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Abstract

We study the interplay between communication and feedback in a cooperative online learning
setting, where a network of communicating agents learn a common sequential decision-making
task through a feedback graph. We bound the network regret in terms of the independence
number of the strong product between the communication network and the feedback graph.
Our analysis recovers as special cases many previously known bounds for cooperative online
learning with expert or bandit feedback. We also prove an instance-based lower bound,
demonstrating that our positive results are not improvable except in pathological cases.
Experiments on synthetic data confirm our theoretical findings.

1 Introduction

Nonstochastic online learning with feedback graphs (Mannor and Shamir, 2011) is a sequential decision-making
setting in which, at each decision round, an oblivious adversary assigns losses to all actions in a finite set.
What the learner observes after choosing an action is determined by a feedback graph defined on the action
set. Unlike bandit feedback, where a learner choosing an action pays and observes the corresponding loss,
in the feedback graph setting the learner also observes (without paying) the loss of all neighboring actions
in the graph. Special cases of this setting are prediction with expert advice (where the graph is a clique)
and multiarmed bandits (where the graph has no edges). The Exp3-SET algorithm (Alon et al., 2017) is
known to achieve a regret scaling with the square root of the graph independence number, and this is optimal
up to a logarithmic factor in the number of actions. In recommendation systems, feedback graphs capture
situations in which a user’s reaction to a recommended product allows the system to infer what reaction
similar recommendations would have elicited in the same user, see Alon et al. (2017) for more examples.

Online learning has been also investigated in distributed settings, in which a network of cooperating agents
solves a common task. At each time step, some agents become active, implying that they are requested to
make predictions and pay the corresponding loss. Agents cooperate through a communication network by
sharing the feedback obtained by the active agents. The time this information takes to travel the network
is taken into account: a message broadcast by an agent is received by another agent after a delay equal
to the shortest path between them. Regret in cooperative online learning has been previously investigated
only in the full-information setting (Cesa-Bianchi et al., 2020; Hsieh et al., 2022) and in the bandit setting
(Cesa-Bianchi et al., 2019; Bar-On and Mansour, 2019a).

In this work we provide a general solution to the problem of cooperative online learning with feedback graphs.
In doing so, we generalize previous approaches and also clarify the impact on the regret of the mechanism
governing the activation of agents. Under the assumption that agents are stochastically activated, our analysis
captures the interplay between the communication graph (over the agents) and the feedback graph (over
the actions), showing that the network regret scales with the independence number of the strong product
between the communication network and the feedback graph.

More precisely, we design a distributed algorithm, Exp3-α2, whose average regret RT /Q (where Q is the
expected number of simultaneously active agents) on any communication network N and any feedback graph
F is (up to log factors)

RT
Q

O=

√√√√(α(Nn � F
)

Q
+ 1 + n

)
T (1)
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where T is the horizon, n is the diffusion radius (the maximum delay after which feedback is ignored),
and α

(
Nn � F

)
is the independence number of the strong product between the n-th power Nn of the

communication network N and the feedback graph F . We also prove a near-matching instance-dependent
lower bound showing that, with the exception of pathological cases, for any pair of graphs (N,F ), no algorithm
can have regret smaller than

√(
α(Nn � F )/Q

)
T .

Our results hold for any diffusion radius n, which serves as a parameter to control the message complexity
of the protocol. When n is equal to the diameter of the communication network, then every agent can
communicate with every other agent. Our protocol is reminiscent of the local communication model in
distributed computing (Linial, 1992; Suomela, 2013), where the output of a node depends only on the inputs
of other nodes in a constant-size neighborhood of it, and the goal is to derive algorithms whose running time
is independent of the network size. Although our tasks have no completion time, in our model each node is
directly influenced only by a constant-size neighborhood around it.

Let |A| and |K| be, respectively, the number of agents and actions. When Q = |A| (all agents are always
active) and F is the bandit graph (no edges), then α(Nn � F ) = |K|α(Nn) and we recover the bound√(

α(Nn) |K| / |A|+ 1 + n
)
T of Cesa-Bianchi et al. (2019). When n = 1 and F is the expert graph (clique),

then α(Nn � F ) = α(N) and we recover the bound
√(

α(N)/Q+ 1
)
T of Cesa-Bianchi et al. (2020)1.

Interestingly, if all agents were always active in Cesa-Bianchi et al. (2020), the graph topology would become
irrelevant in the expert setting, resulting in a simplified regret bound of O(

√
T ), analogous to the case of a

clique graph. This starkly contrasts with the bandit case of Cesa-Bianchi et al. (2019), where even when
all agents are active simultaneously, the graph topology explicitly appears in the regret bound. Finally, in
the non-cooperative case (N is the bandit graph), we obtain

√
|A|α(F )T/Q which, for |A| = 1 and Q = 1,

recovers the bound of Alon et al. (2017). The table below summarizes all known bounds (omitting log factors
and setting, for simplicity, Q = 1 and n = 0).

|N | = 1 Any N

F = clique (experts)
√
T (Freund and Schapire, 1997)

√
α(N)T (Cesa-Bianchi et al., 2020)

F = no edges (bandits)
√

|K|T (Auer et al., 2002)
√
α(N)|K|T (Cesa-Bianchi et al., 2019)

Any F
√
α(F )T (Alon et al., 2017)

√
α(N � F )T (this work)

Our lower bound holds irrespective of the cooperative strategy of the agents, who may have full knowledge of
the network topology. On the other hand, our upper bound holds even with the so-called oblivious network
interface; i.e., when agents are oblivious to the global network topology and run an instance of the same
algorithm using a common initialization and a common learning rate for their updates. In this case, the
stochastic activation assumption is necessary to not incur in a linear regret RT = Ω(T ) Cesa-Bianchi et al.
(2020).

Our core and main technical contributions are presented in Lemma 1 and Theorem 1 for the upper bound,
and in Lemma 2 and Theorem 2 for the lower bound. Lemma 1, implies that the second moment of the loss
estimates is dominated by the independence number of the strong product between the two graphs. The proof
of this result generalizes the analysis of (Cesa-Bianchi et al., 2019, Lemma 3), identifying the strong product
as the appropriate notion for capturing the combined effects of the communication and feedback graphs. In
Theorem 1, we present a new analysis, in the distributed learning setting, of the “drift” term arising from the
decomposition of network regret. This is obtained by combining Lemma 1 with a regret analysis technique
developed by Gyorgy and Joulani (2021) for a single agent. The proof of the lower bound in Theorem 2
builds upon a new reduction to the setting of Lemma 2 that we prove in Appendix A. Lemma 2 contains a
lower bound for a single-agent setting with a feedback graph and oblivious adversary where every time step is
independently skipped with a known and constant probability q. This reduction is new and necessary, since
it is not enough to claim that the average number of rounds played is qT and plug this in the lower bound
for bandit with feedback graphs. In fact, one needs to build an explicit assignment of `1, . . . , `T such that

1This is a reformulation of the bound originally proven by Cesa-Bianchi et al. (2020), see Section C of the Supplementary
Material for a proof.
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by averaging over the random subset of active time steps it is possible to prove the lower bound under the
conditions detailed in Lemma 2. In Section 6, we corroborate our theoretical results with experiments on
synthetic data.

2 Further related work

Adversarial losses. A setting closely related to ours is investigated by Herbster et al. (2021). However,
they assume that the learner has full knowledge of the communication network—a weighted undirected
graph—and provide bounds for a harder notion of regret defined with respect to an unknown smooth function
mapping users to actions. Bar-On and Mansour (2019b) bound the individual regret (as opposed to our
network regret) in the adversarial bandit setting of Cesa-Bianchi et al. (2019), in which all agents are active
at all time steps. Their results, as well as the results of Cesa-Bianchi et al. (2019), have been extended to
cooperative linear bandits by Ito et al. (2020). Della Vecchia and Cesari (2021) study cooperative linear
semibandits and focus on computational efficiency. Dubey et al. (2020a) show regret bounds for cooperative
contextual bandits, where the reward obtained by an agent is a linear function of the contexts. Nakamura
et al. (2023) consider cooperative bandits in which agents dynamically join and leave the system.

Stochastic losses. Cooperative stochastic bandits are also an important topic in the online learning
community. Kolla et al. (2018) study a setting in which all agents are active at all time steps. In our model,
this corresponds to the special case where the feedback graph is a bandit graph (no edges) and the activation
probabilities q(v) are equal to 1 for all agents v. More importantly, however, they focus on a stochastic
multi-armed bandit problem. Hence, even restricting to the special cases of bandits with simultaneous
activation, their algorithmic ideas cannot be directly applied to our adversarial setting. Other recently studied
variants of cooperative stochastic bandits consider agent-specific restrictions on feedback (Chen et al., 2021)
or on access to arms (Yang et al., 2022), bounded communication (Martínez-Rubio et al., 2019), corrupted
communication (Madhushani et al., 2021), heavy-tailed reward distributions (Dubey et al., 2020b), stochastic
cooperation models (Chawla et al., 2020), strategic agents (Dubey and Pentland, 2020), and Bayesian agents
(Lalitha and Goldsmith, 2021). Multi-agent bandits have been also studied in federated learning settings
with star-shaped communication networks (He et al., 2022; Li and Wang, 2022) in the presence of adversarial
(as opposed to stochastic) agent activations. Finally, Liu et al. (2021) investigate a decentralized stochastic
bandit network for matching markets.

3 Notation and setting

Our graphs are undirected and contain all self-loops. For any undirected graph G = (V,E) and all m ≥ 0, we
let δG(u, v) be the shortest-path distance (in G) between two vertices u, v ∈ V , Gm the m-th power of G (i.e.,
the graph with the same set of vertices V of G but in which two vertices u, v ∈ V are adjacent if and only
if δG(u, v) ≤ m), α(G) the independence number of G (i.e., the largest cardinality of a subset I of V such
that δG(u, v) > 1 for all distinct u, v ∈ I), and NG(v) the neighborhood {u ∈ V : δG(u, v) ≤ 1} of a vertex
v ∈ V . To improve readability, we sometimes use the alternative notations αm(G) for α

(
Gm
)
and NG

m(v) for
NGm(v). Finally, for any two undirected graphs G = (V,E) and G′ = (V ′, E′), we denote by G�G′ their
strong product, defined as the graph with set of vertices V × V ′ in which (v, v′) is adjacent to (u, u′) if and
only if (v, v′) ∈ NG(u)×NG′(u′).

An instance of our problem is parameterized by:

1. A communication network N = (A,EN ) over a set A of agents, and a maximum communication
delay n ≥ 0, limiting the communication among agents.

2. A feedback graph F = (K,EF ) over a set K of actions.
3. An activation probability q(v) > 0 for each agent v ∈ A,2 determining the subset of agents

incurring losses on that round. Let Q =
∑
v∈A q(v) be the expected cardinality of this subset.

2We assume without loss of generality that q(v) 6= 0 for all agents v ∈ A. The definition of regret (2) and all subsequent
results could be restated equivalently in terms of the restriction N ′ = (A′, E′N ) of the communication network N , where
A′ = {v ∈ A : q(v) > 0} and for all u, v ∈ A′, (u, v) ∈ E′N if and only if (u, v) ∈ E′N .
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4. A sequence `1, `2, . . . : K → [0, 1] of losses, chosen by an oblivious adversary.

We assume the agents do not know N (see the oblivious network interface assumption introduced later). The
only assumption we make is that each agent knows the pairs

(
v, q(v)

)
for all agents v located at distance n

or less.3

The distributed learning protocol works as follows. At each round t = 1, 2, . . ., each agent v is activated
with a probability q(v), independently of the past and of the other agents. Agents that are not activated
at time t remain inactive for that round. Let At be the subset of agents that are activated at time t. Each
v ∈ At plays an action It(v) drawn according to its current probability distribution pt(·, v), is charged the
corresponding loss `t

(
It(v)

)
, and then observes the losses `t(i), for any action i ∈ NF

1
(
It(v)

)
. Afterwards,

each agent v ∈ A broadcasts to all agents u ∈ NN
n (v) in its n-neighborhood a feedback message containing all

the losses observed by v at time t together with its current distribution pt(·, v); any agent u ∈ NN
n (v) receives

this message at the end of round t+ δN (v, u). Note that broadcasting a message in the n-neighborhood of an
agent v can be done when v knows only its 1-neighborhood. Indeed, because messages are time-stamped
using a global clock, v drops any message received from an agent outside its n-neighborhood. On the other
hand, v may receive more than once the same message sent by some agent in its n-neighborhood. To avoid
making a double update, an agent can extract from each received message the timestamp together with the
index of the sender, and keep these pairs stored for n time steps.

Each loss observed by an agent v (either directly or in a feedback message) is used to update its local
distribution pt(·, v). To simplify the analysis, updates are postponed, i.e., updates made at time t involve
only losses generated at time t− n− 1. This means that agents may have to store feedback messages for up
to n+ 1 time steps before using them to perform updates.

The online protocol can be written as follows.

At each round t = 1, 2, . . .
1. Each agent v is independently activated with probability q(v);
2. Each active agent v draws an action It(v) from K according to its current distribution
pt(·, v), is charged the corresponding loss `t

(
It(v)

)
, and observes the set of losses Lt(v) ={(

i, `t(i)
)

: i ∈ NF
1
(
It(v)

)}
3. Each agent v broadcasts to all agents u ∈ NN

n (v) the feedback message(
t, v, Lt(v), pt(·, v)

)
, where Lt(v) = ∅ if v /∈ At

4. Each agent v receives the feedback message
(
t− s, u, Lt−s(u), pt−s(·, u)

)
from each agent

u such that δN (v, u) = s, for all s ∈ [n]

Similarly to Cesa-Bianchi et al. (2019), we assume the feedback message sent out by an agent v at time t
contains the distribution pt(·, v) used by the agent to draw actions at time t. This is needed to compute the
importance-weighted estimates of the losses, bt(i, v), see (3).

The goal is to minimize the network regret

RT = max
i∈K

E

[
T∑
t=1

∑
v∈At

`t
(
It(v)

)
−

T∑
t=1
|At| `t(i)

]
(2)

where the expectation is taken with respect to the activations of the agents and the internal randomization of
the strategies drawing the actions It(v). Since the active agents At are chosen i.i.d. from a fixed distribution,
we also consider the average regret

RT
Q

= 1
Q
E

[
T∑
t=1

∑
v∈At

`t
(
It(v)

)]
−min

i∈K

T∑
t=1

`t(i)

3This assumption can be relaxed straightforwardly by assuming that each agent v only knows q(v), which can then be
broadcast to the n-neighborhood of v as the process unfolds.
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where Q = E
[
|At|

]
> 0 for all t.

In our setting, each agent locally runs an instance of the same online algorithm. We do not require any
ad-hoc interface between each local instance and the rest of the network. In particular, we make the following
assumption (Cesa-Bianchi et al., 2020).
Assumption 1 (Oblivious network interface). An online algorithm Alg is run with an oblivious network
interface if:

1. Each agent v locally runs a local instance of Alg
2. All local instances use the same initialization and the same strategy for updating the learning rates
3. All local instances make updates while being oblivious to whether or not their host node v was active

and when

This assumption implies that each agent’s instance is oblivious to both the network topology and the location
of the agent in the network. Its purpose is to show that communication improves learning rates even
without any network-specific tuning. In concrete applications, one might use ad-hoc variants that rely on the
knowledge of the task at hand, and decrease the regret even further. However, the lower bound we prove in
Theorem 2 shows that in most instances the regret cannot be greatly decreased even when agents have full
knowledge of the graph.

4 Upper bound

In this section, we introduce Exp3-α2 (Algorithm 1), an extension of the Exp3-Coop algorithm by Cesa-
Bianchi et al. (2019), and analyze its network regret when run with an oblivious network interface.

Algorithm 1: Exp3-α2 (Locally run by each agent v ∈ A)
input: learning rates η1(v), η2(v) . . .
for t = 1, 2, . . . , n+ 1 do

if v is active in this round, draw It(v) from K uniformly at random
for t ≥ n+ 2 do

if v is active in this round, draw It(v) from K according to pt(·, v) in (3)

An instance of Exp3-α2 is locally run by each agent v ∈ A. The algorithm is parameterized by its (variable)
learning rates η1(v), η2(v), . . . , which, in principle, can be arbitrary (measurable) functions of the history.
In all rounds t in which the agent is active, v draws an action It(v) according to a distribution pt(·, v). For
the first n+ 1 rounds t, pt(·, v) is the uniform distribution over K. During all remaining time steps t, the
algorithm computes exponential weights using all the available feedback generated up to (and including)
round t− n− 1. More precisely, for any action i ∈ K,

pt(i, v) = wt(i, v)/ ‖wt(·, v)‖1
wt(i, v) = exp

(
−ηt(v)

∑t−n−1
s=1

̂̀
s(i, v)

)
̂̀
s(i, v) = `s(i)Bs(i, v)/bs(i, v)

Bs(i, v) = I
{
∃u ∈ NN

n (v) : u ∈ As, Is(u) ∈ NF
1 (i)

}
bs(i, v) = 1−

∏
u∈NN

n (v)
(
1− q(u)

∑
j∈NF

1 (i) ps(j, u)
)

(3)

The event Bs(i, v) indicates whether an agent in the n-neighborhood of v played at time s an action in the
1-neighborhood of i. If Bs(i, v) occurs, then agent v can use ̂̀s(i, v) to update the local estimate for the
cumulative loss of i. Note that ̂̀s(i, v) are proper importance-weighted estimates, as Es−n

[̂̀
s(i, v)

]
= `s(i)

for all v ∈ A, i ∈ K, and s > n. The notation Es−n denotes conditioning with respect to any randomness
in rounds 1, . . . , s − n − 1. Note also that when q(u) = 1 for all u ∈ A and F is the edgeless graph, the
probabilities pt(i, v) in (3) correspond to those computed by Exp3-Coop (Cesa-Bianchi et al., 2019).

Before analyzing our cooperative implementation of Exp3-α2, we present a key graph-theoretic result that
helps us characterize the joint impact on the regret of the communication network and the feedback graph.
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Our new result relates the variance of the estimates of eq. (3) to the structure of the communication graph
given by the strong product of Nn and F .
Lemma 1. Let N = (A,EN ) and F = (K,EF ) be any two graphs, n ≥ 0,

(
q(v)

)
v∈A a set of numbers in

(0, 1], Q =
∑
v∈A q(v), and

(
p(i, v)

)
i∈K,v∈A a set of numbers in (0, 1] such that

∑
i∈K p(i, v) = 1 for all

v ∈ A. Then, ∑
v∈A

∑
i∈K

q(v)p(i, v)
1−

∏
u∈NN

n (v)
(
1− q(u)

∑
j∈NF

1 (i) p(j, u)
) ≤ 1

1− e−1

(
α
(
Nn � F

)
+Q

)
Proof. Let w =

(
w(i, v)

)
(i,v)∈K×A where w(i, v) = q(v)p(i, v), and for all (i, v) ∈ K × A set W (i, v) =∑

(j,u)∈NF
1 (i)×NN

n (v) w(j, u). Define also, for all c =
(
c(j, u)

)
(j,u)∈K×A ∈ [0, 1]|K|×|A| and (i, v) ∈ K ×A

fc(i, v) = 1−
∏

u∈NN
n (v)

1−
∑

j∈NF
1 (i)

c(j, u)


Then we can write the left-hand side of the statement of the lemma as∑

(i,v)∈K×A

w(i, v)
fw(i, v) =

∑
(i,v)∈K×A :W (i,v)<1

w(i, v)
fw(i, v)︸ ︷︷ ︸

(I)

+
∑

(i,v)∈K×A :W (i,v)≥1

w(i, v)
fw(i, v)︸ ︷︷ ︸

(II)

and proceed by upper bounding the two terms (I) and (II) separately. For the first term (I), using the
inequality 1− x ≤ e−x (for all x ∈ R) with x = w(j, u), we can write, for any (i, v) ∈ K ×A,

fw(i, v) ≥ 1− exp

− ∑
u∈NN

n (v)

∑
j∈NF

1 (i)

w(j, u)

 = 1− exp
(
−W (i, v)

)
Now, since in (I) we are only summing over (i, v) ∈ K ×A such that W (i, v) < 1, we can use the inequality
1− e−x ≥ (1− e−1)x (for all x ∈ [0, 1]) with x = W (i, v), obtaining fw(i, v) ≥ (1− e−1)W (i, v), and in turn

(I) ≤
∑

(i,v)∈K×A :W (i,v)<1

w(i, v)
(1− e−1)W (i, v) ≤

1
1− e−1

∑
(i,v)∈K×A

w(i, v)
W (i, v) ≤

α
(
Nn � F

)
1− e−1

where in the last step we used a known graph-theoretic result—see Lemma 3 in the Supplementary Material.
For the second term (II): for all v ∈ A, let r(v) be the cardinality of NN

n (v). Then, for any (i, v) ∈ K ×A
such that W (i, v) ≥ 1,

1− fw(i, v) ≤ max

1− fc(i, v) : c ∈ [0, 1]|K|×|A|,
∑

(j,u)∈NF
1 (i)×NN

n (v)

c(j, u) ≥ 1


= max

 ∏
u∈NN

n (v)

1−
∑

j∈NF
1 (i)

c(j, u)

 : c ∈ [0, 1]|K|×|A|,
∑

u∈NN
n (v)

∑
j∈NF

1 (i)

c(j, u) = 1


≤ max

 ∏
u∈NN

n (v)

(
1− C(u)

)
: C ∈ [0, 1]|A|,

∑
u∈NN

n (v)

C(u) = 1


= max

 ∏
u∈NN

n (v)

(
1− C(u)

)
: C ∈ [0, 1]|A|,

∑
u∈NN

n (v)

(
1− C(u)

)
= r(v)− 1


≤
(

1− 1
r(v)

)r(v)
≤ e−1
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where the first equality follows from the definition of fc(i, v) and the monotonicity of x 7→ 1 − x, the
second-to-last inequality is implied by the AM-GM inequality (Lemma 4), and the last one comes from
r(v) ≥ 1 (being v ∈ NN

n (v)). Hence

(II) =
∑

(i,v)∈K×A :W (i,v)≥1

w(i, v)
fw(i, v) ≤

∑
(i,v)∈K×A :W (i,v)≥1

w(i, v)
1− e−1

≤ 1
1− e−1

∑
i∈K

∑
v∈A

w(i, v) = 1
1− e−1

∑
v∈A

q(v)
∑
i∈K

p(i, v) = Q

1− e−1

For a slightly stronger version of this result, see Lemma 6 in the Supplementary Material. By virtue of
Lemma 1, we can now show the main result of this section.
Theorem 1. If each agent v ∈ A uses adaptive learning rates equal to ηt(v) = 0 for t ≤ n + 1, ηt(v) =√

log(K)/
∑t
s=1Xs(v) with Xt(v) = n+

∑
i∈K

pt(i,v)
bt(i,v) for t > n+ 1, the average network regret of Exp3-α2

playing with an oblivious network interface can be bounded as

RT
Q

Õ=

√
log(K)

(
n+ 1 + α (Nn � F )

Q

)
T . (4)

Proof. Let i? ∈ argmini∈K E
[∑T

t=1 |At| `t(i)
]
where the expectation is with respect to the random sequence

At ⊆ A of agent activations. We write the network regret RT as a weighted sum of single agent regrets RT (v):

RT =
∑
v∈A

q(v)RT (v) =
∑
v∈A

q(v)E
[
T∑
t=1

∑
i∈K

̂̀
t(i, v)pt(i, v)− ̂̀t(i?, v)

]
,

where the expectation is now only with respect to the random draw of the agents’ actions, and it is separated
from the activation probability q(v). Fix any agent v ∈ A. Exp3-α2 plays uniformly for the first n+ 1 rounds,
and each agent, therefore, incurs a linear regret in this phase. For t > n + 1 we borrow a decomposition
technique from (Gyorgy and Joulani, 2021): for any sequence

(
p̃t(·, v)

)
t>n+1 of distributions over K, the

above expectation can be written as

E

[
T∑

t=n+2

∑
i∈K

̂̀
t(i, v)p̃t+1(i, v)− ̂̀t(i?, v)

]
+

T∑
t=n+2

E

[∑
i∈K

̂̀
t(i, v)pt(i, v)

(
1− p̃t+1(i, v)

pt(i, v)

)]
. (5)

Take now p̃t(·, v) as the (full-information) exponential-weights updates with non-increasing step-sizes ηt−1(v)
for the sequence of losses ̂̀t(·, v). That is, p̃1(·, v) is the uniform distribution over K, and for any time step t
and action i ∈ K, p̃t+1(i, v) = w̃t+1(i, v)/ ‖w̃t+1(·, v)‖1, where w̃t+1(i, v) = exp

(
−ηt(v)

∑t
s=1

̂̀
s(i, v)

)
. With

this choice, the first term in (5) is the “look-ahead” regret for the iterates p̃t+1(·, v) (which depend on ̂̀t(·, v)
at time t), while the second one measures the drift of pt(·, v) from p̃t+1(·, v).

Using an argument from (Joulani et al., 2020, Theorem 3),4 we deterministically bound the first term in (5):
T∑

t=n+2

∑
i∈K

̂̀
t(i, v)p̃t+1(i, v)− ̂̀t(i?, v) ≤ ln |K|

ηT (v) . (6)

The subtle part is now to control the second term in (5). To do so, fix any t > n+ 1. Note that for all i ∈ K,

wt(i, v) = exp
(
−ηt(v)

t−n−1∑
s=1

̂̀
s(i, v)

)
≥ exp

(
−ηt(v)

t∑
s=1

̂̀
s(i, v)

)
= w̃t+1(i, v)

4We use (Joulani et al., 2020, Theorem 3) with pt = 0 for all t ∈ [T ], r0 = (1/η0(v))
∑

i
pi ln(pi), rt(p) = (1/ηt(v) −

1/ηt−1(v))
∑

i
pi ln(pi) for all t ∈ [T ], and dropping the Bregman-divergence terms due to the convexity of rt.

7
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(using `s(i, v) ≥ 0 for all s, i, v), which in turn, using the inequality ex ≥ 1 + x (for all x ∈ R), yields

p̃t+1(i, v)
pt(i, v) ≥

w̃t+1(i, v)
wt(i, v) = exp

(
−ηt(v)

∑t
s=t−n

̂̀
s(i, v)

)
≥ 1− ηt(v)

∑t
s=t−n

̂̀
s(i, v)

Thus, we upper bound the second expectation in (5) by

∑
i∈K

E

[
ηt(v) ̂̀t(i, v)pt(i, v)

t−1∑
s=t−n

̂̀
s(i, v)

]
+
∑
i∈K

E
[
ηt(v) ̂̀t(i, v)2pt(i, v)

]
=: g(1)

t (v) + g
(2)
t (v) (7)

We study the two terms g(1)
t (v) and g(2)

t (v) separately. Let then Ht = Ht(v) be the σ-algebra generated by the
activations of agents and the actions drawn by them at times 1, . . . , t− 1, and let also indicate Et = E[· | Ht].

First, we bound g(1)
t (v) in (7) using the fact that pt(·, v), ηt(v) and bs(·, v) (for all s ∈ {t − n, . . . , t}) are

determined by the randomness in steps 1, . . . , t − n − 1. We use the tower rule and take the conditional
expectation inside since all quantities apart from Bt−n(i, v), . . . , Bt(i, v) are determined given Ht−n, we
rewrite the expression as

g
(1)
t (v) = E

[∑
i∈K

ηt(v)pt(i, v)
t−1∑

s=t−n

`t(i)
bt(i, v)

`s(i)
bs(i, v)Et−n

[
Bt(i, v)Bs(i, v)

]]
.

Conditional on Ht−n the Bernoulli random variables Bs(i, v), and Bt(i, v) for s = t − n, . . . , t − 1 are
independent. This follows because the feedbacks at time s are missing at time t for s = t− n, . . . , t− 1, and
therefore, from the independent activation of agents and the fact that the only other source of randomness is
the independent internal randomization of the algorithm, they are independent random variables, implying

Et−n
[
Bt(i, v)Bs(i, v)

]
= bt(i, v)bs(i, v)

for s = t− n, . . . , t− 1. Using `t(i), `s(i) ≤ 1, we then get

g
(1)
t (v) ≤ E

[∑
i∈K

ηt(v)pt(i, v)n
]

= E[ηt(v)n].

With a similar argument, we also get

g
(2)
t (v) = E

[∑
i∈K

ηt(v)`t(i)2pt(i, v)
bt(i, v)2 Et−n

[
Bt(i, v)

]]
≤ E

[∑
i∈K

ηt(v)pt(i, v)
bt(i, v)

]

Finally, the single agent regret for each agent v ∈ A is bounded by

RT (v) ≤ E
[

ln |K|
ηT (v)

]
+ (n+ 1) +

T∑
t=n+2

E

[
ηt(v)

(
n+

∑
i∈K

pt(i, v)
bt(i, v)

)]

= E
[

ln |K|
ηT (v)

]
+ (n+ 1) +

T∑
t=n+2

E [ηt(v)Xt(v)]

where, in the second line, we defined Xt(v) = I
{
t > n+ 1

}(
n+

∑
i∈K

pt(i,v)
bt(i,v)

)
.

We now take ηt(v) =
√

log(K)
/∑t

s=1Xs(v), and we use a standard inequality stating that for any at > 0,∑T
t=1 at

/√∑t
s=1 as ≤ 2

√∑T
t=1 at. Applying this inequality for at equal to Xt(v) we have

RT (v) ≤ (n+ 1) + E


√√√√log(K)

T∑
s=1

Xs(v)

+ E

 T∑
t=1

√
log(K)Xt(v)√∑t

s=1Xs(v)


8
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≤ (n+ 1) + 3E


√√√√log(K)

T∑
t=1

Xt(v)


Multiplying by q(v), summing over agents v ∈ A we obtain

RT =
∑
v

q(v)RT (v) = Q(n+ 1) + 3Q
∑
v

q(v)
Q

√√√√ T∑
t=1

log(K)
(
n+

∑
i∈K

pt(i, v)
bt(i, v)

)

≤ Q(n+ 1) + 3Q

√√√√ log(K)
Q

T∑
t=1

(
nQ+

∑
v

∑
i∈K

pt(i, v)q(v)
bt(i, v)

)

≤ Q(n+ 1) + 3Q

√
log(K)

(
n+ 1 + α (Nn � F )

Q(1− e−1)

)
T

where the first inequality follows from Jensen’s inequality and the second from Lemma 1.

Note that in Theorem 1, every agent tunes the learning rate ηt(v) using available information at time t. This
allows the network regret to adapt to the unknown parameters of the problems such as the time horizon T ,
the independence number α

(
Nn � F

)
, and the total activation mass Q on A. This approach improves over

the doubling trick approach used in Cesa-Bianchi et al. (2019) since we do not need to restart the algorithm.

5 Lower bound

In this section, we prove that not only the upper bound in Theorem 1 is optimal in a minimax sense—i.e.,
that it is attained for some pairs of graphs (N,F )—but it is also tight in an instance-dependent sense, for all
pairs of graphs belonging to a large class.
Definition 1. Let G be the class of all pairs of graphs (N,F ) such that α(N � F ) = α(N)α(F ).
Many sufficient conditions guaranteeing that (N,F ) ∈ G are known in the graph theory literature: see, e.g.,
Hales (1973, Section 3), Acín et al. (2017, Theorem 6), and Rosenfeld (1967, Theorem 2). To the best of our
knowledge, a full characterization of G is still a challenging open problem in graph theory that goes beyond
the scope of this paper. It is easy to verify that if (either N or) F is a clique or an edgeless graph, then
(N,F ) ∈ G . We remark that these instances cover in particular both the bandit and the full-info case that
were previously only studied individually, and analyzed with ad hoc techniques. For some further discussion
on G , we refer the interest reader to Appendix B.1.

The proof of the lower bound in Theorem 2 exploits a reduction to a setting we introduce in Lemma 2. In
this lemma, we state that in a single-agent setting with a feedback graph, if each one of T time steps is
independently skipped with a known and constant probability q, the learner’s regret is Ω

(√
α(F )qT

)
. Skipped

rounds do not count towards regret. More precisely, at each round t, there is an independent Bernoulli
random variable At with mean q. If At = 0, the learner is not required to make any predictions, incurs no
loss, and receives no feedback information. The (single-agent) regret of an algorithm Alg on a sequence(
`t
)
t∈[T ] of losses is defined as Rsa

T (q,Alg, `) = maxi∈[K]R
sa
T (q,Alg, `, i) where

Rsa
T (q,Alg, `, i) = E

[
T∑
t=1

(
`t(It)− `t(i)

)
I{At = 1}

]
and It is the action played by the learner at time t that only depends on the rounds s ∈ {1, . . . , t} where
As = 1. Note that it is not true, in general, that Rsa

T (q,Alg, `) = qmaxi∈[K] E
[∑T

t=1
(
`t(It)− `t(i)

)]
.

Lemma 2. For any feedback graph F , for any q > 0, and for any T ≥ max
{

0.0064 · α(F )3, 1
q3

}
, if each

round t ∈ [T ] is independently skipped with probability q, then

inf
Alg

sup
`
Rsa
T (q,Alg, `) Ω=

√
α(F )qT .

9
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The proof of this lemma can be found in Appendix A. Now let ℵ = (ℵv)v∈A be a set of single-agent online
algorithms, where ℵv is run by agent v. Let RT (q,ℵ, `) be the network regret (2) incurred by the algorithms
ℵ with losses ` = (`t)t∈[T ] and activation probabilities q = (q(v))v∈A. We can now prove our lower bound.
Theorem 2. For any choice of n, any pair of graphs (Nn, F ) ∈ G , and all Q ∈ (0, αn(N)], we have that for
T ≥ max

{
0.0064 · α(F )3, α(N)3/Q3} the following lower bound holds true

inf
ℵ

sup
`,q

RT (q,ℵ, `) Ω=
√
Qα
(
Nn � F

)
T

where the infimum is over all agent strategies ℵ = (ℵv)v∈A, the supremum is over all assignments of losses
` = (`t)t∈[T ] and activation probabilities

(
q(v)

)
v∈A such that Q =

∑
v∈A q(v).

Proof. Fix any (N,n, F ) and Q ∈ (0, αn(N)] as in the statement of the theorem. Then α
(
Nn � F

)
=

αn(N)α(F ). Let I ⊂ A be a set of αn(N) agents such that δN (u, v) > n for all u, v ∈ I. Define the
activation probabilities q(v) = Q/αn(N) ≤ 1 for all v ∈ I and q(v) = 0 for all v ∈ A \ I. Let also
Tv =

{
t ∈ [T ] : v ∈ At

}
for all v ∈ A, and note that the expected number of rounds E

[
|Tv|

]
that each agent

v is activated is (Q/αn(N))T if v ∈ I, zero otherwise. By construction, no communication occurs among
agents in I. Furthermore, each agent in I is activated independently with probability q(v) = Q/αn(N).

We now show that the infimum in the statement of the theorem is achieved when all agents run an instance
of the same online algorithm. That is, we prove

inf
ℵ

sup
`
RT (q,ℵ, `) = inf

ℵ
sup
`
RT (q,ℵ, `) (8)

where the infimum in the right-hand side is over algorithms ℵ = (ℵv)v∈A such that all the ℵv are instances of
the same single-agent online algorithm. To see this, take ℵ?, `? such that5

RqT (q,ℵ?, `?) = inf
ℵ

sup
`
RT (q,ℵ, `) .

Assume by contradiction that there exists ℵ? = (ℵ?v)v∈A, where the ℵ?v are not necessarily instances of the
same algorithm, such that RT (q,ℵ?, `?) > RT (q,ℵ?, `?). Then, letting I?t (v) be the arm pulled by ℵ?v at time
t, we get

RT (q,ℵ?, `?) > RT (q,ℵ?, `?)

= E

[
T∑
t=1

∑
v∈N

`?t (I?t (v))I{v ∈ At}
]

=
T∑
t=1

∑
v∈I

q(v)E
[
`?t (I?t (v))

]
= q

∑
v∈I

T∑
t=1

E
[
`?t (I?t (v))

]
= (◦) .

Now take

v? ∈ argmin
v∈A

T∑
t=1

E
[
`?t (I?t (v))

]
and consider the algorithm ℵ′ such that ℵ′v coincide with ℵ?v? for all v ∈ A. By definition of v? and ℵ′, we
have

(◦) = q
∑
v∈I

T∑
t=1

E
[
`?t (I?t (v))

]
≥ q

∑
v∈I

T∑
t=1

E
[
`?t (I?t (v?))

]
= RT (q,ℵ′, `?) .

5If the infimum or the supremum are not attained, we just consider ε-optimizers instead of optimizers, and then take the
limit for ε→ 0.
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But, by definition, ℵ? is the minimizer of ℵ 7→ RT (q,ℵ, `?) over all algorithms ℵ such that all ℵv for v ∈ A
are instances of the same algorithm. Hence RT (q,ℵ?, `?) > (◦) ≥ RT (q,ℵ′, `?) ≥ RT (q,ℵ?, `?), which is a
contradiction.

Therefore (8) holds, which implies that we can use Lemma 2 to show that there exists a sequence of losses that
simultaneously lower bounds the regret of all agents. Indeed, for all T ≥ max

{
0.0064 · α(F )3, αn(N)3/Q3}

we have

inf
ℵ

sup
`
RT (q,ℵ, `) = inf

ℵ
sup
`
RT (q,ℵ, `)

= inf
ℵ

sup
`

max
i∈K

∑
v∈I

E

[∑
t∈Tv

(
`t
(
It(v)

)
− `t(i)

)]
= inf
ℵ

sup
`

max
i∈K

∑
v∈I

Rsa
T (q,ℵv, `, i)

= αn(N) inf
Alg

sup
`
Rsa
T (q,Alg, `) (letting ℵv = Alg for all v ∈ I)

Ω= αn(N)
√
α(F )(Q/αn(N))T (Lemma 2)

=
√
Q
(
α(F )αn(N)

)
T =

√
Qα
(
Nn � F

)
T

where It(v) is the arm pulled by ℵv at time t and Lemma 2 is invoked on |I| = αn(N) independent instances
ℵv of the same single-agent online learning algorithm with feedback graph G = F .

6 Experiments

To empirically appreciate the impact of cooperation, we run a number of experiments on synthetic data.

For each choice of N and F , we compare Exp3-α2 run on N and F against a baseline which runs Exp3-α2 on
N ′ and F , where N ′ is an edgeless communication graph. Hence, the baseline runs A independent instances
on the same feedback graph.

In our experiments, we fix the time horizon (T = 10,000), the number of arms (K = 20), and the number of
agents (A = 20). We also set the delay δN to 1. The loss of each action is a Bernoulli random variable of
parameter 1/2, except for the optimal action which has parameter 1/2−

√
K/T . The activation probabilities

q(v) are the same for all agents v ∈ A, and range in the set {0.05, 0.5, 1}. This implies that Q ∈ {1, 10, 20}.
The feedback graph F and the communication graph N are Erdős–Rényi random graphs of parameters pN ,
pF ∈ {0.2, 0.8}. For each choice of the parameters, the same realization of N and F was kept fixed in all the
experiments, see Figure 1.
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Figure 1: The random instances of N (leftmost graphs) and F (rightmost graphs) used in our experiments.
The sparse graphs are Erdős–Rényi of parameter 0.2, the dense graphs are Erdős–Rényi of parameter 0.8.

11



Under review as submission to TMLR

In each experiment, Exp3-α2 and our baseline are run on the same realization of losses and agent activations.
Hence, the only stochasticity left is the internal randomization of the algorithms. Our results are averages of
20 repetitions of each experiment with respect to this randomization.

Figure 2: Average regret of Exp3-α2 (blue dots) against the baseline (red dots). The X-axis and the
Y -axis correspond to the parameters pF and pN of the Erdős–Rényi graph, the Z-axis is the average regret
RT /Q. The three plots correspond to increasing values (from left to right) of activation probability: q = 0.05
(leftmost plot), q = 0.5 (central plot), q = 1 (rightmost plot).

Figure 2 summarizes the results of our experiments in terms of the average regret RT /Q. See Appendix D
for the actual learning curves. Recall that our upper bound (1) scales with the quantity

√
α(N � F )/Q.

• Note that our algorithm (blue dots) is never worse than the baseline (red dots). This is consistent
with the fact that N for the baseline is the edgeless graph, implying that α(N � F ) = Aα(F ).

• Consistently with (1), the average performance gets worse when Q→ 1.6
• By construction, the performance of the baseline in each plot remains constant when pN varies in
{0.2, 0.8}. On the other hand, our algorithm is worse when N is sparse because α(N � F ) increases.

• The performance of both algorithms is worse when F is sparse because, once more, α(N � F )
increases.

7 Conclusions

In this work, we nearly characterize the minimax regret in cooperative online learning with feedback graphs,
showing that the dependence on α

(
Nn � F

)
in our bounds is tight in all but a few, pathological instances.

In a bandit setting, when all agents are active at all time steps, previous works showed that communication
speeds up learning by reducing the variance of loss estimates. On the opposite end of the spectrum, in
full-information settings, updating non-active agents was shown to improve regret. These results left open
the question of which updates would help in intermediate settings and why. In this paper, we prove that
both types of updates help local learners across the entire experts-bandits spectrum (Theorem 1). We stress
that this strategy crucially depends on the stochasticity of the activations. Indeed, Cesa-Bianchi et al. (2020)
disproved the naive intuition that more information automatically translates into better bounds, showing
how using all the available data can lead to linear regret in the case of adversarial activations with oblivious
network interface.

As we only considered undirected feedback graphs, their extension to the directed case remains open. Using the
terminology introduced by Alon et al. (2015) for directed graphs, we conjecture our main result (Theorem 1)
remains true in the strongly observable case. In the weakly observable case, the scaling parameter of the
single-agent regret is a graph-theoretic quantity different from the independence number, and the minimax
rate becomes T 2/3. In this case, we ignore the best possible scaling parameter for the network regret.

6Also the baseline, whose agents learn in isolation, gets worse when Q decreases. Indeed, when Q = 1 agents get only to play
for T/|A| time steps each, and together achieve a network regret RT that scales with

√
|A|α(F ), as predicted by our analysis.
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