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Abstract

Predicting ligand-binding sites, particularly in the absence of previously resolved
homologous structures, presents a significant challenge in structural biology. Here,
we leverage the internal pairwise representation of AlphaFold2 (AF2) to train a
model, AF2BIND, to accurately predict small-molecule-binding residues given
only a target protein. AF2BIND uses 20 "bait" amino acids to optimally extract
the binding signal in the absence of a small-molecule ligand. We find that the AF2
pair representation outperforms other neural-network representations for binding-
site prediction. Moreover, unique combinations of the 20 bait amino acids are
correlated with chemical properties of the ligand.

1 Introduction

Accurate prediction of ligandable sites in proteins remains an outstanding challenge. Though some
methods take advantage of homology to transfer binding-site annotation between proteins based on
structural similarity, [15]] [37]] true de novo binding-site prediction remains difficult. Such a capability
could generate novel functional hypotheses across whole proteomes or focus drug-discovery efforts.

In particular, the task of predicting small-molecule binding sites remains challenging. Several
machine-learning approaches have been proposed to tackle the problem of small-molecule binding-
site prediction [3[] [32] [30] [7]. These approaches typically build residue- or atomic-level graph
representations of a protein structure [32] [30] or use embeddings from models trained to predict
masked sequence tokens [24]] or the sequence of a protein given its structure [[16] [[11] [17]]. Small-
molecule binding sites are often found in "frustrated" regions of a protein [[13]], so models that
predict sequence from structure might do well to recognize such sites. Models such as ESM-IF or
proteinMPNN [16] [L1] might detect solvent-exposed hydrophobic clusters of residues or completely
buried collections of polar residues for a binding-site prediction. We reasoned that a structure-
prediction model, such as AlphaFold2 (AF2) [19], might similarly detect such properties while also
providing an additional channel to identify binding sites through pairwise attention between frustrated
regions of a target protein and additional amino acids provided for "co-folding". If we could extract
this additional attention signal, AF2 might then offer a rich embedding for the binding-site prediction
task.

*Co-corresponding author.


https://doi.org/10.1101/2023.10.15.562410
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.15.562410; this version posted October 18, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Because protein intramolecular contacts can closely approximate protein-ligand contacts [28] [22],
we reasoned that individual "bait" amino acids could be supplied to AF2, in conjunction with the
template of a protein target (either from the protein data bank (PDB) or predicted), to tease out the
small-molecule-binding signal. The "bait" might allow AF2 to alleviate regions of frustration in the
target template ("finish folding"), and binding-site prediction would then proceed by tracking what
AF2 does with this bait. Here, we show that AF2’s internal representation of protein structure and
sequence is sufficiently expressive to train a logistic regression model, AF2BIND (AF2 Bait-Informed
Neural Descriptor), to accurately predict small-molecule binding-site residues in proteins, without
multiple sequence alignments, homology models, or knowledge of the true ligand. Finally, we use
AF2BIND to compute ligand polarity compatible with a binding pocket.

1.1 AF2BIND: a logistic regression model using AF2 features
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Figure 1: AF2BIND uses features from AlphaFold?2 to predict ligand-binding residues in a target
protein. The inputs to AF2BIND are the target sequence, target backbone, and 20 bait amino acids,
which are surrogates for a small-molecule ligand. The output is a prediction for each residue of the
target protein, P(bind), which is the probability that the residue is a small-molecule-binding residue.
The model is trained on ground-truth labels from a couple thousand non-redundant protein-ligand
co-crystal structures from the PDB.

AF2BIND is a logistic regression model trained from AF2 pair features to predict each residue’s
probability of contacting a small-molecule ligand, given a target protein structure (Fig. [I). The
goal in our development of AF2BIND was to understand if features derived from AF2 provide a
richer description for the small-molecule binding-site prediction task than previously used models.
AF?2 has already been used in predicting protein-protein and protein-peptide structures [34]] [21] [4]],
but it is less clear whether it could be useful for predicting small-molecule binding sites because
small molecules are not explicitly modeled or accounted for in the training objective. Still, AF2 was
trained on proteins that contain small molecules, and it sometimes even predicts the correct rotamers
for binding, e.g. in metal or heme sites, so some nuanced binding signatures might be embedded
in its features that could be used to train a model for binding-site classification. Given that AF2,
trained only on monomeric protein structures, can accurately predict protein-peptide co-structure
with no co-evolutionary information of the peptide (and no examples in the training set), we reasoned
AF2 might also be useful for predicting small-molecule-binding sites, which often locally resemble
amino-acid sidechains [28]].

We set out to train a binding-site prediction model that was maximally interpretable, with few
operations that transform the AF2 embeddings. We chose a logistic regression model trained directly
on AF2’s pairwise representation, which assigns each pair of amino acids in an input sequence a
tensor that is used to predict the relative position of these residues in the structure (Fig. ZJA). We give
AF2 the sequence of the target protein and its backbone structure as a template (We do not supply
AF2 with a multiple sequence alignment.). To allow AF2 to "finish folding" the template protein, we
also provide twenty disconnected "bait" amino acids as individual chains, by appending these to the
target sequence with large residue offsets between each. Each of the canonical twenty amino acids is
used. Instead of using multiple recycles, as is common for structure prediction, we only compute a
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single pass through the AF2 model to generate the pair representation. Our motivation for this is to
extract the initial attention between target and "bait" sequence, unbiased by arbitrary placement of
"bait" amino acids by the structure module. The pairwise embeddings between each of the twenty
bait amino acids and a target residue are concatenated and fed into the logistic regression model for
training, with the objective to predict the label for that residue (1 or 0, whether it is a binding residue
or not, Fig. 2JA). AF2BIND thus takes a target sequence and backbone structure and computes a
probability, P(bind), for each residue to participate directly in a small-molecule binding site (Fig
[[]and see Methods). In addition to the per-residue binding-site prediction, the interpretable nature
of the logistic regression model allows us to identify which bait amino acids are contributing to the
sigmoidal activation of P(bind) (Fig. 2B).
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Figure 2: The pair representation of AlphaFold2 is used as input to a logistic regression model,
AF2BIND, for prediction of a ligand-binding residue. A) The blue and green tensors represent the
pairwise attention between target and 20 bait amino acids; these features are extracted, flattened and
fed into a logistic regression model for binding-site prediction, P(bind). B) Since the features directly
map to the 20 bait amino acids, the contribution (activation) of each amino acid to the binding-residue
prediction can be extracted.

2 Results

2.1 AF2 provides superior embeddings for binding-site prediction

Direct comparison of AF2BIND to other ligand-binding-site predictors is challenging because most
published train/test data-splits contain significant amounts of data leakage. Instead, we compare
the performance of different representations from various pre-trained models for the binding-site
prediction task on our train/test split (see Dataset in Methods). We compared the performance of
AF2BIND with the single representation features from AF2, ESM2 [24]] and ESM1-IF [16] for
just the target sequence or structure (no bait amino acids were included). Recently, ESM2 [2]] and
ESMI1-IF [3] representations were used for binding-site prediction on a different train/test set. We
find the pair representation of AF2 outperforms these other representations for the small-molecule
binding-site prediction task (Fig. [3).

To assess model performance, we compute the fraction of binding-site residues recovered from
the top predictions, sorted by highest to lowest P(bind) (See Methods for details). While the pair
representation of AF2 provides the best singular embeddings for the binding-site prediction task
(Fig. [3), a combination of AF2-pair and ESM embeddings provides the best recovery and AUC
ROC metrics (Fig. [3]A). The average recovery for binding-residue prediction was 66% for AF2-pair
representation (AF2BIND) and increased only slightly to 69% when combined with ESM2 and
ESMI-IF.
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Figure 3: The pair representation of AF2 is most effective at binding-residue prediction. A) The
average binding-site recovery on (10-fold cross) validation set given different representations as
input to logistic regression. B) Binding-site recovery of test set between B) ESM2 and AF2-pair
representations and C) ESM1-IF and AF2-pair representations. Each point is a different target protein.

2.2 Exemplar performance of AF2BIND on held-out protein classes

AF2BIND can accurately predict binding residues of rigorously held out protein classes. We held out
G-protein coupled receptors and bromodomains (as well as other classes) from training and validation,
based on sequence similarity and structural similarity (see Methods). AF2BIND confidently predicts
the binding residues of these proteins (Fig. ). Not every residue in the binding site is predicted with
equal probability, providing a hierarchy of residues most likely involved in binding a small molecule.
This ranking scheme gives additional information over volumetric pocket-finding algorithms [23]], as
it suggests which residues might preferentially engage a ligand. P(bind) is not trivially correlated
with conservation (Fig. [S2)), as shown by the low conservation in the orthosteric binding site of the
mu opioid receptor relative to the more conserved intracellular core and G-protein-binding regions
(Fig.[S2]A). Furthermore, slight variations in the protein backbone lead to reproducible predictions
(Fig. [S2B). For example, four structures of the human mu opioid receptor were compared, with
average backbone root mean square deviation (RMSD) of 0.7 A. The average spread (standard
deviation) in P(bind) for each residue was very low (0.02), and the variance did not correlate with
the magnitude of P(bind). Because we mask the sidechain dihedral angles of the input template of
the target protein, AF2BIND is insensitive to the sidechain rotamers of the target protein, which
is advantageous if the rotamers are uncertain (common for predicted protein structures). Indeed,
we found that masking the sidechain dihedrals of the holo structures during training led to equal
(or even slightly better) predictive power (recovery) of the model, relative to a model trained with
the additional sidechain information given to AF2 (Fig. [SI). Because one of the most common
differences between unbound and bound structures of proteins is the change of a rotamer in a binding-
site residue [8]], this insensitivity to sidechain coordinates should prove beneficial when analyzing
unbound or ambiguous structures. Moreover, changes in backbone coordinates between unbound and
bound states are on average small (RMSD < 1 A), within the range where predictions by AF2BIND
are robust.

2.3 Contributions of bait residues correlate with ligand hydrophobicity

Because AF2BIND uses a linear combination of AF2 pair features, the contribution of each of the
twenty bait amino acids to the binding-residue prediction can be uniquely attributed (Fig[2B). The
ease of this assignment is a distinct advantage of the logistic regression model. We analyzed the
propensity of the "bait" amino acids to contribute to P(bind) as a function of polarity (fraction of
carbon atoms) of the true ligand (Fig[5). We found that certain bait-residue combinations were
negatively and positively correlated with ligand hydrophobicity (Fig[5] A and B, respectively).
This activation analysis represents a possible ligand as a linear combination of the twenty amino
acids. Hydrophobic bait amino acids predominately contribute to the binding-site prediction of the
supernatant protein factor, 4omj, which binds the hydrophobic terpenoid, 2,3-oxidosqualene (Fig[5C).
On the contrary, hydrophilic bait amino acids are the main contributors to binding-site prediction
for the 4-diphosphocytidyl-2C-methyl-D-erythritol kinase, 2v2z, which binds the polar substrate,
4-diphosphocytidyl-2C-methyl-D-erythritol (Fig. 5D).
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bromodomain 2
of BRD4

Figure 4: AF2BIND makes accurate predictions on held-out proteins. A) Per-residue binding-site
predictions of the human mu opioid receptor (pdb 8ef5) bound to fentanyl and of B) the second
bromodomain of human BRD4 (pdb 7ruh) bound to an inhibitor. AF2BIND never saw a G-protein
coupled receptor, bromodomain, or similar proteins during training. The highly accurate predictions
were made without knowledge of the bound ligand. The color scale of the binding probability, P(bind),
scales from white (P(bind) = 0) to purple (P(bind) = 1).

3 Discussion

Here, we showed that a deep neural network, AF2, trained on the task of single-chain protein-structure
prediction, has the surprising ability to discern small-molecule-binding sites, without needing to
provide a sterically or chemically compatible ligand. The pair representation of AF2 provides an
effective embedding for the training of a dedicated logistic regression classifier, AF2BIND, that can
accurately assign small-molecule-binding labels to each residue in a target protein (66% recovery).
We used twenty individual-chain amino-acid “bait” residues to effectively tease out a ligand-binding
signal from the pair representation of AF2. An activation analysis of the bait residues, which are built
from each type of amino acid, correlates with ligand hydrophobicity.

To train AF2BIND, we created a rigorously split dataset of protein-ligand complexes curated from
the entire PDB. The split was based not only on sequence but also on fold, evolutionary classification,
and binding pocket similarity. This rigorous split is important for the binding prediction task because
binding sites are highly conserved in proteins, even if the overall sequence diverges. Our motivation
was to prevent any leakage of the training data into the test data so we could accurately determine
the ability of the model to generalize for de novo binding-site prediction. After creating this split,
we found that regularization was needed to keep from overfitting the model. The regularized model
should therefore be well-calibrated, meaning the recovery is correlated with the magnitude of P(bind).
In initial stages of training the model (before we filtered for data quality such as real-space correlation
coefficient of the ligand), we looked at particular data points that were consistently predicted with
low recovery and found that the quality of the crystallographic data for these binding sites was poor.
Thus, AF2BIND might also be used to determine if a ligand placement might be spuriously modeled
into experimentally determined structures.

Because our main motivation was probing the inherent binding-site prediction capabilities of AF2,
our logistic regression model is purposefully simple to maximize interpretability; and there likely
remains some room for model improvement. The theoretical ceiling for recovery in this prediction
task is unclear because the true ligand is not used for the prediction, so the ceiling is likely well
below 100% recovery. Simply clustering the predictions by proximity to neighboring residues with
high P(bind) could increase performance. Lastly, the use of a limited number of bait amino acids by
AF2BIND could result in a dilution of the binding signal as the number of binding sites in a target
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Figure 5: Activations of the bait amino acids (and their combinations) are correlated with ligand
hydrophobicity. The fraction of hydrophobic amino acids FSIT activated (A) and the fraction of
hydrophilic HE (B) had the highest absolute pearson correlation relative to the fraction of non-carbon
atoms in the respective ligands. C) Analysis of predictions for transport protein (4omj). The ligand
(green) has a high fraction of carbon atoms, and the dominant amino acids that were activated among
the bait residues are W and F. On the other hand when the fraction of carbon atoms in a ligand
decreases (2v2z), the activation value of W and F drops, and that of polar amino acids (such as Q and
N) increases.

protein grows (AF2BIND was trained on single-chain proteins up to 500 amino acids.). Offsetting any
signal dilution through, e.g., increasing the number of bait amino acids is one possibility. Altogether,
there are many rich avenues for future exploration.

The ability to accurately predict de novo binding sites could enable binding-site identification
across large swaths of newly predicted protein structures. Homology modeling approaches such as
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AlphaFill rely on “filling” predicted proteins with ligands taken from crystal structures of homologous
proteins.[25] [15] While useful, these approaches are not applicable to new folds or unliganded sites
in the PDB. Other prediction approaches either rely on achieving the correct chemical compatibility
of the ligand to identify a site (blind docking) [5] [9] [14] or are trained to predict voxels that carve
out the space occupied by a known ligand. [12] [18] The myrid unliganded structures now available
in AlphaFoldDB [36] and ESM Metagenomic Atlas [24]], combined with the predictive power of
AF2BIND, offer tantalizing opportunities to discover novel binding sites across the tree of life.

4 Methods

4.1 Extracting AF2 features for binding-residue prediction

AF2 is trained to output a protein structure given an input protein sequence. Along with the sequence,
AF?2 can take as optional input a multiple sequence alignment (MSA) and structural template. These
inputs get transformed internally by the model through several attention layers to a "single" and a
"pair" representation, so-called because there is an embedding for each single residue or each pair of
residues of the input sequence, respectively. The residue identity of each amino acid, as well as its
relative position within the input sequence, affect its precise numerical embedding by AF2, which
uses the embeddings within the structure module to compute the 3D coordinates of the protein. We
tested the usefulness of the single and pair representation of AF2 for binding-residue prediction.
To bias the single and pair features to the task of ligand binding, we append 20 disjoint (by a large
residue-index offset) amino acids to the sequence of a target protein. These 20 amino acids (one
for each of the canonical residue types) act as "bait" ligands for AF2. We use as a template the
structure of the target protein (no template was provided for the 20 "bait" amino acids.) and found
that ablating the sidechain dihedral information beyond C/ atom was most effective for downstream
binding predictions. Because we use a template of the target protein, we do not need to use a MSA,
as AF2 will output a structure that is practically identical to the input template if the sequence of the
template and the input sequence are the same [29]. AF2BIND uses the pair representation between a
residue j in the target protein and each of the 20 bait amino-acids (Fig. [JJA). The concatenated pair
representations (dimensionality of 5120 or 20x2x128 features) are input to AF2BIND for training the
logistic regression model. AF2BIND is trained to predict that a given residue in the target protein is
involved in binding a ligand; we call the sigmoidal activation P(bind) for probability of binding.

4.2 Dataset

We trained AF2BIND on single-chain protein-ligand complexes filtered from all crystal structures in
the protein data bank (PDB) accessed in March 2023. The PDB was first filtered by resolution (< 3.6
A), R factor (< 0.35), chain length (between 40 and 500 residues), monomeric oligomerization state,
and absence of RNA/DNA polymers. The single-chain proteins needed to have a small-molecule

ligand bound with buried surface area > 100 A®. The ligand needed to contain between 10 and 200
heavy atoms, and peptides were excluded. Proteins contacting a ligand with more than one chain
in the asymmetric unit or crystal lattice were excluded. We removed ligands that were covalently
bound (except for porphyrins) or listed as common crystallization additives. For obtaining binding-
residue labels to train AF2BIND, we consider only ligands with real-space correlation coefficients >
0.85, real space R value < 0.25, and average occupancy > 0.9. Approximately 14k PDB files (15k
chains) remained, containing roughly 18k ligands. We clustered these using mmseqs2 [33] by 30
percent sequence similarity and 80 percent coverage (1280 clusters). We also clustered the proteins
structurally using foldseek [35] and combined the foldseek and mmseqs2 clusters. To create our final
dataset for training, we extracted up to 3 proteins from each cluster, ranked by number of residues
in the binding pocket (max), diffraction resolution (min), and R-free of the structure (min). Within
a cluster, preference was also given to proteins with different ligand binding-site locations. The
resulting dataset consisted of 1902 proteins and 2110 ligands. Binding residues were determined
based on a maximum heavy-atom distance of 5 Abetween ligand and residue. We subsequently
augmented binding-residue labels of these proteins using the 15k chains if a chain had TM-score >
0.8 and > 90 percent sequence similarity in the binding residues.
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4.3 Training

AF2BIND is a logistic regression model trained for 320 epochs and a batch size of 12 proteins, using
the ADAM optimizer with learning rate of 1e-4. The input features were normalized by the mean and
standard-deviation of the training set. To down-weight redundancy, each sample was compared to
all other samples in the training set, and was weighted by 1 / number of proteins > 0.5 TM-score.
To prevent over-fitting, we scanned L2 regularization weights and selected a weight (0.03) where
the average train and validation recovery were about the same (Fig[S3). This was performed across
10 cross-validation splits. We tested the performance of the final weights on a test set of about 70
protein-small-molecule complexes (Fig 3B, C).

4.4 Representations

For all representations evaluated, we used the default representations provided by ESM2-3B, ESM1-IF
and AlphaFold2, which are extracted from the final layer before the prediction task. When combining
representations, as in (Fig[3JA), we concatenate the representations and train a new model.

4.5 Assessment Metric

For comparing performance of different representations, we adopt a metric often used for assessing
contact accuracy in proteins [20]. In short, the predictions are sorted by most to least confident,
and the fraction of the top N predictions are evaluated, where N is the number of expected correct
labels. The advantage this approach is that it allows for comparisons of methods where the confidence
metrics maybe in different ranges or not fully calibrated. We adopt this metric for our binding site
recovery evaluation in (Fig[3A).

4.6 Robust splitting of training/validation and test

Since our goal was to develop a method that can generalize to unseen folds, we took special care
to make sure there was no structural overlap between training, validation, and test set. This was
done by creating 11 independent sets of about 20 proteins each. We computed all-by-all TM-scores
for the 2k proteins in the dataset. The proteins were sorted from least similar to most similar by
TM-score [138] to all other proteins in the set. The proteins were then assigned one by one to each of
the 11 sets. The 11th set was further modified to include the follow PDB chains: 4lbs_A, 7xn9_A,
4n03_A, 3hlg_A, 7ruh_A, we wanted to exclude these from training for detailed analysis later. At
each step, we verified there was no overlap to any of the other proteins already assigned in each
set. Proteins were deemed overlapping if their TM-score > 0.5, or they shared any ECOD (topology
level) [6], CATH (at topology) [31], SCOP2B (superfamilies level) [1]], PFAM [26] or InterPro
annotation [27]. The latter three were extracted from the SIFTS database [[10]. We also extracted
binding-site residues from each protein and used TM-align to compute an all-by-all TM-score for
each pair of pockets in the dataset. We used the harmonic mean of the two TM-scores computed
for each pair and excluded proteins from test that had similar pockets (harmonic mean of TM-score
> 0.6) to any in train. After initial split, the last bin was reserved as the test set. The remaining
10 sets were used to create 10 cross-validation sets, where 9 sets are used for training and 1 set
is used for validation. For each cross-validation assignment, proteins that were excluded from the
initial split were added back into each train/validation/test set if they were non-redundant and shared
similarity within the set but not between sets. A protein was deemed redundant if TM-score > 0.8
and more than 60% of binding sites overlapped. After enrichment, each cross-validation set had on
average 600 proteins for train, 30 for validation, and 70 for test. The full set can be downloaded at:
https://github.com/sokrypton/af2bind

5 Code Availability

Google Colab notebook to run AF2BIND for binding-site prediction and activation analysis can
be found here: https://colab.research.google.com/github/sokrypton/af2bind/blob/
main/af2bind.ipynb
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Figure S1: Masking sidechains from template input features does not significantly affect the quality
of AF2-pair representations for the task of ligand binding-site prediction. Each dot is a separate
protein from either validation (blue) or test (orange) set. X and Y-axis are the binding site recovery
values for each protein.
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Figure S2: Small changes in protein backbone do not significantly affect P(bind). A) Several
structures of the human mu opioid receptor (pdbs 8ef5_R, 8ef5_M, 8efq_R, and 8efb_R), with
average root mean square deviation of C-alpha atoms of 0.7 A. Predictions by AF2BIND on each of
these ensemble members were averaged at the residue level. The plot displays the standard deviation
and mean of these predictions. P(bind) changes by at most 0.1 but on average by only 0.02, the
magnitude of which is uncorrelated with the mean value of P(bind). B) P(bind) is uncorrelated with
amino-acid conservation, as measured by the relative entropy computed from a multiple sequence
alignment, using the amino-acid background frequency in the PDB as the reference distribution.

per-residue conservation (rel. entropy)

0.74 A

0.72 A

0.70 A

0.68 A

recovery

0.66 -

0.64

0.62 A

0.60 — T T T T T
0.00 0.02 0.04 0.06 0.08 0.10
12 regularization

Figure S3: Recovery of binding site on training set and validation set, given L2 regularization, using
AlphaFold?2 pair representation.
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