high-quality reconstructions
of 1, 000 diverse indoor spaces. Agents are trained using intrinsic rewards for the PointNav task. Evaluation
is conducted in unseen test environments by measuring the proportion of the revealed environment.

Table 6: Experimental results after 1e8 interaction
steps on Habitat.

E3B CAE CAE+ RPI %
0.51± 0.097 0.49± 0.102 0.69± 0.074 35.29

Results for E3B, CAE, and CAE+, averaged over
three seeds {1, 2, 3}, are summarized in Table 6,
highlighting the superior performance of CAE+.
Since E3B is the state-of-the-art on Habitat, and
CAE+ further outperforms E3B, it follows that
CAE+ ≻ E3B, ICM, RND, RIDE, NovelD.
Figure 3 provides an illustration of a specific case,
where the trained policy of CAE+ explores a larger portion of the environment compared to that of E3B.

(a) CAE+ reveals 0.67 of the map (b) E3B reveals 0.53 of the map (c) CAE reveals 0.51 of the map

Figure 3: Trajectories of the learned policies on a Habitat environment unseen during training.

6 Conclusion

In this paper, we propose CAE, a lightweight exploration method that integrates with existing RL algorithms
without adding parameters. CAE exploits the value network’s embedding layers to guide exploration, requir-

11

Under review as submission to TMLR

ing no changes to the rest of the algorithm. A simple scaling strategy ensures its stability. For sparse-reward
tasks, we extend it to CAE+ by adding a small auxiliary network, accelerating learning with minimal
overhead. We provide theoretical guarantees with sub-linear regret bounds and demonstrate strong sam-
ple efficiency. Extensive experiments show that CAE and CAE+ consistently outperform state-of-the-art
methods across dense and sparse reward settings.

Broader Impact Statement

CAE and CAE+ bridge the gap between provably efficient and practically successful exploration methods.
While theoretically grounded approaches often suffer from scalability and applicability issues, empirically
driven methods typically lack theoretical guarantees and require extensive parameter training. Inspired
by the deep representation and shallow exploration paradigm, this work proposes a novel framework that
decomposes value networks in deep RL and repurposes them for exploration, thereby achieving theoretical
guarantees with minimal or no additional parameter training.

This framework contributes to the development of sample-efficient and interpretable exploration methods
in deep RL, potentially accelerating progress in applications such as robotics, recommendation systems,
autonomous decision-making systems and large language models. Moreover, the lightweight nature of the
method makes it suitable for deployment in resource-constrained settings. Future research could focus on
integrating a broader spectrum of MAB techniques, evaluating the robustness across a wide range of tasks,
and improving the computational efficiency of uncertainty estimation.

References
Alekh Agarwal, Sham Kakade, Mikael Henaff, and Wen Sun. Pc-pg: Policy cover directed exploration for

provable policy gradient learning. In Proceedings of the 34th Conference on Neural Information Processing
Systems, 2020.

Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs. In Pro-
ceedings of the 30th International Conference on Machine Learning, pp. 127–135. PMLR, 2013.

Russo Alessio and Vannella Filippo. Multi-reward best policy identification. In Proceedings of the 38th
Conference on Neural Information Processing System, 2024.

Zanette Andrea, Brandfonbrener David, Brunskill Emma, Pirotta Matteo, and Lazaric Alessandro. Frequen-
tist regret bounds for randomized least-squares value iteration. In Proceedings of the 23rd International
Conference on Artificial Intelligence and Statistics. PMLR, 2020.

Szot Andrew, Clegg Alex, Undersander Eric, Wijmans Erik, Zhao Yili, Turner John, Maestre Noah,
Mukadam Mustafa, Chaplot Devendra, Maksymets Oleksandr, Gokaslan Aaron, Vondrus Vladimir,
Dharur Sameer, Meier Franziska, Galuba Wojciech, Chang Angel, Kira Zsolt, Koltun Vladlen, Malik
Jitendra, Savva Manolis, and Batra Dhruv. Habitat 2.0: Training home assistants to rearrange their
habitat. In Proceedings of the 35th Conference on Neural Information Processing System, 2021.

Y. Ng Andrew, Harada Daishi, and J. Russell Stuart. Policy invariance under reward transformations:
Theory and application to reward shaping. In Proceedings of the 16th International Conference on Machine
Learning. PMLR, 1999.

Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang. On exact com-
putation with an infinitely wide neural net. In Proceedings of the 33rd Conference on Neural Information
Processing Systems, 2019.

Jordan T. Ash, Cyril Zhang, Surbhi Goel, Akshay Krishnamurthy, and Sham Kakade. Anti-concentrated
confidence bonuses for scalable exploration. In Proceedings of the 10th International Conference on Learn-
ing Representations, 2022.

12

Under review as submission to TMLR

Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Proceedings of the 30th Conference on
Neural Information Processing System, 2016.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and A. Alexei Efros. Large-
scale study of curiosity-driven learning. In Proceedings of the 7th International Conference on Learning
Representations, 2019a.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network distillation.
In Proceedings of the 7th International Conference on Learning Representations, 2019b.

Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy optimization.
In Proceedings of the 37th International Conference on Machine Learning, 2020.

Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In Proceedings of the 34th
International Conference on Machine Learning. PMLR, 2017.

Wei Chu, Lihong Li, Lev Reyzin, and Robert E. Schapire. Contextual bandits with linear payoff functions.
In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, pp. 208–214,
2011.

Tiapkin Daniil, Belomestny Denis, Moulines Éric, Naumov Alexey, Samsonov Sergey, Tang Yunhao, Valko
Michal, and Pierre Ménard. From dirichlet to rubin: Optimistic exploration in rl without bonuses. In
Proceedings of the 39th International Conference on Machine Learning. PMLR, 2022.

Tiapkin Daniil, Belomestny Denis, Calandriello Daniele, Moulines Éric, Munos Remi, Naumov Alexey, Per-
rault Pierre, Valko Michal, and Ménard Pierre. Model-free posterior sampling via learning rate random-
ization. In Proceedings of the 37th Conference on Neural Information Processing System, 2023.

Jingliang Duan, Yang Guan, Shengbo Li, Yangang Ren, Qi Sun, and Bo Cheng. Distributional soft actor-
critic: Off-policy reinforcement learning for addressing value estimation errors. IEEE Transactions on
Neural Networks and Learning Systems, pp. 6584 – 6598, 2021.

Jingliang Duan, Wenxuan Wang, Liming Xiao, Jiaxin Gao, and Shengbo Li. Dsac-t: Distributional soft
actor-critic with three refinements. arXiv:2310.05858v4, 2023.

Mohamed Elsayed, Gautham Vasan, and A. Rupam Mahmood. Deep reinforcement learning without expe-
rience replay, target networks, or batch updates. 38th Workshop on Fine-Tuning in Machine Learning,
NeurIPS, 2024.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam Doron,
Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. Impala: Scalable distributed
deep-rl with importance weighted actor-learner architectures. In Proceedings of the 35th International
Conference on Machine Learning. PMLR, 2018.

Yannis Flet-Berliac, Johan Ferret, Olivier Pietquin, Philippe Preux, and Matthieu Geist. Adversarially
guided actor-critic. In Proceedings of the 9th International Conference on Learning Representations, 2021.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. In Proceedings of the 35th International Conference on Machine Learning. PMLR, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In Proceedings of the 35th International
Conference on Machine Learning. PMLR, 2018.

Mikael Henaff, Roberta Raileanu, Minqi Jiang, and Tim Rocktäschel. Exploration via elliptical episodic
bonuses. In Proceedings of the 36th Conference on Neural Information Processing System, 2022.

13

Under review as submission to TMLR

Mikael Henaff, Minqi Jiang, and Roberta Raileanu. A study of global and episodic bonuses for exploration
in contextual mdps. In Proceedings of the 40th International Conference on Machine Learning. PMLR,
2023.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal Mehta,
and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep reinforcement learning
algorithms. Journal of Machine Learning Research, pp. 1–18, 2022.

Haque Ishfaq, Qiwen Cui, Viet Nguyen, Alex Ayoub, Yang Zhuoran, Zhaoran Wang, Doina Precup, and F. Lin
Yang. Randomized exploration for reinforcement learning with general value function approximation. In
Proceedings of the 38th International Conference on Machine Learning, 2021.

Haque Ishfaq, Qingfeng Lan, Pan Xu, A. Rupam Mahmood, Doina Precup, Anima Anandkumar, and Kamyar
Azizzadenesheli. Provable and practical: Efficient exploration in reinforcement learning via langevin monte
carlo. In Proceedings of the 12nd International Conference on Learning Representations, 2024a.

Haque Ishfaq, Yixin Tan, Yu Yang, Qingfeng Lan, Jianfeng Lu, A. Rupam Mahmood, Doina Precup, and
Pan Xu. More efficient randomized exploration for reinforcement learning via approximate sampling. In
Proceedings of the 1st Reinforcement Learning Conference, 2024b.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. In Proceedings of the 32nd Conference on Neural Information Processing System, 2018.

Daniel Jarrett, Corentin Tallec, Florent Altché, Thomas Mesnard, Rémi Munos, and Michal Valko. Curiosity
in hindsight: Intrinsic exploration in stochastic environments. In Proceedings of the 40th International
Conference on Machine Learning. PMLR, 2023.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I. Jordan. Is q-learning provably efficient? In
Proceedings of the 32nd Conference on Neural Information Processing System, 2018.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I. Jordan. Provably efficient reinforcement learning
with linear function approximation. In In Conference on Learning Theory. PMLR, 2020.

Azizzadenesheli Kamyar and Anandkumar Animashree. Efficient exploration through bayesian deep q-
networks. Information Theory and Applications Workshop, 2018.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time. Machine
Learning, 2002.

Heinrich Küttler, Nantas Nardelli, Alexander H. Miller, Roberta Raileanu, Marco Selvatici, Edward Grefen-
stette, and Tim Rocktäschel. The nethack learning environment. In Proceedings of the 34th Conference
on Neural Information Processing Systems, 2020.

Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit approach to personalized
news article recommendation. In Proceedings of the 19th International Conference on World Wide Web,
pp. 661–670, 2010.

Yexin Li, Zhancun Mu, and Siyuan Qi. A contextual combinatorial bandit approach to negotiation. In
Proceedings of the 41st International Conference on Machine Learning, 2024.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Proceedings of the
4th International Conference on Learning Representations, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv: 1312.5602v1,
2013.

14

Under review as submission to TMLR

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex
Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra1, Shane Legg, and Demis
Hassabis. Human-level control through deep reinforcement learning. nature, pp. 529–533, 2015.

Ian Osband, Van Benjamin Roy, and Zheng Wen. Generalization and exploration via randomized value
functions. In Proceedings of the 33rd International Conference on Machine Learning. PMLR, 2016.

Ian Osband, Van Benjamin Roy, J. Daniel Russo, and Zheng Wen. Deep exploration via randomized value
functions. Journal of Machine Learning Research, pp. 1–61, 2019.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration by self-
supervised prediction. In Proceedings of the 34th International Conference on Machine Learning. PMLR,
2017.

Roberta Raileanu and Tim Rocktäschel. Ride: Rewarding impact-driven exploration for procedurally-
generated environments. In Proceedings of the 8th International Conference on Learning Representations,
2020.

Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian bandits showdown: An empirical compar-
ison of bayesian deep networks for thompson sampling. In Proceedings of the 6th International Conference
on Learning Representations, 2018.

Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder, Minqi Jiang, Eric Hambro, Fabio
Petroni, Heinrich Kuttler, Edward Grefenstette, and Tim Rocktäschel. Minihack the planet: A sand-
box for open-ended reinforcement learning research. In Proceedings of the 35th Conference on Neural
Information Processing Systems, 2021.

K. Ramakrishnan Santhosh, Gokaslan Aaron, Wijmans Erik, Maksymets Oleksandr, Clegg Alex, Turner
John, Undersander Eric, Galuba Wojciech, Westbury Andrew, X. Chang Angel, Savva Manolis, Zhao Yili,
and Batra Dhruv. Habitat-matterport 3d dataset (hm3d): 1000 large-scale 3d environments for embodied
ai. arXiv preprint arXiv: 2109.08238v1., 2021.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain, Julian
Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra. Habitat: A platform for
embodied ai research. In In Proceedings of the IEEE/CVF International Conference on Computer Vision,
2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv: 1707.06347v2, 2017.

Jack Sherman and J. Winifred Morrison. Adjustment of an inverse matrix corresponding to a change in one
element of a given matrix. The Annals of Mathematical Statistics, 1950.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas
Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, and Timothy et al. Lillicrap. Mastering
the game of go without human knowledge. Nature, 2017.

Michal Valko, Nathaniel Korda, Remi Munos, Ilias Flaounas, and Nelo Cristianini. Finite-time analysis of
kernelised contextual bandits. arXiv preprint arXiv: 1309.6869., 2013.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H. Choi, Richard Powell, Timo Ewalds, and Petko et al. Georgiev. Grandmaster level in starcraft
ii using multi-agent reinforcement learning. Nature, 2019.

B. P. Welford. Note on a method for calculating corrected sums of squares and products. Technometrics,
1962.

Zheng Wen, Branislav Kveton, and Azin Ashkan. Efficient learning in large-scale combinatorial semi-bandits.
In Proceedings of the 32nd International Conference on Machine Learning, pp. 1113–1122. PMLR, 2015.

15

Under review as submission to TMLR

Puig Xavi, Undersander Eric, Szot Andrew, Dallaire Cote Mikael, Partsey Ruslan, Yang Jimmy, Desai
Ruta, William Clegg Alexander, Hlavac Michal, Min Tiffany, Gervet Theo, Vondrus Vladimir, Berges
Vincent-Pierre, Turner John, Maksymets Oleksandr, Kira Zsolt, Kalakrishnan Mrinal, Malik Jitendra,
Singh Chaplot Devendra, Jain Unnat, Batra Dhruv, Rai Akshara, and Mottaghi Roozbeh. Habitat 3.0:
A co-habitat for humans, avatars, and robots. arXiv preprint arXiv: 2310.13724v1, 2023.

Pan Xu, Zheng Wen, Handong Zhao, and Quanquan Gu. Neural contextual bandits with deep representation
and shallow exploration. In Proceedings of the 10th International Conference on Learning Representations,
2022.

Zhuoran Yang, Chi Jin, Zhaoran Wang, Mengdi Wang, and Michael I. Jordan. On function approximation in
reinforcement learning: Optimism in the face of large state spaces. In Proceedings of the 34th Conference
on Neural Information Processing System, 2020.

Wang Yiming, Yang Ming, Dong Renzhi, Sun Binbin, Liu Furui, and Hou U Leong. Efficient potential-based
exploration in reinforcement learning using inverse dynamic bisimulation metric. In Proceedings of the
37th Conference on Neural Information Processing System, 2023.

Wang Yiming, Zhao Kaiyan, Liu Furui, and Hou U Leong. Rethinking exploration in reinforcement learning
with effective metric-based exploration bonus. In Proceedings of the 38th Conference on Neural Information
Processing System, 2024.

Mingqi Yuan, Bo Li, Xin Jin, and Wenjun Zeng. Automatic intrinsic reward shaping for exploration in deep
reinforcement learning. In Proceedings of the 40th International Conference on Machine Learning, pp.
40531–40554. PMLR, 2023.

Tom Zahavy and Shie Mannor. Neural linear bandits: Overcoming catastrophic forgetting through likelihood
matching. arXiv preprint arXiv: 1901.08612v2, 2019.

Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E. Gonzalez, and Yuandong
Tian. Noveld: A simple yet effective exploration criterion. In Proceedings of the 35th Conference on
Neural Information Processing System, 2021a.

Weitong Zhang, Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural thompson sampling. In Proceedings
of the 9th International Conference on Learning Representations, 2021b.

Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based exploration. In
Proceedings of the 37th International Conference on Machine Learning, pp. 11492–11502. PMLR, 2020.

16

Under review as submission to TMLR

A Implementation

Our experiments are based on the following open-source codebases:

• E3B (Henaff et al., 2022): https://github.com/facebookresearch/e3b

• CleanRL (Huang et al., 2022): https://github.com/vwxyzjn/cleanrl

• DSAC (Duan et al., 2021; 2023): https://github.com/Jingliang-Duan/DSAC-v2

• Habitat-lab (Andrew et al., 2021; Xavi et al., 2023): https://github.com/facebookresearch/habitat-lab

In Listing 1, we present the core code of CAE, while the rest of the deep RL algorithm remains unchanged.
As shown, CAE is simple to implement, integrates seamlessly with any existing RL algorithm, and requires
no additional parameter learning beyond what is already in the RL algorithm.

Listing 1: CAE core code

A_inverse = torch . inverse (A)
phi = q_net . get_emb (torch . Tensor (obs), torch . Tensor (action)). squeeze (). detach ()
bouns = np.sqrt(torch . matmul (phi.T, torch . matmul (A_inverse , phi)).item ())
reward += scaled_bonus
A += torch . outer (phi , phi)

In Listing 2, we present the additional code of CAE+ alongside that of CAE. As shown, CAE+ minimizes
an additional loss, specifically the Inverse Dynamics Network (IDN) loss, in addition to the losses from the
original RL algorithm.

Listing 2: Additional core code of CAE+

phi = q_net . get_emb (torch . Tensor (batch [’obs ’]) , torch . Tensor (default_actions))
predict_action = inverse_dynamic_net (phi [: -1], phi [1:])
idn_loss = compute_inverse_dynamics_loss (predict_action , batch [’action ’][: -1])

def compute_inverse_dynamics_loss (action , true_action):
loss=F. nll_loss (F. log_softmax (torch . flatten (action , 0, 1) , dim = -1) , target = torch . flatten (true_action ,

0, 1) , reduction =’none ’)
return torch .sum(torch .mean(loss. view_as (true_action), dim =1))

17

https://github.com/facebookresearch/e3b
https://github.com/vwxyzjn/cleanrl
https://github.com/Jingliang-Duan/DSAC-v2
https://github.com/facebookresearch/habitat-lab

Under review as submission to TMLR

B Long version of CAE

For a more thorough theoretical analysis, we present the long and theoretical version of CAE in Algorithm 3,
where, for conciseness, we denote the embedding of the state-action pair at time step h in episode m as
ϕm

h = ϕ(sm
h , am

h). As per the standard notation in the literature on provable algorithms (Jin et al., 2020;
Yang et al., 2020), function parameters are not shared across different time steps h ∈ [H], which is also the
case in Algorithm 3. As we can see, the algorithm iteratively updates parameters θh and Wh, learning the
two decomposed components of the action-value function in Equation 2 by Bellman equation. Specifically,
the parameter θh is updated in Line 9 using its closed-form solution (Li et al., 2010), while the extraction
network ϕh(·, ·) remains fixed. Afterwards, the extraction network ϕh(s, a|Wh) is updated in Line 10, with
the parameter θh held constant. In this line, η is the learning rate, Lm

h is the Bellman loss function, and
st

h, at
h, rt

h for ∀t ∈ [m] and ∀h ∈ [H] represent historical experiences.

Algorithm 3 DQN (Mnih et al., 2015) enhanced with CAE
1: Input: Ridge parameter λ > 0, the exploration parameter α ≥ 0, episode length H, episode number M
2: Initialize: Gram matrix A1

h = λI, b1
h = 0, parameters θ1

h ∼
1
d

N(0, I), networks ϕ1
h(·, ·|W 1

h) (Xu et al., 2022), Q1
h =

(θ1
h)Tϕ1

h(·, ·|W 1
h), and the target value-networks Q̄1

h = Q1
h, where h ∈ [H]

3: for episode m = 1 to M do
4: Sample the initial state of the episode sm

1
5: for step h = 1, 2, ..., H do
6: Conduct action am

h = arg maxa Qm
h (sm

h , a) and get the next state sm
h+1 and reward rm

h

7: Compute the target value qm
h = rm

h + γ ·maxa Q̄m
h+1(sm

h+1, a)

8: Update Am+1
h

= Am
h + ϕm

h (ϕm
h)T and bm+1

h
= bm

h + qm
h ϕm

h

9: Update parameter θm+1
h

= (Am+1
h

)−1bm+1
h

10: Update the extraction network to ϕm+1
h

(·, ·) with parameters W m+1
h

= W m
h + η∇W m

h
Lm

h where

Lm
h =

m∑
t=1

∣∣∣(θm+1
h

)Tϕm
h (st

h, at
h|W

m
h)− rt

h − γ ·max
a

Q̄m
h+1(st

h+1, a)
∣∣∣2

11: Obtain UCB-based uncertainty

βm+1
h

(·, ·) =
√

(ϕm+1
h

(·, ·))T(Am+1
h

)−1ϕm+1
h

(·, ·)

12: Obtain Thompson Sampling-based uncertainty

∆θm+1
h

∼ N(0, (Am+1
h

)−1) =⇒ βm+1
h

(·, ·) = (∆θm+1
h

)Tϕm+1
h

(·, ·)

13: Approximate the action-value function

Qm+1
h

(·, ·) = (θm+1
h

)Tϕm+1
h

(·, ·) + αβm+1
h

(·, ·)

14: end for
15: Update the target network Q̄m+1

h
(·, ·) = Qm+1

h
(·, ·), h ∈ [H]

16: end for

Notably, Qm
h (sm

h , am
h) denotes the estimated value, whereas qm

h represents the corresponding target value
at each time step h in episode m. By concatenating the values over all time steps h ∈ [H] and episodes
m ∈ [M], we construct the estimated value vector q̃ and the target value vector q of the action-value network,
as referenced in Theorem 1.

18

Under review as submission to TMLR

C Proof of Theorem 1

In this section, we analyze the cumulative regret bound of Algorithm 3. As U is a straightforward lin-
ear transformation of the embeddings, it approximately preserves the theoretical guarantees of UCB- and
Thompson Sampling-based exploration strategies. This ensures the rigor of CAE+.

Before delving into the detailed theory, we first review the notation used in this appendix. Let π∗ denote
the true optimal policy and πm represent the policy executed in episode m ∈ [M]. The action-value and
state-value functions corresponding to the policies π∗ and πm are represented by Q∗, V ∗, and Qπm , V πm ,
respectively. The relationship between the state-value and action-value functions under a specific policy,
such as πm, is given as follows.

V πm

h (s) = max
a

Qπm

h (s, a) (16)

Qπm

h (s, a) = rh(s, a) + Esh+1∼Ph(·|s,a)V
πm

h+1(sh+1) (17)

In Algorithm 3, the estimated action-value function at step h in episode m is denoted by Qm
h (s, a), with

the corresponding state-value function represented as V m
h (s). For clarity of presentation, we introduce the

following additional notations.

(PhV m
h+1)(sm

h , am
h) = Esm

h+1∼Ph(·|sm
h

,am
h

)V
m

h+1(sm
h+1). (18)

δm
h (sm

h , am
h) = rm

h + (PhV m
h+1)(sm

h , am
h)−Qm

h (sm
h , am

h). (19)

ζm
h = V m

h (sm
h)− V πm

h (sm
h) + Qm

h (sm
h , am

h)−Qπm

h (sm
h , am

h). (20)

εm
h = (PhV m

h+1)(sm
h , am

h)− (PhV πm

h+1)(sm
h , am

h) + V m
h+1(sm

h+1)− V πm

h+1(sm
h+1). (21)

Specifically, δm
h (sm

h , am
h) represents the temporal-difference error for the state-action pair (sm

h , am
h). The

notations ζm
h and εm

h capture two sources of randomness, i.e., the selection of action am
h ∼ πm(·|sm

h) and the
generation of the next state sm

h+1 ∼ Ph(·|sm
h , am

h) from the environment.

Proof. Theorem 1.

Based on Lemma 1, the cumulative regret in Equation 13 can be decomposed into three terms as follows,
where ⟨·, ·⟩ means the inner product of two vectors.

RM =
M∑

m=1
Q∗

1(sm
1 , um

1)−Qπm
1 (sm

1 , am
1)

=
M∑

m=1

H∑
h=1

[Eπ∗ [δm
h (sh, ah)|s1 = sm

1]− δm
h (sm

h , am
h)] +

M∑
m=1

H∑
h=1

(ζm
h + εm

h)

+
M∑

m=1

H∑
h=1

Eπ∗ [⟨Qm
h (sh, ·), π∗

h(·|sh)− πm(·|sh)⟩ |s1 = sm
1]

According to the definition of πm, there is Equation 22.

⟨Qm
h (sh, ·), π∗

h(·|sh)− πm(·|sh)⟩ ≤ 0 (22)

19

Under review as submission to TMLR

Consequently, with probability at least 1− σ where σ ∈ (0, 1), the cumulative regret in Equation 13 can be
bounded as follows.

RM ≤
M∑

m=1

H∑
h=1

[Eπ∗ [δm
h (sh, ah)|s1 = sm

1] − δm
h (sm

h , am
h)] +

M∑
m=1

H∑
h=1

(ζm
h + εm

h) (23)

≤
M∑

m=1

H∑
h=1

[Eπ∗ [δm
h (sh, ah)|s1 = sm

1] − δm
h (sm

h , am
h)] +

√
16MH3log 2

σ1

≤H

√
2MH log 2

σ2
+ C2αH

√
Md · log(1 + M

λd
)

+
C3 · HL3d

5
2 M

√
log(ι + 1

σ2
+ M|A|

σ2
) ∥q − q̃∥H−1

ι
1
6

+
√

16MH3log 2
σ1

≤C4H

√
MH log 2

σ
+ C2αH

√
Md · log(1 + M

λd
) +

C3HL3d
5
2 M

√
log(ι + 1

σ
+ M|A|

σ
) ∥q − q̃∥H−1

ι
1
6

Specifically, the second inequality is based on Lemma 2, while the third one is based on Lemma 3. By
choosing σ = max {σ1, σ2} and C4 ≥

√
2 + 4, we complete the proof.

D Lemmas

Lemma 1. Adapted from Lemma 5.1 of Yang et al. (2020), the regret in Equation 13 can be decomposed as
Equation 24, where ⟨·, ·⟩ means the inner product of two vectors.

RM =
M∑

m=1
Q∗

1(sm
1 , um

1)−Qπm
1 (sm

1 , am
1)

=
M∑

m=1
V ∗

1 (sm
1)− V πm

1 (sm
1)

=
M∑

m=1

H∑
h=1

[Eπ∗ [δm
h (sh, ah)|s1 = sm

1]− δm
h (sm

h , am
h)] +

M∑
m=1

H∑
h=1

(ζm
h + εm

h) (24)

+
M∑

m=1

H∑
h=1

Eπ∗ [⟨Qm
h (sh, ·), π∗

h(·|sh)− πm(·|sh)⟩ |s1 = sm
1]

Lemma 2. Adapted from Lemma 5.3 of Yang et al. (2020), with probability at least 1−σ1, the second term
in Equation 23 can be bounded as follows:

M∑
m=1

H∑
h=1

(ζm
h + εm

h) ≤
√

16MH3log 2
σ1

(25)

Lemma 3. For any σ2 ∈ (0, 1), assume the width of the action-value network satisfies:

ι = poly(L, d,
1
σ2

, log M |A|
σ2

) (26)

20

Under review as submission to TMLR

where L is the number of layers in the action-value network, and poly(·) means a polynomial function
depending on the incorporated variables, and let:

α =
√

2(d · log(1 + M · log|A|
λ

)− log σ2) +
√

λ (27)

η ≤ C1(ι · d2M
11
2 L6 · log M |A|

σ2
)−1 (28)

then with probability at least 1− σ2, the first term in Equation 23 is bounded as:

M∑
m=1

H∑
h=1

[Eπ∗ [δm
h (sh, ah)|s1 = sm

1] − δm
h (sm

h , am
h)] (29)

≤H

√
2MH log 2

σ2
+ C2αH

√
Md · log(1 + M

λd
) +

C3 · HL3d
5
2 M

√
log(ι + 1

σ2
+ M|A|

σ2
) ∥q − q̃∥H−1

ι
1
6

Proof. According to Yang et al. (2020), there is:

M∑
m=1

H∑
h=1

[Eπ∗ [δm
h (sh, ah)|s1 = sm

1]− δm
h (sm

h , am
h)] ≤

M∑
m=1

H∑
h=1
−δm

h (sm
h , am

h) (30)

Considering δm
h (sm

h , am
h), it can be decomposed as:

δm
h (sm

h , am
h) =rm

h + (PhV m
h+1)(sm

h , am
h)−Qm

h (sm
h , am

h) (31)

=rm
h + (PhV m

h+1)(sm
h , am

h)−Q∗
h(sm

h , am
h) + Q∗

h(sm
h , am

h)−Qm
h (sm

h , am
h)

=Ph(V m
h+1 − V ∗

h+1)(sm
h , am

h) + (Q∗
h −Qm

h)(sm
h , am

h)

=Ph(V m
h+1 − V ∗

h+1)(sm
h , am

h)− (V m
h+1 − V ∗

h+1)(sm
h+1)︸ ︷︷ ︸

ωm
h

+ (V m
h+1 − V ∗

h+1)(sm
h+1)︸ ︷︷ ︸

ρm
h+1

+ (Q∗
h −Qm

h)(sm
h , am

h)︸ ︷︷ ︸
φm

h

By Azuma-Hoeffding inequality, we can bound
∑M

m=1
∑H

h=1 ωm
h as Equation 32 with probability at least

1− σ3 where σ3 ∈ (0, 1).

−H

√
2MH log 2

σ3
≤

M∑
m=1

H∑
h=1

ωm
h ≤ H

√
2MH log 2

σ3
(32)

As ρm
h+1 can be decomposed as Equation 33 where um

h+1 ∼ π∗
h+1(·|sm

h+1), there is Equation 34.

21

Under review as submission to TMLR

ρm
h+1 = (V m

h+1 − V ∗
h+1)(sm

h+1) = Qm
h+1(sm

h+1, am
h+1)−Q∗

h+1(sm
h+1, um

h+1) (33)

⇒
M∑

m=1

H∑
h=1

(ρm
h+1 + φm

h) (34)

=
M∑

m=1

H−1∑
h=1

[
Qm

h+1(sm
h+1, am

h+1)−Q∗
h+1(sm

h+1, um
h+1)

]
+

M∑
m=1

H∑
h=1

(Q∗
h −Qm

h)(sm
h , am

h)

=
M∑

m=1

H∑
h=2

Q∗
h(sm

h , am
h)−Q∗

h(sm
h , um

h)︸ ︷︷ ︸
RMAB

+
M∑

m=1
(Q∗

1 −Qm
1)(sm

1 , am
1) (35)

Specifically, the second equation is because of Q∗
H+1(sm

H+1, am
H+1) = 0 and Qm

H+1(sm
H+1, am

H+1) = 0. The
second term in Equation 35 originates from the estimation error of the action-value function, which is
constrained by the convergence properties of DQN. Consequently, to complete the proof of Lemma 3, it
suffices to establish a bound for the R MAB term, while the second term is omitted for conciseness in the
remaining discussion. Bounds of R MAB under UCB- and Thompson Sampling-based exploration strategies
are proved in Lemma 4 and Lemma 5, respectively.

Choosing σ2 = max {σ3, σ4} and C2 = max {Cucb, Cts} completes this proof.

D.1 Regret Bound of UCB-based Exploration

Lemma 4. Adapted from Theorem 4.4 of Xu et al. (2022), suppose the standard initializations and assump-
tions hold. Additionally, assume without loss of generality that ∥θ∗∥2 ≤ 1 and ∥ϕ(sh, ah)∥2 ≤ 1. If with the
UCB-based exploration strategy, then for any σ4 ∈ (0, 1), let the width of the action-value network satisfies:

ι = poly(L, d,
1
σ4

, log M |A|
σ4

) (36)

where L is the number of layers in the action-value network, and poly(·) means a polynomial function
depending on the incorporated variables, and let:

α =
√

2(d · log(1 + M · log|A|
λ

)− log σ4) +
√

λ (37)

η ≤ C1(ι · d2M
11
2 L6 · log M |A|

σ4
)−1 (38)

then with probability at least 1− σ4, the term RUCB in Equation 35 can be bounded as follows:

RUCB ≤Cucb · αH

√
Md · log(1 + M

λd
) +

C3HL3d
5
2 M

√
log(ι + 1

σ4
+ M|A|

σ4
) ∥q − q̃∥H−1

ι
1
6

(39)

where C1, Cucb, C3 are constants independent of the problem; q = (q1
1 ; q1

2 ; ...; q1
H ; ...; qM

H) and q̃ =
(Q1

1(s1
1, a1

1); Q1
2(s1

2, a1
2); ...; Q1

H(s1
H , a1

H); ...; QM
H (sM

H , aM
H)) are the target and the estimated value vectors, re-

spectively, as detailed in Appendix B.

22

Under review as submission to TMLR

Notably, the proof of the above lemma relies on the concentration of self-normalized stochastic processes.
However, since Qm

h is not independent of historical data, this result cannot be directly applied. Instead,
a similar approach to that in Yang et al. (2020) is adopted by leveraging Uniform Convergence across all
possible inputs within the value function class Q. This ensures that the maximum deviation between the
true and learned values over all time steps remains small, i.e., supQm

h
∈Q |Qm

h −Q∗
h| ≤ ϵm. Crucially, the

error ϵm decreases as the number of episodes increases. Applying (a + b)2 ≤ 2a2 + 2b2, we decompose the
error bound RUCB into two terms to manage the dependency:

• A true optimal value function component, to which the concentration of self-normalized stochastic pro-
cesses applies.

• A cumulative error term dependent on ϵm which can be systematically bounded.

D.2 Regret Bound of Thompson Sampling-based Exploration

Lemma 5. Under the same settings as those of Lemma 4, if with the Thompson Sampling-based exploration
strategy, the term R Thompson Sampling in Equation 35 can be bounded as Equation 40, where Cts is another
problem-independent constant.

RThompson Sampling ≤Cts · αH

√
Md · log(1 + M

λd
) +

C3HL3d
5
2 M

√
log(ι + 1

σ4
+ M|A|

σ4
) ∥q − q̃∥H−1

ι
1
6

(40)

Proof. According to Lemma A.1 of Xu et al. (2022), Q∗
h(s, u)−Q∗

h(s, a) can be decomposed as Equation 41,
where g(s, a; W) = ∇W ϕ(s, a; W).

Q∗
h(s, u)−Q∗

h(s, a) (41)

=(θ∗
h)T [ϕ(s, u; W m

h)− ϕ(s, a; W m
h)] + (θ1

h)T [
g(s, u; W 1

h)− g(s, a; W 1
h)

]
(W ∗

h −W m
h)

=(θ1
h)T [

g(s, u; W 1
h)− g(s, a; W 1

h)
]

(W ∗
h −W m

h)

+ (θm
h)T [ϕ(s, u; W m

h)− ϕ(s, a; W m
h)]︸ ︷︷ ︸

ϑm
h

−(θm
h − θ∗

h)T [ϕ(s, u; W m
h)− ϕ(s, a; W m

h)]

Based on the action selection process using Thompson Sampling-based exploration strategy in Algorithm 3,
we derive Equation 42.

(θm
h + αm

h ∆θm
h)Tϕ(s, u; W m

h) ≤ (θm
h + αm

h ∆θm
h)Tϕ(s, a; W m

h) (42)

Consequently, ϑm
h can be bounded as Equation 43.

ϑm
h ≤∥∆θm

h ∥Am
h
∥ϕ(s, a; W m

h)− ϕ(s, u; W m
h)∥(Am

h
)−1 (43)

≤(
√

d +
√

2 log 1
σ4

) ∥ϕ(s, a; W m
h)− ϕ(s, u; W m

h)∥(Am
h

)−1

Specifically, the last inequality above is because ∆θm
h ∼ N(0, (Am

h)−1). Substituting the bound of ϑm
h back

into Equation 41 further yields:

23

Under review as submission to TMLR

Q∗
h(s, u)−Q∗

h(s, a) ≤(θ1
h)T [

g(s, u; W 1
h)− g(s, a; W 1

h)
]

(W ∗
h −W m

h) (44)

+ (
√

d +
√

2 log 1
σ4

) ∥ϕ(s, a; W m
h)− ϕ(s, u; W m

h)∥(Am
h

)−1

− (θm
h − θ∗

h)T [ϕ(s, u; W m
h)− ϕ(s, a; W m

h)]

Comparing Equation 44 with A.7 of Xu et al. (2022), the difference between the regrets of Thompson
Sampling-based and UCB-based exploration strategies is bounded as Equation 45, with probability at least
1− σ4 where σ4 ∈ (0, 1).

|RThompson Sampling − RUCB|

≤
M∑

m=1

H∑
h=1

(
√

d +
√

2 log 1
σ4

) ∥ϕ(s, a; W m
h)− ϕ(s, u; W m

h)∥(Am
h

)−1

+
M∑

m=1

H∑
h=1

αm
h ∥ϕ(s, a; W m

h)∥(Am
h

)−1 +
M∑

m=1

H∑
h=1

αm
h ∥ϕ(s, u; W m

h)∥(Am
h

)−1

≤H

√
Md log(1 + M

λd
)(

√
d log(1 + M log MA

λ
) + log 1

σ4
+
√

λ)

≤C5αH

√
Md · log(1 + M

λd
) (45)

Setting Cts = Cucb + C5 completes the proof.

D.3 Discussion about the Standard Assumptions

Regarding Assumption 1, it can be readily satisfied by transforming the state–action pairs (s; a) into (s; a; s; a)
and applying an appropriate scaling.

Regarding Assumption 2, it holds when the gradient of the neural network with respect to certain weights does
not fluctuate excessively. In other words, within a neighborhood of a given state–action pair, the gradient
with respect to these weights remains well-controlled. This is a standard assumption in the non-convex
optimization literature, commonly used to ensure the convergence of alternating optimization procedures in
which parameters are updated iteratively.

Regarding Assumption 3, it is a mild condition. Specifically, prior studies have demonstrated that for two-
layer ReLU networks, this assumption can be directly derived from Asumption 1. A diverse input distribution
and a wide neural network can largely ensure that H remains positive definite.

24

Under review as submission to TMLR

(a) Swimmer (b) Hopper (c) Walker2d

(d) Ant (e) Walker2d (f) Swimmer

Figure 4: Experimental results of DSAC on MuJoCo-v3, i.e., from Figure 4a to Figure 4d, and those of
ablation study to the scaling strategy on MuJoCo-v4, i.e., Figure 4e and Figure 4f.

E Experiment

In this section, we present additional experimental results and provide the hyperparameters used to reproduce
the experiments reported in this paper.

E.1 Experiment on Mujoco

Ablation study to the scaling strategy. Additionally, we conduct experiments to assess the necessity
of the scaling strategy. Experiment results, illustrated in Figure 4e and Figure 4f, are based on randomly
selected tasks for SAC. As shown, SAC enhanced with CAE fails to deliver satisfactory performance on
Walker2d and Swimmer tasks when the scaling strategy is not applied. It achieves high performance under
certain seeds, while it performs poorly under others, leading to poor overall results and large variance. This
highlights the critical role of the scaling strategy in ensuring the practical stability and effectiveness of CAE.

Hyperparameters of various RL algorithms for the experiments on MuJoCo are completely the same as
those in the public codebase CleanRL. CAE introduces only two more hyperparameters, i.e., the exploration
coefficient α and the ridge which is set as λ = 1. Exploration coefficients are summarized in Table 7 for
various tasks and algorithms, and the experimental results on various MuJoCo tasks involving different RL
algorithms are in Figure 4 and Figure 5. Notably, we only present results for cases where the RPI exceeds
5.0%, as smaller RPI is not clearly distinguishable in the figures.

25

Under review as submission to TMLR

Table 7: Exploration coefficient for various MuJoCo tasks and algorithms

Env
Algorithms SAC PPO TD3 DSAC

Swimmer 0.2 0.1 0.1 0.1
Ant 0.7 0.2 0.3 1.0
Walker2d 1.0 0.13 0.8 3.0
Hopper 0.4 0.14 0.3 2.0
HalfCheetah 0.4 0.5 3.7 3.0
Humanoid 4.0 0.1 6.0 4.5

E.2 Experiment on MiniHack

In Subsection 5.2, we evaluate our methods CAE and CAE+ on nine representative MiniHack tasks, whose
detailed descriptions are provided in Table 8.

Table 8: MiniHack tasks evaluated in Subsection 5.2.

Short names in Subsection 5.2 Full names Task types

N4 MultiRoom-N4

Navigation-based
N4-Locked MultiRoom-N4-Locked
N6 MultiRoom-N6
N6-Locked MultiRoom-N6-Locked
N10-OD MultiRoom-N10-OpenDoor
Horn Freeze-Horn-Restricted

Skill-basedRandom Freeze-Random-Restricted
Wand Freeze-Wand-Restricted
LavaCross LavaCross-Restricted

The hyperparameters for IMPALA, E3B, CAE, and CAE+ used in our experiments are summarized in
Table 9 and Table 10, aligning with those from the E3B experiments (Henaff et al., 2022). The experimental
results on MiniHack are presented in Figure 6.

Table 9: IMPALA Hyperparameters for MiniHack (Henaff et al., 2022)

Learning rate 0.0001
RMSProp smoothing constant 0.99
RMSProp momentum 0
RMSProp 10−5

Unroll length 80
Number of buffers 80
Number of learner threads 4
Number of actor threads 8
Max gradient norm 40
Entropy cost 0.0005
Baseline cost 0.5
Discounting factor 0.99

26

Under review as submission to TMLR

Table 10: E3B, CAE, and CAE+ Hyperparameters for MiniHack

E3B, CAE, and CAE+

Running intrinsic reward normalization True
Ridge regularizer 0.1

Entropy Cost 0.005
Exploration coefficient 1

CAE+ Dimension of U 256

E.3 Experiment on Habitat

The hyperparameters for PPO, E3B, CAE, and CAE+ used in our experiments are summarized in Table 11
and Table 12.

Table 11: PPO Hyperparameters for Habitat are adopted from habitat-lab (Savva et al., 2019; Andrew et al.,
2021; Xavi et al., 2023)

Clipping 0.2
PPO epoch 4
Value loss coefficient 0.5
Entropy coefficient 0.01
Learning rate 2.5e− 4
ϵ−greedy 1e-5
Max gradient norm 0.2
Rollout steps 128
Use GAE True
Discounting factor 0.99
Number of actor threads 16

Table 12: E3B, CAE, and CAE+ Hyperparameters for Habitat

E3B, CAE, and CAE+

Running intrinsic reward normalization False
Ridge regularizer 0.1

Inverse Dynamics Model updates per PPO epoch 3
Exploration coefficient 0.1

CAE+ Dimension of U 256

F Limitations

One limitation of the proposed method is that, despite the small number of additional trainable parameters,
computing the uncertainty incurs a non-negligible computational overhead due to the need for matrix inver-
sion. This can be mitigated by using approximation techniques, such as the Rank-1 method described in
subsection 3.3. Additionally, other linear MAB methods could be integrated into the proposed framework
to avoid the need to calculate the inverse Gram matrix.

27

Under review as submission to TMLR

(a) HalfCheetah (b) Swimmer (c) Ant

(d) Hopper (e) Walker2d (f) Humanoid

(g) Swimmer (h) Ant (i) Hopper

(j) Walker2d (k) Swimmer (l) Ant

Figure 5: Experimental results on MuJoCo-v4.

28

Under review as submission to TMLR

(a) MultiRoom-N4-v0 (b) MultiRoom-N4-Locked-v0 (c) MultiRoom-N6-v0

(d) MultiRoom-N6-Locked-v0 (e) MultiRoom-N10-OpenDoor (f) Freeze-Horn-Restricted-v0

(g) Freeze-Random-Restricted-v0 (h) Freeze-Wand-Restricted-v0 (i) LavaCross-Restricted

Figure 6: Experimental results on MiniHack.

29

	Introduction
	Related Work
	Methodology
	Preliminary
	CAE: the Critic as an Explorer
	CAE+: Enhancing CAE with Minimal Overhead

	Theoretical Analysis
	Experiment
	MuJoCo tasks with Dense Rewards
	MiniHack tasks with Sparse Rewards
	Reward-free Habitat task

	Conclusion
	Implementation
	Long version of CAE
	Proof of Theorem 1
	Lemmas
	Regret Bound of UCB-based Exploration
	Regret Bound of Thompson Sampling-based Exploration
	Discussion about the Standard Assumptions

	Experiment
	Experiment on Mujoco
	Experiment on MiniHack
	Experiment on Habitat

	Limitations

