
SparseTSF: Modeling Long-term Time Series Forecasting with 1k Parameters

Shengsheng Lin 1 Weiwei Lin 1 2 Wentai Wu 3 Haojun Chen 1 Junjie Yang 1

Abstract
This paper introduces SparseTSF, a novel, ex-
tremely lightweight model for Long-term Time
Series Forecasting (LTSF), designed to address
the challenges of modeling complex temporal
dependencies over extended horizons with min-
imal computational resources. At the heart of
SparseTSF lies the Cross-Period Sparse Forecast-
ing technique, which simplifies the forecasting
task by decoupling the periodicity and trend in
time series data. This technique involves down-
sampling the original sequences to focus on cross-
period trend prediction, effectively extracting pe-
riodic features while minimizing the model’s com-
plexity and parameter count. Based on this tech-
nique, the SparseTSF model uses fewer than 1k
parameters to achieve competitive or superior
performance compared to state-of-the-art mod-
els. Furthermore, SparseTSF showcases remark-
able generalization capabilities, making it well-
suited for scenarios with limited computational
resources, small samples, or low-quality data.
The code is publicly available at this repository:
https://github.com/lss-1138/SparseTSF.

1. Introduction
Time series forecasting holds significant value in domains
such as traffic flow, product sales, and energy consump-
tion, as accurate predictions enable decision-makers to
plan proactively. Achieving precise forecasts typically re-
lies on powerful yet complex deep learning models, such
as RNNs (Zhang et al., 2023), TCNs (Bai et al., 2018;
Franceschi et al., 2019), and Transformers (Wen et al., 2022).
In recent years, there has been a growing interest in Long-
term Time Series Forecasting (LTSF), which demands mod-

1School of Computer Science and Engineering, South China
University of Technology, Guangzhou 510006, China 2Peng Cheng
Laboratory, Shenzhen 518066, China 3College of Information
Science and Technology, Jinan University, Guangzhou 510632,
China. Correspondence to: Weiwei Lin <linww@scut.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

els to provide an extended predictive view for advanced
planning (Zhou et al., 2021).

Although a longer predictive horizon offers convenience,
it also introduces greater uncertainty (Lin et al., 2023b).
This demands models capable of extracting more exten-
sive temporal dependencies from longer historical windows.
Consequently, modeling becomes more complex to cap-
ture these long-term temporal dependencies. For instance,
Transformer-based models often have millions or tens of
millions of parameters, limiting their practical usability, es-
pecially in scenarios with restricted computational resources
(Deng et al., 2024).

In fact, the basis for accurate long-term time series fore-
casting lies in the inherent periodicity and trend of the data.
For example, long-term forecasts of household electricity
consumption are feasible due to the clear daily and weekly
patterns in such data. Particularly for daily patterns, if we
resample the electricity consumption at a certain time of the
day into a daily sequence, each subsequence exhibits similar
or consistent trends. In this case, the original sequence’s pe-
riodicity and trend are decomposed and transformed. That
is, periodic patterns are transformed into inter-subsequence
dynamics, while trend patterns are reinterpreted as intra-
subsequence characteristics. This decomposition offers a
novel perspective for designing lightweight LTSF models.

In this paper, we pioneer the exploration of how to utilize
this inherent periodicity and decomposition in data to con-
struct specialized lightweight time series forecasting mod-
els. Specifically, we introduce SparseTSF, an extremely
lightweight LTSF model. Technically, we propose the Cross-
Period Sparse Forecasting technique (hereinafter referred
to as Sparse technique). It first downsamples the original
sequences with constant periodicity into subsequences, then
performs predictions on each downsampled subsequence,
simplifying the original time series forecasting task into a
cross-period trend prediction task. This approach yields
two benefits: (i) effective decoupling of data periodicity
and trend, enabling the model to stably identify and ex-
tract periodic features while focusing on predicting trend
changes, and (ii) extreme compression of the model’s pa-
rameter size, significantly reducing the demand for computa-
tional resources. As shown in Figure 1, SparseTSF achieves
near state-of-the-art prediction performance with less than

1

SparseTSF: Modeling LTSF with 1k Parameters

1k trainable parameters, which makes it 1∼4 orders of mag-
nitude smaller than its counterparts.

��� ��� ��� ��� ��� ��� ���
����

����

����

����

����

����
 I n f o r m e r (2 0 2 1)
 A u t o f o r m e r (2 0 2 1)
 F E D f o r m e r (2 0 2 2)
 F i L M (2 0 2 2)
 P a t c h T S T (2 0 2 3)
 D L i n e a r (2 0 2 3)
 F I T S (2 0 2 4)
 S p a r s e T S F (O u r s)

Me
an

 Sq
ua

red
 Er

ror
 (M

SE
)

P a r a m e t e r s

Figure 1: Comparison of MSE and parameters between
SparseTSF and other mainstream models on the Electricity
dataset with a forecast horizon of 720.

In summary, our contributions in this paper are as follows:

• We propose a novel Cross-Period Sparse Forecasting
technique, which downsamples the original sequences
to focus on cross-period trend prediction, effectively ex-
tracting periodic features while minimizing the model’s
complexity and parameter count.

• Based on the Sparse technique, we present the
SparseTSF model, which requires fewer than 1k param-
eters, significantly reducing the computational resource
demand of forecasting models.

• The proposed SparseTSF model not only attains com-
petitive or surpasses state-of-the-art predictive accu-
racy with a remarkably minimal parameter scale but
also demonstrates robust generalization capabilities.

2. Related Work
Development of Long-term Time Series Forecasting
The LTSF tasks, which aim at predicting over an extended
horizon, are inherently more challenging. Initially, the
Transformer architecture (Vaswani et al., 2017), known
for its robust long-term dependency modeling capabilities,
gained widespread attention in the LTSF domain. Mod-
els such as Informer (Zhou et al., 2021), Autoformer (Wu
et al., 2021), and FEDformer (Zhou et al., 2022b) have
modified the native structure of Transformer to suit time
series forecasting tasks. More recent advancements, like
PatchTST (Nie et al., 2023) and PETformer (Lin et al.,
2023a), demonstrate that the original Transformer archi-
tecture can achieve impressive results with an appropriate

patch strategy, a technique that is prevalently employed in
the realm of computer vision (Dosovitskiy et al., 2020; He
et al., 2022). Besides Transformer architectures, Convo-
lutional Neural Networks (CNNs) and Multilayer Percep-
trons (MLPs) are also mainstream approaches, including
SCINet (Liu et al., 2022a), TimesNet (Wu et al., 2023),
MICN (Wang et al., 2022), TiDE (Das et al., 2023), and HD-
Mixer (Huang et al., 2024a). Recent studies have shown that
transferring pretrained Large Language Models (LLMs) to
the time series domain can also yield commendable results
(Chang et al., 2024; Jin et al., 2023; Xue & Salim, 2023).
Moreover, recent works have revealed that RNN and GNN
networks can also perform well in LTSF tasks, as exempli-
fied by SegRNN (Lin et al., 2023b) and CrossGNN (Huang
et al., 2024b).

Progress in Lightweight Forecasting Models Since
DLinear (Zeng et al., 2023) demonstrated that simple mod-
els could already extract strong temporal periodic depen-
dencies, numerous studies have been pushing LTSF models
towards lightweight designs, including LightTS(Zhang et al.,
2022), TiDE (Das et al., 2023), TSMixer (Ekambaram et al.,
2023), and HDformer (Deng et al., 2024). Recently, FITS
emerged as a milestone in the lightweight LTSF process,
being the first to reduce the LTSF model scale to the 10k pa-
rameter level while maintaining excellent predictive perfor-
mance (Xu et al., 2024). FITS achieved this by transforming
time-domain forecasting tasks into frequency-domain ones
and using low-pass filters to reduce the required number of
parameters. In this paper, our proposed SparseTSF model
takes lightweight model design to the extreme. Utilizing the
Cross-Period Sparse Forecasting technique, it’s the first to
reduce model parameters to below 1k.

3. Methodology
3.1. Preliminaries

Long-term Time Series Forecasting The task of LTSF
involves predicting future values over an extended horizon
using previously observed multivariate time series (MTS)
data. It is formalized as x̄t+1:t+H = f(xt−L+1:t), where
xt−L+1:t ∈ RL×C and x̄t+1:t+H ∈ RH×C . In this formu-
lation, L represents the length of the historical observation
window, C is the number of distinct features or channels,
and H is the length of the forecast horizon. The main goal
of LTSF is to extend the forecast horizon H as it provides
richer and more advanced guidance in practical applications.
However, an extended forecast horizon H also increases the
complexity of the model, leading to a significant increase in
parameters in mainstream models. To address this challenge,
our research focuses on developing models that are not only
extremely lightweight but also robust and effective.

2

SparseTSF: Modeling LTSF with 1k Parameters

Channel Independent Strategy Recent advancements
in the field of LTSF have seen a shift towards a Channel
Independent (CI) approach, especially when dealing with
multivariate time series data (Han et al., 2024). This strategy
simplifies the forecasting process by focusing on individual
univariate time series within the dataset. Instead of the tra-
ditional approach, which utilizes the entire multivariate his-
torical data to predict future outcomes, the CI method finds
a shared function f : x

(i)
t−L+1:t ∈ RL → x̄

(i)
t+1:t+H ∈ RH

for each univariate series. This approach provides a more
targeted and simplified prediction model for each channel,
reducing the complexity of accounting for inter-channel
relationships.

As a result, the main goal of mainstream state-of-the-art
models in recent years has shifted towards effectively predict
by modeling long-term dependencies, including periodicity
and trends, in univariate sequences. For instance, models
like DLinear achieve this by extracting dominant periodicity
from univariate sequences using a single linear layer (Zeng
et al., 2023). More advanced models, such as PatchTST (Nie
et al., 2023) and TiDE (Das et al., 2023), employ more
complex structures on single channels to extract temporal
dependencies, aiming for superior predictive performance.
In this paper, we adopt this CI strategy as well and focus
on how to create an even more lightweight yet effective
approach for capturing long-term dependencies in single-
channel time series.

3.2. SparseTSF

Given that the data to be forecasted often exhibits constant,
periodicity a priori (e.g., electricity consumption and traf-
fic flow typically have fixed daily cycles), we propose the
Cross-Period Sparse Forecasting technique to enhance the
extraction of long-term sequential dependencies while re-
ducing the model’s parameter scale. Utilizing a single linear
layer to model the LTSF task within this framework leads
to our SparseTSF model, as illustrated in Figure 2.

Cross-Period Sparse Forecasting Assuming that the time
series x

(i)
t−L+1:t has a known periodicity w, the first step

is to downsample the original series into w subsequences
of length n =

⌊
L
w

⌋
. A model with shared parameters is

then applied to these subsequences for prediction. After
prediction, the w subsequences, each of length m =

⌊
H
w

⌋
,

are upsampled back to a complete forecast sequence of
length H .

Intuitively, this forecasting process appears as a sliding
forecast with a sparse interval of w, performed by a fully
connected layer with parameter sharing within a constant
period w. This can be viewed as a model performing sparse
sliding prediction across periods.

Technically, the downsampling process is equivalent to re-
shaping x

(i)
t−L+1:t into a n× w matrix, which is then trans-

posed to a w × n matrix. The sparse sliding prediction is
equivalent to applying a linear layer of size n×m on the last
dimension of the matrix, resulting in a w ×m matrix. The
upsampling step is equivalent to transposing the w ×m ma-
trix and reshaping it back into a complete forecast sequence
of length H .

However, this approach currently still faces two issues: (i)
loss of information, as only one data point per period is
utilized for prediction, while the rest are ignored; and (ii)
amplification of the impact of outliers, as the presence of ex-
treme values in the downsampled subsequences can directly
affect the prediction.

To address these issues, we additionally perform a sliding
aggregation on the original sequence before executing sparse
prediction, as depicted in Figure 2. Each aggregated data
point incorporates information from other points within
its surrounding period, addressing issue (i). Moreover, as
the aggregated value is essentially a weighted average of
surrounding points, it mitigates the impact of outliers, thus
resolving issue (ii). Technically, this sliding aggregation can
be implemented using a 1D convolution with zero-padding
and a kernel size of 2 ×

⌊
w
2

⌋
+ 1. The process can be

formulated as follows:

x
(i)
t−L+1:t = x

(i)
t−L+1:t + Conv1D(x

(i)
t−L+1:t) (1)

Instance Normalization Time series data often exhibit
distributional shifts between training and testing datasets.
Recent studies have shown that employing simple sample
normalization strategies between the input and output of
models can help mitigate this issue (Kim et al., 2021; Zeng
et al., 2023). In our work, we also utilize a straightforward
normalization strategy. Specifically, we subtract the mean of
the sequence from itself before it enters the model and add
it back after the model’s output. This process is formulated
as follows:

x
(i)
t−L+1:t = x

(i)
t−L+1:t − Et(x

(i)
t−L+1:t), (2)

x̄
(i)
t+1:t+H = x̄

(i)
t+1:t+H + Et(x

(i)
t−L+1:t). (3)

Loss Function In alignment with current mainstream prac-
tices in the field, we adopt the classic Mean Squared Er-
ror (MSE) as the loss function for SparseTSF. This func-
tion measures the discrepancy between the predicted values
x̄
(i)
t+1:t+H and the actual ground truth y

(i)
t+1:t+H . It is formu-

lated as:

L =
1

C

C∑
i=1

∥∥∥y(i)t+1:t+H − x̄
(i)
t+1:t+H

∥∥∥2
2
. (4)

3

SparseTSF: Modeling LTSF with 1k Parameters

Downsample UpsampleAggregate

𝑥𝑡−𝐿+1:𝑡 ∈ ℝ
𝐿 𝑥′𝑡−𝐿+1:𝑡 ∈ ℝ

𝐿 𝑿 ∈ ℝ𝑤×𝑛 𝒀 ∈ ℝ𝑤×𝑚 ҧ𝑥𝑡+1:𝑡+𝐻 ∈ ℝ
𝐻

by period w by period wwithin period w
Linear Layer

Aggregating & Downsampling Upsampling

Forecasting

Figure 2: SparseTSF architecture.

3.3. Theoretical Analysis

In this section, we provide a theoretical analysis of the
SparseTSF model, focusing on its parameter efficiency and
the effectiveness of the Sparse technique. The relevant
theoretical proofs are provided in Appendix B.

3.3.1. PARAMETER EFFICIENCY OF SPARSETSF

Theorem 3.1. Given a historical look-back window length
L, a forecast horizon H , and a constant periodicity w, the
total number of parameters required for the SparseTSF
model is

⌊
L
w

⌋
×
⌊
H
w

⌋
+ 2×

⌊
w
2

⌋
+ 1.

In LTSF tasks, the look-back window length L and forecast
horizon H are usually quite large, for instance, up to 720,
while the intrinsic periodicity w of the data is also typically
large, such as 24. In this scenario,

⌊
L
w

⌋
×
⌊
H
w

⌋
+2×

⌊
w
2

⌋
+

1 ≪ L × H . This means that the parameter scale of the
SparseTSF model is much lighter than even the simplest
single-layer linear model. This demonstrates the lightweight
architecture of the SparseTSF model.

3.3.2. EFFECTIVENESS OF SPARSETSF

The time series targeted for long-term forecasting often
exhibits constant periodicity. Here, we first define the repre-
sentation of such a sequence X .
Definition 3.2. Consider a univariate time series X with a
known period w, which can be decomposed into a periodic
component P (t) and a trend component T (t), such that
X(t) = P (t) + T (t). Here, P (t) represents the periodic
part and satisfies the condition:

P (t) = P (t+ w). (5)

Furthermore, we can derive the form of the modeling task
after downsampling.

In the context of a truncated subsequence xt−L+1:t of X(t)
and its corresponding future sequence xt+1:t+H to be fore-
casted, the conventional approach involves using xt−L+1:t

directly to predict xt+1:t+H , essentially estimating the func-
tion:

xt+1:t+H = f(xt−L+1:t) (6)

However, with the application of the Sparse technique, this
forecasting task transforms into predicting downsampled
subsequences, as per Lemma 3.3.
Lemma 3.3. The SparseTSF model reformulates the fore-
casting task into predicting downsampled subsequences,
namely:

x′
t+1:t+m = f(x′

t−n+1:t) (7)

Combining Definition 3.2 and Lemma 3.3, we can further
deduce Theorem 3.4.
Theorem 3.4. Given a time series dataset that satisfies
Definition 3.2, the SparseTSF model’s formulation becomes:

p′t+1:t+m + t′t+1:t+m = f(p′t−n+1:t + t′t−n+1:t) (8)

where, for any i ∈ [t− n+ 1 : t+m] and j ∈ [t− n+ 1 :
t+m], satisfying:

p′i = p′j (9)

Theorem 3.4 implies that the task of the SparseTSF model
effectively transforms into predicting future trend compo-
nents (i.e., t′), using the constant periodic components (i.e.,
p′) as a reference. This process effectively separates the pe-
riodic components, which are no longer explicitly modeled,
allowing the model to focus more on the trend variations.

Intuitively, We can further validate this finding from the
perspective of autocorrelation, a powerful tool for identify-
ing patterns such as seasonality or periodicity in time series
data.
Definition 3.5 (AutoCorrelation Function (ACF) (Madsen,
2007)). Given a time series {Xt}, where t represents dis-
crete time points, the ACF at lag k is defined as:

ACF(k) =
∑N−k

t=1 (Xt − µ)(Xt+k − µ)∑N
t=1(Xt − µ)2

(10)

4

SparseTSF: Modeling LTSF with 1k Parameters

where N is the total number of observations in the time
series, Xt is the value of the series at time t, Xt+k is the
value of the series at time t + k, and µ is the mean of the
series {Xt}.

0 10 20 30 40
Lags

0.0

0.2

0.4

0.6

0.8

1.0

Au
to
co
rre

la
tio

n

(a) Original

0 10 20 30 40
Lags

0.0

0.2

0.4

0.6

0.8

1.0

Au
to
co
rre

la
tio

n

(b) Downsampled

Figure 3: Comparison of autocorrelation in original and
downsampled subsequences for the first channel in the
ETTh1 dataset.

The lag time k in the ACF reveals the periodic patterns in
the series, that is, when k equals the periodic length of the
series, the ACF value typically shows a significant peak.
As shown in Figure 3, the original sequence exhibits clear
periodicity, while the downsampled subsequences retain
only trend characteristics. This demonstrates that, through
its downsampling strategy, the SparseTSF model can effi-
ciently separate and extract accurate periodic features from
time series data. This not only reduces the complexity of
the model but also enables it to focus on predicting trend
variations, thereby exhibiting impressive performance in
LTSF tasks.

In summary, the SparseTSF model’s design, characterized
by its parameter efficiency and focus on decoupling periodic
features, makes it well-suited for LTSF tasks, especially in
scenarios where the data exhibits clear periodic patterns.

4. Experiments
In this section, we present the experimental results of
SparseTSF on mainstream LTSF benchmarks. Addition-
ally, we discuss the efficiency advantages brought by the
lightweight architecture of SparseTSF. Furthermore, we
conduct ablation studies and analysis to further reveal the
effectiveness of the Sparse technique.

4.1. Experimental Setup

Datasets We conducted experiments on four mainstream
LTSF datasets that exhibit daily periodicity. These datasets
include ETTh1&ETTh21, Electricity2, and Traffic3. The

1https://github.com/zhouhaoyi/ETDataset
2https://archive.ics.uci.edu/ml/datasets
3https://pems.dot.ca.gov/

details of these datasets are presented in Table 1.

Table 1: Summary of datasets.

Datasets ETTh1 & ETTh2 Electricity Traffic

Channels 7 321 862
Frequency hourly hourly hourly
Timesteps 17,420 26,304 17,544

Baselines We compared our approach with state-of-the-
art and representative methods in the field. These include
Informer (Zhou et al., 2021), Autoformer (Wu et al., 2021),
Pyraformer (Liu et al., 2022b), FEDformer (Zhou et al.,
2022b), Film (Zhou et al., 2022a), TimesNet (Wu et al.,
2023), and PatchTST (Nie et al., 2023). Additionally, we
specifically compared SparseTSF with lightweight models,
namely DLinear (Zeng et al., 2023) and FITS (Xu et al.,
2024). Following FITS, SparseTSF defaults to a look-back
length of 720.

Environment All experiments in this study were imple-
mented using PyTorch (Paszke et al., 2019) and conducted
on a single NVIDIA RTX 4090 GPU with 24GB of memory.
More experimental details are provided in Appendix A.2.

4.2. Main Results

Table 2 presents a performance comparison between
SparseTSF and other baseline models4. It is observable
that SparseTSF ranks within the top two in all scenarios,
achieving or closely approaching state-of-the-art levels with
a significantly smaller parameter scale. This emphatically
demonstrates the superiority of the Sparse technique pro-
posed in this paper. Specifically, the Sparse technique
is capable of more effectively extracting the periodicity
and trends from data, thereby enabling exceptional predic-
tive performance in long horizon scenarios. Additionally,
the standard deviation of SparseTSF’s results is notably
small. In most cases, the standard deviation across 5 runs is
within 0.001, which strongly indicates the robustness of the
SparseTSF model.

4.3. Efficiency Advantages of SparseTSF

Beyond its powerful predictive performance, another sig-
nificant benefit of the SparseTSF model is its extreme
lightweight nature. Previously, Figure 1 visualized the
parameter-performance comparison of SparseTSF with
other mainstream models. Here, we further present a com-
prehensive comparison between SparseTSF and these base-

4Recent works discovered a long-standing bug in the current
benchmark framework, which may affect model performance on
small datasets (Xu et al., 2024; Qiu et al., 2024). We reporte the
comparison results after fixing this bug in Appendix D.1.

5

SparseTSF: Modeling LTSF with 1k Parameters

Table 2: MSE results of multivariate long-term time series forecasting comparing SparseTSF with other mainstream models.
The top two results are highlighted in bold. The reported results of SparseTSF are averaged over 5 runs with standard
deviation included. ’Imp.’ denotes the improvement compared to the best-performing baseline models.

Dataset ETTh1 ETTh2 Electricity Traffic

Horizon 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

Informer (2021) 0.865 1.008 1.107 1.181 3.755 5.602 4.721 3.647 0.274 0.296 0.300 0.373 0.719 0.696 0.777 0.864
Autoformer (2021) 0.449 0.500 0.521 0.514 0.358 0.456 0.482 0.515 0.201 0.222 0.231 0.254 0.613 0.616 0.622 0.660
Pyraformer (2022b) 0.664 0.790 0.891 0.963 0.645 0.788 0.907 0.963 0.386 0.386 0.378 0.376 2.085 0.867 0.869 0.881
FEDformer (2022b) 0.376 0.420 0.459 0.506 0.346 0.429 0.496 0.463 0.193 0.201 0.214 0.246 0.587 0.604 0.621 0.626

FiLM (2022a) 0.371 0.414 0.442 0.465 0.284 0.357 0.377 0.439 0.154 0.164 0.188 0.236 0.416 0.408 0.425 0.520
TimesNet (2023) 0.384 0.436 0.491 0.521 0.340 0.402 0.452 0.462 0.168 0.184 0.198 0.220 0.593 0.617 0.629 0.640
PatchTST (2023) 0.370 0.413 0.422 0.447 0.274 0.341 0.329 0.379 0.129 0.147 0.163 0.197 0.360 0.379 0.392 0.432
DLinear (2023) 0.374 0.405 0.429 0.440 0.338 0.381 0.400 0.436 0.140 0.153 0.169 0.203 0.410 0.423 0.435 0.464

FITS (2024) 0.375 0.408 0.429 0.427 0.274 0.333 0.340 0.374 0.138 0.152 0.166 0.205 0.401 0.407 0.420 0.456

SparseTSF (ours) 0.359 0.397 0.404 0.417 0.267 0.314 0.312 0.370 0.138 0.146 0.164 0.203 0.382 0.388 0.402 0.445
±0.006 ±0.002 ±0.001 ±0.001 ±0.005 ±0.003 ±0.004 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.002

Imp. +0.011 +0.008 +0.018 +0.010 +0.007 +0.019 +0.017 +0.004 -0.009 +0.001 -0.001 -0.006 -0.022 -0.009 -0.010 -0.013

line models in terms of both static and runtime metrics,
including:

1. Parameters: The total number of trainable parameters
in the model, representing the model’s size.

2. MACs (Multiply-Accumulate Operations): A common
measure of computational complexity in neural net-
works, indicating the number of multiply-accumulate
operations required by the model.

3. Max Memory: The maximum memory usage during
the model training process.

4. Epoch Time: The training duration for a single epoch.
This metric was averaged over 3 runs.

Table 3: Static and runtime metrics of SparseTSF and other
mainstream models on the Electricity Dataset with a forecast
horizon of 720. Here, the look-back length for each model
is set to be consistent with their respective official papers,
such as 336 for DLinear and 720 for FITS.

Model Parameters MACs Max Mem.(MB) Epoch Time(s)

Informer (2021) 12.53 M 3.97 G 969.7 70.1
Autoformer (2021) 12.22 M 4.41 G 2631.2 107.7
FEDformer (2022b) 17.98 M 4.41 G 1102.5 238.7

FiLM (2022a) 12.22 M 4.41 G 1773.9 78.3
PatchTST (2023) 6.31 M 11.21 G 10882.3 290.3

DLinear (2023) 485.3 K 156.0 M 123.8 25.4
FITS (2024) 10.5 K 79.9 M 496.7 35.0

SparseTSF (Ours) 0.92 K 12.71 M 125.2 31.3

Table 3 displays the comparative results. It is evident that
SparseTSF significantly outperforms other models in terms
of static metrics like the number of parameters and MACs,
being over ten times smaller than the next best model. This
characteristic allows SparseTSF to be deployed on devices
with very limited computational resources. Furthermore, in
terms of runtime metrics, Max Memory and Epoch Time,

SparseTSF significantly outperforms other mainstream mod-
els, rivaling the existing lightweight models (i.e., DLinear
and FITS). Herein, DLinear benefits from a shorter look-
back length, achieving the lowest overhead, while FITS and
SparseTSF incur additional overhead due to extra operations
(i.e., Fourier transformation and resampling).

Table 4: Comparison of the scale of parameters on Elec-
tricity dataset between SparseTSF and FITS models under
different configurations of look-back length and forecast
horizon, where SparseTSF operates with w = 24 and FITS
employs COF at the 2th harmonic.

Model SparseTSF (Ours) FITS (2024)

Horizon
Look-back

96 192 336 720 96 192 336 720

96 41 57 81 145 840 1,218 2,091 5,913
192 57 89 137 265 1,260 1,624 2,542 6,643
336 81 137 221 445 1,890 2,233 3,280 7,665
720 145 265 445 925 3,570 3,857 5,125 10,512

Additionally, we conducted a comprehensive comparison
with FITS, a recent milestone work in the field of LTSF
model lightweight progression. The results in Table 4 reveal
that SparseTSF significantly surpasses FITS in terms of pa-
rameter scale under any input-output length configuration.
Therefore, SparseTSF marks another significant advance-
ment in the journey towards lightweight LTSF models.

4.4. Ablation Studies and Analysis

Beyond its ultra-lightweight characteristics, the Sparse tech-
nique also possesses a robust capability to extract periodic
features, which we will delve further into in this section.

Effectiveness of the Sparse Technique The Sparse tech-
nique, combined with a simple single-layer linear model,
forms the core of our proposed model, SparseTSF. Addi-
tionally, the Sparse technique can be integrated with other
foundational models, including the Transformer (Vaswani

6

SparseTSF: Modeling LTSF with 1k Parameters

Table 5: Ablation MSE results of the Sparse technique. All
results are collected with a unified channel-independent and
instance normalization strategy. The ’Boost’ indicates the
percentage of performance improvement after incorporating
the Sparse technique.

Dataset ETTh1 ETTh2

Horizon 96 192 336 720 96 192 336 720

Linear 0.371 0.460 0.417 0.424 0.257 0.337 0.336 0.391
+sparse 0.359 0.397 0.404 0.417 0.267 0.314 0.312 0.370
Boost 3.3% 13.8% 3.1% 1.7% -3.9% 6.9% 7.1% 5.3%

Transformer 0.697 0.732 0.714 0.770 0.340 0.376 0.366 0.468
+sparse 0.406 0.442 0.446 0.489 0.322 0.380 0.353 0.432
Boost 41.7% 39.6% 37.5% 36.5% 5.2% -1.0% 3.6% 7.7%

GRU 0.415 0.529 0.512 0.620 0.296 0.345 0.363 0.454
+sparse 0.356 0.391 0.437 0.455 0.282 0.332 0.356 0.421
Boost 14.1% 26.1% 14.7% 26.7% 4.8% 3.7% 1.9% 7.2%

et al., 2017) and GRU (Cho et al., 2014) models. As demon-
strated in the results of Table 5, the incorporation of the
Sparse technique significantly enhances the performance
of all models, including Linear, Transformer, and GRU.
Specifically, the Linear model showed an average improve-
ment of 4.7%, the Transformer by 21.4%, and the GRU by
12.4%. These results emphatically illustrate the efficacy of
the Sparse technique. Therefore, the Sparse technique can
substantially improve the performance of base models in
LTSF tasks.

Representation Learning of the Sparse Technique In
Section 3.3, we theoretically analyzed the reasons why the
Sparse technique can enhance the performance of forecast-
ing tasks. Here, we further reveal the role of the Sparse
technique from a representation learning perspective. Fig-
ure 3 shows the distribution of normalized weights for both
the trained Linear model and the SparseTSF model. The
weight of the Linear model is an L×H matrix, which can
be directly obtained. However, as the SparseTSF model is a
sparse model, we need to acquire its equivalent weights. To
do this, we first input H one-hot encoded vectors of length
L into the SparseTSF model (when L equals H , this can be
simplified to a diagonal matrix, i.e., diagonal elements are 1,
and other elements are 0). We then obtain and transpose the
corresponding output to get the equivalent L ×H weight
matrix of SparseTSF. When L equals H , this process is
formulated as:

weight′ = SparseTSF(

1 0 . . . 0
0 1 . . . 0
. 0
0 0 0 1

)⊤. (11)

From the visualization in Figure 4, two observations can be
made: (i) The Linear model can learn evenly spaced weight
distribution stripes (i.e., periodic features) from the data,
indicating that single linear layer can already extract the

primary periodic characteristics from a univariate series with
the CI strategy. These findings are consistent with previous
research conclusions (Zeng et al., 2023). (ii) Compared to
the Linear model, SparseTSF learns more distinct evenly
spaced weight distribution stripes, indicating that SparseTSF
has a stronger capability in extracting periodic features. This
phenomenon aligns with the conclusions of Section 3.3.

Therefore, the Sparse technique can enhance the model’s
performance in LTSF tasks by strengthening its ability to
extract periodic features from data.

Impact of the Hyperparameter w The Sparse technique
relies on the manual setting of the hyperparameter w, which
represents the a priori main period. Here, we delve into the
influence of different values of w on the forecast outcomes.
As indicated in the results from Table 6, SparseTSF exhibits
optimal performance when w = 24, aligning with the intrin-
sic main period of the data. Conversely, when w diverges
from 24, a slight decline in performance is observed. This
suggests that the hyperparameter w should ideally be set
consistent with the data’s a priori main period.

Table 6: MSE results of SparseTSF on ETTh1 with varied
hyperparameters w.

Horizon
SparseTSF

(w=6)
SparseTSF

(w=12)
SparseTSF

(w=24)
SparseTSF

(w=48)
FITS

(2024)
DLinear
(2023)

PatchTST
(2023)

96 0.376 0.369 0.359 0.380 0.375 0.374 0.370
192 0.410 0.402 0.397 0.400 0.408 0.405 0.413
336 0.408 0.406 0.404 0.399 0.429 0.429 0.422
720 0.427 0.423 0.417 0.427 0.427 0.440 0.447

Avg. 0.405 0.400 0.394 0.402 0.410 0.412 0.413

In practical scenarios, datasets requiring long-term fore-
casting often exhibit inherent periodicity, such as daily or
weekly cycles, common in domains like electricity, trans-
portation, energy, and consumer goods consumption. There-
fore, empirically identifying the predominant period and
setting the appropriate w for such data is both feasible
and straightforward. However, for data lacking clear pe-
riodicity and patterns, such as financial data, current LTSF
models may not be effective (Zeng et al., 2023). Thus,
the SparseTSF model may not be the preferred choice for
these types of data. Nonetheless, we will further discuss
the existing limitations and potential improvements of the
SparseTSF model in the Section 5.1.

Generalization Ability of the SparseTSF Model The
Sparse technique enhances the model’s ability to extract pe-
riodic features from data. Therefore, the generalization ca-
pability of a trained SparseTSF model on different datasets
with the same principal periodicity is promising. To inves-
tigate this, we further studied the cross-domain generaliza-
tion performance of the SparseTSF model (i.e., training on
a dataset from one domain and testing on a dataset from
another). Specifically, we examined the performance from

7

SparseTSF: Modeling LTSF with 1k Parameters

0 20 40 60 80

0

20

40

60

80

0.0

0.2

0.4

0.6

0.8

1.0

(a) Linear

0 20 40 60 80

0

20

40

60

80

0.0

0.2

0.4

0.6

0.8

1.0

(b) SparseTSF

Figure 4: Visualization of normalized weights of the model trained on the ETTh1 dataset with both look-back length (X-axis)
and forecast horizon (Y-axis) of 96.

ETTh2 to ETTh1, which are datasets of the same type but
collected from different machines, each with 7 variables.
Additionally, we explored the performance from Electric-
ity to ETTh1, where these datasets originate from differ-
ent domains and have a differing number of variables (i.e.,
Electricity has 321 variables). On datasets with different
numbers of variables, models trained with traditional non-
CI strategies (like Informer) cannot transfer, whereas those
trained with CI strategies (like PatchTST) can, due to the de-
coupling of CI strategies from channel relationships. These
datasets all have a daily periodicity, i.e., a prior predominant
period of w = 24.

Table 7: Comparison of generalization capabilities between
SparseTSF and other mainstream models. ’Dataset A →
Dataset B’ indicates training and validation on the training
and validation sets of Dataset A, followed by testing on the
test set of Dataset B.

Dataset ETTh2→ ETTh1 Electricity→ ETTh1

Horizon 96 192 336 720 96 192 336 720

Informer (2021) 0.844 0.921 0.898 0.829 \ \ \ \
Autoformer (2021) 0.978 1.058 0.944 0.921 \ \ \ \
FEDformer (2022b) 0.878 0.927 0.939 0.967 \ \ \ \

FiLM (2022a) 0.876 0.904 0.919 0.925 \ \ \ \
PatchTST (2023) 0.449 0.478 0.482 0.476 0.400 0.424 0.475 0.472
DLinear (2023) 0.430 0.478 0.458 0.506 0.397 0.428 0.447 0.470

Fits (2024) 0.419 0.427 0.428 0.445 0.380 0.414 0.440 0.448
SparseTSF (Ours) 0.370 0.401 0.412 0.419 0.373 0.409 0.433 0.439

Experimental results, as shown in Table 7, reveal that
SparseTSF outperforms other models in both similar do-
main generalization (ETTh2 to ETTh1) and less similar
domain generalization (Electricity to ETTh1). It is expected
that performance on ETTh2 to ETTh1 would be superior to
Electricity to ETTh1. Furthermore, in both scenarios, the
generalization performance of SparseTSF is nearly on par
with the performance of direct modeling in the SparseTSF

source domain as shown in Table 2 and surpasses other base-
lines that model directly in the source domain. This robustly
demonstrates the generalization capability of SparseTSF,
indirectly proving the Sparse technique’s ability to extract
stable periodic features.

Therefore, the SparseTSF model exhibits outstanding gener-
alization capabilities. This characteristic is highly beneficial
for the application of the SparseTSF model in scenarios
involving small samples and low-quality data.

5. Discussion
5.1. Limitations and Future Work

The SparseTSF model proposed in this paper excels in
handling data with a stable main period, demonstrating
enhanced feature extraction capabilities and an extremely
lightweight architecture. However, there are two scenarios
where SparseTSF may not be as effective:

1. Ultra-Long Periods: In cases involving ultra-long pe-
riods (for example, periods exceeding 100), the Sparse
technique results in overly sparse parameter connec-
tions. Consequently, SparseTSF does not perform opti-
mally in such scenarios.

2. Multiple Periods: SparseTSF may struggle with data
that intertwines multiple periods, as the Sparse tech-
nique can only downsample and decompose one main
period.

We have further investigated the performance of SparseTSF
in these scenarios in Appendix C and concluded that: (1)
in ultra-long period scenarios, a denser connected model
would be a better choice; (2) SparseTSF can still perform

8

SparseTSF: Modeling LTSF with 1k Parameters

excellently in some multi-period scenarios (such as daily
periods superimposed with weekly periods).

Finally, one of our key future research directions is to fur-
ther address the these potential limitations by designing
additional modules to enhance SparseTSF’s ability, thus
achieving a balance between performance and parameter
size.

5.2. Differences Compared to Existing Methods

The Sparse technique proposed in this paper involves down-
sampling/upsampling to achieve periodicity/trend decou-
pling. It may share a similar idea with existing methods, as
downsampling/upsampling and periodic/trend decomposi-
tion techniques are prevalent in related literature nowadays.
Specifically, we provide a detailed analysis of the differ-
ences with respect to N-HiTS (Challu et al., 2023) and
OneShotSTL (He et al., 2023) as follows, and present the
comparison results in Appendix D.4.

SparseTSF Compared to N-HiTS N-HiTS incorporates
novel hierarchical interpolation and multi-rate data sampling
techniques to achieve better results (Challu et al., 2023).
The downsampling and upsampling techniques proposed
in SparseTSF are indeed quite different from those used in
N-HiTS, including:

• The downsampling and upsampling in SparseTSF oc-
cur before and after the model’s prediction process,
respectively, whereas N-HiTS conducts these opera-
tions within internally stacked modules.

• SparseTSF’s downsampling involves resampling by a
factor of w to w subsequences of length L/w, which
is technically equivalent to matrix reshaping and trans-
position, whereas N-HiTS employs downsampling
through max-pooling.

• SparseTSF’s upsampling involves transposing and re-
shaping the predicted subsequences back to the origi-
nal sequence, whereas N-HiTS achieves upsampling
through interpolation.

SparseTSF Compared to OneShotSTL Seasonal-trend
decomposition (STD) is a classical and powerful tool for
time series forecasting, and OneShotSTL makes a great
contribution to advancing the lightweight long-term fore-
casting process, featuring fast, lightweight, and powerful
capabilities (He et al., 2023). However, SparseTSF differs
significantly from OneShotSTL in several aspects:

• SparseTSF is a neural network model while OneShot-
STL is a non-neural network method focused on online
forecasting.

• OneShotSTL minimizes residuals and calculates trend
and seasonal subseries separately from the original
sequence with lengths of L, whereas our SparseTSF
resamples the original sequence into w subseries of
length L/w with a constant period w.

• OneShotSTL accelerates inference by optimizing the
original computation for online processing, while
SparseTSF achieves lightweighting by using parameter-
sharing linear layers for prediction across all subseries.

6. Conclusion
In this paper, we introduce the Cross-Period Sparse Fore-
casting technique and the corresponding SparseTSF model.
Through detailed theoretical analysis and experimental val-
idation, we demonstrated the lightweight nature of the
SparseTSF model and its capability to extract periodic
features effectively. Achieving competitive or even sur-
passing the performance of current state-of-the-art models
with a minimal parameter scale, SparseTSF emerges as a
strong contender for deployment in computation resource-
constrained environments. Additionally, SparseTSF exhibits
potent generalization capabilities, opening new possibili-
ties for applications in transferring to small samples and
low-quality data scenarios. SparseTSF stands as another
milestone in the journey towards lightweight models in the
field of long-term time series forecasting. Finally, we aim
to further tackle the challenges associated with extracting
features from ultra-long-periodic and multi-periodic data in
the future, striving to achieve an optimal balance between
model performance and parameter size.

Acknowledgements
This work is supported by Guangdong Major Project of
Basic and Applied Basic Research (2019B030302002), Na-
tional Natural Science Foundation of China (62072187),
Guangzhou Development Zone Science and Technology
Project (2021GH10) and the Major Key Project of PCL,
China under Grant PCL2023A09.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Bai, S., Kolter, J. Z., and Koltun, V. An empirical evalua-

tion of generic convolutional and recurrent networks for
sequence modeling. arXiv preprint arXiv:1803.01271,

9

SparseTSF: Modeling LTSF with 1k Parameters

2018.

Challu, C., Olivares, K. G., Oreshkin, B. N., Ramirez, F. G.,
Canseco, M. M., and Dubrawski, A. Nhits: Neural hi-
erarchical interpolation for time series forecasting. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 37, pp. 6989–6997, 2023.

Chang, C., Wang, W.-Y., Peng, W.-C., and Chen, T.-F.
Llm4ts: Aligning pre-trained llms as data-efficient time-
series forecasters, 2024.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., and Bengio, Y. Learn-
ing phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

Das, A., Kong, W., Leach, A., Mathur, S., Sen, R., and Yu,
R. Long-term forecasting with tide: Time-series dense
encoder. arXiv preprint arXiv:2304.08424, 2023.

Deng, J., Song, X., Tsang, I. W., and Xiong, H. The
bigger the better? rethinking the effective model scale
in long-term time series forecasting. arXiv preprint
arXiv:2401.11929, 2024.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Ekambaram, V., Jati, A., Nguyen, N., Sinthong, P., and
Kalagnanam, J. Tsmixer: Lightweight mlp-mixer model
for multivariate time series forecasting. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 459–469, 2023.

Franceschi, J.-Y., Dieuleveut, A., and Jaggi, M. Unsuper-
vised scalable representation learning for multivariate
time series. Advances in neural information processing
systems, 32, 2019.

Han, L., Ye, H.-J., and Zhan, D.-C. The capacity and ro-
bustness trade-off: Revisiting the channel independent
strategy for multivariate time series forecasting. IEEE
Transactions on Knowledge and Data Engineering, 2024.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick,
R. Masked autoencoders are scalable vision learners. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

He, X., Li, Y., Tan, J., Wu, B., and Li, F. Oneshotstl:
One-shot seasonal-trend decomposition for online time
series anomaly detection and forecasting. arXiv preprint
arXiv:2304.01506, 2023.

Huang, Q., Shen, L., Zhang, R., Cheng, J., Ding, S., Zhou,
Z., and Wang, Y. Hdmixer: Hierarchical dependency with
extendable patch for multivariate time series forecasting.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 38, pp. 12608–12616, 2024a.

Huang, Q., Shen, L., Zhang, R., Ding, S., Wang, B., Zhou,
Z., and Wang, Y. Crossgnn: Confronting noisy multivari-
ate time series via cross interaction refinement. Advances
in Neural Information Processing Systems, 36, 2024b.

Jin, M., Wang, S., Ma, L., Chu, Z., Zhang, J. Y., Shi, X.,
Chen, P.-Y., Liang, Y., Li, Y.-F., Pan, S., et al. Time-llm:
Time series forecasting by reprogramming large language
models. arXiv preprint arXiv:2310.01728, 2023.

Kim, T., Kim, J., Tae, Y., Park, C., Choi, J.-H., and Choo, J.
Reversible instance normalization for accurate time-series
forecasting against distribution shift. In International
Conference on Learning Representations, 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Lin, S., Lin, W., Wu, W., Wang, S., and Wang, Y. Petformer:
Long-term time series forecasting via placeholder-
enhanced transformer. arXiv preprint arXiv:2308.04791,
2023a.

Lin, S., Lin, W., Wu, W., Zhao, F., Mo, R., and Zhang, H.
Segrnn: Segment recurrent neural network for long-term
time series forecasting. arXiv preprint arXiv:2308.11200,
2023b.

Liu, M., Zeng, A., Chen, M., Xu, Z., Lai, Q., Ma, L., and
Xu, Q. Scinet: Time series modeling and forecasting with
sample convolution and interaction. Advances in Neural
Information Processing Systems, 35:5816–5828, 2022a.

Liu, S., Yu, H., Liao, C., Li, J., Lin, W., Liu, A. X., and
Dustdar, S. Pyraformer: Low-complexity pyramidal atten-
tion for long-range time series modeling and forecasting.
In International conference on learning representations,
2022b.

Madsen, H. Time series analysis. CRC Press, 2007.

Nie, Y., H. Nguyen, N., Sinthong, P., and Kalagnanam, J. A
time series is worth 64 words: Long-term forecasting with
transformers. In International Conference on Learning
Representations, 2023.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

10

SparseTSF: Modeling LTSF with 1k Parameters

Qiu, X., Hu, J., Zhou, L., Wu, X., Du, J., Zhang, B., Guo,
C., Zhou, A., Jensen, C. S., Sheng, Z., et al. Tfb: Towards
comprehensive and fair benchmarking of time series fore-
casting methods. arXiv preprint arXiv:2403.20150, 2024.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, H., Peng, J., Huang, F., Wang, J., Chen, J., and Xiao,
Y. Micn: Multi-scale local and global context model-
ing for long-term series forecasting. In The Eleventh
International Conference on Learning Representations,
2022.

Wen, Q., Zhou, T., Zhang, C., Chen, W., Ma, Z., Yan, J.,
and Sun, L. Transformers in time series: A survey. arXiv
preprint arXiv:2202.07125, 2022.

Wu, H., Xu, J., Wang, J., and Long, M. Autoformer: Decom-
position transformers with auto-correlation for long-term
series forecasting. Advances in neural information pro-
cessing systems, 34:22419–22430, 2021.

Wu, H., Hu, T., Liu, Y., Zhou, H., Wang, J., and Long,
M. Timesnet: Temporal 2d-variation modeling for gen-
eral time series analysis. In International Conference on
Learning Representations, 2023.

Xu, Z., Zeng, A., and Xu, Q. Fits: Modeling time series with
10k parameters. In The Twelfth International Conference
on Learning Representations, 2024.

Xue, H. and Salim, F. D. Promptcast: A new prompt-
based learning paradigm for time series forecasting. IEEE
Transactions on Knowledge and Data Engineering, 2023.

Zeng, A., Chen, M., Zhang, L., and Xu, Q. Are transformers
effective for time series forecasting? In Proceedings of
the AAAI conference on artificial intelligence, volume 37,
pp. 11121–11128, 2023.

Zhang, T., Zhang, Y., Cao, W., Bian, J., Yi, X., Zheng, S.,
and Li, J. Less is more: Fast multivariate time series
forecasting with light sampling-oriented mlp structures.
arXiv preprint arXiv:2207.01186, 2022.

Zhang, X., Zhong, C., Zhang, J., Wang, T., and Ng, W. W.
Robust recurrent neural networks for time series forecast-
ing. Neurocomputing, 526:143–157, 2023.

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H.,
and Zhang, W. Informer: Beyond efficient transformer for
long sequence time-series forecasting. In Proceedings of
the AAAI conference on artificial intelligence, volume 35,
pp. 11106–11115, 2021.

Zhou, T., Ma, Z., Wen, Q., Sun, L., Yao, T., Yin, W., Jin,
R., et al. Film: Frequency improved legendre memory
model for long-term time series forecasting. Advances
in Neural Information Processing Systems, 35:12677–
12690, 2022a.

Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L., and Jin,
R. Fedformer: Frequency enhanced decomposed trans-
former for long-term series forecasting. In Interna-
tional conference on machine learning, pp. 27268–27286.
PMLR, 2022b.

11

SparseTSF: Modeling LTSF with 1k Parameters

A. More Details of SparseTSF
A.1. Overall Workflow

The complete workflow of SparseTSF is outlined in Al-
gorithm 1, which takes a univariate historical look-back
window xt−L+1:t as input and outputs the corresponding
forecast results x̄t+1:t+H . By integrating the CI strategy,
i.e., modeling multiple channels using a model with shared
parameters, multivariate time series forecasting can be ef-
fectively achieved.

Algorithm 1 The Overall Pseudocode of SparseTSF

Require: Historical look-back window xt−L+1:t ∈ RL

Ensure: Forecasting horizon x̄t+1:t+H ∈ RH

1: et ←
∑t

i=t−L+1 xi

L /* Calculate the mean of the
look-back window */

2: xt−L+1:t ← xt−L+1:t − et /* Subtract the mean
from each element */

3: xt−L+1:t ← Conv1d(xt−L+1:t, 2 ×
⌊
w
2

⌋
+ 1) +

xt−L+1:t /* Apply 1D convolution on the orig-
inal window */

4: X ← Reshape(xt−L+1:t, (n,w)) /* Reshape
xt−L+1:t into a n× w matrix */

5: Y ← Linear(X⊤)⊤ /* Transpose, apply linear
transformation n→ m, and transpose back */

6: x̄t+1:t+H ← Reshape(Y, (H)) /* Reshape Y
back into a length H sequence */

7: x̄t+1:t+H ← x̄t+1:t+H+et /* Add the mean back
to each element */

Additionally, intuitively, SparseTSF can be perceived as a
sparsely connected linear layer performing sliding predic-
tion across periods, as depicted in Figure 5.

Time

𝑥𝑡−𝐿:𝑡 ҧ𝑥𝑡:𝑡+𝐻
Forecasting

Sliding Aggregation

Sliding Forecasting

Constant Period 𝑤

Figure 5: Schematic illustration of SparseTSF.

A.2. Experimental Details

We implemented SparseTSF in PyTorch (Paszke et al., 2019)
and trained it using the Adam optimizer (Kingma & Ba,
2014) for 30 epochs, with a learning rate decay of 0.8 after
the initial 3 epochs, and early stopping with a patience of
5. The dataset splitting follows the procedures of FITS
and Autoformer, where the ETT datasets are divided into
proportions of 6:2:2, while the other datasets are split into

proportions of 7:1:2.

SparseTSF has minimal hyperparameters due to its simple
design. The period w is set to the inherent cycle of the
data (e.g., w = 24 for ETTh1) or to a smaller value if the
data has an extremely long cycle (e.g., w = 4 for ETTm1).
The choice of batch size depends on the size of the data
samples (i.e., the number of channels). For datasets with
fewer than 100 channels (such as ETTh1), the batch size is
set to 256, while for datasets with fewer than 300 channels
(such as Electricity), the batch size is set to 128. This
setting maximizes the utilization of GPU parallel computing
capabilities while avoiding GPU out-of-memory issues (i.e.,
with NVIDIA RTX 4090, 24GB). Additionally, the learning
rate needs to be set relatively large (i.e., 0.02) due to the very
small number of learnable parameters in SparseTSF. The
complete details can be found in our official repository5.

The baseline results in this paper are from the first version
of the FITS paper6, where FITS adopted a uniform input
length of 720 (we also use an input length of 720 for fair
comparison with it). Here, the input lengths of other base-
lines are set to be consistent with their respective official
input lengths.

B. Theoretical Proofs
Proof of Theorem 3.1

Proof. The SparseTSF model consists of two main compo-
nents: a 1D convolutional layer for sliding aggregation and
a linear layer for sparse sliding prediction. The number of
parameters in the 1D convolutional layer (without bias) is
determined by the kernel size, which is 2×

⌊
w
2

⌋
+1. For the

linear layer (without bias), the number of parameters is the
product of the input and output sizes, which are n =

⌊
L
w

⌋
and m =

⌊
H
w

⌋
, respectively. Thus, the total number of

parameters in the linear layer is n×m.

By combining the parameters from both layers, the total
count is: n×m+2×

⌊
w
2

⌋
+1 =

⌊
L
w

⌋
×
⌊
H
w

⌋
+2×

⌊
w
2

⌋
+

1.

Proof of Lemma 3.3

Proof. Given the original time series xt−L+1:t with length
L, the downsampling process segments it into w subse-
quences, each of which contains every w-th data point from
the original series. The length of each downsampled sub-
sequence, denoted as n, is therefore

⌊
L
w

⌋
, as it collects one

data point from every w time steps from the original series
of length L.

5https://github.com/lss-1138/SparseTSF
6https://arxiv.org/pdf/2307.03756v1.pdf

12

SparseTSF: Modeling LTSF with 1k Parameters

The SparseTSF model then applies a forecasting function f
on each of these downsampled subsequences. The forecast-
ing function f is designed to predict future values of the time
series based on its past values. Specifically, it predicts the
future subsequence x′

t+1:t+m using the past subsequence
x′
t−n+1:t. Here, m is the length of the forecast horizon for

the downsampled subsequences and is given by
⌊
H
w

⌋
, where

H is the original forecast horizon.

Therefore, the SparseTSF model effectively reformulates
the original forecasting task of predicting xt+1:t+H from
xt−L+1:t into a series of smaller tasks. Each of these smaller
tasks involves using the downsampled past subsequence
x′
t−n+1:t to predict the downsampled future subsequence

x′
t+1:t+m. This is represented mathematically as:

x′
t+1:t+m = f(x′

t−n+1:t). (12)

Proof of Theorem 3.4

Proof. Theorem 3.4 is established based on the assump-
tion of a time series dataset that can be decomposed into a
periodic component P (t) and a trend component T (t), as de-
fined in Definition 3.2. This decomposition implies that any
time point in the series X(t) can be expressed as the sum of
its periodic and trend components, i.e., X(t) = P (t)+T (t).

Therefore, for the downsampled subsequences x′
t−n+1:t and

x′
t+1:t+m based on a periodicity w, we have:

x′
t−n+1:t = p′t−n+1:t + t′t−n+1:t, (13)

x′
t+1:t+m = p′t+1:t+m + t′t+1:t+m. (14)

Hence, by combining with Lemma 3.3, the task formulation
of the SparseTSF model can be expressed as:

p′t+1:t+m + t′t+1:t+m = f(p′t−n+1:t + t′t−n+1:t). (15)

Due to the periodic nature of P (t) as defined in Equation 5,
for any two points i and j in the downsampled sequence
(where i, j ∈ [t− n+ 1 : t+m]), the periodic component
remains constant, i.e., p′i = p′j .

This indicates that the task of the SparseTSF model is to
predict future trend components while utilizing a constant
periodic component as a reference.

C. Case Study
C.1. Multi-Period Scenarios

In this section, we specifically examine the performance of
the SparseTSF model in scenarios involving multiple peri-
ods. Specifically, we study its performance on the Traffic

dataset, as traffic flow data not only exhibits distinct daily
periodicity but also demonstrates significant weekly cycles.
For instance, the morning and evening rush hours repre-
sent intra-day cycles, while the different patterns between
weekdays and weekends exemplify weekly cycles.

Figure 6 displays the autocorrelation in the original and day-
period downsampled traffic flow data. It can be observed
that even after downsampling with a daily period, the data
still exhibits a clear weekly cycle (w′ = 7). Under these
circumstances, with SparseTSF only decoupling the primary
daily cycle, will it outperform the original fully connected
linear model?

0 10 20 30 40
Lags

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Au
to
co
rre

la
tio

n

(a) Original

0 10 20 30 40
Lags

0.0

0.2

0.4

0.6

0.8

1.0

Au
to
co
rre

la
tio

n

(b) Downsampled

Figure 6: Comparison of autocorrelation in original and
downsampled subsequences for the last channel in the Traf-
fic dataset.

The results, as shown in Figure 7, indicate that the
SparseTSF model captures stronger daily and weekly pe-
riodic patterns (evident as more pronounced equidistant
stripes) compared to the original approach. This is because,
in the original method, a single linear layer is tasked with
extracting both daily and weekly periodic patterns. In con-
trast, the SparseTSF model, by decoupling the daily cycle,
simplifies the task for its inherent linear layer to only extract
the remaining weekly periodic features. Therefore, even in
scenarios with multiple periods, SparseTSF can still achieve
remarkable performance.

C.2. Ultra-Long Period Scenarios

This section is dedicated to examining the SparseTSF
model’s performance in scenarios characterized by ultra-
long periods. Specifically, our focus is on the
ETTm1&ETTm27 and Weather8 datasets, as detailed in
Table 8. These datasets are distinguished by their primary
periods extending up to 96 and 144, respectively. We eval-
uate the SparseTSF model’s performance under various
settings of the hyperparameter w.

As illustrated in Table 9, when w is set to a large value (for
instance, 144, which aligns with the intrinsic primary period

7https://github.com/zhouhaoyi/ETDataset
8https://www.bgc-jena.mpg.de/wetter

13

SparseTSF: Modeling LTSF with 1k Parameters

0 50 100 150 200 250 300

0

50

100

150

200

250

300

0.0

0.2

0.4

0.6

0.8

1.0

(a) Linear

0 50 100 150 200 250 300

0

50

100

150

200

250

300

0.0

0.2

0.4

0.6

0.8

1.0

(b) SparseTSF

Figure 7: Visualization of normalized weights of the model trained on the Traffic dataset with both look-back length (X-axis)
and forecast horizon (Y-axis) of 336.

Table 8: Summary of datasets with ultra-long periods.

Datasets ETTm1 ETTm2 Weather

Channels 7 7 21
Frequency 15 mins 15 mins 10 mins
Timesteps 69,680 69,680 52,696

of the Weather dataset), the performance of the SparseTSF
model tends to deteriorate. This decline is attributed to the
excessive sparsity in connections caused by a large w, limit-
ing the information available for the model to base its predic-
tions on, thereby impairing its performance. Interestingly,
as w increases, there is a noticeable improvement in the
SparseTSF model’s performance. This observation suggests
that employing denser connections within the SparseTSF
framework could be a more viable option for datasets with
longer periods.

Furthermore, an intriguing phenomenon is observed when
w = 1, which corresponds to the scenario of employing a
fully connected linear layer for prediction. The performance
in this case is inferior compared to sparse connection-based
predictions. This indicates that an appropriate level of spar-
sity in connections (even when the sparse interval does not
match the dataset’s inherent primary period) can enhance
the model’s predictive accuracy. This could be due to the
redundant nature of time series data, especially when data
sampling is dense. In such cases, executing sparse pre-
dictions might help eliminate some redundant information.
However, these findings necessitate further investigation and
exploration in future work.

The findings above suggest that employing a denser sparse
strategy would be beneficial in such cases. Therefore,
we present in Table 10 a comparative performance of

Table 9: MSE results of SparseTSF on ultra-long period
datasets with varied hyperparameters w. The forecast hori-
zon is set as 720.

Dataset Parameter w

144 72 48 24 12 6 2 1

ETTm1 0.450 0.450 0.422 0.422 0.421 0.415 0.415 0.429
ETTm2 0.375 0.371 0.373 0.352 0.354 0.349 0.349 0.357
Weather 0.332 0.329 0.325 0.321 0.319 0.319 0.318 0.322

SparseTSF against other models under the setting of w = 4,
where SparseTSF ranks within the top 3 in most cases. In
this scenario, SparseTSF remains significantly lighter com-
pared to other mainstream models. This indicates that the
Sparse forecasting technique not only effectively reduces pa-
rameter size but also enhances prediction accuracy in most
scenarios.

D. More Results and Analysis
D.1. Comparison Results after Fixing the Code Bug

Recent research has discovered a long-standing bug in the
popular codebase used in the field since the introduction of
the Informer (Zhou et al., 2021). This bug, which affected
the calculation of test set metrics, caused the data that did
not fill an entire batch to be discarded (Qiu et al., 2024). As
a result, the batch size setting influenced the results. Theo-
retically, the larger the batch size, the more test data might
be discarded, leading to incorrect results. This bug signif-
icantly improved the performance on ETTh1 and ETTh2
datasets when the batch size was large, while the impact on
other datasets was relatively minor.

To reassess the performance of SparseTSF, we present the
performance of SparseTSF and existing models after fixing

14

SparseTSF: Modeling LTSF with 1k Parameters

Table 10: MSE results on ultra-long period datasets comparing SparseTSF (w = 4) with other mainstream models. The
ranking of SparseTSF’s performance is shown in parentheses.

Dataset ETTm1 ETTm2 Weather

Horizon 96 192 336 720 96 192 336 720 96 192 336 720

Informer (2021) 0.672 0.795 1.212 1.166 0.365 0.533 1.363 3.379 0.300 0.598 0.578 1.059
Autoformer (2021) 0.505 0.553 0.621 0.671 0.255 0.281 0.339 0.433 0.266 0.307 0.359 0.419
Pyraformer (2022b) 0.543 0.557 0.754 0.908 0.435 0.730 1.201 3.625 0.896 0.622 0.739 1.004
FEDformer (2022b) 0.379 0.426 0.445 0.543 0.203 0.269 0.325 0.421 0.217 0.276 0.339 0.403

TimesNet (2023) 0.338 0.374 0.410 0.478 0.187 0.249 0.321 0.408 0.172 0.219 0.280 0.365
PatchTST (2023) 0.293 0.333 0.369 0.416 0.166 0.223 0.274 0.362 0.149 0.194 0.245 0.314
DLinear (2023) 0.299 0.335 0.369 0.425 0.167 0.221 0.274 0.368 0.176 0.218 0.262 0.323

FITS (2024) 0.305 0.339 0.367 0.418 0.164 0.217 0.269 0.347 0.145 0.188 0.236 0.308

SparseTSF (ours) 0.314(4) 0.343(4) 0.369(2) 0.418(2) 0.165(2) 0.218(2) 0.272(2) 0.35(2) 0.172(3) 0.215(3) 0.26(3) 0.318(3)

Table 11: MSE results of multivariate long-term time series forecasting comparing SparseTSF with other mainstream models
after fixing code bug. The top two results are highlighted in bold.

Dataset ETTh1 ETTh2 Electricity Traffic

Horizon 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

FEDformer (2022b) 0.375 0.427 0.459 0.484 0.340 0.433 0.508 0.480 0.188 0.197 0.212 0.244 0.573 0.611 0.621 0.630
TimesNet (2023) 0.384 0.436 0.491 0.521 0.340 0.402 0.452 0.462 0.168 0.184 0.198 0.220 0.593 0.617 0.629 0.640
PatchTST (2023) 0.385 0.413 0.440 0.456 0.274 0.338 0.367 0.391 0.129 0.149 0.166 0.210 0.366 0.388 0.398 0.457
DLinear (2023) 0.384 0.443 0.446 0.504 0.282 0.350 0.414 0.588 0.140 0.153 0.169 0.204 0.413 0.423 0.437 0.466

FITS (2024) 0.382 0.417 0.436 0.433 0.272 0.333 0.355 0.378 0.145 0.159 0.175 0.212 0.398 0.409 0.421 0.457
SparseTSF (ours) 0.362 0.403 0.434 0.426 0.294 0.339 0.359 0.383 0.138 0.151 0.166 0.205 0.389 0.398 0.411 0.448

this bug in Table 11. Here, we reran FITS under the condi-
tions of lookback L = 720 and cutoff frequency COF = 5
(where the parameter count of SparseTSF is still tens of
times smaller than that of FITS) for a fair comparison with
SparseTSF. The results for other baselines were sourced
from FITS’ reproduction, where they reran the baselines’
results after fixing the bug (Xu et al., 2024). As shown,
after fixing the code bug, SparseTSF still achieves impres-
sive performance with minimal overhead, aligning with the
conclusions of Table 2.

D.2. Impacts of Varying Look-Back Length

The look-back length determines the richness of historical
information the model can utilize. Generally, models are
expected to perform better with longer input lengths if they
possess robust long-term dependency modeling capabilities.
Table 12 presents the performance of SparseTSF at different
look-back lengths.

It can be observed that two phenomena occur: (i) longer
look-back windows perform better, indicating SparseTSF’s
ability in long-term dependency modeling, and (ii) the per-
formance of the ETTh1 & ETTh2 datasets remains relatively
stable across different look-back windows, while the per-
formance of the Traffic & Electricity datasets varies signifi-
cantly, especially with a look-back of 96, where the accuracy
notably decreases.

In fact, we can further discuss the reasons behind the second
point. As illustrated in Figure 3, ETTh1 only exhibits a

significant daily periodic pattern (w = 24). In this case,
look-back lengths of 96 can achieve good results because
they fully encompass the daily periodic pattern. However,
as shown in Figure 7, Traffic not only has a significant daily
periodic pattern (w = 24) but also a noticeable weekly
periodic pattern (w = 168). In this case, a look-back of
96 cannot cover the entire weekly periodic pattern, leading
to a significant performance drop. This underscores the
necessity of sufficiently long look-back lengths (at least
covering the entire cycle length) for accurate prediction.
Given the extreme lightweight nature of SparseTSF, we
strongly recommend providing sufficiently long look-back
windows whenever feasible.

D.3. Impacts of Instance Normalization

Instance Normalization (IN) strategy has become popular
in mainstream methods. We also employ this strategy in
SparseTSF to enhance its performance on datasets with
significant distribution drift. We showcase the impact of the
IN strategy in Table 13.

It can be observed that IN is necessary for smaller datasets,
namely ETTh1 and ETTh2 datasets. However, its effect
is relatively limited on larger datasets such as Traffic and
Electricity datasets. It must be clarified that, although the
IN strategy is one of the factors contributing to SparseTSF’s
success, it is not the key differentiator of SparseTSF’s core
contributions compared to other models.

15

SparseTSF: Modeling LTSF with 1k Parameters

Table 12: MSE results of SparseTSF with varied look-back lengths.

Dataset ETTh1 ETTh2 Electricity Traffic

Horizon
Look-back

96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

96 0.380 0.371 0.393 0.354 0.288 0.285 0.272 0.278 0.209 0.160 0.146 0.138 0.672 0.455 0.412 0.383
192 0.433 0.434 0.418 0.398 0.363 0.346 0.323 0.315 0.202 0.166 0.154 0.147 0.608 0.453 0.415 0.388
336 0.447 0.420 0.390 0.405 0.366 0.335 0.314 0.311 0.217 0.184 0.172 0.164 0.609 0.468 0.428 0.403
720 0.451 0.426 0.413 0.418 0.407 0.389 0.372 0.371 0.259 0.223 0.210 0.205 0.650 0.493 0.462 0.446

Avg. 0.428 0.413 0.404 0.394 0.356 0.339 0.320 0.319 0.222 0.183 0.171 0.163 0.635 0.467 0.429 0.405

Table 13: Ablation results of IN strategy in SparseTSF.

Dataset ETTh1 ETTh2 Electricity Traffic

Horizon w/ IN w/o IN w/ IN w/o IN w/ IN w/o IN w/ IN w/o IN

96 0.359 0.37 0.267 0.327 0.138 0.138 0.382 0.382
192 0.397 0.413 0.314 0.426 0.146 0.146 0.388 0.387
336 0.404 0.431 0.312 0.482 0.164 0.163 0.402 0.401
720 0.417 0.462 0.37 0.866 0.203 0.198 0.445 0.444

D.4. Comparison Results with N-HiTS and
OneShotSTL

Table 14: Comparison Results with N-HiTS and OneShot-
STL. In this comparison, SparseTSF and N-HiTS are evalu-
ated based on multivariate prediction results (MSE), while
SparseTSF and OneShotSTL are compared using univariate
prediction results (MAE). Their results are sourced from
their respective official papers.

Dataset Horizon Nhit SparseTSF OneShotSTL SparseTSF

ETTm2

96 0.176 0.165 0.211 0.187
192 0.245 0.218 0.244 0.233
336 0.295 0.272 0.273 0.268
720 0.401 0.350 0.321 0.324

Electricity

96 0.147 0.138 0.331 0.314
192 0.167 0.146 0.355 0.334
336 0.186 0.164 0.389 0.366
720 0.243 0.203 0.444 0.416

Traffic

96 0.402 0.382 0.181 0.179
192 0.42 0.388 0.181 0.175
336 0.448 0.402 0.182 0.184
720 0.539 0.445 0.199 0.203

Here, we present the comparison results between SparseTSF
and N-HiTS and OneShotSTL in Table 14. It can be ob-
served that in most cases, SparseTSF outperforms these
methods, demonstrating the superiority of the SparseTSF
approach.

16

