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FedCAFE: Federated Cross-Modal Hashing
with Adaptive Feature Enhancement

Anonymous Authors

ABSTRACT
Deep Cross-Modal Hashing (CMH) has become one of the most
popular solutions for cross-modal retrieval. Existing methods need
to first collect data and then be trained with these accumulated
data. However, in real world, data may be generated and possessed
by different owners. Considering the concerns about privacy, data
may not be shared or transmitted, leading to the failure of sufficient
training of CMH. To solve the problem, we propose a new frame-
work called Federated Cross-modal Hashing with Adaptive Feature
Enhancement (FedCAFE). FedCAFE is a federated method which
could use distributed data to train existing CMHmethods under the
privacy protection. To overcome the data heterogeneity challenge
of distributed data and improve the generalization ability of global
model, FedCAFE is endowed with a novel adaptive feature enhance-
ment module and a new weighted aggregation strategy. Besides, it
could fully utilize the rich global information carried in the global
model to constrain the model during the local training process.
We have conducted extensive experiments on four widely-used
datasets in CMH domain with both IID and non-IID settings. The
reported results demonstrate that the proposed FedCAFE achieves
better performance than several state-of-the-art baselines. As the
topic that training deep CMH in federated scenario is in its infancy,
we plan to release the code and data to boost the development of
the field. However, considering restriction of anonymous submis-
sion and size limitation, we could only upload the source code of
FedCAFE as supplementary materials for peer review at the present
stage.

CCS CONCEPTS
• Information systems → Information extraction; Information
retrieval.

KEYWORDS
Deep Hashing, Cross-Modal Retrieval, Federated Learning

1 INTRODUCTION
Existing deep cross-modal hashing methods [3, 15, 19, 43] have
achieved efficient approximate nearest neighbor search by map-
ping high-dimensional samples to hash codes in low-dimensional
Hamming space [20, 25, 28, 34]. Such methods have obvious ad-
vantages in large-scale retrieval, providing high retrieval speed
and satisfactory retrieval accuracy [24, 26, 48]. These methods of-
ten require a large amount of data for training, while in real-world
applications, data is typically scattered across different devices or in-
stitutions. Collecting and centralizing a large amount of distributed
data is not only expensive but also impractical. Considering the
legal restrictions and growing concerns about data privacy protec-
tion, such training schemes may be forbidden as transmitting data
may face potential security risks and threats.

Federated learning, as a distributed machine learning framework,
can ensure that a global model is trained collaboratively by unit-
ing a series of clients without sharing local raw data [12, 18]. The
emergence of federated learning solves the problem that local data
cannot be shared under privacy and security requirements. There-
fore, using federated learning to accomplish distributed training
for deep cross-modal hashing methods is a feasible solution, which
could not only protect the privacy of each participant but also
improve the global model’s generalization ability and robustness.
These advantages motivate this paper to propose a new federated
cross-modal hashing framework.

As the clients come from different devices and have their own
private data, the data distributions among different clients are likely
to be inconsistent (not independent identically distributed, i.e., non-
IID), leading to data heterogeneity, which is one of the fundamental
challenges in federated learning. Non-IID problem among client
data often affects the stability, convergence, and effectiveness of
the global model to varying degrees. To address the issue of data
heterogeneity, quite a few works have attempted to propose their
solutions. Most of them try to limit the updates of clients. For exam-
ple, FedProx [18] constrains the models of clients to be closer to the
global model by adding a proximal term in local updates, andMOON
[17] restricts the direction of local updates to reduce client drift.
However, most of the existing federated learning algorithms are all
designed and validated based on the image classification task. In this
paper, we put our efforts into investigating the heavily understud-
ied cross-modal hashing problem under federated learning settings.
Compared with single-modal classification tasks, this research prob-
lem is more challenging. First, cross-modal retrieval tasks need to
deal with multiple modalities of data samples simultaneously, such
as image and text modalities. Second, in the retrieval process, it
uses one modality sample (e.g. text) to retrieve another modality
sample (e.g. image) with semantic similarity, which requires explor-
ing the semantic relationship between different modality samples.
Third, data heterogeneity and distribution imbalance problems in
federated learning also need to be considered and solved.

In literature, existing researches on federated cross-modal re-
trieval methods are very limited. FedCMR [50] is the first attempt
and is based on one deep cross-modal retrieval model. Considering
that hashing methods have high retrieval efficiency and accuracy,
deep cross-modal hashing has become one of the most popular
solutions for cross-modal retrieval. Thus, a federated cross-modal
hashing framework PLFedCMH [23] is proposed which dynami-
cally achieves personalized parameter customization for different
layers of each client by introducing a hyperparameter network on
the server, to improve the performance of local hashing models.
PT-FUCH [16] proposes a strategy for federated unsupervised cross-
modal hashing task, which uses global prototypes to promote the
alignment of client feature spaces. Although they have promoted
the developments of federated cross-modal retrieval, there still exist
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some problems which are not well solved. First, how to address
data heterogeneity is crucial for federated learning and is still an
open problem in federated cross-modal hashing domain. Second,
discriminative multi-modal features play a fundamental role while
existing methods fail to fully adapt the feature extraction of current
cross-modal methods with distributed data. In deep cross-modal
hashing retrieval tasks, it is essential to learn discriminative fea-
tures that can correctly distinguish the similarity and differences
between different modalities of samples.

To overcome the limitations, we propose a new framework called
Federated Cross-Modal Hashing with Adaptive Feature Enhance-
ment, which is also named FedCAFE for brevity. As a federated
framework, FedCAFE is model-agnostic which means it could be
used for any existing deep cross-modal hashing methods. The main
parts of FedCAFE involve an adaptive feature enhancement mod-
ule and a new weighted aggregation strategy. The module could
learn better multi-modal features with the help of global semantic
information, thereby constraining the raw features. With the new
strategy, local models could be better aggregated into the global
model whose generalization ability could be boosted. The major
contributions are as follows:

• We propose a novel federated framework FedCAFE for train-
ing existing deep cross-modal hashing methods with dis-
tributed data. The framework could avoid transmitting pri-
vate data of clients and ensure good generalization ability of
the global model.
• We propose an adaptive feature enhancement module, which
fully embeds global semantic information into feature learn-
ing. This module could ensure discriminative multi-modal
features and lead to better hash learning. A new weighted
aggregation strategy is also proposed. In addition, FedCAFE
further utilizes the knowledge carried by the global model
to constrain the training of local models. All of them endow
the global model with enhanced generalization ability.
• We have conducted extensive experiments on four widely-
used datasets. The proposed FedCAFE achieves better re-
trieval accuracy than all chosen baselines.
• As the studied topic is vital and promising, wewill release the
data and code for good reproducibility. Currently, the source
code of FedCAFE is uploaded as supplementary materials.

2 RALATEDWORK
Cross-Modal Hashing. In recent years, the development of Deep
Neural Networks (DNNs) [5, 13, 32, 39] has brought a new wave of
research to cross-modal hashing. On the one hand, compared with
traditional methods [6, 21, 40], deep hashing methods can integrate
feature learning and hash learning into an end-to-end framework,
letting them promote each other and improve the quality of hash
learning[9, 27, 35, 42]. On the other hand, due to the high nonlinear
modeling capability, DNNs can adequately exploit the data distri-
bution, so as to obtain satisfactory retrieval accuracy [1, 11, 22, 49].
Although existing deep cross-modal hashing methods have achie-
ved great success, they may fail to handle the new requirements
which are proposed by nowaday real-world applications. At present,
data may be generated and possessed by different owners. Mean-
while, more and more concerns are raised about privacy protection.

Thus, the learning scheme of traditional cross-modal hashing meth-
ods, which first collecting all data and then using accumulated data
to train a centralized model, becomes impractical as transmitting
data may be unsafe and even forbidden. How to train the model
with distributedly stored data becomes a tricky challenge. Fortu-
nately, federated learning, which could use data in different silos
to train a unified model under privacy protection, is proposed and
introduced into cross-modal retrieval domain. FedCMR [50] is the
first attempt to explore a deep cross-modal retrieval framework for
distributed data. It proposes a federated learning framework and
takes existing deep cross-modal retrieval method DSCMR [47] as
an example to demonstrate the effectiveness. FedCMR proves the
feasibility of deep cross-modal retrieval methods in federated learn-
ing scenarios. Afterwards, PLFedCMH [23] is proposed to combine
federated learning with cross-modal hashing. It uses a server-side
hypernetwork to achieve personalized parameter customization for
different clients. PT-FUCH [16] explores unsupervised cross-modal
hashing in distributed scenarios.

Federated Learning. When data distributions among clients in
federated training are different, the local training process of each
client will let the local model converge to local optimal. Meanwhile,
non-IID data distribution may mislead the optimization direction
of the global model, which will further affect the generalization
ability of global model and even make global model difficult to
converge. In order to alleviate such problems, there have been ex-
tensive works to contribute their efforts in different directions. For
example, FedProx [18] adds a proximal term in local training pro-
cess to make the updated local models more similar to global model.
Similarly, MOON [17] adds regularization items in local training
process to prevent local models drift. FedProto [38] normalizes the
training of local models by restricting local category prototypes
generated by each client to be closer to global prototypes. However,
there are some limitations in this kind of methods. It violates the
fact that optimal point of local empirical objective is different from
global optimum, and reduces the performance and convergence
speed of global model [4]. Some methods try to tackle the problems
from another way, i.e., improving the aggregation algorithms to
get better global model. For instance, FedNova [41] is a normalized
method replacing the widely-used simple weighted aggregation to
alleviate objective inconsistency. Personalized Federated Learning
(PFL) presents a new solution to data heterogeneity among clients
[7, 14, 29, 45]. Specifically, these methods generate a personalized
model for each client that is suitable for local data distribution.
CD2-pFed [33] uses a channel decoupling technique guided by
cyclic distillation, which promotes the collaboration between local
weights and global weights at channel level to realize personal-
ized local models. Although these improved methods achieve good
convergence speed and performance, most of them only explore
the performance of algorithms on classification tasks. For more
challenging scenarios, such as cross-modal retrieval, directly using
above methods are not optimal and even infeasible. Thus, in this
paper, we focus on investigating the cross-modal retrieval task for
distributed data based on federated learning.
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3 METHOD
To support existing deep cross-modal hashing to be trained with
distributed data, we propose a new framework FedCAFE. Please
note that FedCAFE is a federated learning framework, not a specific
hashing method. It can be integrated with existing hashing methods.
Considering that most existing deep hashing methods have their
own feature extraction backbone networks, we directly use these
networks and build our FedCAFE upon the extracted features. The
illustration of FedCAFE for local client training is presented in
Figure 1. Details of each component and the overall algorithm of
FedCAFE are described below.

3.1 Notations and Problem Statement
Without loss of generality, we use image and text modalities as ex-
amples to illustrate our federated deep cross-modal hashing frame-
work.

In the federated learning setting, we assume that there are 𝐾
clients, each of which has its own private data. The multi-modal
data on the 𝑘-th client can be represented as 𝑫𝑘 =

{
𝒙𝑖 ,𝒚𝑖 , 𝒍𝑖

}𝑛𝑘
𝑖=1,

where 𝑛𝑘 denotes the number of image-text pairs, 𝒙𝑖 represents the
𝑖-th image, 𝒚𝑖 is the corresponding text, the label of the 𝑖-th sample
is represented by 𝒍𝑖 ∈ {0, 1}1×𝐶 , and 𝐶 is the number of categories.

Most existing deep cross-modal hashing methods employ two
separate backbone networks, one for image modalities and another
for text. These networks are designed to extract features from orig-
inal images and texts, respectively, which are then used for hash
learning. Our FedCAFE is a federated learning framework designed
to facilitate the training of deep cross-modal hashing in the feder-
ated learning scenario, rather than a specific hashing method. Thus,
FedCAFE requires a selected deep cross-modal hashing method
and directly utilizes its default architectures to extract features.
This approach allows FedCAFE to seamlessly integrate with ex-
isting hashing methods, leveraging their established mechanisms
for feature extraction. The extracted raw features are represented
as 𝑶∗

𝑖
∈ R1×𝑟 , where 𝑟 denotes the length of hash codes and ∗

indicates different modalities (gray area of Figure 1). Then, to bet-
ter mine the semantic information, a classifier is added after the
raw features, and the predicted labels for different modalities are
represented as �̂�∗𝑖 ∈ R1×𝐶 (yellow area of Figure 1). FedCAFE tries
to mitigate the effects of non-IID data distribution and improve
the generalization ability of the global model by utilizing the pro-
posed adaptive feature enhancement module to generate enhanced
features and impose constraints on the raw features (green area
of Figure 1). As both backbone networks and classifiers have pa-
rameters to be learned, we use𝑾𝑥 and𝑾𝑦 to represent the entire
network parameters of the image and text modalities, respectively.

The objective of our algorithm is to update and optimize the
parameters of the global model for each modality by federated
learning to achieve optimal performance for distributed deep cross-
modal hashing methods on retrieval tasks. The overall objective of
the algorithm can be formulated as follows:

min
𝑾𝑥

𝐹 (𝑾𝑥 ) = 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒
(
{𝐹𝑘 (𝑾𝑥 )}𝐾𝑘=1

)
min
𝑾𝑦

𝐹
(
𝑾𝑦

)
= 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒

(
{𝐹𝑘

(
𝑾𝑦

)
}𝐾
𝑘=1

)
,

(1)

Image

Sky
Airplane
Fuselage

Blue

Text

Image Learning 
Network

Tanh

Tanh

Classifier

Raw 
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Enhanced 
Feature

Classifier
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Text Learning 
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Hashing Model

Global 
Memory

Classification 
Loss

Label Generation Module Adaptive Feature Enhancement

Figure 1: The illustration of FedCAFE for local client training.
Gray area represents the raw feature extraction part, where
the modality learning networks are the default settings of
the chosen deep cross-modal hashing method. We further
add a classification loss to make the learned features more
semantic, which is illustrated in the yellow area. Green area
denotes the proposed adaptive feature enhancement module,
which outputs the learned enhanced features and utilizes
them to constrain the raw features.

where 𝐹𝑘 (𝑾𝑥 ) represents the loss function of image modality on
the 𝑘-th client, and 𝐹𝑘

(
𝑾𝑦

)
is the loss function of text modality

on the 𝑘-th client, 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (·) represents optimizing the global
model parameters by minimizing the local loss of each client. More
specifically, the loss functions for different modalities on the 𝑘-th
client can be expressed as below:

𝐹𝑘 (𝑾∗) =
1
𝑛𝑘

𝑛𝑘∑︁
𝑖=1
L𝑘

(
𝒙𝑖 ,𝒚𝑖 , 𝒍𝑖 ;𝑾∗

)
. (2)

As it is not feasible for the server to access local data of clients
directly, we attempt to solve Eq. (1) in following manner. In the
𝑡-th communication round, the server sends the global model pa-
rameters of different modalities to 𝐾 clients. The corresponding
local model parameters are overwritten with the global model pa-
rameters and used as the initial parameters of local model for the
𝑡-th round. The clients then train and update their local models
using their own data, generating updated local model parameters
for different modalities. Finally, the new local model parameters
are uploaded to server for aggregation, generating global model
parameters for next round.

3.2 Global Memory
Generally, in federated learning scenarios, the global model is
trained on data that is distributed across multiple clients, and the
update of global model needs to be transmitted to a central server
for aggregation. One of the major challenges is that different clients
may have significantly different data distributions, making it chal-
lenging to optimize a global model that performs well on all clients.
To address this problem, a global memory rich in global semantic
information is designed.

Specifically, in the 𝑡-th round of communication, the global mem-
ory is generated by aggregating the local memories of 𝐾 clients. For
the 𝑘-th client, we first use the K-means algorithm to obtain local
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memories of different modalities. These local memories serve as cat-
egory prototypes of enhanced features. To reduce the domain gap
among feature spaces of different modalities as much as possible,
FedCAFE combines the local memories of the two modalities using
the K-means algorithm to obtain the final local memory 𝑷𝑡

𝑘
∈ RC×𝑟

for the 𝑘-th client in round 𝑡 . This approach allows information
from different modalities to fully integrate, promoting collaboration
among modalities.

After obtaining the local memory for each client, the server
further uses the K-means algorithm to aggregate them to generate
the global memory 𝑷𝑡𝑔 . The global memory aggregates the local
memories of all participating clients and could better represent the
feature distribution of the entire dataset. Therefore, we expect it can
be used as a guide for individual client training, thereby alleviating
the data heterogeneity problem among clients. It is worth noting
that we do not violate the privacy policy of federated learning as
we do not share raw data of clients.

The design of global memory could effectively promote informa-
tion exchange and collaborative training among clients, thereby im-
proving the generalization performance of local models on clients.

3.3 Adaptive Feature Enhancement Module
In federated learning, the data distributions among clients are gener-
ally non-IID, and clients can only learn knowledge from their local
data, leading to a drift in the features learned by each client, which
hinders the generalization of the global model. For retrieval tasks,
the learned representations of the data are crucial. To learn better
representations of multi-modal data, we hope the representations
are as discriminative as possible. However, existingmethods [23, 50]
fail to consider how to enhance representations with the help of
semantic information, which may make the learned representations
not good enough.

Therefore, we propose a module that enables sharing of global
semantic knowledge among clients. This means that even across
different clients, as long as samples have the same semantics, the
features generated will be more consistent. In addition to global
memory, labels also contain rich semantic information, which can
further promote knowledge sharing among clients. Specifically, by
merging the predicted labels with the global memory, memory fea-
tures rich in global semantic knowledge can be generated. Memory
features can be expressed as:

𝑽 ∗𝑀 = �̂�
∗ ⊗ 𝑷𝑔 , (3)

where �̂�
∗ represents the predicted label matrix of local data and

∗ denotes different modalities, 𝑷𝑔 stands for the global memory.
Using the matmul product ⊗ between them can produce memory
features 𝑽 ∗

𝑀
.

Based on this, we introduce an adaptive selector A = Tanh (𝑶∗)
that integrates the original feature 𝑶∗ with the memory feature
𝑽 ∗
𝑀

to enhance the original feature. The design of A, i.e., using the
Tanh(·), can not only directly obtain the weight of adaptive selector
from original feature 𝑶∗, but also avoid the complicated adjustment
of parameters. The enhanced feature 𝑽 ∗

𝐸
is expressed as:

𝑽 ∗𝐸 = 𝑶∗ + A ⊙ 𝑽 ∗𝑀 , (4)

where 𝑶∗ represents the raw features extracted by backbone net-
works, ⊙ is the Hadamard product. The enhanced features of image

modality can be represented as 𝑽𝑥
𝐸
∈ R𝑛𝑘×𝑟 , and the enhanced

features of text modality can be expressed as 𝑽 𝑦
𝐸
∈ R𝑛𝑘×𝑟 , typically,

they are regarded as continuous surrogate of hash codes.
To more effectively constrain the raw features of samples, cosine

similarity measurement is adopted to utilize enhanced features 𝑽 ∗
𝐸

to constrain the original features 𝑶∗, thus improving the quality of
feature representation. The formula is as follows:

L𝐸 = 1 − cos
(
𝑽 ∗𝐸 ,𝑶

∗) , (5)

where cos(·) represents cosine similarity measurement.
In cross-modal retrieval tasks, the information contained inmulti-

modal data features is crucial as it can reveal the inherent correla-
tions and complementary properties between different modalities.
In order to fully utilize this information, FedCAFE further utilizes
the global information carried in the global model to constrain the
training of local models for each client. Specifically, when each
client conducts local training, the features extracted by the global
model are introduced as prior knowledge to provide guidance for
the local training process. In this way, it ensures that local models
can closely follow the guidance of the global model and better uti-
lize the correlations between features of different modalities. The
specific formula is as follows:

L𝐶 =
1
2

(
1 − cos

(
𝑽 ∗−𝑘𝐸 , 𝑽𝑥𝐸

))
+ 1
2

(
1 − cos

(
𝑽 ∗−𝑘𝐸 , 𝑽

𝑦

𝐸

))
, (6)

where 𝑽 ∗−𝑘
𝐸

represents the enhanced features of different modalities
on the 𝑘-th client, ∗ represents different modalities, 𝑽𝑥

𝐸
represents

the enhanced features of image modality when image sample passes
through the corresponding global model, and 𝑽

𝑦

𝐸
represents the

enhanced features of the text modality when the text sample passes
through the global model of the corresponding modality. In this
way, samples of different modalities can be effectively compared
and matched in a unified feature space.

The information carried by the global model is obtained through
training on multiple clients and can reflect the overall rules and
patterns of data distribution. Transmitting this information to local
models provides them with a broader and more comprehensive
perspective, enabling them to generalize better to unknown data.

Since the learned hash codes not only need to maintain the
similarity of the data in the feature space but also should have
good classification ability, classification loss is added for supervised
learning. FedCAFE utilizes KL divergence to measure the similarity
between the predicted labels generated by classifiers and the true
distribution of samples. For the training process of local models,
the classification loss can be represented by the following formula:

L𝑃 = 𝐾𝐿

(
�̂�
∗∥𝑳

)
, (7)

where �̂�
∗ represents the predicted labels of different modalities,

and 𝑳 represents the ground truth of samples.

3.4 Loss Function
The overall loss function can be constituted of hashing loss and
federated loss:

L𝑎𝑙𝑙 = Lℎ𝑎𝑠ℎ + 𝛼L𝐸 + 𝜂L𝐶 + 𝛾L𝑃 , (8)

where 𝛼 , 𝜂 and 𝛾 are trade-off parameters. As the FedCAFE frame-
work serves as a bridge to apply deep cross-modal hashing to the
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federated learning scenario, hashing loss Lℎ𝑎𝑠ℎ will not be specifi-
cally designed. As mentioned above, FedCAFE is model-agnostic
which means it could be used for any existing deep cross-modal
hashing methods. Thus, the objective loss of the chosen hashing
method could be directly leveraged as Lℎ𝑎𝑠ℎ in Eq. (8).

3.5 Global Model Aggregation with Memory
Data heterogeneity may lead to a decrease in model performance, as
the local models on clients are trained on data that is not representa-
tive of the overall data distribution. To alleviate the problem of local
model drift caused by data heterogeneity across clients and fully
leverage the characteristics of deep cross-modal hashing retrieval
tasks, we propose a novel weighted aggregation strategy to gener-
ate the global models of different modalities in each communication
round on the server.

Specifically, we use the degree of difference between global mem-
ory and local memory as a measure of weight. To measure the simi-
larity between the local memories of clients and the global memory,
FedCAFE uses the negative log-likelihood function. The formula
of the similarity between the local memory of 𝑘-th client and the
global memory is:

𝑆𝑖𝑚𝑘 = −
𝐶∑︁

𝑖, 𝑗=1

(
S𝑖 𝑗𝜃𝑖 𝑗 − 𝑙𝑜𝑔

(
1 + 𝑒𝜃𝑖 𝑗

))
, (9)

where 𝜃𝑖 𝑗 = 1
2 (𝑷

𝑡
𝑘𝑖 ·
) (𝑷𝑡𝑔𝑗 · )

𝑇 , and the local memory on the 𝑘-th
client can be expressed as 𝑷𝑡

𝑘
∈ R𝐶×𝑟 . We assume that the global

memory and local memory of the same class should be similar, so
we use the similarity matrix S to represent the relationship between
them. If 𝑷𝑡

𝑘𝑖 ·
and 𝑷𝑡𝑔𝑗 · are similar, S𝑖 𝑗 = 1, otherwise S𝑖 𝑗 = 0.

When the value of the negative log-likelihood function is larger,
it indicates lower similarity between the local memory of 𝑘-th client
and the global memory, suggesting that the specific information or
knowledge contained on the 𝑘-th client is more unique compared to
the global data distribution. Therefore, in order to fully emphasize
these unique pieces of information and enhance the generalization
ability of the global model, a higher weight is assigned to the model
parameters on this client. The formula is as follows:

𝛼𝑘 =
𝑒𝑆𝑖𝑚𝑘∑𝐾
𝑘
𝑒𝑆𝑖𝑚𝑘

, (10)

where 𝛼𝑘 is the model weight of the 𝑘-th client. This weighting
strategy helps ensure that the unique knowledge on the 𝑘-th client
is adequately emphasized, while also aiding the global model in
better learning and adapting to various data distributions.

Thus, the global model parameters for different modalities in
round (𝑡 + 1) can be expressed as:

𝑾 (𝑡+1)𝑥 =

𝐾∑︁
𝑘=1

𝛼𝑘𝑾
(𝑡 )
𝑥−𝑘

𝑾 (𝑡+1)𝑦 =

𝐾∑︁
𝑘=1

𝛼𝑘𝑾
(𝑡 )
𝑦−𝑘 ,

(11)

where𝑾 (𝑡 )
𝑥−𝑘 represents the local model parameters of the image

modality on the 𝑘-th client in round 𝑡 , 𝑾 (𝑡 )
𝑦−𝑘 is the local model

Algorithm 1 FedCAFE
Input: communication rounds 𝑇 , client numbers 𝐾 , local epoch 𝐸,

initial model parameters of different modalities:𝑾0
𝑥 ,𝑾0

𝑦

Output: 𝑾 (𝑡+1)𝑥 ,𝑾 (𝑡+1)𝑦 and 𝑷 (𝑡+1)𝑔

1: Server executes
2: for 𝑡 = 0, 1, . . . ,𝑇 − 1 do
3: for 𝑘 = 1, 2, . . . , 𝐾 do
4: Send𝑾𝑡

𝑥 ,𝑾𝑡
𝑦 , and global memory 𝑷𝑡𝑔 to client 𝑘

5: 𝑾𝑡
𝑥−𝑘 ,𝑾

𝑡
𝑦−𝑘 , 𝑷

𝑡
𝑘
← LocalTraining

(
𝑘,𝑾𝑡

𝑥 ,𝑾
𝑡
𝑦, 𝑷

𝑡
𝑔

)
6: end for
7: Compute fused global memory 𝑷 (𝑡+1)𝑔

8: Calculate global model parameters𝑾 (𝑡+1)∗ with Eq. (11)
9: end for
10: return𝑾 (𝑡+1)𝑥 ,𝑾 (𝑡+1)𝑦 and 𝑷 (𝑡+1)𝑔

11: LocalTraining
12: for epoch 𝑖 = 1, 2, . . . , 𝐸 do
13: for each batch of 𝑫𝑘 do
14: Calculate enhanced features with Eq. (4)
15: Train local model with overall loss Eq. (8)
16: end for
17: end for
18: Compute local memory 𝑷𝑡

𝑘

19: return𝑾𝑡
∗−𝑘 and 𝑷𝑡

𝑘
to server

parameters of the text modality on the 𝑘-th client in round 𝑡 . The
proposed weighted aggregation represents an innovative strategy
that leverages the similarity between global and local memory to
assess the difference between the data distribution of individual
clients and the overall data distribution. By considering the con-
tributions of each client, this mechanism effectively addresses the
problem of local model drift resulting from non-IID data distribu-
tion and improves the generalization ability of the global model in
federated learning.

3.6 Overall Algorithm
For better understanding of FedCAFE, we summarize the overall
algorithm in Algorithm 1.

4 EXPERIMENTS
4.1 Datasets
We evaluated the proposed FedCAFE on four benchmark datasets
for cross-modal hashing retrieval tasks, namely MIRFlickr-25K
[8], NUS-WIDE [2], FashionVC [36], and Ssense [37]. The specific
dataset partitioning strategy is shown in Table 1.

Table 1: The allocation of experimental datasets.

Datasets Volume Training Query Retrieval
MIRFlickr-25K [8] 20,015 10,000 2,000 18,015
NUS-WIDE [2] 195,834 10,500 2,100 193,734
FashionVC [36] 19,862 16,862 3,000 16,862
Ssense [37] 15,696 13,696 2,000 13,696
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Table 2: The MAP results of different federated learning methods on MIRFlickr-25K and NUS-WIDE.

Methods

MIRFlickr-25K NUS-WIDE

Image-to-Text Text-to-Image Image-to-Text Text-to-Image

16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits
Centralized [10] 0.7383 0.7427 0.7527 0.7654 0.7669 0.7749 0.5903 0.6031 0.6093 0.6389 0.6511 0.6571

Local [10] 0.6405 0.6473 0.6544 0.6723 0.6821 0.6922 0.5042 0.5269 0.5418 0.4875 0.5025 0.5223
FedAvg [30] 0.6610 0.6734 0.6836 0.6907 0.7040 0.7143 0.5381 0.5581 0.5567 0.5186 0.5526 0.5609
FedProx [18] 0.6597 0.6724 0.6829 0.6899 0.7033 0.7133 0.5352 0.5565 0.5564 0.5176 0.5501 0.5599
FedCMR [50] 0.6729 0.6856 0.6956 0.7129 0.7229 0.7318 0.5572 0.5636 0.5735 0.5569 0.5781 0.5851
MOON [17] 0.6740 0.6862 0.6948 0.7081 0.7219 0.7317 0.5650 0.5840 0.5758 0.5664 0.5753 0.5867
FedProto [38] 0.6741 0.6892 0.6979 0.7138 0.7277 0.7392 0.5662 0.5863 0.6063 0.5695 0.5818 0.6051

PLFedCMH [23] 0.6531 0.6840 0.6984 0.6998 0.7221 0.7354 0.5738 0.5817 0.5852 0.5948 0.6028 0.6070
FedCAFE 0.7113 0.7206 0.7294 0.7451 0.7554 0.7648 0.5987 0.6425 0.6567 0.6065 0.6582 0.6617

MIRFlickr-25K contains 25,000 images collected from Flickr. It
is multi-labeled, in which each sample is annotated with at least one
of 24 semantic labels. Following the settings of [10], we removed the
samples in which the number of tags is less than 20 and obtained
20,015 instances. In our experiments, we randomly selected 2,000
instances as the query set, left the remaining instances as the re-
trieval set, and randomly selected 10,000 samples from the retrieval
set for training. This data partitioning strategy ensures that the
model encounters diverse data distributions during both training
and testing phases, thereby accurately evaluating its performance.

NUS-WIDE contains 269,648 images, each of which contains
one or more of 81 labels. Following [10], we obtained 195,834 in-
stances by using the 21 most frequent labels. In our experiments,
we randomly picked up 2,100 instances as the query set, left the
remaining samples as the retrieval set, and randomly chose 10,500
samples from the retrieval set for training.

FashionVC consists of 20,726 image-text pairs collected from the
online fashion community Polyvore. Following [44], we removed la-
bels with less than 25 samples and obtained 19,862 instances. Each
sample has a hierarchical structure label, with 8 coarse-grained
categories in the first level and 27 fine-grained categories in the sec-
ond level. In our experiments, we leveraged the fine-grained labels
and randomly selected 3,000 instances as query set, the remaining
samples are used as retrieval set and training set.

Ssense consists of 25,947 image-text pairs collected from the on-
line fashion community sense. Following the settings of [44], labels
with less than 70 samples are removed and 15,696 instances are
obtained. Similarly, the labels of this dataset are hierarchical, with
4 coarse-grained categories in the first layer and 28 fine-grained
categories in the second layer. In our experiments, we selected
fine-grained labels for annotating samples, and 2,000 instances are
randomly selected as the query set, the remaining image-text pairs
are used as the retrieval set and training set.

4.2 Implementation Details
Backbone Architectures. We adopted two existing deep cross-
modal hashing retrieval frameworks as feature learning backbone
networks for performance evaluation: 1) DCMH [10] for MIRFlickr-
25K and NUS-WIDE; 2) SHDCH [44] for FashionVC and Ssense. We

employed the original codes of both of them as those codes have
already been made publicly available by their authors.

Baselines. We compared our FedCAFE with several state-of-
the-art baselines, including FedAvg [30], FedProx [18], MOON [17],
FedProto [38], FedCMR [50], and PLFedCMH [23].

Heterogeneity. To investigate the effectiveness of FedCAFE
with varying degrees of heterogeneity, we designed two settings:
IID and non-IID. Since the MIRFlickr-25K and NUS-WIDE are multi-
label datasets, it is difficult to simulate them as non-IID scenarios.
Therefore, evaluations on these two datasets belong to the IID set-
ting, where we randomly shuffled the training set and distributed
it equally among the clients. For FashionVC and Ssense datasets,
we followed previous works [31, 46] and used the Dirichlet distri-
bution Dir(𝛽) to simulate the non-IID scenarios, where a smaller 𝛽
indicates stronger heterogeneity among clients. In our experiments,
we set 𝛽 to 0.5 and 0.2 for two situations.

Hyperparameters. For consistency, we set the communication
rounds to 100 and the number of clients to 10 for all methods. For
local training, the batch size is 128, the local training epoch is 20 on
MIRFlickr-25K and NUS-WIDE, and 10 on FashionVC and Ssense.
Additionally, we set the hyperparameter 𝛼 , 𝜂, and 𝛾 of FedCAFE to
0.1, 0.1, and 1 respectively. For specific hyperparameters in baselines,
we kept the same settings as their original papers.

Evaluation Metrics.We conducted two cross-modal retrieval
tasks, which are retrieving texts using an image query (i.e., Image-to-
Text) and retrieving images using a text query (i.e., Text-to-Image).
We also conducted experiments on different lengths of hash codes.
To evaluate the performance of all methods, we used Mean Aver-
age Precision (MAP), the most widely-used evaluation metric in
cross-modal hashing retrieval methods. A higher MAP value indi-
cates better performance. The baselines we compared have both
traditional federated learning and personalized federated learn-
ing settings. For traditional federated learning, we evaluated the
algorithm performance directly on the global model. For personal-
ized federated learning, we evaluated the algorithm performance
based on the average performance of the optimal local model on
each client. To simulate practical personalized federated learning
settings, we distributed the retrieval set and query set to clients
according to their corresponding data heterogeneity and evaluated
the learned models on the clients.



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

FedCAFE: Federated Cross-Modal Hashing
with Adaptive Feature Enhancement ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: The MAP results of different federated learning methods with varying degrees of data heterogeneity on FashionVC.

Methods

𝛽 = 0.5 𝛽 = 0.2

Image-to-Text Text-to-Image Image-to-Text Text-to-Image

16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits
Centralized [44] 0.7620 0.7635 0.7616 0.9414 0.9527 0.9515 0.7620 0.7635 0.7616 0.9414 0.9527 0.9515

Local [44] 0.4006 0.4552 0.4585 0.3465 0.3928 0.3925 0.3128 0.3556 0.3639 0.2586 0.2837 0.2897
FedAvg [30] 0.5852 0.6753 0.7220 0.7368 0.8582 0.8976 0.4681 0.5502 0.6573 0.6321 0.7425 0.8204
FedProx [18] 0.5680 0.6615 0.7089 0.6837 0.8245 0.8623 0.4731 0.5777 0.6592 0.5171 0.6579 0.7580
FedCMR [50] 0.5868 0.6786 0.7228 0.7331 0.8652 0.8995 0.4745 0.5809 0.6587 0.6343 0.7514 0.8213
MOON [17] 0.5820 0.6808 0.7285 0.7024 0.7933 0.8638 0.4694 0.5722 0.6606 0.6399 0.6419 0.7311
FedProto [38] 0.6978 0.7099 0.7231 0.8808 0.9158 0.9030 0.5630 0.5785 0.5823 0.7663 0.8381 0.8109

PLFedCMH [23] 0.6027 0.6840 0.7198 0.7196 0.7726 0.8374 0.4974 0.5823 0.5808 0.5370 0.7583 0.7617
FedCAFE 0.7257 0.7603 0.7527 0.8935 0.9169 0.9093 0.6576 0.6840 0.7007 0.7903 0.8234 0.8310

Table 4: The MAP results of different federated learning methods with varying degrees of data heterogeneity on Ssense.

Methods

𝛽 = 0.5 𝛽 = 0.2

Image-to-Text Text-to-Image Image-to-Text Text-to-Image

16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits
Centralized [44] 0.9692 0.9697 0.9720 0.9820 0.9881 0.9880 0.9692 0.9697 0.9720 0.9820 0.9881 0.9880

Local [44] 0.7161 0.7776 0.7895 0.6763 0.7436 0.7546 0.4888 0.5322 0.5518 0.4388 0.4752 0.4917
FedAvg [30] 0.8936 0.9517 0.9620 0.9386 0.9734 0.9840 0.7653 0.9059 0.9528 0.8028 0.9447 0.9792
FedProx [18] 0.8567 0.9424 0.9590 0.8789 0.9626 0.9773 0.7952 0.8964 0.9390 0.8152 0.9226 0.9715
FedCMR [50] 0.8953 0.9586 0.9631 0.9411 0.9763 0.9855 0.7956 0.9142 0.9537 0.8094 0.9459 0.9760
MOON [17] 0.9446 0.9628 0.9683 0.9549 0.9782 0.9845 0.7871 0.9205 0.9510 0.8028 0.9238 0.9806
FedProto [38] 0.9247 0.9620 0.9676 0.9390 0.9826 0.9845 0.9579 0.9585 0.9613 0.9789 0.9836 0.9825

PLFedCMH [23] 0.9545 0.9595 0.9557 0.9752 0.9827 0.9824 0.8832 0.8983 0.9014 0.8851 0.9366 0.9437
FedCAFE 0.9665 0.9671 0.9658 0.9856 0.9856 0.9860 0.9582 0.9595 0.9570 0.9801 0.9847 0.9832

4.3 Performance Comparisons
We conducted extensive experiments so as to evaluate the effective-
ness of FedCAFE on retrieval accuracy.

MAP Results in IID Scenarios. Table 2 reports the retrieval
performance of all compared algorithms on MIRFLICKR-25K and
NUS-WIDE datasets. The first line reports the performance of cen-
tralized learning, the second line reports the performance of clients
utilizing private data for local training. As shown in Table 2, Fed-
CAFE achieves the best performance in all settings. Compared to
the local trainingmethodwithout federated collaboration, federated
learning methods have both shown performance improvements.
For instance, on MIRFlickr-25K with the hash code length of 64
bits, FedCAFE outperformed the local training method by 7.5% in
Image-to-Text task and 7.26% in Text-to-Image task, demonstrating
the crucial role of federated collaboration during training. This aids
models in acquiring stronger generalization capabilities, thereby
enhancing overall performance. Additionally, compared to MOON,
FedProto achieves higher retrieval accuracy, further proving the
effectiveness of global prototypes, which enable clients to share
global semantic information. However, in contrast, FedCAFE is
more efficient and direct in enhancing sample features through the
utilization of global memory.

To conclude, our proposed method FedCAFE is superior to all
baselines in terms of accuracy.

MAP Results in Non-IID Scenarios. Table 3 reports the per-
formance of all compared algorithms on FashionVC using different
𝛽 values. Table 4 lists the results of all methods on Ssense. In both
tables, the first line reports the performance of centralized learning,
the second line reports the performance of local training. From
these tables, we can have following findings. (1) The proposed Fed-
CAFE achieves the best or comparable performance in most cases
on FashionVC and Ssense. (2) As data heterogeneity increases (𝛽
becomes smaller), retrieval accuracy of all algorithms decreases,
showing that non-IID distribution affects model learning and re-
trieval accuracy. (3) The MAP results of FedCAFE do not exhibit a
significant decrease with the increase of Non-IID degree, demon-
strating its stability and robustness in handling data distribution
differences.

In a word, our method FedCAFE could also perform well in
non-IID scenarios.

4.4 Ablation Analysis
Validity of Functional Components. To verify the necessity of
each component proposed in FedCAFE, Table 5 shows the retrieval
performance of FedCAFE after dropping some elements and losses
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(c)FashionVC, 𝛽 = 0.5
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(d)Ssense, 𝛽 = 0.5

Figure 2: Convergence curves of FedCAFE in 100 communication rounds on four datasets.

Table 5: Validation of the effectiveness of components in
FedCAFE.

AFE L𝐸 L𝐶 L𝑃 WA Image-to-Text Text-to-Image

− − − − − 0.6753 0.8582√ − − − − 0.6764 0.8592√ √ − − − 0.6812 0.8624√ √ √ − − 0.7488 0.9086√ √ √ √ − 0.7548 0.9127√ √ √ √ √
0.7603 0.9169

in 32-bit hash code length on FashionVC with 𝛽 = 0.5. In FedCAFE,
there are two main elements: Adaptive Feature Enhancement mod-
ule (AFE) and Weighted Aggregation strategy (WA), and three loss
terms: feature constraint loss L𝐸 , cosine similarity loss L𝐶 , and
classification loss L𝑃 .

As shown in Table 5, some observations can be found. (1) Fed-
CAFE achieves the best performance when all components are em-
ployed. (2) Removing any component will reduce the performance.
(3) FedCAFE will degrade into the conventional FedAvg when all
components are removed. (4) By introducing the Adaptive Feature
Enhancement module to enhance the raw features and using them
to constrain the raw features, not only the drift of local models of
each client be effectively alleviated, but also the performance of
the global model can be significantly improved. (5) Deleting either
L𝐸 or L𝐶 results in a decrease in retrieval performance, further
highlighting the critical role of these two components. They can
effectively unify the local features of clients into the global semantic
space. To conclude, all components are necessary and effective.

Hyperparameter Sensitivity Analysis. To consider the im-
pact of hyperparameter values, we further conducted experiments
on the trade-off parameter 𝛼 , 𝜂, and 𝛾 in 32-bit hash code length
on FashionVC with the 𝛽 = 0.5 data heterogeneity. We evaluated
and analyzed the performance of FedCAFE by taking values for
𝛼, 𝜂,𝛾 ∈ {0.001, 0.01, 0.1, 1.0, 10, 100}. Figure 3(a) shows the impact
of changing 𝛼 on model performance when 𝜂 and 𝛾 are fixed at
0.1 and 1.0, respectively. Similarly, Figure 3(b) shows the impact of
changing 𝜂 on model performance when 𝛼 and 𝛾 are fixed at 0.1
and 1.0, respectively. Figure 3(c) shows the impact of changing 𝛾 on
model performance when 𝛼 and 𝜂 are fixed at 0.1 and 0.1, respec-
tively. It can be observed that when 𝛼, 𝜂,𝛾 ∈ {0.001, 0.01, 0.1, 1.0},

even under different combinations of hyperparameters, the perfor-
mance of FedCAFE remains relatively satisfactory. In our experi-
ments, we set 𝛼 , 𝜂, and 𝛾 as 0.1, 0.1, and 1.0, respectively.

Communication Rounds Analysis. In order to verify the im-
pact of the number of communication rounds on FedCAFE, experi-
ments were conducted separately on MIRFlickr-25K, NUS-WIDE,
FashionVC, and Ssense with 32-bit hash code length. On FashionVC
and Ssense, the Dirichlet parameter was set to 𝛽 = 0.5. The exper-
imental results are shown in Figure 2. It can be observed that as
the number of communication rounds increases, the performance
of the global model gradually improves and tends to stabilize. By
increasing the number of communication rounds, each client can
share and exchange knowledge thoroughly, thereby promoting the
convergence of the model.
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Figure 3: The impact of different hyperparameter values on
performance.

5 CONCLUSION
In this paper, we propose a novel federated framework FedCAFE,
which could train existing deep cross-modal hashing methods with
distributed data while not sharing or transmitting private data on
clients. FedCAFE uses default backbone networks to extract raw
features of images and texts. Then, an adaptive feature enhance-
ment module is proposed to utilize global semantic knowledge
for enhancing and constraining the raw features. Furthermore, by
leveraging the global knowledge carried in the global model, it can
ensure that features with the same semantics across different clients
are more unified. When aggregating local models on the server,
a new weighted aggregation strategy is presented to improve the
generalization capability of global model. Extensive experiments on
four benchmarks demonstrate the effectiveness and convergence of
the proposed FedCAFE. As the studied topic is vital and promising,
we hope our work will promote further research in this field.
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